51
|
Charoenvicha C, Sirimaharaj W, Khwanngern K, Chattipakorn N, Chattipakorn SC. Alterations in DNA Methylation in Orofacial Clefts. Int J Mol Sci 2022; 23:ijms232112727. [PMID: 36361518 PMCID: PMC9654384 DOI: 10.3390/ijms232112727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Orofacial clefts are among the most common craniofacial anomalies with multifactorial etiologies, including genetics and environments. DNA methylation, one of the most acknowledged mechanisms of epigenetics, is involved in the development of orofacial clefts. DNA methylation has been examined in patients with non-syndromic cleft lip with cleft palate (nsCL/P) from multiple specimens, including blood, saliva, lip, and palate, as well as experimental studies in mice. The results can be reported in two different trends: hypomethylation and hypermethylation. Both hypomethylation and hypermethylation can potentially increase the risk of nsCL/P depending on the types of specimens and the specific regions on each gene and chromosome. This is the most up-to-date review, intending to summarize evidence of the alterations of DNA methylation in association with the occurrence of orofacial clefts. To make things straightforward to understand, we have systematically categorized the data into four main groups: human blood, human tissues, animal models, and the factors associated with DNA methylation. With this review, we are moving closer to the core of DNA methylation associated with nsCL/P development; we hope this is the initial step to find a genetic tool for early detection and prevention of the occurrence of nsCL/P.
Collapse
Affiliation(s)
- Chirakan Charoenvicha
- Plastic and Reconstructive Surgery Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Clinical Surgical Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wimon Sirimaharaj
- Plastic and Reconstructive Surgery Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Krit Khwanngern
- Plastic and Reconstructive Surgery Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C. Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +011-66-53-944-451; Fax: +011-66-53-222-844
| |
Collapse
|
52
|
Cerdeña JP. Epigenetic citizenship and political claims-making: the ethics of molecularizing structural racism. BIOSOCIETIES 2022; 18:1-24. [PMID: 36277423 PMCID: PMC9579599 DOI: 10.1057/s41292-022-00286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/21/2022]
Abstract
Epigenetics has generated excitement over its potential to inform health disparities research by capturing the molecular signatures of social experiences. This paper highlights the concerns implied by these expectations of epigenetics research and discusses the possible ramifications of 'molecularizing' the forms of social suffering currently examined in epigenetics studies. Researchers working with oppressed populations-particularly racially marginalized groups-should further anticipate how their results might be interpreted to avoid fueling prejudiced claims of biological essentialism. Introducing the concept of 'epigenetic citizenship,' this paper considers the ways environmentally responsive methylation cues may be used in direct-to-consumer testing, healthcare, and biopolitical interactions. The conclusion addresses the future of social epigenetics research and the utility of an epigenetic citizenship framework.
Collapse
Affiliation(s)
- Jessica P. Cerdeña
- Department of Anthropology, Yale University, 10 Sachem Street, New Haven, CT 06511 USA
- Yale School of Medicine, New Haven, CT USA
| |
Collapse
|
53
|
Shenk CE, O'Donnell KJ, Pokhvisneva I, Kobor MS, Meaney MJ, Bensman HE, Allen EK, Olson AE. Epigenetic Age Acceleration and Risk for Posttraumatic Stress Disorder following Exposure to Substantiated Child Maltreatment. JOURNAL OF CLINICAL CHILD AND ADOLESCENT PSYCHOLOGY : THE OFFICIAL JOURNAL FOR THE SOCIETY OF CLINICAL CHILD AND ADOLESCENT PSYCHOLOGY, AMERICAN PSYCHOLOGICAL ASSOCIATION, DIVISION 53 2022; 51:651-661. [PMID: 33471576 PMCID: PMC8289945 DOI: 10.1080/15374416.2020.1864738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Child maltreatment is among the strongest predictors of posttraumatic stress disorder (PTSD). However, less than 40% of children who have been maltreated are ever diagnosed with PTSD, suggesting that exposure to child maltreatment alone is insufficient to explain this risk. This study examined whether epigenetic age acceleration, a stress-sensitive biomarker derived from DNA methylation, explains variation in PTSD diagnostic status subsequent to child maltreatment. METHOD Children and adolescents (N = 70; 65.7% female), 8-15 years of age (M = 12.00, SD = 2.37) and exposed to substantiated child maltreatment within the 12 months prior to study entry, were enrolled. Participants provided epithelial cheek cells via buccal swab for genotyping and quantification of epigenetic age acceleration within a case-control design. PTSD diagnostic status was determined using the Child PTSD Symptoms Scale according to the DSM-IV-TR algorithm. RESULTS Epigenetic age acceleration predicted current PTSD status, revealing an effect size magnitude in the moderate range, OR = 2.35, 95% CI: 1.22- 4.51, after adjusting for sample demographics, polygenic risk for PTSD, and lifetime exposure to other childhood adversities. Supplemental analyses demonstrated that epigenetic age acceleration was related to a greater severity of PTSD arousal symptoms (r =.29, p =.015). There were no differential effects for child maltreatment subtype on epigenetic age acceleration or PTSD status. CONCLUSIONS The biological embedding of child maltreatment may explain variation in PTSD diagnostic status and serve as a novel approach for informing selective prevention or precision-based therapeutics for those at risk for PTSD.
Collapse
Affiliation(s)
- Chad E Shenk
- Department of Human Development and Family Studies, The Pennsylvania State University
- Department of Pediatrics, The Pennsylvania State University College of Medicine
| | - Kieran J O'Donnell
- The Douglas Hospital Research Centre, Department of Psychiatry, McGill University
- Child and Brain Developmental Program, Canadian Institute for Advanced Research
| | - Irina Pokhvisneva
- The Douglas Hospital Research Centre, Department of Psychiatry, McGill University
| | - Michael S Kobor
- Child and Brain Developmental Program, Canadian Institute for Advanced Research
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia
| | - Michael J Meaney
- The Douglas Hospital Research Centre, Department of Psychiatry, McGill University
- Child and Brain Developmental Program, Canadian Institute for Advanced Research
- Agency for Science, Technology and Research, Singapore Institute of Clinical Sciences
| | - Heather E Bensman
- Department of Pediatrics, The University of Cincinnati College of Medicine
| | - Elizabeth K Allen
- Department of Human Development and Family Studies, The Pennsylvania State University
| | - Anneke E Olson
- Department of Human Development and Family Studies, The Pennsylvania State University
| |
Collapse
|
54
|
León I, Herrero Roldán S, Rodrigo MJ, López Rodríguez M, Fisher J, Mitchell C, Lage-Castellanos A. The shared mother-child epigenetic signature of neglect is related to maternal adverse events. Front Physiol 2022; 13:966740. [PMID: 36091392 PMCID: PMC9448913 DOI: 10.3389/fphys.2022.966740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Studies of DNA methylation have revealed the biological mechanisms by which life adversity confers risk for later physical and mental health problems. What remains unknown is the “biologically embedding” of maternal adverse experiences resulting in maladaptive parenting and whether these epigenetic effects are transmitted to the next generation. This study focuses on neglectful mothering indexed by a severe disregard for the basic and psychological needs of the child. Using the Illumina Human Methylation EPIC BeadChip in saliva samples, we identified genes with differentially methylated regions (DMRs) in those mothers with (n = 51), versus those without (n = 87), neglectful behavior that present similar DMRs patterns in their children being neglected versus non-neglected (n = 40 vs. 75). Mothers reported the emotional intensity of adverse life events. After covariate adjustment and multiple testing corrections, we identified 69 DMRs in the mother epigenome and 42 DMRs in the child epigenome that were simultaneously above the α = 0.01 threshold. The common set of nine DMRs contained genes related to childhood adversity, neonatal and infant diabetes, child neurobehavioral development and other health problems such as obesity, hypertension, cancer, posttraumatic stress, and the Alzheimer’s disease; four of the genes were associated with maternal life adversity. Identifying a shared epigenetic signature of neglect linked to maternal life adversity is an essential step in breaking the intergenerational transmission of one of the most common forms of childhood maltreatment.
Collapse
Affiliation(s)
- Inmaculada León
- Instituto Universitario de Neurociencia, Universidad de La Laguna, San Cristóbal de la Laguna, Spain
- Facultad de Psicología, Universidad de La Laguna, San Cristóbal de la Laguna, Spain
| | - Silvia Herrero Roldán
- Instituto Universitario de Neurociencia, Universidad de La Laguna, San Cristóbal de la Laguna, Spain
- Facultad de Psicología, Universidad de La Laguna, San Cristóbal de la Laguna, Spain
- *Correspondence: Silvia Herrero Roldán,
| | - María José Rodrigo
- Instituto Universitario de Neurociencia, Universidad de La Laguna, San Cristóbal de la Laguna, Spain
- Facultad de Psicología, Universidad de La Laguna, San Cristóbal de la Laguna, Spain
| | - Maykel López Rodríguez
- Department of Pathology and Experimental Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Jonah Fisher
- Institute for Social Research, University of Michigan, Ann Abor, MI, United States
| | - Colter Mitchell
- Institute for Social Research, University of Michigan, Ann Abor, MI, United States
| | - Agustín Lage-Castellanos
- Department of NeuroInformatics, Cuban Center for Neuroscience, Havana, Cuba
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
55
|
Barcelona V, Huang Y, Caceres BA, Newhall KP, Hui Q, Cerdeña JP, Crusto CA, Sun YV, Taylor JY. Experiences of Trauma and DNA Methylation Profiles among African American Mothers and Children. Int J Mol Sci 2022; 23:ijms23168951. [PMID: 36012217 PMCID: PMC9408935 DOI: 10.3390/ijms23168951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Potentially traumatic experiences have been associated with chronic diseases. Epigenetic mechanisms, including DNA methylation (DNAm), have been proposed as an explanation for this association. We examined the association of experiences of trauma with epigenome-wide DNAm among African American mothers (n = 236) and their children aged 3–5 years (n = 232; N = 500), using the Life Events Checklist-5 (LEC) and Traumatic Events Screening Inventory—Parent Report Revised (TESI-PRR). We identified no DNAm sites significantly associated with potentially traumatic experience scores in mothers. One CpG site on the ENOX1 gene was methylome-wide-significant in children (FDR-corrected q-value = 0.05) from the TESI-PRR. This protein-coding gene is associated with mental illness, including unipolar depression, bipolar, and schizophrenia. Future research should further examine the associations between childhood trauma, DNAm, and health outcomes among this understudied and high-risk group. Findings from such longitudinal research may inform clinical and translational approaches to prevent adverse health outcomes associated with epigenetic changes.
Collapse
Affiliation(s)
- Veronica Barcelona
- Center for Research on People of Color, Columbia University School of Nursing, 560 West 168th St., New York, NY 10032, USA
| | | | - Billy A. Caceres
- Center for Research on People of Color, Columbia University School of Nursing, 560 West 168th St., New York, NY 10032, USA
| | - Kevin P. Newhall
- School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Qin Hui
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA 30322, USA
| | - Jessica P. Cerdeña
- MD-PhD Program, Yale School of Medicine, 367 Cedar St., New Haven, CT 06520, USA
- Department of Anthropology and Institute for Collaboration on Health, Intervention, and Policy (InCHIP), University of Connecticut, 354 Mansfield Rd., Storrs, CT 06269, USA
| | - Cindy A. Crusto
- Department of Psychiatry, Yale School of Medicine, 300 George St., New Haven, CT 06511, USA
- Department of Psychology, University of Pretoria, Private Bag x 20, Hatfield, Pretoria 0028, South Africa
| | - Yan V. Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA 30322, USA
| | - Jacquelyn Y. Taylor
- Center for Research on People of Color, Columbia University School of Nursing, 560 West 168th St., New York, NY 10032, USA
- Correspondence: ; Tel.: +1-(212)-342-3986
| |
Collapse
|
56
|
Robakis TK, Roth MC, King LS, Humphreys KL, Ho M, Zhang X, Chen Y, Li T, Rasgon NL, Watson KT, Urban AE, Gotlib IH. Maternal attachment insecurity, maltreatment history, and depressive symptoms are associated with broad DNA methylation signatures in infants. Mol Psychiatry 2022; 27:3306-3315. [PMID: 35577912 PMCID: PMC9666564 DOI: 10.1038/s41380-022-01592-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 04/05/2022] [Accepted: 04/19/2022] [Indexed: 11/08/2022]
Abstract
The early environment, including maternal characteristics, provides many cues to young organisms that shape their long-term physical and mental health. Identifying the earliest molecular events that precede observable developmental outcomes could help identify children in need of support prior to the onset of physical and mental health difficulties. In this study, we examined whether mothers' attachment insecurity, maltreatment history, and depressive symptoms were associated with alterations in DNA methylation patterns in their infants, and whether these correlates in the infant epigenome were associated with socioemotional and behavioral functioning in toddlerhood. We recruited 156 women oversampled for histories of depression, who completed psychiatric interviews and depression screening during pregnancy, then provided follow-up behavioral data on their children at 18 months. Buccal cell DNA was obtained from 32 of their infants for a large-scale analysis of methylation patterns across 5 × 106 individual CpG dinucleotides, using clustering-based significance criteria to control for multiple comparisons. We found that tens of thousands of individual infant CpGs were alternatively methylated in association with maternal attachment insecurity, maltreatment in childhood, and antenatal and postpartum depressive symptoms, including genes implicated in developmental patterning, cell-cell communication, hormonal regulation, immune function/inflammatory response, and neurotransmission. Density of DNA methylation at selected genes from the result set was also significantly associated with toddler socioemotional and behavioral problems. This is the first report to identify novel regions of the human infant genome at which DNA methylation patterns are associated longitudinally both with maternal characteristics and with offspring socioemotional and behavioral problems in toddlerhood.
Collapse
Affiliation(s)
- Thalia K Robakis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Marissa C Roth
- Department of Psychology and Human Development, Peabody College of Vanderbilt University, Nashville, TN, USA
| | - Lucy S King
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Kathryn L Humphreys
- Department of Psychology and Human Development, Peabody College of Vanderbilt University, Nashville, TN, USA
| | - Marcus Ho
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Xianglong Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | | | | | - Natalie L Rasgon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Kathleen T Watson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Alexander E Urban
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA, USA
| |
Collapse
|
57
|
Characterization of methylation patterns associated with lifestyle factors and vitamin D supplementation in a healthy elderly cohort from Southwest Sweden. Sci Rep 2022; 12:12670. [PMID: 35879377 PMCID: PMC9310683 DOI: 10.1038/s41598-022-15924-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/01/2022] [Indexed: 11/08/2022] Open
Abstract
Numerous studies have shown that lifestyle factors, such as regular physical activity and vitamin D intake, may remarkably improve overall health and mental wellbeing. This is especially important in older adults whose vitamin D deficiency occurs with a high prevalence. This study aimed to examine the influence of lifestyle and vitamin D on global DNA methylation patterns in an elderly cohort in Southwest of Sweden. We also sought to examine the methylation levels of specific genes involved in vitamin D's molecular and metabolic activated pathways. We performed a genome wide methylation analysis, using Illumina Infinium DNA Methylation EPIC 850kBeadChip array, on 277 healthy individuals from Southwest Sweden at the age of 70–95. The study participants also answered queries on lifestyle, vitamin intake, heart medication, and estimated health. Vitamin D intake did not in general affect methylation patterns, which is in concert with other studies. However, when comparing the group of individuals taking vitamin supplements, including vitamin D, with those not taking supplements, a difference in methylation in the solute carrier family 25 (SCL25A24) gene was found. This confirms a previous finding, where changes in expression of SLC25A24 were associated with vitamin D treatment in human monocytes. The combination of vitamin D intake and high physical activity increased methylation of genes linked to regulation of vitamin D receptor pathway, the Wnt pathway and general cancer processes. To our knowledge, this is the first study detecting epigenetic markers associated with the combined effects of vitamin D supplementation and high physical activity. These results deserve to be further investigated in an extended, interventional study cohort, where also the levels of 25(OH)D3 can be monitored.
