51
|
Wood ML, Domanskyi S, Privman V. Design of High Quality Chemical XOR Gates with Noise Reduction. Chemphyschem 2017; 18:1773-1781. [DOI: 10.1002/cphc.201700018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Mackenna L. Wood
- Department of Physics; Clarkson University; Potsdam NY 13676 USA
| | - Sergii Domanskyi
- Department of Physics; Clarkson University; Potsdam NY 13676 USA
| | - Vladimir Privman
- Department of Physics; Clarkson University; Potsdam NY 13676 USA
| |
Collapse
|
52
|
Fan D, Wang E, Dong S. A DNA-based parity generator/checker for error detection through data transmission with visual readout and an output-correction function. Chem Sci 2017; 8:1888-1895. [PMID: 28553479 PMCID: PMC5424811 DOI: 10.1039/c6sc04056j] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/26/2016] [Indexed: 12/19/2022] Open
Abstract
During any type of binary data transmission, the occurrence of bit errors is an inevitable and frequent problem suffered. These errors, which have fatal effects on the correct logic computation, especially in sophisticated logic circuits, can be checked through insertion of a parity generator (pG) at the transmitting end and a parity checker (pC) at the receiving end. Herein, taking even pG/pC as a model device, we constructed the first DNA-based molecular parity generator/checker (pG/pC) for error detection through data transmission, on a universal single-strand platform according to solely DNA hybridization. Compared with previous pG/pC systems, the distinct advantage of this one is that it can present not only fluorescence signals but also visual outputs, which can be directly recognized by the naked eye, using DNA inputs modulated split-G-quadruplex and its DNAzyme as signal reporters, thus greatly extending its potential practical applications. More importantly, an "Output-Correction" function was introduced into the pC for the first time, in which all of the erroneous outputs can be adequately corrected to their normal states, guaranteeing the regular operation of subsequent logic devices. Furthermore, through negative logic conversion towards the constructed even pG/pC, the odd pG/pC with equal functions was obtained. Furthermore, this system can also execute multi-input triggered concatenated logic computations with dual output-modes, which largely fulfilled the requirements of complicated computing.
Collapse
Affiliation(s)
- Daoqing Fan
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin , 130022 China .
- University of Chinese Academy of Sciences , Beijing , 100039 China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin , 130022 China .
- University of Chinese Academy of Sciences , Beijing , 100039 China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin , 130022 China .
- University of Chinese Academy of Sciences , Beijing , 100039 China
| |
Collapse
|
53
|
Antibody-controlled actuation of DNA-based molecular circuits. Nat Commun 2017; 8:14473. [PMID: 28211541 PMCID: PMC5321729 DOI: 10.1038/ncomms14473] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/03/2017] [Indexed: 12/31/2022] Open
Abstract
DNA-based molecular circuits allow autonomous signal processing, but their actuation has relied mostly on RNA/DNA-based inputs, limiting their application in synthetic biology, biomedicine and molecular diagnostics. Here we introduce a generic method to translate the presence of an antibody into a unique DNA strand, enabling the use of antibodies as specific inputs for DNA-based molecular computing. Our approach, antibody-templated strand exchange (ATSE), uses the characteristic bivalent architecture of antibodies to promote DNA-strand exchange reactions both thermodynamically and kinetically. Detailed characterization of the ATSE reaction allowed the establishment of a comprehensive model that describes the kinetics and thermodynamics of ATSE as a function of toehold length, antibody-epitope affinity and concentration. ATSE enables the introduction of complex signal processing in antibody-based diagnostics, as demonstrated here by constructing molecular circuits for multiplex antibody detection, integration of multiple antibody inputs using logic gates and actuation of enzymes and DNAzymes for signal amplification.