Collapse
|
58
|
Sharma R, Frasch MG, Zelgert C, Zimmermann P, Fabre B, Wilson R, Waldenberger M, MacDonald JW, Bammler TK, Lobmaier SM, Antonelli MC. Maternal-fetal stress and DNA methylation signatures in neonatal saliva: an epigenome-wide association study. Clin Epigenetics 2022; 14:87. [PMID: 35836289 PMCID: PMC9281078 DOI: 10.1186/s13148-022-01310-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/05/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Maternal stress before, during and after pregnancy has profound effects on the development and lifelong function of the infant's neurocognitive development. We hypothesized that the programming of the central nervous system (CNS), hypothalamic-pituitary-adrenal (HPA) axis and autonomic nervous system (ANS) induced by prenatal stress (PS) is reflected in electrophysiological and epigenetic biomarkers. In this study, we aimed to find noninvasive epigenetic biomarkers of PS in the newborn salivary DNA. RESULTS A total of 728 pregnant women were screened for stress exposure using Cohen Perceived Stress Scale (PSS), 164 women were enrolled, and 114 dyads were analyzed. Prenatal Distress Questionnaire (PDQ) was also administered to assess specific pregnancy worries. Transabdominal fetal electrocardiograms (taECG) were recorded to derive coupling between maternal and fetal heart rates resulting in a 'Fetal Stress Index' (FSI). Upon delivery, we collected maternal hair strands for cortisol measurements and newborn's saliva for epigenetic analyses. DNA was extracted from saliva samples, and DNA methylation was measured using EPIC BeadChip array (850 k CpG sites). Linear regression was used to identify associations between PSS/PDQ/FSI/Cortisol and DNA methylation. We found epigenome-wide significant associations for 5 CpG with PDQ and cortisol at FDR < 5%. Three CpGs were annotated to genes (Illumina Gene annotation file): YAP1, TOMM20 and CSMD1, and two CpGs were located approximately lay at 50 kb from SSBP4 and SCAMP1. In addition, two differentiated methylation regions (DMR) related to maternal stress measures PDQ and cortisol were found: DAXX and ARL4D. CONCLUSIONS Genes annotated to these CpGs were found to be involved in secretion and transportation, nuclear signaling, Hippo signaling pathways, apoptosis, intracellular trafficking and neuronal signaling. Moreover, some CpGs are annotated to genes related to autism, post-traumatic stress disorder (PTSD) and schizophrenia. However, our results should be viewed as hypothesis generating until replicated in a larger sample. Early assessment of such noninvasive PS biomarkers will allow timelier detection of babies at risk and a more effective allocation of resources for early intervention programs to improve child development. A biomarker-guided early intervention strategy is the first step in the prevention of future health problems, reducing their personal and societal impact.
Collapse
Affiliation(s)
- Ritika Sharma
- Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum Munich, Munich, Germany
| | - Martin G Frasch
- Department of Obstetrics and Gynecology and Center On Human Development and Disability (CHDD), University of Washington, Seattle, WA, USA
| | - Camila Zelgert
- Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Peter Zimmermann
- Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bibiana Fabre
- Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rory Wilson
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum Munich, Munich, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum Munich, Munich, Germany
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Silvia M Lobmaier
- Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marta C Antonelli
- Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
59
|
Parker AC, Quinteros BI, Piccolo SR. The DNA methylation landscape of five pediatric-tumor types. PeerJ 2022; 10:e13516. [PMID: 35707123 PMCID: PMC9190670 DOI: 10.7717/peerj.13516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 05/09/2022] [Indexed: 01/17/2023] Open
Abstract
Fewer DNA mutations have been identified in pediatric tumors than in adult tumors, suggesting that alternative tumorigenic mechanisms, including aberrant DNA methylation, may play a prominent role. In one epigenetic process of regulating gene expression, methyl groups are attached at the 5-carbon of the cytosine ring, leading to 5-methylcytosine (5mC). In somatic cells, 5mC occurs mostly in CpG islands, which are often within promoter regions. In Wilms tumors and acute myeloid leukemias, increased levels of epigenetic silencing have been associated with worse patient outcomes. However, to date, researchers have studied methylation primarily in adult tumors and for specific genes-but not on a pan-pediatric cancer scale. We addressed these gaps first by aggregating methylation data from 309 noncancerous samples, establishing baseline expectations for each probe and gene. Even though these samples represent diverse, noncancerous tissue types and population ancestral groups, methylation levels were consistent for most genes. Second, we compared tumor methylation levels against the baseline values for 489 pediatric tumors representing five cancer types: Wilms tumors, clear cell sarcomas of the kidney, rhabdoid tumors, neuroblastomas, and osteosarcomas. Tumor hypomethylation was more common than hypermethylation, and as many as 41.7% of genes were hypomethylated in a given tumor, compared to a maximum of 34.2% for hypermethylated genes. However, in known oncogenes, hypermethylation was more than twice as common as in other genes. We identified 139 probes (31 genes) that were differentially methylated between at least one tumor type and baseline levels, and 32 genes that were differentially methylated across the pediatric tumor types. We evaluated whether genomic events and aberrant methylation were mutually exclusive but did not find evidence of this phenomenon.
Collapse
|
60
|
Yousefi PD, Suderman M, Langdon R, Whitehurst O, Davey Smith G, Relton CL. DNA methylation-based predictors of health: applications and statistical considerations. Nat Rev Genet 2022; 23:369-383. [PMID: 35304597 DOI: 10.1038/s41576-022-00465-w] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
DNA methylation data have become a valuable source of information for biomarker development, because, unlike static genetic risk estimates, DNA methylation varies dynamically in relation to diverse exogenous and endogenous factors, including environmental risk factors and complex disease pathology. Reliable methods for genome-wide measurement at scale have led to the proliferation of epigenome-wide association studies and subsequently to the development of DNA methylation-based predictors across a wide range of health-related applications, from the identification of risk factors or exposures, such as age and smoking, to early detection of disease or progression in cancer, cardiovascular and neurological disease. This Review evaluates the progress of existing DNA methylation-based predictors, including the contribution of machine learning techniques, and assesses the uptake of key statistical best practices needed to ensure their reliable performance, such as data-driven feature selection, elimination of data leakage in performance estimates and use of generalizable, adequately powered training samples.
Collapse
Affiliation(s)
- Paul D Yousefi
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK
| | - Matthew Suderman
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK
| | - Ryan Langdon
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK
| | - Oliver Whitehurst
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK
| | - Caroline L Relton
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK.
| |
Collapse
|
61
|
Manu DM, Mwinyi J, Schiöth HB. Challenges in Analyzing Functional Epigenetic Data in Perspective of Adolescent Psychiatric Health. Int J Mol Sci 2022; 23:5856. [PMID: 35628666 PMCID: PMC9147258 DOI: 10.3390/ijms23105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022] Open
Abstract
The formative period of adolescence plays a crucial role in the development of skills and abilities for adulthood. Adolescents who are affected by mental health conditions are at risk of suicide and social and academic impairments. Gene-environment complementary contributions to the molecular mechanisms involved in psychiatric disorders have emphasized the need to analyze epigenetic marks such as DNA methylation (DNAm) and non-coding RNAs. However, the large and diverse bioinformatic and statistical methods, referring to the confounders of the statistical models, application of multiple-testing adjustment methods, questions regarding the correlation of DNAm across tissues, and sex-dependent differences in results, have raised challenges regarding the interpretation of the results. Based on the example of generalized anxiety disorder (GAD) and depressive disorder (MDD), we shed light on the current knowledge and usage of methodological tools in analyzing epigenetics. Statistical robustness is an essential prerequisite for a better understanding and interpretation of epigenetic modifications and helps to find novel targets for personalized therapeutics in psychiatric diseases.
Collapse
Affiliation(s)
- Diana M. Manu
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (J.M.); (H.B.S.)
| | | | | |
Collapse
|
62
|
Maciejczyk M, Nesterowicz M, Zalewska A, Biedrzycki G, Gerreth P, Hojan K, Gerreth K. Salivary Xanthine Oxidase as a Potential Biomarker in Stroke Diagnostics. Front Immunol 2022; 13:897413. [PMID: 35603179 PMCID: PMC9120610 DOI: 10.3389/fimmu.2022.897413] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/11/2022] [Indexed: 12/26/2022] Open
Abstract
Stroke is one of the most common cerebrovascular diseases. Despite significant progress in understanding stroke pathogenesis, cases are still increasing. Thus, laboratory biomarkers of stroke are sought to allow rapid and non-invasive diagnostics. Ischemia-reperfusion injury is an inflammatory process with characteristic cellular changes leading to microvascular disruption. Several studies have shown that hyperactivation of xanthine oxidase (XO) is a major pathogenic factor contributing to brain dysfunction. Given the critical role of XO in stroke complications, this study aimed to evaluate the activity of the enzyme and its metabolic products in the saliva of stroke subjects. Thirty patients in the subacute phase of stroke were included in the study: 15 with hemorrhagic stroke and 15 with ischemic stroke. The control group consisted of 30 healthy subjects similar to the cerebral stroke patients regarding age, gender, and status of the periodontium, dentition, and oral hygiene. The number of individuals was determined a priori based on our previous experiment (power of the test = 0.8; α = 0.05). The study material was mixed non-stimulated whole saliva (NWS) and stimulated saliva (SWS). We showed that activity, specific activity, and XO output were significantly higher in NWS of ischemic stroke patients than in hemorrhagic stroke and healthy controls. Hydrogen peroxide and uric acid levels were also considerably higher in NWS of ischemic stroke patients. Using receiver operating curve (ROC) analysis, we demonstrated that XO-specific activity in NWS distinguishes ischemic stroke from hemorrhagic stroke (AUC: 0.764) and controls (AUC: 0.973) with very high sensitivity and specificity. Saliva collection is stress-free, requires no specialized medical personnel, and allows continuous monitoring of the patient's condition through non-invasive sampling multiple times per day. Salivary XO also differentiates with high accuracy (100%) and specificity (93.75%) between stroke patients with mild to moderate cognitive decline (AUC = 0.988). Thus, salivary XO assessment may be a potential screening tool for a comprehensive neuropsychological evaluation. To summarize, our study demonstrates the potential utility of salivary XO in the differential diagnosis of stroke.
Collapse
Affiliation(s)
- Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| | - Miłosz Nesterowicz
- Students Scientific Club “Biochemistry of Civilization Diseases” at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, Bialystok, Poland
| | | | - Piotr Gerreth
- Private Dental Practice, Poznan, Poland
- Postgraduate Studies in Scientific Research Methodology, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Hojan
- Department of Occupational Therapy, Poznan University of Medical Sciences, Poznan, Poland
- Department of Rehabilitation, Greater Poland Cancer Centre, Poznan, Poland
| | - Karolina Gerreth
- Department of Risk Group Dentistry, Chair of Pediatric Dentistry, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
63
|
England-Mason G, Merrill SM, Gladish N, Moore SR, Giesbrecht GF, Letourneau N, MacIsaac JL, MacDonald AM, Kinniburgh DW, Ponsonby AL, Saffery R, Martin JW, Kobor MS, Dewey D. Prenatal exposure to phthalates and peripheral blood and buccal epithelial DNA methylation in infants: An epigenome-wide association study. ENVIRONMENT INTERNATIONAL 2022; 163:107183. [PMID: 35325772 DOI: 10.1016/j.envint.2022.107183] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Prenatal exposure to phthalates has been associated with adverse health and neurodevelopmental outcomes. DNA methylation (DNAm) alterations may be a mechanism underlying these effects, but prior investigations of prenatal exposure to phthalates and neonatal DNAm profiles are limited to placental tissue and umbilical cord blood. OBJECTIVE Conduct an epigenome-wide association study (EWAS) of the associations between prenatal exposure to phthalates and DNAm in two accessible infant tissues, venous buffy coat blood and buccal epithelial cells (BECs). METHODS Participants included 152 maternal-infant pairs from the Alberta Pregnancy Outcomes and Nutrition (APrON) study. Maternal second trimester urine samples were analyzed for nine phthalate metabolites. Blood (n = 74) or BECs (n = 78) were collected from 3-month-old infants and profiled for DNAm using the Infinium HumanMethylation450 (450K) BeadChip. Robust linear regressions were used to investigate the associations between high (HMWPs) and low molecular weight phthalates (LMWPs) and change in methylation levels at variable Cytosine-phosphate-Guanine (CpG) sites in infant tissues, as well as the sensitivity of associations to potential confounders. RESULTS One candidate CpG in gene RNF39 reported by a previous study examining prenatal exposure to phthalates and cord blood DNAm was replicated. The EWAS identified 12 high-confidence CpGs in blood and another 12 in BECs associated with HMWPs and/or LMWPs. Prenatal exposure to bisphenol A (BPA) associated with two of the CpGs associated with HMWPs in BECs. DISCUSSION Prenatal exposure to phthalates was associated with DNAm variation at CpGs annotated to genes associated with endocrine hormone activity (i.e., SLCO4A1, TPO), immune pathways and DNA damage (i.e., RASGEF1B, KAZN, HLA-A, MYO18A, DIP2C, C1or109), and neurodevelopment (i.e., AMPH, NOTCH3, DNAJC5). Future studies that characterize the stability of these associations in larger samples, multiple cohorts, across tissues, and investigate the potential associations between these biomarkers and relevant health and neurodevelopmental outcomes are needed.
Collapse
Affiliation(s)
- Gillian England-Mason
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sarah M Merrill
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Nicole Gladish
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Sarah R Moore
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Gerald F Giesbrecht
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Psychology, Faculty of Arts, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Letourneau
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Faculty of Nursing, University of Calgary, Calgary, Alberta, Canada; Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Julia L MacIsaac
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Södermanland, Sweden
| | - Michael S Kobor
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; Program in Child and Brain Development, CIFAR, Toronto, Ontario, Canada
| | - Deborah Dewey
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada.
| |
Collapse
|
64
|
Ressler KJ, Berretta S, Bolshakov VY, Rosso IM, Meloni EG, Rauch SL, Carlezon WA. Post-traumatic stress disorder: clinical and translational neuroscience from cells to circuits. Nat Rev Neurol 2022; 18:273-288. [PMID: 35352034 PMCID: PMC9682920 DOI: 10.1038/s41582-022-00635-8] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 01/16/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a maladaptive and debilitating psychiatric disorder, characterized by re-experiencing, avoidance, negative emotions and thoughts, and hyperarousal in the months and years following exposure to severe trauma. PTSD has a prevalence of approximately 6-8% in the general population, although this can increase to 25% among groups who have experienced severe psychological trauma, such as combat veterans, refugees and victims of assault. The risk of developing PTSD in the aftermath of severe trauma is determined by multiple factors, including genetics - at least 30-40% of the risk of PTSD is heritable - and past history, for example, prior adult and childhood trauma. Many of the primary symptoms of PTSD, including hyperarousal and sleep dysregulation, are increasingly understood through translational neuroscience. In addition, a large amount of evidence suggests that PTSD can be viewed, at least in part, as a disorder that involves dysregulation of normal fear processes. The neural circuitry underlying fear and threat-related behaviour and learning in mammals, including the amygdala-hippocampus-medial prefrontal cortex circuit, is among the most well-understood in behavioural neuroscience. Furthermore, the study of threat-responding and its underlying circuitry has led to rapid progress in understanding learning and memory processes. By combining molecular-genetic approaches with a translational, mechanistic knowledge of fear circuitry, transformational advances in the conceptual framework, diagnosis and treatment of PTSD are possible. In this Review, we describe the clinical features and current treatments for PTSD, examine the neurobiology of symptom domains, highlight genomic advances and discuss translational approaches to understanding mechanisms and identifying new treatments and interventions for this devastating syndrome.
Collapse
Affiliation(s)
- Kerry J Ressler
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA.
| | - Sabina Berretta
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Vadim Y Bolshakov
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Isabelle M Rosso
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward G Meloni
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Scott L Rauch
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - William A Carlezon
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
65
|
Epigenome-Wide Analysis Reveals DNA Methylation Alteration in ZFP57 and Its Target RASGFR2 in a Mexican Population Cohort with Autism. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9040462. [PMID: 35455506 PMCID: PMC9025761 DOI: 10.3390/children9040462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 12/17/2022]
Abstract
Autism Spectrum Disorders (ASD) comprise a group of heterogeneous and complex neurodevelopmental disorders. Genetic and environmental factors contribute to ASD etiology. DNA methylation is particularly relevant for ASD due to its mediating role in the complex interaction between genotype and environment and has been implicated in ASD pathophysiology. The lack of diversity in DNA methylation studies in ASD individuals is remarkable. Since genetic and environmental factors are likely to vary across populations, the study of underrepresented populations is necessary to understand the molecular alterations involved in ASD and the risk factors underlying these changes. This study explored genome-wide differences in DNA methylation patterns in buccal epithelium cells between Mexican ASD patients (n = 27) and age-matched typically developing (TD: n = 15) children. DNA methylation profiles were evaluated with the Illumina 450k array. We evaluated the interaction between sex and ASD and found a differentially methylated region (DMR) over the 5′UTR region of ZFP57 and one of its targets, RASGRF2. These results match previous findings in brain tissue, which may indicate that ZFP57 could be used as a proxy for DNA methylation in different tissues. This is the first study performed in a Mexican, and subsequently, Latin American, population that evaluates DNA methylation in ASD patients.
Collapse
|
66
|
Folger AT, Nidey N, Ding L, Ji H, Yolton K, Ammerman RT, Bowers KA. Association Between Maternal Adverse Childhood Experiences and Neonatal SCG5 DNA Methylation-Effect Modification by Prenatal Home Visiting. Am J Epidemiol 2022; 191:636-645. [PMID: 34791022 PMCID: PMC9077120 DOI: 10.1093/aje/kwab270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 09/21/2021] [Accepted: 11/08/2021] [Indexed: 12/27/2022] Open
Abstract
Maternal childhood adversity and trauma may elicit biological changes that impact the next generation through epigenetic responses measured in DNA methylation (DNAm). These epigenetic associations could be modified by the early postnatal environment through protective factors, such as early childhood home visiting (HV) programs that aim to mitigate deleterious intergenerational effects of adversity. In a cohort of 53 mother-child pairs recruited in 2015-2016 for the Pregnancy and Infant Development Study (Cincinnati, Ohio), we examined the association between maternal adverse childhood experiences (ACEs) and neonatal DNAm in the secretogranin V gene (SCG5), which is important in neuroendocrine function. We examined prenatal HV as an effect modifier. Mothers completed a questionnaire on ACEs during pregnancy, and infant buccal samples were collected 1 month postpartum. Multivariable linear regression was used to examine the association between maternal ACEs and neonatal DNAm expressed as M-values averaged across 4 cytosine-phosphate-guanine dinucleotide sites. A higher number of maternal ACEs (>3) was associated with a 5.79-percentage-point lower offspring DNAm (95% confidence interval: -10.44, -1.14), and the association was modified by the number of home visits received during pregnancy. In a population of at-risk mother-child dyads, preliminary evidence suggests that maternal ACEs have a relationship with offspring SCG5 DNAm that differs by the amount of prenatal HV.
Collapse
Affiliation(s)
- Alonzo T Folger
- Correspondence to Dr. Alonzo Folger, Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Mail Location 5041, Cincinnati, OH 45229 (e-mail: )
| | | | | | | | | | | | | |
Collapse
|
67
|
Wheater ENW, Galdi P, McCartney DL, Blesa M, Sullivan G, Stoye DQ, Lamb G, Sparrow S, Murphy L, Wrobel N, Quigley AJ, Semple S, Thrippleton MJ, Wardlaw JM, Bastin ME, Marioni RE, Cox SR, Boardman JP. DNA methylation in relation to gestational age and brain dysmaturation in preterm infants. Brain Commun 2022; 4:fcac056. [PMID: 35402911 PMCID: PMC8984700 DOI: 10.1093/braincomms/fcac056] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 12/10/2021] [Accepted: 03/04/2022] [Indexed: 11/14/2022] Open
Abstract
Preterm birth is associated with dysconnectivity of structural brain networks and is a leading cause of neurocognitive impairment in childhood. Variation in DNA methylation is associated with early exposure to extrauterine life but there has been little research exploring its relationship with brain development. Using genome-wide DNA methylation data from the saliva of 258 neonates, we investigated the impact of gestational age on the methylome and performed functional analysis to identify enriched gene sets from probes that contributed to differentially methylated probes or regions. We tested the hypothesis that variation in DNA methylation could underpin the association between low gestational age at birth and atypical brain development by linking differentially methylated probes with measures of white matter connectivity derived from diffusion MRI metrics: peak width skeletonized mean diffusivity, peak width skeletonized fractional anisotropy and peak width skeletonized neurite density index. Gestational age at birth was associated with widespread differential methylation at term equivalent age, with genome-wide significant associations observed for 8870 CpG probes (P < 3.6 × 10-8) and 1767 differentially methylated regions. Functional analysis identified 14 enriched gene ontology terms pertaining to cell-cell contacts and cell-extracellular matrix contacts. Principal component analysis of probes with genome-wide significance revealed a first principal component that explained 23.5% of the variance in DNA methylation, and this was negatively associated with gestational age at birth. The first principal component was associated with peak width of skeletonized mean diffusivity (β = 0.349, P = 8.37 × 10-10) and peak width skeletonized neurite density index (β = 0.364, P = 4.15 × 10-5), but not with peak width skeletonized fraction anisotropy (β = -0.035, P = 0.510); these relationships mirrored the imaging metrics' associations with gestational age at birth. Low gestational age at birth has a profound and widely distributed effect on the neonatal saliva methylome that is apparent at term equivalent age. Enriched gene ontology terms related to cell-cell contacts reveal pathways that could mediate the effect of early life environmental exposures on development. Finally, associations between differential DNA methylation and image markers of white matter tract microstructure suggest that variation in DNA methylation may provide a link between preterm birth and the dysconnectivity of developing brain networks that characterizes atypical brain development in preterm infants.
Collapse
Affiliation(s)
- Emily N. W. Wheater
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Paola Galdi
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Daniel L. McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Manuel Blesa
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Gemma Sullivan
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - David Q. Stoye
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Gillian Lamb
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Sarah Sparrow
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Lee Murphy
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Nicola Wrobel
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Alan J. Quigley
- Department of Paediatric Radiology, Royal Hospital for Sick Children, NHS Lothian, Edinburgh, UK
| | - Scott Semple
- Edinburgh Imaging, University of Edinburgh, EH16 4SB Edinburgh, UK
- Centre for Cardiovascular Science, The University of Edinburgh, Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Michael J. Thrippleton
- Edinburgh Imaging, University of Edinburgh, EH16 4SB Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Mark E. Bastin
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Riccardo E. Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Simon R. Cox
- Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - James P. Boardman
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
68
|
Oxytocin system gene methylation is associated with empathic responses towards children. Psychoneuroendocrinology 2022; 137:105629. [PMID: 34973541 DOI: 10.1016/j.psyneuen.2021.105629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 11/15/2021] [Accepted: 12/10/2021] [Indexed: 11/23/2022]
Abstract
Empathy is an essential component of sensitive caregiving behavior, which in turn is an important predictor of children's healthy social-emotional development. The oxytocin (OXT) system plays a key role in promoting sensitive parenting and empathy. In this study, we investigated how OXT system gene methylation was associated with empathic processes in nulliparous women (M age = 23.60, SD =0.44)-measuring both physiological facial muscle responses and ratings of compassion and positive affect to affective images depicting children. Linear mixed effects analyses demonstrated that lower methylation levels in the OXT and OXTR genes were related to enhanced empathic responses. The effect of OXT system gene methylation on empathic processes was partly qualified by an interaction with individual variations in women's care motivation. Our findings provide experimental evidence for an association between the methylation of OXT system genes and empathy.
Collapse
|
69
|
Epigenome-wide association study of posttraumatic stress disorder identifies novel loci in U.S. military veterans. Transl Psychiatry 2022; 12:65. [PMID: 35177594 PMCID: PMC8854688 DOI: 10.1038/s41398-022-01822-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/26/2021] [Accepted: 01/14/2022] [Indexed: 01/23/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is a chronic and disabling psychiatric disorder prevalent in military veterans. Epigenetic mechanisms have been implicated in the etiology of PTSD, with DNA methylation being the most studied to identify novel molecular biomarkers associated with this disorder. We performed one of the largest single-sample epigenome-wide association studies (EWAS) of PTSD to date. Our sample included 1135 male European-American U.S. veterans who participated in the National Health and Resilience in Veterans Study (NHRVS). DNA was collected from saliva samples and the Illumina HumanMethylation EPIC BeadChip was used for the methylation analysis. PTSD was assessed using the PTSD Checklist. An EWAS was conducted using linear regression adjusted for age, cell-type proportions, first 10 principal components, and smoking status. After Bonferroni correction, we identified six genome-wide significant (GWS) CpG sites associated with past-month PTSD and three CpGs with lifetime PTSD (prange = 10-10-10-8). These CpG sites map to genes involved in immune function, transcription regulation, axonal guidance, cell signaling, and protein binding. Among these, SENP7, which is involved in transcription regulation and has been linked to risk-taking behavior and alcohol consumption in genome-wide association studies, replicated in an independent veteran cohort and was downregulated in medial orbitofrontal cortex of PTSD postmortem brain tissue. These findings suggest potential epigenetic biomarkers of PTSD that may help inform the pathophysiology of this disorder in veterans and other trauma-affected populations.
Collapse
|
70
|
Mariani Wigley ILC, Mascheroni E, Bonichini S, Montirosso R. Epigenetic protection: maternal touch and DNA-methylation in early life. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2021.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
71
|
Fujisawa TX, Nishitani S, Makita K, Yao A, Takiguchi S, Hamamura S, Shimada K, Okazawa H, Matsuzaki H, Tomoda A. Association of Epigenetic Differences Screened in a Few Cases of Monozygotic Twins Discordant for Attention-Deficit Hyperactivity Disorder With Brain Structures. Front Neurosci 2022; 15:799761. [PMID: 35145374 PMCID: PMC8823258 DOI: 10.3389/fnins.2021.799761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
The present study examined the relationship between DNA methylation differences and variations in brain structures involved in the development of attention-deficit hyperactivity disorder (ADHD). First, we used monozygotic (MZ) twins discordant (2 pairs of 4 individuals, 2 boys, mean age 12.5 years) for ADHD to identify candidate DNA methylation sites involved in the development of ADHD. Next, we tried to replicate these candidates in a case-control study (ADHD: N = 18, 15 boys, mean age 10.0 years; Controls: N = 62, 40 boys, mean age 13.9 years). Finally, we examined how methylation rates at those sites relate to the degree of local structural alterations where significant differences were observed between cases and controls. As a result, we identified 61 candidate DNA methylation sites involved in ADHD development in two pairs of discordant MZ twins, among which elevated methylation at a site in the sortilin-related Vps10p domain containing receptor 2 (SorCS2) gene was replicated in the case-control study. We also observed that the ADHD group had significantly reduced gray matter volume (GMV) in the precentral and posterior orbital gyri compared to the control group and that this volume reduction was positively associated with SorCS2 methylation. Furthermore, the reduced GMV regions in children with ADHD are involved in language processing and emotional control, while SorCS2 methylation is also negatively associated with emotional behavioral problems in children. These results indicate that SorCS2 methylation might mediate a reduced GMV in the precentral and posterior orbital gyri and therefore influence the pathology of children with ADHD.
Collapse
Affiliation(s)
- Takashi X. Fujisawa
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan
- *Correspondence: Takashi X. Fujisawa,
| | - Shota Nishitani
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan
| | - Kai Makita
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Akiko Yao
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan
| | - Shinichiro Takiguchi
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Shoko Hamamura
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Koji Shimada
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Hidehiko Okazawa
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Hideo Matsuzaki
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
- *Correspondence: Takashi X. Fujisawa,
| |
Collapse
|
72
|
Lüth T, Laβ J, Schaake S, Wohlers I, Pozojevic J, Jamora RDG, Rosales RL, Brüggemann N, Saranza G, Diesta CCE, Schlüter K, Tse R, Reyes CJ, Brand M, Busch H, Klein C, Westenberger A, Trinh J. Elucidating Hexanucleotide Repeat Number and Methylation within the X-Linked Dystonia-Parkinsonism (XDP)-Related SVA Retrotransposon in TAF1 with Nanopore Sequencing. Genes (Basel) 2022; 13:genes13010126. [PMID: 35052466 PMCID: PMC8775018 DOI: 10.3390/genes13010126] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Background: X-linked dystonia-parkinsonism (XDP) is an adult-onset neurodegenerative disorder characterized by progressive dystonia and parkinsonism. It is caused by a SINE-VNTR-Alu (SVA) retrotransposon insertion in the TAF1 gene with a polymorphic (CCCTCT)n domain that acts as a genetic modifier of disease onset and expressivity. Methods: Herein, we used Nanopore sequencing to investigate SVA genetic variability and methylation. We used blood-derived DNA from 96 XDP patients for amplicon-based deep Nanopore sequencing and validated it with fragment analysis which was performed using fluorescence-based PCR. To detect methylation from blood- and brain-derived DNA, we used a Cas9-targeted approach. Results: High concordance was observed for hexanucleotide repeat numbers detected with Nanopore sequencing and fragment analysis. Within the SVA locus, there was no difference in genetic variability other than variations of the repeat motif between patients. We detected high CpG methylation frequency (MF) of the SVA and flanking regions (mean MF = 0.94, SD = ±0.12). Our preliminary results suggest only subtle differences between the XDP patient and the control in predicted enhancer sites directly flanking the SVA locus. Conclusions: Nanopore sequencing can reliably detect SVA hexanucleotide repeat numbers, methylation and, lastly, variation in the repeat motif.