Collapse
|
54
|
Gamella M, Zakharchenko A, Guz N, Masi M, Minko S, Kolpashchikov DM, Iken H, Poghossian A, Schöning MJ, Katz E. DNA Computing Systems Activated by Electrochemically-triggered DNA Release from a Polymer-brush-modified Electrode Array. ELECTROANAL 2017; 29:398-408. [PMID: 29379265 PMCID: PMC5786385 DOI: 10.1002/elan.201600389] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 06/23/2016] [Indexed: 12/23/2022]
Abstract
An array of four independently wired indium tin oxide (ITO) electrodes was used for electrochemically stimulated DNA release and activation of DNA-based Identity, AND and XOR logic gates. Single-stranded DNA molecules were loaded on the mixed poly(N,N-di-methylaminoethyl methacrylate) (PDMAEMA)/poly-(methacrylic acid) (PMAA) brush covalently attached to the ITO electrodes. The DNA deposition was performed at pH 5.0 when the polymer brush is positively charged due to protonation of tertiary amino groups in PDMAE-MA, thus resulting in electrostatic attraction of the negatively charged DNA. By applying electrolysis at -1.0 V(vs. Ag/AgCl reference) electrochemical oxygen reduction resulted in the consumption of hydrogen ions and local pH increase near the electrode surface. The process resulted in recharging the polymer brush to the negative state due to dissociation of carboxylic groups of PMAA, thus repulsing the negatively charged DNA and releasing it from the electrode surface. The DNA release was performed in various combinations from different electrodes in the array assembly. The released DNA operated as input signals for activation of the Boolean logic gates. The developed system represents a step forward in DNA computing, combining for the first time DNA chemical processes with electronic input signals.
Collapse
Affiliation(s)
- Maria Gamella
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA, http://people.clarkson.edu/~ekatz/
| | - Andrey Zakharchenko
- Nanostructured Materials Lab, The University of Georgia, Athens, GA 30602, USA
| | - Nataliia Guz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA, http://people.clarkson.edu/~ekatz/
| | - Madeline Masi
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA, http://people.clarkson.edu/~ekatz/
| | - Sergiy Minko
- Nanostructured Materials Lab, The University of Georgia, Athens, GA 30602, USA
| | - Dmitry M. Kolpashchikov
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2366, USA
| | - Heiko Iken
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Jülich, Heinrich-Muβmann-Str. 1, D-52428 Jülich, Germany
| | - Arshak Poghossian
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Jülich, Heinrich-Muβmann-Str. 1, D-52428 Jülich, Germany
- Institute of Bio- and Nanosystems, Research Centre Jülich, GmbH, D-52425 Jülich Germany
| | - Michael J. Schöning
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Jülich, Heinrich-Muβmann-Str. 1, D-52428 Jülich, Germany
- Institute of Bio- and Nanosystems, Research Centre Jülich, GmbH, D-52425 Jülich Germany
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA, http://people.clarkson.edu/~ekatz/
| |
Collapse
|
55
|
Fan D, Zhu X, Dong S, Wang E. Tyramine Hydrochloride Based Label-Free System for Operating Various DNA Logic Gates and a DNA Caliper for Base Number Measurements. Chemphyschem 2017; 18:1767-1772. [DOI: 10.1002/cphc.201601291] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Daoqing Fan
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Xiaoqing Zhu
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| |
Collapse
|
56
|
Fan D, Wang E, Dong S. Exploiting Polydopamine Nanospheres to DNA Computing: A Simple, Enzyme-Free and G-Quadruplex-Free DNA Parity Generator/Checker for Error Detection during Data Transmission. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1322-1330. [PMID: 27990820 DOI: 10.1021/acsami.6b14317] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Molecular logic devices with various functions play an indispensable role in molecular data transmission/processing. However, during any kinds of data transmission, a constant and unavoidable circumstance is the appearance of bit errors, which have serious effects on the regular logic computation. Fortunately, these errors can be detected via plugging a parity generator (pG) at the transmitting terminal and a parity checker (pC) at the receiving terminal. Herein, taking advantage of the efficient adsorption/quenching ability of polydopamine nanospheres toward fluorophore-labeled single-stranded DNA, we explored this biocompatible nanomaterial to DNA logic computation and constructed the first simple, enzyme-free, and G-quadruplex-free DNA pG/pC for error detection through data transmission. Besides, graphene oxide (GO) was innovatively introduced as the "corrective element" to perform the output-correction function of pC. All the erroneous outputs were corrected to normal conditions completely, ensuring the regular operation of later logic computing. The total operation of this non-G4 pG/pC system (error checking/output-correction) could be completed within 1 h (about 1/3 of previous G4 platform) in a simpler and more efficient way. Notably, the odd pG/pC with analogous functions was also achieved through negative logic conversion to the fabricated even one. Furthermore, the same system could also perform three-input concatenated logic computation (XOR-INHIBIT), enriching the complexity of PDs-based logic computation.