Collapse
Affiliation(s)
- Theresa Lüth
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Joshua Laβ
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Susen Schaake
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Inken Wohlers
- Medical Systems Biology Division, Luebeck Institute of Experimental Dermatology, University of Luebeck, 23538 Luebeck, Germany; (I.W.); (H.B.)
- Institute for Cardiogenetics, University of Luebeck, 23538 Luebeck, Germany
| | - Jelena Pozojevic
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Roland Dominic G. Jamora
- Department of Neurosciences, College of Medicine, Philippine General Hospital, University of the Philippines Manila, Manila 1000, Philippines;
| | - Raymond L. Rosales
- Department of Neurology and Psychiatry, The Hospital Neuroscience Institute, University of Santo Tomas, Manila 1008, Philippines;
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
- Department of Neurology, University of Luebeck, 23538 Luebeck, Germany
| | - Gerard Saranza
- Section of Neurology, Department of Internal Medicine, Chong Hua Hospital, Cebu City 6000, Philippines;
| | - Cid Czarina E. Diesta
- Department of Neurosciences, Movement Disorders Clinic, Makati Medical Center, Makati 1229, Philippines;
| | - Kathleen Schlüter
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Ronnie Tse
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Charles Jourdan Reyes
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Max Brand
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Hauke Busch
- Medical Systems Biology Division, Luebeck Institute of Experimental Dermatology, University of Luebeck, 23538 Luebeck, Germany; (I.W.); (H.B.)
- Institute for Cardiogenetics, University of Luebeck, 23538 Luebeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Ana Westenberger
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
| | - Joanne Trinh
- Institute of Neurogenetics, University of Luebeck, 23538 Luebeck, Germany; (T.L.); (J.L.); (S.S.); (J.P.); (N.B.); (K.S.); (R.T.); (C.J.R.); (M.B.); (C.K.); (A.W.)
- Correspondence:
| |
Collapse
|
73
|
Moore SR, Merrill SM, Sekhon B, MacIsaac JL, Kobor MS, Giesbrecht GF, Letourneau N. Infant DNA methylation: an early indicator of intergenerational trauma? Early Hum Dev 2022; 164:105519. [PMID: 34890904 DOI: 10.1016/j.earlhumdev.2021.105519] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 10/18/2021] [Accepted: 11/24/2021] [Indexed: 11/03/2022]
Abstract
Exposure to adverse childhood experiences (ACEs) increases risk for mental and physical health problems. Intergenerationally, mothers' ACEs predict children's health problems including neurodevelopmental and behavioural problems and poorer physical health. Theories of intergenerational trauma suggest that ACEs experienced in one generation negatively affect the health and well-being of future generations, with DNA methylation (DNAm) being one of several potential biological explanations. To begin exploring this hypothesis, we tested whether infant DNA methylation associated with intergenerational trauma. Secondary analysis employed data from the Alberta Pregnancy Outcomes and Nutrition (APrON) study. Subsample data were collected from mothers during pregnancy and postpartum on measures of distress, stress and ACEs and from infants at 3 months of age on DNAm from blood (n = 92) and buccal epithelial cells (BECs; n = 124; primarily nonoverlapping individuals between tissues). Blood and BECs were examined in separate analyses. Preliminary associations identified in blood and BECs suggest that infant DNAm patterns may relate to maternal ACEs. For the majority of ACE-related DNAm sites, neither maternal perinatal distress, nor maternal cortisol awakening response (CAR; a measure of hypothalamic-pituitary-adrenocortical axis function), substantially reduced associations between maternal ACEs and infant DNAm. However, accounting for maternal perinatal distress and cortisol substantially changed the effect of ACEs in a greater proportion of blood DNAm sites than BEC DNAm sites in the top ACEs-associated correlated methylated regions (CMRs), as well as across all CMRs and all remaining CpGs (that did not fall into CMRs). Possible DNAm patterns in infants, thus, might capture a signature of maternal intergenerational trauma, and this effect appears to be more dependent on maternal perinatal distress and CAR in blood relative to BECs.
Collapse
Affiliation(s)
- Sarah R Moore
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah M Merrill
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bikram Sekhon
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Julia L MacIsaac
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael S Kobor
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gerald F Giesbrecht
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Pediatrics & Owerko Centre at the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Letourneau
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Pediatrics & Owerko Centre at the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Faculty of Nursing, University of Calgary, Calgary, Alberta, Canada; Department of Psychiatry and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada.
| | | |
Collapse
|
74
|
D'Addario C, Macellaro M, Bellia F, Benatti B, Annunzi E, Palumbo R, Conti D, Fasciana F, Vismara M, Varinelli A, Ferrara L, Celebre L, Viganò C, Dell'Osso B. In Search for Biomarkers in Obsessive-Compulsive Disorder: New Evidence on Saliva as a Practical Source of DNA to Assess Epigenetic Regulation. Curr Med Chem 2021; 29:5782-5791. [PMID: 34879796 DOI: 10.2174/0929867328666211208115536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Brain-Derived Neurotrophic Factor (BDNF) is a promising candidate biomarker in both the development and aetiology of different neuropsychiatric conditions, including obsessive-compulsive disorder (OCD). Most of the studies in the field have been carried out in blood cells, including peripheral blood mononucleated cells (PBMCs), although DNA of high quality can be easily isolated from saliva. OBJECTIVE The objective of this study was to evaluate the epigenetic regulation of the BDNF gene in the saliva of a clinical sample of OCD patients in order to assess this source as an alternative to blood. METHODS We first analyzed DNA methylation levels at BDNF in the saliva of subjects suffering from OCD (n= 50) and healthy controls (n=50). Then, we compared these data with the results previously obtained for the same genomic region in blood samples from the same patients and controls (CTRL). RESULTS Our preliminary data showed a significant reduction of 5mC levels at BDNF gene (OCD: 1.23 ± 0.45; CTRL: 1.85 ± 0.64; p < 0.0001) and a significant correlation between DNA methylation in PBMCs and saliva (Spearman r = 0.2788). CONCLUSION We support the perspective that saliva could be a possible, reliable source, and a substitute for blood, in search of epigenetic biomarkers in OCD.
Collapse
Affiliation(s)
| | - Monica Macellaro
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Milano. Italy
| | | | - Beatrice Benatti
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Milano. Italy
| | | | - Riccardo Palumbo
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele D'Annunzio University, Chieti. Italy
| | - Dario Conti
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Milano. 0
| | - Federica Fasciana
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Milano. 0
| | - Matteo Vismara
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Milano. 0
| | - Alberto Varinelli
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Milano. Italy
| | - Luca Ferrara
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Milano. Italy
| | - Laura Celebre
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Milano. Italy
| | - Caterina Viganò
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Milano. Italy
| | - Bernardo Dell'Osso
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Milano. Italy
| |
Collapse
|
75
|
Loke YJ, Muggli E, Saffery R, Ryan J, Lewis S, Elliott EJ, Halliday J, Craig JM. Sex- and tissue-specific effects of binge-level prenatal alcohol consumption on DNA methylation at birth. Epigenomics 2021; 13:1921-1938. [PMID: 34841896 DOI: 10.2217/epi-2021-0285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Binge-level prenatal alcohol exposure (PAE) causes developmental abnormalities, which may be mediated in part by epigenetic mechanisms. Despite this, few studies have characterised the association of binge PAE with DNA methylation in offspring. Methods: We investigated the association between binge PAE and genome-wide DNA methylation profiles in a sex-specific manner in neonatal buccal and placental samples. Results: We identified no differentially methylated CpGs or differentially methylated regions (DMRs) at false discovery rate <0.05. However, using a sum-of-ranks approach, we identified a DMR in each tissue of female offspring. The DMR identified in buccal samples is located near regions with previously-reported associations to fetal alcohol spectrum disorder (FASD) and binge PAE. Conclusion: Our findings warrant further replication and highlight a potential epigenetic link between binge PAE and FASD.
Collapse
Affiliation(s)
- Yuk Jing Loke
- Molecular Immunity, Murdoch Children's Research Institute, Victoria, 3052, Australia.,Department of Paediatrics, University of Melbourne, Victoria, 3010, Australia
| | - Evelyne Muggli
- Department of Paediatrics, University of Melbourne, Victoria, 3010, Australia.,Victorian Infant Brain Studies, Murdoch Children's Research Institute, Victoria, 3052, Australia.,Reproductive Epidemiology, Murdoch Children's Research Institute, Victoria, 3052, Australia
| | - Richard Saffery
- Molecular Immunity, Murdoch Children's Research Institute, Victoria, 3052, Australia.,Department of Paediatrics, University of Melbourne, Victoria, 3010, Australia
| | - Joanne Ryan
- Molecular Immunity, Murdoch Children's Research Institute, Victoria, 3052, Australia.,Biological Neuropsychiatry & Dementia Unit, School of Public Health, Monash University, Victoria, 3004, Australia
| | - Sharon Lewis
- Department of Paediatrics, University of Melbourne, Victoria, 3010, Australia.,Reproductive Epidemiology, Murdoch Children's Research Institute, Victoria, 3052, Australia
| | - Elizabeth J Elliott
- Specialty of Child & Adolescent Health, Faculty of Medicine & Health, University of Sydney, NSW, 2050, Australia.,The Australian Paediatric Surveillance Unit, Sydney Children's Hospital Network, NSW, 2045, Australia
| | - Jane Halliday
- Department of Paediatrics, University of Melbourne, Victoria, 3010, Australia.,Reproductive Epidemiology, Murdoch Children's Research Institute, Victoria, 3052, Australia
| | - Jeffrey M Craig
- Molecular Immunity, Murdoch Children's Research Institute, Victoria, 3052, Australia.,Department of Paediatrics, University of Melbourne, Victoria, 3010, Australia.,The Institute of Mental & Physical Health & Clinical Translation, Deakin University, Victoria, 3220, Australia
| |
Collapse
|
76
|
Nishitani S, Fujisawa TX, Hiraoka D, Makita K, Takiguchi S, Hamamura S, Yao A, Shimada K, Smith AK, Tomoda A. A multi-modal MRI analysis of brain structure and function in relation to OXT methylation in maltreated children and adolescents. Transl Psychiatry 2021; 11:589. [PMID: 34789725 PMCID: PMC8599663 DOI: 10.1038/s41398-021-01714-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022] Open
Abstract
Child maltreatment dysregulates the brain's oxytocinergic system, resulting in dysfunctional attachment patterns. However, how the oxytocinergic system in children who are maltreated (CM) is epigenetically affected remains unknown. We assessed differences in salivary DNA methylation of the gene encoding oxytocin (OXT) between CM (n = 24) and non-CM (n = 31), alongside its impact on brain structures and functions using multi-modal brain imaging (voxel-based morphometry, diffusion tensor imaging, and task and resting-state functional magnetic resonance imaging). We found that CM showed higher promoter methylation than non-CM, and nine CpG sites were observed to be correlated with each other and grouped into one index (OXTmi). OXTmi was significantly negatively correlated with gray matter volume (GMV) in the left superior parietal lobule (SPL), and with right putamen activation during a rewarding task, but not with white matter structures. Using a random forest regression model, we investigated the sensitive period and type of maltreatment that contributed the most to OXTmi in CM, revealing that they were 5-8 years of age and physical abuse (PA), respectively. However, the presence of PA (PA+) was meant to reflect more severe cases, such as prolonged exposure to multiple types of abuse, than the absence of PA. PA+ was associated with significantly greater functional connectivity between the right putamen set as the seed and the left SPL and the left cerebellum exterior. The results suggest that OXT promoter hypermethylation may lead to the atypical development of reward and visual association structures and functions, thereby potentially worsening clinical aspects raised by traumatic experiences.
Collapse
Affiliation(s)
- Shota Nishitani
- grid.163577.10000 0001 0692 8246Research Center for Child Mental Development, University of Fukui, Fukui, Japan ,grid.136593.b0000 0004 0373 3971Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan ,grid.163577.10000 0001 0692 8246Life Science Innovation Center, University of Fukui, Fukui, Japan ,grid.189967.80000 0001 0941 6502Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA USA
| | - Takashi X. Fujisawa
- grid.163577.10000 0001 0692 8246Research Center for Child Mental Development, University of Fukui, Fukui, Japan ,grid.136593.b0000 0004 0373 3971Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan ,grid.163577.10000 0001 0692 8246Life Science Innovation Center, University of Fukui, Fukui, Japan
| | - Daiki Hiraoka
- grid.163577.10000 0001 0692 8246Research Center for Child Mental Development, University of Fukui, Fukui, Japan ,grid.54432.340000 0004 0614 710XJapan Society for the Promotion of Science, Tokyo, Japan
| | - Kai Makita
- grid.163577.10000 0001 0692 8246Research Center for Child Mental Development, University of Fukui, Fukui, Japan ,grid.136593.b0000 0004 0373 3971Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan
| | - Shinichiro Takiguchi
- grid.413114.2Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Shoko Hamamura
- grid.163577.10000 0001 0692 8246Research Center for Child Mental Development, University of Fukui, Fukui, Japan ,grid.136593.b0000 0004 0373 3971Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan ,grid.413114.2Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Akiko Yao
- grid.163577.10000 0001 0692 8246Research Center for Child Mental Development, University of Fukui, Fukui, Japan ,grid.136593.b0000 0004 0373 3971Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan
| | - Koji Shimada
- grid.163577.10000 0001 0692 8246Research Center for Child Mental Development, University of Fukui, Fukui, Japan ,grid.136593.b0000 0004 0373 3971Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan ,grid.163577.10000 0001 0692 8246Life Science Innovation Center, University of Fukui, Fukui, Japan ,grid.163577.10000 0001 0692 8246Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Alicia K. Smith
- grid.189967.80000 0001 0941 6502Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA USA
| | - Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan. .,Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan. .,Life Science Innovation Center, University of Fukui, Fukui, Japan. .,Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan.
| |
Collapse
|
77
|
Dawes K, Andersen A, Reimer R, Mills JA, Hoffman E, Long JD, Miller S, Philibert R. The relationship of smoking to cg05575921 methylation in blood and saliva DNA samples from several studies. Sci Rep 2021; 11:21627. [PMID: 34732805 PMCID: PMC8566492 DOI: 10.1038/s41598-021-01088-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/18/2021] [Indexed: 11/23/2022] Open
Abstract
Numerous studies have shown that cg05575921 methylation decreases in response to smoking. However, secondary to methodological issues, the magnitude and dose dependency of that response is as of yet unclear. This lack of certainty is a barrier to the use of DNA methylation clinically to assess and monitor smoking status. To better define this relationship, we conducted a joint analysis of methylation sensitive PCR digital (MSdPCR) assessments of cg05575921 methylation in whole blood and/or saliva DNA to smoking using samples from 421 smokers and 423 biochemically confirmed non-smokers from 4 previously published studies. We found that cg05575921 methylation manifested a curvilinear dose dependent decrease in response to increasing cigarette consumption. In whole blood DNA, the Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) of cg05575921 methylation for predicting daily smoking status was 0.98. In saliva DNA, the gross AUC was 0.91 with correction for cellular heterogeneity improving the AUC to 0.94. Methylation status was significantly associated with the Fagerstrom Test for Nicotine Dependence score, but with significant sampling heterogeneity. We conclude that MSdPCR assessments of cg05575921 methylation are a potentially powerful, clinically implementable tool for the assessment and management of smoking.
Collapse
Affiliation(s)
- Kelsey Dawes
- Department of Psychiatry, University of Iowa, Iowa City, IA, 52242, USA
- Molecular Medicine Program, University of Iowa, Iowa City, IA, 52242, USA
| | - Allan Andersen
- Department of Psychiatry, University of Iowa, Iowa City, IA, 52242, USA
| | - Rachel Reimer
- Department of Public Health, Des Moines University, Des Moines, IA, 50312, USA
| | - James A Mills
- Department of Psychiatry, University of Iowa, Iowa City, IA, 52242, USA
| | - Eric Hoffman
- Department of Radiology, University of Iowa, Iowa City, IA, 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - Jeffrey D Long
- Department of Psychiatry, University of Iowa, Iowa City, IA, 52242, USA
- Department of Biostatistics, University of Iowa, Iowa City, IA, 52242, USA
| | - Shelly Miller
- Behavioral Diagnostics LLC, Coralville, IA, 52241, USA
| | - Robert Philibert
- Department of Psychiatry, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA.
- Behavioral Diagnostics LLC, Coralville, IA, 52241, USA.
| |
Collapse
|
78
|
Martins J, Czamara D, Sauer S, Rex-Haffner M, Dittrich K, Dörr P, de Punder K, Overfeld J, Knop A, Dammering F, Entringer S, Winter SM, Buss C, Heim C, Binder EB. Childhood adversity correlates with stable changes in DNA methylation trajectories in children and converges with epigenetic signatures of prenatal stress. Neurobiol Stress 2021; 15:100336. [PMID: 34095363 PMCID: PMC8163992 DOI: 10.1016/j.ynstr.2021.100336] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/01/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022] Open
Abstract
Childhood maltreatment (CM) is an established major risk factor for a number of negative health outcomes later in life. While epigenetic mechanisms, such as DNA methylation (DNAm), have been proposed as a means of embedding this environmental risk factor, little is known about its timing and trajectory, especially in very young children. It is also not clear whether additional environmental adversities, often experienced by these children, converge on similar DNAm changes. Here, we calculated a cumulative adversity score, which additionally to CM includes socioeconomic status (SES), other life events, parental psychopathology and epigenetic biomarkers of prenatal smoking and alcohol consumption. We investigated the effects of CM alone as well as the adversity score on longitudinal DNAm trajectories in the Berlin Longitudinal Child Study. This is a cohort of 173 children aged 3-5 years at baseline of whom 86 were exposed to CM. These children were followed-up for 2 years with extensive psychometric and biological assessments as well as saliva collection at 5 time points providing genome-wide DNAm levels. Overall, only a few DNAm patterns were stable over this timeframe, but less than 10 DNAm regions showed significant changes. At baseline, neither CM nor the adversity score associated with DNAm changes. However, in 6 differentially methylated regions (DMRs), CM and the adversity score significantly moderated DNAm trajectories over time. A number of these DMRs have previously been associated with adverse prenatal exposures. In our study, children exposed to CM also presented with epigenetic signatures indicative of increased prenatal exposure to tobacco and alcohol, as compared to non-CM exposed children. These epigenetic signatures of prenatal exposure strongly correlate with DNAm regions associated with CM and the adversity score. Finally, weighted correlation network analysis revealed a module of CpGs exclusively associated with CM. While our study identifies DNAm loci specifically associated with CM, especially within long non-coding RNAs, the majority of associations were found with the adversity score with convergent association with indicators of adverse prenatal exposures. This study highlights the importance of mapping not only of the epigenome but also the exposome and extending the observational timeframe to well before birth.
Collapse
Affiliation(s)
- Jade Martins
- Dept. of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Darina Czamara
- Dept. of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Susann Sauer
- Dept. of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Monika Rex-Haffner
- Dept. of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Katja Dittrich
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Virchow, Department of Child and Adolescent Psychiatry, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Peggy Dörr
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Virchow, Department of Child and Adolescent Psychiatry, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Karin de Punder
- Natura Foundation, Research and Development, Numansdrop, 3281, NC, Netherlands
| | - Judith Overfeld
- Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
| | - Andrea Knop
- Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
| | - Felix Dammering
- Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
| | - Sonja Entringer
- Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
- University of California, Irvine, Development, Health, and Disease Research Program, Orange, CA, USA
| | - Sibylle M. Winter
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Virchow, Department of Child and Adolescent Psychiatry, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Claudia Buss
- Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
- University of California, Irvine, Development, Health, and Disease Research Program, Orange, CA, USA
| | - Christine Heim
- Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
- Dept. of Biobehavioral Health, College of Health & Human Development, The Pennsylvania State University, University Park, PA, USA
| | - Elisabeth B. Binder
- Dept. of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30329, USA
| |
Collapse
|
79
|
Dammering F, Martins J, Dittrich K, Czamara D, Rex-Haffner M, Overfeld J, de Punder K, Buss C, Entringer S, Winter SM, Binder EB, Heim C. The pediatric buccal epigenetic clock identifies significant ageing acceleration in children with internalizing disorder and maltreatment exposure. Neurobiol Stress 2021; 15:100394. [PMID: 34621920 PMCID: PMC8482287 DOI: 10.1016/j.ynstr.2021.100394] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/26/2021] [Accepted: 09/09/2021] [Indexed: 01/15/2023] Open
Abstract
Background Studies reporting accelerated ageing in children with affective disorders or maltreatment exposure have relied on algorithms for estimating epigenetic age derived from adult samples. These algorithms have limited validity for epigenetic age estimation during early development. We here use a pediatric buccal epigenetic (PedBE) clock to predict DNA methylation-based ageing deviation in children with and without internalizing disorder and assess the moderating effect of maltreatment exposure. We further conduct a gene set enrichment analysis to assess the contribution of glucocorticoid signaling to PedBE clock-based results. Method DNA was isolated from saliva of 158 children [73 girls, 85 boys; mean age (SD) = 4.25 (0.8) years] including children with internalizing disorder and maltreatment exposure. Epigenetic age was estimated based on DNA methylation across 94 CpGs of the PedBE clock. Residuals of epigenetic age regressed against chronological age were contrasted between children with and without internalizing disorder. Maltreatment was coded in 3 severity levels and entered in a moderation model. Genome-wide dexamethasone-responsive CpGs were derived from an independent sample and enrichment of these CpGs within the PedBE clock was identified. Results Children with internalizing disorder exhibited significant acceleration of epigenetic ageing as compared to children without internalizing disorder (F1,147 = 6.67, p = .011). This association was significantly moderated by maltreatment severity (b = 0.49, 95% CI [0.073, 0.909], t = 2.322, p = .022). Children with internalizing disorder who had experienced maltreatment exhibited ageing acceleration relative to children with no internalizing disorder (1–2 categories: b = 0.50, 95% CI [0.170, 0.821], t = 3.008, p = .003; 3 or more categories: b = 0.99, 95% CI [0.380, 1.593], t = 3.215, p = .002). Children with internalizing disorder who were not exposed to maltreatment did not show epigenetic ageing acceleration. There was significant enrichment of dexamethasone-responsive CpGs within the PedBE clock (OR = 4.36, p = 1.65*10–6). Among the 94 CpGs of the PedBE clock, 18 (19%) were responsive to dexamethasone. Conclusion Using the novel PedBE clock, we show that internalizing disorder is associated with accelerated epigenetic ageing in early childhood. This association is moderated by maltreatment severity and may, in part, be driven by glucocorticoids. Identifying developmental drivers of accelerated epigenetic ageing after maltreatment will be critical to devise early targeted interventions.
Collapse
Affiliation(s)
- Felix Dammering
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany
| | - Jade Martins
- Dept. of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Katja Dittrich
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Dept. of Child & Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Berlin, Germany
| | - Darina Czamara
- Dept. of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Monika Rex-Haffner
- Dept. of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Judith Overfeld
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany
| | - Karin de Punder
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany
| | - Claudia Buss
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany.,University of California, Irvine, Development, Health, and Disease Research Program, Orange, CA, USA
| | - Sonja Entringer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany.,University of California, Irvine, Development, Health, and Disease Research Program, Orange, CA, USA
| | - Sibylle M Winter
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Dept. of Child & Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Berlin, Germany
| | - Elisabeth B Binder
- Dept. of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christine Heim
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany.,Dept. of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
80
|
Chalfun G, Reis MM, de Oliveira MBG, de Araújo Brasil A, Dos Santos Salú M, da Cunha AJLA, Prata-Barbosa A, de Magalhães-Barbosa MC. Perinatal stress and methylation of the NR3C1 gene in newborns: systematic review. Epigenetics 2021; 17:1003-1019. [PMID: 34519616 DOI: 10.1080/15592294.2021.1980691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Adverse experiences in the perinatal period have been associated with the methylation of the human glucocorticoid receptor gene (NR3C1) and long-term diseases. We conducted a systematic review on the association between adversities in the perinatal period and DNA methylation in the 1 F region of the NR3C1 gene in newborns. We explored the MEDLINE, Web of Science, Scopus, Scielo, and Lilacs databases without time or language limitations. Two independent reviewers performed the selection of articles and data extraction. A third participated in the methodological quality assessment and consensus meetings at all stages. Finally, ten studies were selected. Methodological quality was considered moderate in six and low in four. Methylation changes were reported in 41 of the 47 CpG sites of exon 1 F. Six studies addressed maternal conditions during pregnancy: two reported methylation changes at the same sites (CpG 10, 13, 20, 21 and 47), and four at one or more sites from CpG 35 to 39. Four studies addressed neonatal parameters and morbidities: methylation changes at the same sites 4, 8, 10, 16, 25, and 35 were reported in two. Hypermethylation associated with stressful conditions prevailed. Hypomethylation was more often associated with protective conditions (maternal-foetal attachment during pregnancy, breast milk intake, higher birth weight or Apgar). In conclusion, methylation changes in several sites of the 1 F region of the NR3C1 gene in newborns and very young infants were associated with perinatal stress, but more robust and comparable results are needed to corroborate site-specific associations.
Collapse
Affiliation(s)
- Georgia Chalfun
- Department of Pediatrics, D'Or Institute for Research and Education (Idor), Rio de Janeiro, RJ, Brazil.,Federal University of Rio de Janeiro (Ufrj), Rio De Janeiro, RJ, Brazil
| | - Marcelo Martins Reis
- Department of Pediatrics, D'Or Institute for Research and Education (Idor), Rio de Janeiro, RJ, Brazil
| | | | - Aline de Araújo Brasil
- Department of Pediatrics, D'Or Institute for Research and Education (Idor), Rio de Janeiro, RJ, Brazil
| | - Margarida Dos Santos Salú
- Department of Pediatrics, D'Or Institute for Research and Education (Idor), Rio de Janeiro, RJ, Brazil
| | - Antônio José Ledo Alves da Cunha
- Department of Pediatrics, D'Or Institute for Research and Education (Idor), Rio de Janeiro, RJ, Brazil.,Federal University of Rio de Janeiro (Ufrj), Rio De Janeiro, RJ, Brazil
| | - Arnaldo Prata-Barbosa
- Department of Pediatrics, D'Or Institute for Research and Education (Idor), Rio de Janeiro, RJ, Brazil.,Federal University of Rio de Janeiro (Ufrj), Rio De Janeiro, RJ, Brazil
| | | |
Collapse
|
81
|
Abstract
ABSTRACT Recent research efforts have provided compelling evidence of genome-wide DNA methylation alterations in pediatrics. It is currently well established that epigenetic clocks, composed of DNA methylation sites, can estimate the gestational and chronological age of cells and tissues from different ages. Also, extensive research is aimed at their correlation with early life exposure and pediatric diseases. This review aimed to systematically summarize the epigenetic clocks in the pediatric population. Publications were collected from PubMed and Web of Science databases up to Apr 2021. Epigenetic clocks, DNA methylation clocks, epigenetic age acceleration or deceleration, pediatric and the pediatric population were used as search criteria. Here, we first review the currently applicative pediatric epigenetic clocks. We then highlight the interpretation for epigenetic age deviations in the pediatric population and their association with external factors, developmental trajectories, and pediatric diseases. Considering the remaining unknown of pediatric clocks, research strategies into them are also discussed. In all, pediatric epigenetic clocks may act as potent tools to understand development, growth and diseases in early life.
Collapse
|
82
|
Altered neurodevelopmental DNA methylation status after fetal growth restriction with brain-sparing. J Dev Orig Health Dis 2021; 13:378-389. [PMID: 34325767 DOI: 10.1017/s2040174421000374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is under debate how preferential perfusion of the brain (brain-sparing) in fetal growth restriction (FGR) relates to long-term neurodevelopmental outcome. Epigenetic modification of neurotrophic genes by altered fetal oxygenation may be involved. To explore this theory, we performed a follow-up study of 21 FGR children, in whom we prospectively measured the prenatal cerebroplacental ratio (CPR) with Doppler sonography. At 4 years of age, we tested their neurodevelopmental outcome using the Wechsler Preschool and Primary Scale of Intelligence, the Child Behavior Checklist, and the Behavior Rating Inventory of Executive Function. In addition, we collected their buccal DNA to determine the methylation status at predefined genetic regions within the genes hypoxia-inducible factor-1 alpha (HIF1A), vascular endothelial growth factor A (VEGFA), erythropoietin (EPO), EPO-receptor (EPOR), brain-derived neurotrophic factor (BDNF), and neurotrophic tyrosine kinase, receptor, type 2 (NTRK2) by pyrosequencing. We found that FGR children with fetal brain-sparing (CPR <1, n = 8) demonstrated a trend (0.05 < p < 0.1) toward hypermethylation of HIF1A and VEGFA at their hypoxia-response element (HRE) compared with FGR children without fetal brain-sparing. Moreover, in cases with fetal brain-sparing, we observed statistically significant hypermethylation at a binding site for cyclic adenosine monophophate response element binding protein (CREB) of BDNF promoter exon 4 and hypomethylation at an HRE located within the NTRK2 promoter (both p <0.05). Hypermethylation of VEGFA was associated with a poorer Performance Intelligence Quotient, while hypermethylation of BDNF was associated with better inhibitory self-control (both p <0.05). These results led us to formulate the hypothesis that early oxygen-dependent epigenetic alterations due to hemodynamic alterations in FGR may be associated with altered neurodevelopmental outcome in later life. We recommend further studies to test this hypothesis.