Collapse
Affiliation(s)
- Daoqing Fan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences , Beijing 100039, China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences , Beijing 100039, China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences , Beijing 100039, China
| |
Collapse
|
57
|
Domanskyi S, Privman V. Modeling and Modifying Response of Biochemical Processes for Biocomputing and Biosensing Signal Processing. EMERGENCE, COMPLEXITY AND COMPUTATION 2017. [DOI: 10.1007/978-3-319-33921-4_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
58
|
Katz E, Poghossian A, Schöning MJ. Enzyme-based logic gates and circuits-analytical applications and interfacing with electronics. Anal Bioanal Chem 2016; 409:81-94. [PMID: 27900435 DOI: 10.1007/s00216-016-0079-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 12/24/2022]
Abstract
The paper is an overview of enzyme-based logic gates and their short circuits, with specific examples of Boolean AND and OR gates, and concatenated logic gates composed of multi-step enzyme-biocatalyzed reactions. Noise formation in the biocatalytic reactions and its decrease by adding a "filter" system, converting convex to sigmoid response function, are discussed. Despite the fact that the enzyme-based logic gates are primarily considered as components of future biomolecular computing systems, their biosensing applications are promising for immediate practical use. Analytical use of the enzyme logic systems in biomedical and forensic applications is discussed and exemplified with the logic analysis of biomarkers of various injuries, e.g., liver injury, and with analysis of biomarkers characteristic of different ethnicity found in blood samples on a crime scene. Interfacing of enzyme logic systems with modified electrodes and semiconductor devices is discussed, giving particular attention to the interfaces functionalized with signal-responsive materials. Future perspectives in the design of the biomolecular logic systems and their applications are discussed in the conclusion. Graphical Abstract Various applications and signal-transduction methods are reviewed for enzyme-based logic systems.
Collapse
Affiliation(s)
- Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699-5810, USA.
| | - Arshak Poghossian
- Institute of Nano- and Biotechnologies, FH Aachen, Aachen University of Applied Sciences, Campus Jülich, Heinrich-Mußmann-Str. 1, 52428, Jülich, Germany. .,Peter Grünberg Institute (PGI-8), Research Centre Jülich GmbH, 52425, Jülich, Germany.
| | - Michael J Schöning
- Institute of Nano- and Biotechnologies, FH Aachen, Aachen University of Applied Sciences, Campus Jülich, Heinrich-Mußmann-Str. 1, 52428, Jülich, Germany. .,Peter Grünberg Institute (PGI-8), Research Centre Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
59
|
Masi M, Gamella M, Guz N, Katz E. Electrochemically Triggered DNA Release from a Mixed-brush Polymer-modified Electrode. ELECTROANAL 2016. [DOI: 10.1002/elan.201600275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Madeline Masi
- Department of Chemistry and Biomolecular Science; Clarkson University; Potsdam NY 13699-5810 USA
| | - Maria Gamella
- Department of Chemistry and Biomolecular Science; Clarkson University; Potsdam NY 13699-5810 USA
| | - Nataliia Guz
- Department of Chemistry and Biomolecular Science; Clarkson University; Potsdam NY 13699-5810 USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science; Clarkson University; Potsdam NY 13699-5810 USA
| |
Collapse
|
60
|
Kim E, Liu Y, Ben-Yoav H, Winkler TE, Yan K, Shi X, Shen J, Kelly DL, Ghodssi R, Bentley WE, Payne GF. Fusing Sensor Paradigms to Acquire Chemical Information: An Integrative Role for Smart Biopolymeric Hydrogels. Adv Healthc Mater 2016; 5:2595-2616. [PMID: 27616350 PMCID: PMC5485850 DOI: 10.1002/adhm.201600516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/26/2016] [Indexed: 12/14/2022]
Abstract
The Information Age transformed our lives but it has had surprisingly little impact on the way chemical information (e.g., from our biological world) is acquired, analyzed and communicated. Sensor systems are poised to change this situation by providing rapid access to chemical information. This access will be enabled by technological advances from various fields: biology enables the synthesis, design and discovery of molecular recognition elements as well as the generation of cell-based signal processors; physics and chemistry are providing nano-components that facilitate the transmission and transduction of signals rich with chemical information; microfabrication is yielding sensors capable of receiving these signals through various modalities; and signal processing analysis enhances the extraction of chemical information. The authors contend that integral to the development of functional sensor systems will be materials that (i) enable the integrative and hierarchical assembly of various sensing components (for chemical recognition and signal transduction) and (ii) facilitate meaningful communication across modalities. It is suggested that stimuli-responsive self-assembling biopolymers can perform such integrative functions, and redox provides modality-spanning communication capabilities. Recent progress toward the development of electrochemical sensors to manage schizophrenia is used to illustrate the opportunities and challenges for enlisting sensors for chemical information processing.
Collapse
Affiliation(s)
- Eunkyoung Kim
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Yi Liu
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Hadar Ben-Yoav
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Thomas E Winkler
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Kun Yan
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China
| | - Jana Shen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Deanna L Kelly
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, 21228, USA
| | - Reza Ghodssi
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA
| | - William E Bentley
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Gregory F Payne
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
61
|
Zhang S, Wang K, Huang C, Li Z, Sun T, Han DM. An enzyme-free and resettable platform for the construction of advanced molecular logic devices based on magnetic beads and DNA. NANOSCALE 2016; 8:15681-15688. [PMID: 27524500 DOI: 10.1039/c6nr04762a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A series of multiple logic circuits based on magnetic beads and DNA are constructed to perform resettable nonarithmetic functions, including a digital comparator, 4-to-2 encoder and 2-to-3 decoder, 2-to-1 encoder and 1-to-2 decoder. The signal reporter is composed of a G-quadruplex/NMM complex and a AuNP-surface immobilized molecular beacon. It is the first time that the designed DNA-based nonarithmetic nanodevices can share the same DNA platform with a reset function, which has great potential application in information processing at the molecular level. Another novel feature of the designed system is that the developed nanodevices are operated on a simple DNA/magnetic bead platform and share a constant threshold setpoint without the assistance of any negative logic conversion. The reset function is realized by heating the output system and the magnetic separation of the computing modules. Due to the biocompatibility and design flexibility of DNA, these investigations may provide a new route towards the development of resettable advanced logic circuits in biological and biomedical fields.
Collapse
Affiliation(s)
- Siqi Zhang
- Department of Chemistry, Taizhou University, Jiaojiang, 318000, China.
| | - Kun Wang
- College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Congcong Huang
- Department of Food Engineering, Shandong Business Institute, Yantai, 264670, China
| | - Zhenyu Li
- College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Ting Sun
- College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - De-Man Han
- Department of Chemistry, Taizhou University, Jiaojiang, 318000, China.
| |
Collapse
|
62
|
Fratto BE, Guz N, Fallon TT, Katz E. An Enzyme-based 1:2 Demultiplexer Interfaced with an Electrochemical Actuator. Chemphyschem 2016; 18:1721-1725. [PMID: 27481283 DOI: 10.1002/cphc.201600799] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Indexed: 12/26/2022]
Abstract
An enzyme-based 1:2 demultiplexer is designed in a flow system composed of three cells where each one is modified with a different enzyme: hexokinase, glucose dehydrogenase and glucose-6-phosphate dehydrogenase. The Input signal activating the biocatalytic cascade is represented by glucose, while the Address signal represented by ATP is responsible for directing the Input signal to one of the output channels, depending on the logic value of the Address. The biomolecular 1:2 demultiplexer is extended to include two electrochemical actuators releasing entrapped DNA molecules in the active output channel. The modular design of the system allows for easy exchange and extension of the functional elements. The present demultiplexer can be easily integrated in various biomolecular logic systems, including different logic gates based on the enzyme- or DNA-based reactions, as well as containing different chemical actuators, for example, with a biomolecular release function.
Collapse
Affiliation(s)
- Brian E Fratto
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699, USA
| | - Nataliia Guz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699, USA
| | - Tyler T Fallon
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699, USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699, USA
| |
Collapse
|
63
|
Wu C, Zhou C, Wang E, Dong S. A label-free and enzyme-free system for operating various logic devices using poly(thymine)-templated CuNPs and SYBR Green I as signal transducers. NANOSCALE 2016; 8:14243-14249. [PMID: 27396871 DOI: 10.1039/c6nr04069a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
For the first time by integrating fluorescent polyT-templated CuNPs and SYBR Green I, a basic INHIBIT gate and four advanced logic circuits (2-to-1 encoder, 4-to-2 encoder, 1-to-2 decoder and 1-to-2 demultiplexer) have been conceptually realized under label-free and enzyme-free conditions. Taking advantage of the selective formation of CuNPs on ss-DNA, the implementation of these advanced logic devices were achieved without any usage of dye quenching groups or other nanomaterials like graphene oxide or AuNPs since polyA strands not only worked as an input but also acted as effective inhibitors towards polyT templates, meeting the aim of developing bio-computing with cost-effective and operationally simple methods. In short, polyT-templated CuNPs, as promising fluorescent signal reporters, are successfully applied to fabricate advanced logic devices, which may present a potential path for future development of molecular computations.