Collapse
|
83
|
Galkin F, Kochetov K, Mamoshina P, Zhavoronkov A. Adapting Blood DNA Methylation Aging Clocks for Use in Saliva Samples With Cell-type Deconvolution. FRONTIERS IN AGING 2021; 2:697254. [PMID: 35822029 PMCID: PMC9261380 DOI: 10.3389/fragi.2021.697254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/16/2021] [Indexed: 11/20/2022]
Abstract
DeepMAge is a deep-learning DNA methylation aging clock that measures the organismal pace of aging with the information from human epigenetic profiles. In blood samples, DeepMAge can predict chronological age within a 2.8 years error margin, but in saliva samples, its performance is drastically reduced since aging clocks are restricted by the training set domain. However, saliva is an attractive fluid for genomic studies due to its availability, compared to other tissues, including blood. In this article, we display how cell type deconvolution and elastic net can be used to expand the domain of deep aging clocks to other tissues. Using our approach, DeepMAge's error in saliva samples was reduced from 20.9 to 4.7 years with no retraining.
Collapse
Affiliation(s)
| | | | | | - Alex Zhavoronkov
- Deep Longevity Limited, Hong Kong, China
- Insilico Medicine Hong Kong Limited, Hong Kong Science and Technology Park, Hong Kong, China
- The Buck Institute for Research on Aging, Novato, CA, United States
| |
Collapse
|
84
|
Bam S, Buchanan E, Mahony C, O'Ryan C. DNA Methylation of PGC-1α Is Associated With Elevated mtDNA Copy Number and Altered Urinary Metabolites in Autism Spectrum Disorder. Front Cell Dev Biol 2021; 9:696428. [PMID: 34381777 PMCID: PMC8352569 DOI: 10.3389/fcell.2021.696428] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex disorder that is underpinned by numerous dysregulated biological pathways, including pathways that affect mitochondrial function. Epigenetic mechanisms contribute to this dysregulation and DNA methylation is an important factor in the etiology of ASD. We measured DNA methylation of peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α), as well as five genes involved in regulating mitochondrial homeostasis to examine mitochondrial dysfunction in an ASD cohort of South African children. Using targeted Next Generation bisulfite sequencing, we found differential methylation (p < 0.05) at six key genes converging on mitochondrial biogenesis, fission and fusion in ASD, namely PGC-1α, STOML2, MFN2, FIS1, OPA1, and GABPA. PGC-1α, the transcriptional regulator of biogenesis, was significantly hypermethylated at eight CpG sites in the gene promoter, one of which contained a putative binding site for CAMP response binding element 1 (CREB1) (p = 1 × 10–6). Mitochondrial DNA (mtDNA) copy number, a marker of mitochondrial function, was elevated (p = 0.002) in ASD compared to controls and correlated significantly with DNA methylation at the PGC-1α promoter and there was a positive correlation between methylation at PGC-1α CpG#1 and mtDNA copy number (Spearman’s r = 0.2, n = 49, p = 0.04) in ASD. Furthermore, DNA methylation at PGC-1α CpG#1 and mtDNA copy number correlated significantly (p < 0.05) with levels of urinary organic acids associated with mitochondrial dysfunction, oxidative stress, and neuroendocrinology. Our data show differential methylation in ASD at six key genes converging on PGC-1α-dependent regulation of mitochondrial biogenesis and function. We demonstrate that methylation at the PGC-1α promoter is associated with elevated mtDNA copy number and metabolomic evidence of mitochondrial dysfunction in ASD. This highlights an unexplored role for DNA methylation in regulating specific pathways involved in mitochondrial biogenesis, fission and fusion contributing to mitochondrial dysfunction in ASD.
Collapse
Affiliation(s)
- Sophia Bam
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Erin Buchanan
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Caitlyn Mahony
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Colleen O'Ryan
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
85
|
Childebayeva A, Harman T, Weinstein J, Day T, Brutsaert TD, Bigham AW. Genome-Wide DNA Methylation Changes Associated With High-Altitude Acclimatization During an Everest Base Camp Trek. Front Physiol 2021; 12:660906. [PMID: 34262470 PMCID: PMC8273439 DOI: 10.3389/fphys.2021.660906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
The individual physiological response to high-altitude hypoxia involves both genetic and non-genetic factors, including epigenetic modifications. Epigenetic changes in hypoxia factor pathway (HIF) genes are associated with high-altitude acclimatization. However, genome-wide epigenetic changes that are associated with short-term hypoxia exposure remain largely unknown. We collected a series of DNA samples from 15 participants of European ancestry trekking to Everest Base Camp to identify DNA methylation changes associated with incremental altitude ascent. We determined genome-wide DNA methylation levels using the Illumina MethylationEPIC chip comparing two altitudes: baseline 1,400 m (day 0) and elevation 4,240 m (day 7). The results of our epigenome-wide association study revealed 2,873 significant differentially methylated positions (DMPs) and 361 significant differentially methylated regions (DMRs), including significant positions and regions in hypoxia inducible factor (HIF) and the renin–angiotensin system (RAS) pathways. Our pathway enrichment analysis identified 95 significant pathways including regulation of glycolytic process (GO:0006110), regulation of hematopoietic stem cell differentiation (GO:1902036), and regulation of angiogenesis (GO:0045765). Lastly, we identified an association between the ACE gene insertion/deletion (I/D) polymorphism and oxygen saturation, as well as average ACE methylation. These findings shed light on the genes and pathways experiencing the most epigenetic change associated with short-term exposure to hypoxia.
Collapse
Affiliation(s)
- Ainash Childebayeva
- Department of Anthropology, University of Michigan, Ann Arbor, MI, United States.,Department of Environmental Sciences, School of Public Health, Ann Arbor, MI, United States.,Department of Archaeogenetics, Max Planck Institute for the Study of Human History, Jena, Germany
| | - Taylor Harman
- Department of Anthropology, Syracuse University, Syracuse, NY, United States
| | - Julien Weinstein
- Department of Anthropology, University of Michigan, Ann Arbor, MI, United States
| | - Trevor Day
- Department of Biology, Mount Royal University, Calgary, AB, Canada
| | - Tom D Brutsaert
- Department of Exercise Science, Syracuse University, Syracuse, NY, United States
| | - Abigail W Bigham
- Department of Anthropology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
86
|
Salivary DNA Methylation as an Epigenetic Biomarker for Head and Neck Cancer. Part I: A Diagnostic Accuracy Meta-Analysis. J Pers Med 2021; 11:jpm11060568. [PMID: 34204396 PMCID: PMC8233749 DOI: 10.3390/jpm11060568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 12/31/2022] Open
Abstract
DNA hypermethylation is an important epigenetic mechanism for gene expression inactivation in head and neck cancer (HNC). Saliva has emerged as a novel liquid biopsy representing a potential source of biomarkers. We performed a comprehensive meta-analysis to evaluate the overall diagnostic accuracy of salivary DNA methylation for detecting HNC. PubMed EMBASE, Web of Science, LILACS, and the Cochrane Library were searched. Study quality was assessed by the Quality Assessment for Studies of Diagnostic Accuracy-2, and sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (dOR), and their corresponding 95% confidence intervals (CIs) were calculated using a bivariate random-effect meta-analysis model. Meta-regression and subgroup analyses were performed to assess heterogeneity. Eighty-four study units from 18 articles with 8368 subjects were included. The pooled sensitivity and specificity of salivary DNA methylation were 0.39 and 0.87, respectively, while PLR and NLR were 3.68 and 0.63, respectively. The overall area under the curve (AUC) was 0.81 and the dOR was 8.34. The combination of methylated genes showed higher diagnostic accuracy (AUC, 0.92 and dOR, 36.97) than individual gene analysis (AUC, 0.77 and dOR, 6.02). These findings provide evidence regarding the potential clinical application of salivary DNA methylation for HNC diagnosis.
Collapse
|
87
|
Alberry B, Laufer BI, Chater-Diehl E, Singh SM. Epigenetic Impacts of Early Life Stress in Fetal Alcohol Spectrum Disorders Shape the Neurodevelopmental Continuum. Front Mol Neurosci 2021; 14:671891. [PMID: 34149355 PMCID: PMC8209299 DOI: 10.3389/fnmol.2021.671891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/30/2021] [Indexed: 12/24/2022] Open
Abstract
Neurodevelopment in humans is a long, elaborate, and highly coordinated process involving three trimesters of prenatal development followed by decades of postnatal development and maturation. Throughout this period, the brain is highly sensitive and responsive to the external environment, which may provide a range of inputs leading to positive or negative outcomes. Fetal alcohol spectrum disorders (FASD) result from prenatal alcohol exposure (PAE). Although the molecular mechanisms of FASD are not fully characterized, they involve alterations to the regulation of gene expression via epigenetic marks. As in the prenatal stages, the postnatal period of neurodevelopment is also sensitive to environmental inputs. Often this sensitivity is reflected in children facing adverse conditions, such as maternal separation. This exposure to early life stress (ELS) is implicated in the manifestation of various behavioral abnormalities. Most FASD research has focused exclusively on the effect of prenatal ethanol exposure in isolation. Here, we review the research into the effect of prenatal ethanol exposure and ELS, with a focus on the continuum of epigenomic and transcriptomic alterations. Interestingly, a select few experiments have assessed the cumulative effect of prenatal alcohol and postnatal maternal separation stress. Regulatory regions of different sets of genes are affected by both treatments independently, and a unique set of genes are affected by the combination of treatments. Notably, epigenetic and gene expression changes converge at the clustered protocadherin locus and oxidative stress pathway. Functional studies using epigenetic editing may elucidate individual contributions of regulatory regions for hub genes and further profiling efforts may lead to the development of non-invasive methods to identify children at risk. Taken together, the results favor the potential to improve neurodevelopmental outcomes by epigenetic management of children born with FASD using favorable postnatal conditions with or without therapeutic interventions.
Collapse
Affiliation(s)
- Bonnie Alberry
- Department of Biology, Faculty of Science, The University of Western Ontario, London, ON, Canada
| | - Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, United States.,Genome Center, University of California, Davis, Davis, CA, United States.,MIND Institute, University of California, Davis, Davis, CA, United States
| | - Eric Chater-Diehl
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Shiva M Singh
- Department of Biology, Faculty of Science, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
88
|
Lisoway AJ, Chen CC, Zai CC, Tiwari AK, Kennedy JL. Toward personalized medicine in schizophrenia: Genetics and epigenetics of antipsychotic treatment. Schizophr Res 2021; 232:112-124. [PMID: 34049235 DOI: 10.1016/j.schres.2021.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/21/2022]
Abstract
Schizophrenia is a complex psychiatric disorder where genetic, epigenetic, and environmental factors play a role in disease onset, course of illness, and treatment outcome. Pharmaco(epi)genetic research presents an important opportunity to improve patient care through prediction of medication side effects and response. In this narrative review, we discuss the current state of research and important progress of both genetic and epigenetic factors involved in antipsychotic response, over the past five years. The review is largely focused on the following frequently prescribed antipsychotics: olanzapine, risperidone, aripiprazole, and clozapine. Several consistent pharmacogenetic findings have emerged, in particular pharmacokinetic genes (primarily cytochrome P450 enzymes) and pharmacodynamic genes involving dopamine, serotonin, and glutamate neurotransmission. In addition to studies analysing DNA sequence variants, there are also several pharmacoepigenetic studies of antipsychotic response that have focused on the measurement of DNA methylation. Although pharmacoepigenetics is still in its infancy, consideration of both genetic and epigenetic factors contributing to antipsychotic response and side effects no doubt will be increasingly important in personalized medicine. We provide recommendations for next steps in research and clinical evaluation.
Collapse
Affiliation(s)
- Amanda J Lisoway
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Canada
| | - Cheng C Chen
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Canada
| | - Clement C Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada; Department of Psychiatry, University of Toronto, Canada
| | - Arun K Tiwari
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Canada
| | - James L Kennedy
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Canada; Department of Psychiatry, University of Toronto, Canada.
| |
Collapse
|
89
|
Zhou J, Li M, Wang X, He Y, Xia Y, Sweeney JA, Kopp RF, Liu C, Chen C. Drug Response-Related DNA Methylation Changes in Schizophrenia, Bipolar Disorder, and Major Depressive Disorder. Front Neurosci 2021; 15:674273. [PMID: 34054421 PMCID: PMC8155631 DOI: 10.3389/fnins.2021.674273] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Pharmacotherapy is the most common treatment for schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). Pharmacogenetic studies have achieved results with limited clinical utility. DNA methylation (DNAm), an epigenetic modification, has been proposed to be involved in both the pathology and drug treatment of these disorders. Emerging data indicates that DNAm could be used as a predictor of drug response for psychiatric disorders. In this study, we performed a systematic review to evaluate the reproducibility of published changes of drug response-related DNAm in SCZ, BD and MDD. A total of 37 publications were included. Since the studies involved patients of different treatment stages, we partitioned them into three groups based on their primary focuses: (1) medication-induced DNAm changes (n = 8); (2) the relationship between DNAm and clinical improvement (n = 24); and (3) comparison of DNAm status across different medications (n = 14). We found that only BDNF was consistent with the DNAm changes detected in four independent studies for MDD. It was positively correlated with clinical improvement in MDD. To develop better predictive DNAm factors for drug response, we also discussed future research strategies, including experimental, analytical procedures and statistical criteria. Our review shows promising possibilities for using BDNF DNAm as a predictor of antidepressant treatment response for MDD, while more pharmacoepigenetic studies are needed for treatments of various diseases. Future research should take advantage of a system-wide analysis with a strict and standard analytical procedure.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miao Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xueying Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuwen He
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - John A. Sweeney
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, United States
| | - Richard F. Kopp
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Chunyu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China
| |
Collapse
|
90
|
Young JI, Slifer S, Hecht JT, Blanton SH. DNA Methylation Variation Is Identified in Monozygotic Twins Discordant for Non-syndromic Cleft Lip and Palate. Front Cell Dev Biol 2021; 9:656865. [PMID: 34055787 PMCID: PMC8149607 DOI: 10.3389/fcell.2021.656865] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Non-syndromic cleft lip with or without cleft palate (NSCLP) is the most common craniofacial birth defect. The etiology of NSCLP is complex with multiple genes and environmental factors playing causal roles. Although studies have identified numerous genetic markers associated with NSCLP, the role of epigenetic variation remains relatively unexplored. Because of their identical DNA sequences, monozygotic (MZ) twins discordant for NSCLP are an ideal model for examining the potential contribution of DNA methylation to non-syndromic orofacial clefting. In this study, we compared the patterns of whole genome DNA methylation in six MZ twin pairs discordant for NSCLP. Differentially methylated positions (DMPs) and regions (DMRs) were identified in NSCLP candidate genes, including differential methylation in MAFB and ZEB2 in two independent MZ twin pairs. In addition to DNA methylation differences in NSCLP candidate genes, we found common differential methylation in genes belonging to the Hippo signaling pathway, implicating this mechanosensory pathway in the etiology of NSCLP. The results of this novel approach using MZ twins discordant for NSCLP suggests that differential methylation is one mechanism contributing to NSCLP, meriting future studies on the role of DNA methylation in familial and sporadic NSCLP.
Collapse
Affiliation(s)
- Juan I. Young
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Susan Slifer
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Jacqueline T. Hecht
- McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Susan H. Blanton
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
91
|
Cerveira de Baumont A, Hoffmann MS, Bortoluzzi A, Fries GR, Lavandoski P, Grun LK, Guimarães LSP, Guma FTCR, Salum GA, Barbé-Tuana FM, Manfro GG. Telomere length and epigenetic age acceleration in adolescents with anxiety disorders. Sci Rep 2021; 11:7716. [PMID: 33833304 PMCID: PMC8032711 DOI: 10.1038/s41598-021-87045-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/16/2021] [Indexed: 02/01/2023] Open
Abstract
Evidence on the relationship between genetics and mental health are flourishing. However, few studies are evaluating early biomarkers that might link genes, environment, and psychopathology. We aimed to study telomere length (TL) and epigenetic age acceleration (AA) in a cohort of adolescents with and without anxiety disorders (N = 234). We evaluated a representative subsample of participants at baseline and after 5 years (n = 76) and categorized them according to their anxiety disorder diagnosis at both time points: (1) control group (no anxiety disorder, n = 18), (2) variable group (anxiety disorder in one evaluation, n = 38), and (3) persistent group (anxiety disorder at both time points, n = 20). We assessed relative mean TL by real-time quantitative PCR and DNA methylation by Infinium HumanMethylation450 BeadChip. We calculated AA using the Horvath age estimation algorithm and analyzed differences among groups using generalized linear mixed models. The persistent group of anxiety disorder did not change TL over time (p = 0.495). The variable group had higher baseline TL (p = 0.003) but no accelerated TL erosion in comparison to the non-anxiety control group (p = 0.053). Furthermore, there were no differences in AA among groups over time. Our findings suggest that adolescents with chronic anxiety did not change telomere length over time, which could be related to a delay in neuronal development in this period of life.
Collapse
Affiliation(s)
- Angelica Cerveira de Baumont
- Anxiety Disorders Outpatient Program for Children and Adolescents, Protaia, Federal University of Rio Grande do Sul, UFRGS/Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil.
- Graduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.
- Basic Research and Advanced Investigations in Neurosciences, BRAIN Laboratory, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil.
- Serviço de Psiquiatria, Hospital de Clínicas de Porto Alegre, HCPA, Rua Ramiro Barcelos, 2350-sala 400N, Rio Branco, Porto Alegre, RS, 90035-903, Brazil.
| | - Mauricio Scopel Hoffmann
- Graduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
- Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, Avenida Roraima 1000, Santa Maria, 97105-900, Brazil
- Care Policy and Evaluation Centre, London School of Economics and Political Science, London, UK
- Instituto Nacional de Psiquiatria do Desenvolvimento para Crianças e Adolescentes (INPD), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Porto Alegre, RS, Brazil
| | - Andressa Bortoluzzi
- Anxiety Disorders Outpatient Program for Children and Adolescents, Protaia, Federal University of Rio Grande do Sul, UFRGS/Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil
- Graduate Program in Neuroscience, Institute of Basic Sciences/Health, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
- Basic Research and Advanced Investigations in Neurosciences, BRAIN Laboratory, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | - Gabriel R Fries
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, (UTHealth), Houston, TX, USA
| | - Patrícia Lavandoski
- Graduate Program in Biochemistry, Laboratoy of Molecular Biology and Bioinformatics, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - Lucas K Grun
- Group of Inflammation and Cellular Senescence, Graduate Program in Cellular and Molecular Biology, School of Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Postgraduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Luciano S P Guimarães
- Unit of Epidemiology and Biostatistics, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | - Fátima T C R Guma
- Graduate Program in Biochemistry, Laboratoy of Molecular Biology and Bioinformatics, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - Giovanni Abrahão Salum
- Anxiety Disorders Outpatient Program for Children and Adolescents, Protaia, Federal University of Rio Grande do Sul, UFRGS/Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil
- Graduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
- Instituto Nacional de Psiquiatria do Desenvolvimento para Crianças e Adolescentes (INPD), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Porto Alegre, RS, Brazil
| | - Florencia M Barbé-Tuana
- Graduate Program in Biochemistry, Laboratoy of Molecular Biology and Bioinformatics, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
- Group of Inflammation and Cellular Senescence, Graduate Program in Cellular and Molecular Biology, School of Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Gisele G Manfro
- Anxiety Disorders Outpatient Program for Children and Adolescents, Protaia, Federal University of Rio Grande do Sul, UFRGS/Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil
- Graduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
- Graduate Program in Neuroscience, Institute of Basic Sciences/Health, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
- Basic Research and Advanced Investigations in Neurosciences, BRAIN Laboratory, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil
- Instituto Nacional de Psiquiatria do Desenvolvimento para Crianças e Adolescentes (INPD), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Porto Alegre, RS, Brazil
| |
Collapse
|
92
|
Warrener CD, Valentin EM, Gallin C, Richey L, Ross DB, Hood CJ, Lori A, Cubells J, Rauch SA, Rilling JK. The role of oxytocin signaling in depression and suicidality in returning war veterans. Psychoneuroendocrinology 2021; 126:105085. [PMID: 33582574 PMCID: PMC8483597 DOI: 10.1016/j.psyneuen.2020.105085] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022]
Abstract
Many war veterans struggle with depression and suicidality, and separation from the military is a time of particularly high risk. Based on research in non-human animals, we hypothesized that reduced oxytocin signaling would mediate symptoms of depression and suicidality in war veterans recently separated from their close comrades. We also hypothesized that veterans with more frequent contact with comrades would have fewer symptoms of depression and suicidality. In this cross-sectional study, male veterans from the Iraq and Afghanistan wars (n = 86) provided blood and urine samples for measurement of peripheral oxytocin (OT) levels, as well as saliva samples for DNA extraction followed by genotyping of oxytocin receptor gene (OXTR) Single Nucleotide Polymorphisms, and CpG-methylation assessment. Participants also completed a series of mental health questionnaires and interviews. Veterans reported feeling very close to their comrades during war, and missing them greatly upon returning home. Neither peripheral OT levels nor OXTR genotypes were related to symptoms of depression or suicidality. On the other hand, methylation at OXTR CpG -924 was negatively correlated with depressive symptomology, after controlling for possible confounds. Veterans who socialized with comrades more frequently had higher levels of urinary, but not plasma OT, as well as less depressive symptomology. Social connectedness was a strong negative predictor of symptoms of both depression and suicidality, eclipsing the predictive power of other variables such as post-deployment social support, the degree to which participants reported missing their comrades, and the frequency with which they socialized with comrades. Our results suggest that veteran mental health is more impacted by lack of social connectedness than by separation from close comrades per se. While there is some evidence that OXTR methylation relates to depressive symptomology, decreased OT signaling does not appear to mediate the relationship between social disconnectedness and depression or suicidality. Sleep quality and anxiety disorders were also significantly associated with mental health symptoms, independent of social connectedness. Our findings suggest that efforts aimed at alleviating the burden of depression and suicidality in returning war veterans should focus on re-integrating veterans into society and establishing a feeling of social connectedness, as well as on treating anxiety disorders and sleep problems.
Collapse
Affiliation(s)
- Corinne D. Warrener
- The Whitney M. Young, Jr. School of Social Work, Clark Atlanta University, USA
| | - Edward M. Valentin
- The Whitney M. Young, Jr. School of Social Work, Clark Atlanta University, USA
| | - Camilla Gallin
- Program in Neuroscience and Behavioral Biology, Emory University, USA
| | | | | | - Chelsea J. Hood
- The Whitney M. Young, Jr. School of Social Work, Clark Atlanta University, USA
| | - Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, USA
| | - Joseph Cubells
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, USA,Department of Human Genetics, Emory University School of Medicine, USA
| | - Sheila A.M. Rauch
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, USA,Mental Health Service Line, VA Atlanta Healthcare System, USA
| | - James K. Rilling
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, USA,Department of Anthropology, Emory University, USA,Center for Behavioral Neuroscience, Emory University, USA,Center for Translational Social Neuroscience, Emory University, USA,Silvio O. Conte Center for Oxytocin and Social Cognition, USA,Yerkes National Primate Research Center, USA,Corresponding author at: Department of Anthropology, Emory University, USA. (J.K. Rilling)
| |
Collapse
|
93
|
Pfeiffer JR, Bustamante AC, Kim GS, Armstrong D, Knodt AR, Koenen KC, Hariri AR, Uddin M. Associations between childhood family emotional health, fronto-limbic grey matter volume, and saliva 5mC in young adulthood. Clin Epigenetics 2021; 13:68. [PMID: 33789736 PMCID: PMC8010979 DOI: 10.1186/s13148-021-01056-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background Poor family emotional health (FEH) during childhood is prevalent and impactful, and likely confers similar neurodevelopmental risks as other adverse social environments. Pointed FEH study efforts are underdeveloped, and the mechanisms by which poor FEH are biologically embedded are unclear. The current exploratory study examined whether variability in 5-methyl-cytosine (5mC) and fronto-limbic grey matter volume may represent pathways through which FEH may become biologically embedded. Results In 98 university students aged 18–22 years, retrospective self-reported childhood FEH was associated with right hemisphere hippocampus (b = 10.4, p = 0.005), left hemisphere amygdala (b = 5.3, p = 0.009), and right hemisphere amygdala (b = 5.8, p = 0.016) volumes. After pre-processing and filtering to 5mC probes correlated between saliva and brain, analyses showed that childhood FEH was associated with 49 5mC principal components (module eigengenes; MEs) (prange = 3 × 10–6 to 0.047). Saliva-derived 5mC MEs partially mediated the association between FEH and right hippocampal volume (Burlywood ME indirect effect b = − 111, p = 0.014), and fully mediated the FEH and right amygdala volume relationship (Pink4 ME indirect effect b = − 48, p = 0.026). Modules were enriched with probes falling in genes with immune, central nervous system (CNS), cellular development/differentiation, and metabolic functions. Conclusions Findings extend work highlighting neurodevelopmental variability associated with adverse social environment exposure during childhood by specifically implicating poor FEH, while informing a mechanism of biological embedding. FEH-associated epigenetic signatures could function as proxies of altered fronto-limbic grey matter volume associated with poor childhood FEH and inform further investigation into primarily affected tissues such as endocrine, immune, and CNS cell types. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01056-y.
Collapse
Affiliation(s)
- J R Pfeiffer
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA
| | - Angela C Bustamante
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Grace S Kim
- Medical Scholars Program, University of Illinois College of Medicine, Urbana, IL, USA
| | - Don Armstrong
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA
| | - Annchen R Knodt
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA.,Laboratory of NeuroGenetics, Duke University, Durham, NC, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Ahmad R Hariri
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA.,Laboratory of NeuroGenetics, Duke University, Durham, NC, USA
| | - Monica Uddin
- Genomics Program, College of Public Health, University of South Florida, 3720 Spectrum Blvd., Suite 304, Tampa, FL, USA.
| |
Collapse
|
94
|
Epigenetic regulation of DAT gene promoter modulates the risk of externalizing and internalizing behaviors on a normative population: An explorative study. Behav Brain Res 2021; 406:113246. [PMID: 33745985 DOI: 10.1016/j.bbr.2021.113246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/15/2021] [Accepted: 03/12/2021] [Indexed: 11/22/2022]
Abstract
Accumulating research addressed epigenetic modifications and their role on behavioral phenotypes. We recently proposed to study methylation dynamics of two CpG motifs within the 5'-UTR of dopamine transporter (DAT) gene. Starting from a normative population sample of young adults, we selected three sub-groups based on their prevalent symptoms: subjects were assigned to Internalizing, Externalizing and Low-risk sub-groups according to elevated scores in specific phenotypic scales. Using a new approach, we calculated three independent matrixes of cross-correlation between CpG methylation levels, one within each phenotypic sub-group, to determine in which dynamics did the sub-groups differ. We found specific cross-correlation patterns in Externalizing (CpG1, 2 and 3, opposite to the methylation at CpG6) and Internalizing individuals (CpG1 methylation opposite to CpG2, 3 and 6), while Low-risk individuals could follow both trends. The aim of our study was to look for a specific DAT methylation pattern, providing a biomarker that allows early identification of the risk for psycho-pathological deviance.
Collapse
|
95
|
Craig F, Tenuta F, Rizzato V, Costabile A, Trabacca A, Montirosso R. Attachment-related dimensions in the epigenetic era: A systematic review of the human research. Neurosci Biobehav Rev 2021; 125:654-666. [PMID: 33727029 DOI: 10.1016/j.neubiorev.2021.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/16/2022]
Abstract
In recent years, an increasing number of studies documented potential links between parental care and epigenetic mechanisms. The present systematic review focuses on the potential association and interrelationship between attachment-related dimensions and DNA methylation in human studies. We performed a literature review using electronic databases such as PubMed, Scopus, Web of Science, and EBSCOhost. Thirteen papers were included in the review. Findings support significant associations between attachment-related dimensions and epigenetic status in studies which considered different populations, age ranges, attachment measures and peripheral tissues. Although research in this area is still under investigation, available results suggest that DNA methylation associated with attachment-related dimensions might affect the development of stress regulation system and social-emotional capacities, thus contributing to the emerging phenotypic outcomes. However, identifying mediator and moderator effects in the interrelationship between these parameters was problematic owing to heterogeneous methodologies. Finally, we discuss clinical implications, unanswered questions, and future directions for human development in epigenetics research.
Collapse
Affiliation(s)
- Francesco Craig
- Scientific Institute, IRCCS E. Medea, Unit for Severe Disabilities in Developmental Age and Young Adults, Brindisi, Italy
| | - Flaviana Tenuta
- Department of Culture, Education and Society, University of Calabria, Cosenza, Italy
| | - Veronica Rizzato
- Scientific Institute, IRCCS E. Medea, Unit for Severe Disabilities in Developmental Age and Young Adults, Brindisi, Italy
| | - Angela Costabile
- Department of Culture, Education and Society, University of Calabria, Cosenza, Italy
| | - Antonio Trabacca
- Scientific Institute, IRCCS E. Medea, Unit for Severe Disabilities in Developmental Age and Young Adults, Brindisi, Italy.
| | - Rosario Montirosso
- Scientific Institute, IRCCS Eugenio Medea, 0-3 Center for the at-Risk Infant, Bosisio Parini, Italy
| |
Collapse
|
96
|
Parade SH, Huffhines L, Daniels TE, Stroud LR, Nugent NR, Tyrka AR. A systematic review of childhood maltreatment and DNA methylation: candidate gene and epigenome-wide approaches. Transl Psychiatry 2021; 11:134. [PMID: 33608499 PMCID: PMC7896059 DOI: 10.1038/s41398-021-01207-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 01/31/2023] Open
Abstract
Childhood maltreatment is a major risk factor for chronic and severe mental and physical health problems across the lifespan. Increasing evidence supports the hypothesis that maltreatment is associated with epigenetic changes that may subsequently serve as mechanisms of disease. The current review uses a systematic approach to identify and summarize the literature related to childhood maltreatment and alterations in DNA methylation in humans. A total of 100 empirical articles were identified in our systematic review of research published prior to or during March 2020, including studies that focused on candidate genes and studies that leveraged epigenome-wide data in both children and adults. Themes arising from the literature, including consistent and inconsistent patterns of results, are presented. Several directions for future research, including important methodological considerations for future study design, are discussed. Taken together, the literature on childhood maltreatment and DNA methylation underscores the complexity of transactions between the environment and biology across development.
Collapse
Affiliation(s)
- Stephanie H Parade
- Initiative on Stress, Trauma, and Resilience, Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA.
- Bradley/Hasbro Children's Research Center, E. P. Bradley Hospital, East Providence, RI, USA.
| | - Lindsay Huffhines
- Initiative on Stress, Trauma, and Resilience, Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA
- Bradley/Hasbro Children's Research Center, E. P. Bradley Hospital, East Providence, RI, USA
| | - Teresa E Daniels
- Initiative on Stress, Trauma, and Resilience, Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA
- Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| | - Laura R Stroud
- Initiative on Stress, Trauma, and Resilience, Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA
- Center for Behavioral and Preventive Medicine, The Miriam Hospital, Providence, RI, USA
| | - Nicole R Nugent
- Initiative on Stress, Trauma, and Resilience, Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Audrey R Tyrka
- Initiative on Stress, Trauma, and Resilience, Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA
- Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| |
Collapse
|
97
|
Letourneau N, Ntanda H, Jong VL, Mahinpey N, Giesbrecht G, Ross KM. Prenatal maternal distress and immune cell epigenetic profiles at 3-months of age. Dev Psychobiol 2021; 63:973-984. [PMID: 33569773 DOI: 10.1002/dev.22103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Prenatal maternal distress predicts altered offspring immune outcomes, potentially via altered epigenetics. The role of different kinds of prenatal maternal distress on DNA methylation profiles is not understood. METHODS A sample of 117 women (APrON cohort) were followed from pregnancy to the postpartum period. Maternal distress (depressive symptoms, pregnancy-specific anxiety, stressful life events) were assessed mid-pregnancy, late-pregnancy, and 3-months postpartum. DNA methylation profiles were obtained from 3-month-old blood samples. Principal component analysis identified two epigenetic components, characterized as Immune Signaling and DNA Transcription through gene network analysis. Covariates were maternal demographics, pre-pregnancy body mass index, child sex, birth gestational age, and postpartum maternal distress. Penalized regression (LASSO) models were used. RESULTS Late-pregnancy stressful life events, b = 0.006, early-pregnancy depressive symptoms, b = 0.027, late-pregnancy depressive symptoms, b = 0.014, and pregnancy-specific anxiety during late pregnancy, b = -0.631, were predictive of the Immune Signaling component, suggesting that these aspects of maternal distress could affect methylation in offspring immune signaling pathways. Only early-pregnancy depressive symptoms was predictive of the DNA Transcription component, b = -0.0004, suggesting that this aspect of maternal distress is implicated in methylation of offspring DNA transcription pathways. CONCLUSIONS Exposure timing and kind of prenatal maternal distress could matter in the prediction of infant immune epigenetic profiles.
Collapse
Affiliation(s)
| | | | - Victor L Jong
- University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
98
|
Czamara D, Tissink E, Tuhkanen J, Martins J, Awaloff Y, Drake AJ, Khulan B, Palotie A, Winter SM, Nemeroff CB, Craighead WE, Dunlop BW, Mayberg HS, Kinkead B, Mathew SJ, Iosifescu DV, Neylan TC, Heim CM, Lahti J, Eriksson JG, Räikkönen K, Ressler KJ, Provençal N, Binder EB. Combined effects of genotype and childhood adversity shape variability of DNA methylation across age. Transl Psychiatry 2021; 11:88. [PMID: 33526782 PMCID: PMC7851167 DOI: 10.1038/s41398-020-01147-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 01/04/2023] Open
Abstract
Lasting effects of adversity, such as exposure to childhood adversity (CA) on disease risk, may be embedded via epigenetic mechanisms but findings from human studies investigating the main effects of such exposure on epigenetic measures, including DNA methylation (DNAm), are inconsistent. Studies in perinatal tissues indicate that variability of DNAm at birth is best explained by the joint effects of genotype and prenatal environment. Here, we extend these analyses to postnatal stressors. We investigated the contribution of CA, cis genotype (G), and their additive (G + CA) and interactive (G × CA) effects to DNAm variability in blood or saliva from five independent cohorts with a total sample size of 1074 ranging in age from childhood to late adulthood. Of these, 541 were exposed to CA, which was assessed retrospectively using self-reports or verified through social services and registries. For the majority of sites (over 50%) in the adult cohorts, variability in DNAm was best explained by G + CA or G × CA but almost never by CA alone. Across ages and tissues, 1672 DNAm sites showed consistency of the best model in all five cohorts, with G × CA interactions explaining most variance. The consistent G × CA sites mapped to genes enriched in brain-specific transcripts and Gene Ontology terms related to development and synaptic function. Interaction of CA with genotypes showed the strongest contribution to DNAm variability, with stable effects across cohorts in functionally relevant genes. This underscores the importance of including genotype in studies investigating the impact of environmental factors on epigenetic marks.
Collapse
Affiliation(s)
- Darina Czamara
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany.
| | - Elleke Tissink
- grid.12380.380000 0004 1754 9227Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Johanna Tuhkanen
- grid.7737.40000 0004 0410 2071Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014 Helsinki, Finland
| | - Jade Martins
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | | | - Amanda J. Drake
- grid.4305.20000 0004 1936 7988University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| | - Batbayar Khulan
- grid.4305.20000 0004 1936 7988University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| | - Aarno Palotie
- grid.7737.40000 0004 0410 2071Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland
| | - Sibylle M. Winter
- grid.6363.00000 0001 2218 4662Department of Child and Adolescent Psychiatry, Charité—Universitätsmedizin Berlin, Campus Virchow, 13353 Berlin, Germany
| | - Charles B. Nemeroff
- grid.89336.370000 0004 1936 9924Department of Psychiatry, Dell Medical School, University of Texas at Austin, 1601 Trinity St, Austin, TX 78712 USA
| | - W. Edward Craighead
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Dr, Atlanta, GA 30329 USA
| | - Boadie W. Dunlop
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Dr, Atlanta, GA 30329 USA
| | - Helen S. Mayberg
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Dr, Atlanta, GA 30329 USA ,grid.59734.3c0000 0001 0670 2351Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy PI, New York, NY 10029 USA
| | - Becky Kinkead
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Dr, Atlanta, GA 30329 USA
| | - Sanjay J. Mathew
- grid.413890.70000 0004 0420 5521Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine Mental Health Care Line, Michael E. Debakey VA Medical Center, Houston, TX USA
| | - Dan V. Iosifescu
- grid.59734.3c0000 0001 0670 2351Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy PI, New York, NY 10029 USA ,grid.137628.90000 0004 1936 8753NYU School of Medicine and Nathan Kline Institute, New York, NY USA
| | - Thomas C. Neylan
- grid.266102.10000 0001 2297 6811Departments of Psychiatry and Neurology, University of California, San Francisco, CA USA
| | - Christine M. Heim
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Institute of Medical Psychology, Luisenstraße 57, 10117 Berlin, Germany
| | - Jari Lahti
- grid.7737.40000 0004 0410 2071Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014 Helsinki, Finland ,grid.1374.10000 0001 2097 1371Turku Institute for Advanced Studies, University of Turku, 20500 Turku, Finland
| | - Johan G. Eriksson
- grid.7737.40000 0004 0410 2071Department of General Practice and Primary Health Care, Helsinki University Hospital, University of Helsinki, 00290 Helsinki, Finland ,grid.428673.c0000 0004 0409 6302Folkhälsan Research Center, 00250 Helsinki, Finland ,grid.4280.e0000 0001 2180 6431Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore ,grid.452264.30000 0004 0530 269XSingapore Institute for Clinical Sciences, Singapore, Singapore
| | - Katri Räikkönen
- grid.7737.40000 0004 0410 2071Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014 Helsinki, Finland
| | - Kerry J. Ressler
- Mailman Research Center, 115 Mill St., Mailstop 339, Belmont, MA 02478 USA
| | - Nadine Provençal
- grid.61971.380000 0004 1936 7494Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC Canada ,grid.414137.40000 0001 0684 7788BC Children’s Hospital Research Institute, Vancouver, BC Canada
| | - Elisabeth B. Binder
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany ,grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Dr, Atlanta, GA 30329 USA
| |
Collapse
|
99
|
Tollenaar MS, Beijers R, Garg E, Nguyen TTT, Lin DTS, MacIsaac JL, Shalev I, Kobor MS, Meaney MJ, O'Donnell KJ, de Weerth C. Internalizing symptoms associate with the pace of epigenetic aging in childhood. Biol Psychol 2021; 159:108021. [PMID: 33460784 DOI: 10.1016/j.biopsycho.2021.108021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 09/25/2020] [Accepted: 01/11/2021] [Indexed: 12/23/2022]
Abstract
Childhood psychiatric symptoms may be associated with advanced biological aging. This study examined whether epigenetic age acceleration (EAA) associates with internalizing and externalizing symptoms that were prospectively collected across childhood in a longitudinal cohort study. At age 6 buccal epithelial cells from 148 children (69 girls) were collected to survey genome-wide DNA methylation. EAA was estimated using the Horvath clock. Internalizing symptoms at ages 2.5 and 4 years significantly predicted higher EAA at age 6, which in turn was significantly associated with internalizing symptoms at ages 6-10 years. Similar trends for externalizing symptoms did not reach statistical significance. These findings indicate advanced biological aging in relation to child mental health and may help better identify those at risk for lasting impairments associated with internalizing disorders.
Collapse
Affiliation(s)
| | - Roseriet Beijers
- Department of Developmental Psychology, Behavioural Science Institute, Radboud University, the Netherlands; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, the Netherlands
| | - Elika Garg
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, QC, Canada
| | - T T Thao Nguyen
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, QC, Canada
| | - David T S Lin
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, BC, Canada
| | - Julia L MacIsaac
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, BC, Canada
| | - Idan Shalev
- Department of Biobehavioral Health, Pennsylvania State University, PA, USA
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, BC, Canada; Sackler Program for Epigenetics and Neurobiology, McGill University, QC, Canada
| | - Michael J Meaney
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, QC, Canada; Sackler Program for Epigenetics and Neurobiology, McGill University, QC, Canada; Canadian Institute for Advanced Research, Child and Brain Development Program, Canada; Singapore Institute for Clinical Sciences, Singapore
| | - Kieran J O'Donnell
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, QC, Canada; Canadian Institute for Advanced Research, Child and Brain Development Program, Canada; Yale Child Study Center & Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, USA
| | - Carolina de Weerth
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, the Netherlands
| |
Collapse
|
100
|
Lindner M, Verhagen I, Viitaniemi HM, Laine VN, Visser ME, Husby A, van Oers K. Temporal changes in DNA methylation and RNA expression in a small song bird: within- and between-tissue comparisons. BMC Genomics 2021; 22:36. [PMID: 33413102 PMCID: PMC7792223 DOI: 10.1186/s12864-020-07329-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/15/2020] [Indexed: 12/25/2022] Open
Abstract
Background DNA methylation is likely a key mechanism regulating changes in gene transcription in traits that show temporal fluctuations in response to environmental conditions. To understand the transcriptional role of DNA methylation we need simultaneous within-individual assessment of methylation changes and gene expression changes over time. Within-individual repeated sampling of tissues, which are essential for trait expression is, however, unfeasible (e.g. specific brain regions, liver and ovary for reproductive timing). Here, we explore to what extend between-individual changes in DNA methylation in a tissue accessible for repeated sampling (red blood cells (RBCs)) reflect such patterns in a tissue unavailable for repeated sampling (liver) and how these DNA methylation patterns are associated with gene expression in such inaccessible tissues (hypothalamus, ovary and liver). For this, 18 great tit (Parus major) females were sacrificed at three time points (n = 6 per time point) throughout the pre-laying and egg-laying period and their blood, hypothalamus, ovary and liver were sampled. Results We simultaneously assessed DNA methylation changes (via reduced representation bisulfite sequencing) and changes in gene expression (via RNA-seq and qPCR) over time. In general, we found a positive correlation between changes in CpG site methylation in RBCs and liver across timepoints. For CpG sites in close proximity to the transcription start site, an increase in RBC methylation over time was associated with a decrease in the expression of the associated gene in the ovary. In contrast, no such association with gene expression was found for CpG site methylation within the gene body or the 10 kb up- and downstream regions adjacent to the gene body. Conclusion Temporal changes in DNA methylation are largely tissue-general, indicating that changes in RBC methylation can reflect changes in DNA methylation in other, often less accessible, tissues such as the liver in our case. However, associations between temporal changes in DNA methylation with changes in gene expression are mostly tissue- and genomic location-dependent. The observation that temporal changes in DNA methylation within RBCs can relate to changes in gene expression in less accessible tissues is important for a better understanding of how environmental conditions shape traits that temporally change in expression in wild populations. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07329-9.
Collapse
Affiliation(s)
- Melanie Lindner
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, 6700, AB, The Netherlands. .,Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands.
| | - Irene Verhagen
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, 6700, AB, The Netherlands.,Wageningen University & Research, Wageningen, The Netherlands
| | - Heidi M Viitaniemi
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.,Institute of Vertebrate Biology, Czech Academy of Sciences, Prague, Czech Republic.,Department of Biology, University of Turku, Turku, Finland
| | - Veronika N Laine
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, 6700, AB, The Netherlands.,Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, 6700, AB, The Netherlands.,Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Arild Husby
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.,Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.,Department of Biology, NTNU, Centre for Biodiversity Dynamics, Trondheim, Norway
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, 6700, AB, The Netherlands.
| |
Collapse
|