Collapse
Affiliation(s)
- Changtong Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
| | | | | | | |
Collapse
|
64
|
Gerasimova YV, Kolpashchikov DM. Towards a DNA Nanoprocessor: Reusable Tile-Integrated DNA Circuits. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
65
|
Gerasimova YV, Kolpashchikov DM. Towards a DNA Nanoprocessor: Reusable Tile-Integrated DNA Circuits. Angew Chem Int Ed Engl 2016; 55:10244-7. [DOI: 10.1002/anie.201603265] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/05/2016] [Indexed: 11/06/2022]
|
66
|
Liu Z, Liu Y, Kim E, Bentley WE, Payne GF. Electrochemical Probing through a Redox Capacitor To Acquire Chemical Information on Biothiols. Anal Chem 2016; 88:7213-21. [PMID: 27385047 PMCID: PMC4962791 DOI: 10.1021/acs.analchem.6b01394] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
The
acquisition of chemical information is a critical need for
medical diagnostics, food/environmental monitoring, and national security.
Here, we report an electrochemical information processing approach
that integrates (i) complex electrical inputs/outputs, (ii) mediators
to transduce the electrical I/O into redox signals that can actively
probe the chemical environment, and (iii) a redox capacitor that manipulates
signals for information extraction. We demonstrate the capabilities
of this chemical information processing strategy using biothiols because
of the emerging importance of these molecules in medicine and because
their distinct chemical properties allow evaluation of hypothesis-driven
information probing. We show that input sequences can be tailored
to probe for chemical information both qualitatively (step inputs
probe for thiol-specific signatures) and quantitatively. Specifically,
we observed picomolar limits of detection and linear responses to
concentrations over 5 orders of magnitude (1 pM–0.1 μM).
This approach allows the capabilities of signal processing to be extended
for rapid, robust, and on-site analysis of chemical information.
Collapse
Affiliation(s)
- Zhengchun Liu
- Department of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University , Changsha 410083, People's Republic of China.,Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - Yi Liu
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| |
Collapse
|
67
|
Verma A, Fratto BE, Privman V, Katz E. Design of Flow Systems for Improved Networking and Reduced Noise in Biomolecular Signal Processing in Biocomputing and Biosensing Applications. SENSORS 2016; 16:s16071042. [PMID: 27399702 PMCID: PMC4969838 DOI: 10.3390/s16071042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/21/2016] [Accepted: 06/24/2016] [Indexed: 02/07/2023]
Abstract
We consider flow systems that have been utilized for small-scale biomolecular computing and digital signal processing in binary-operating biosensors. Signal measurement is optimized by designing a flow-reversal cuvette and analyzing the experimental data to theoretically extract the pulse shape, as well as reveal the level of noise it possesses. Noise reduction is then carried out numerically. We conclude that this can be accomplished physically via the addition of properly designed well-mixing flow-reversal cell(s) as an integral part of the flow system. This approach should enable improved networking capabilities and potentially not only digital but analog signal-processing in such systems. Possible applications in complex biocomputing networks and various sense-and-act systems are discussed.
Collapse
Affiliation(s)
- Arjun Verma
- Department of Physics, Clarkson University, Potsdam, NY 13699, USA.
| | - Brian E Fratto
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA.
| | - Vladimir Privman
- Department of Physics, Clarkson University, Potsdam, NY 13699, USA.
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA.
| |
Collapse
|
68
|
Guz N, Fedotova TA, Fratto BE, Schlesinger O, Alfonta L, Kolpashchikov DM, Katz E. Bioelectronic Interface Connecting Reversible Logic Gates Based on Enzyme and DNA Reactions. Chemphyschem 2016; 17:2247-55. [PMID: 27145731 DOI: 10.1002/cphc.201600129] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Indexed: 12/17/2022]
Abstract
It is believed that connecting biomolecular computation elements in complex networks of communicating molecules may eventually lead to a biocomputer that can be used for diagnostics and/or the cure of physiological and genetic disorders. Here, a bioelectronic interface based on biomolecule-modified electrodes has been designed to bridge reversible enzymatic logic gates with reversible DNA-based logic gates. The enzyme-based Fredkin gate with three input and three output signals was connected to the DNA-based Feynman gate with two input and two output signals-both representing logically reversible computing elements. In the reversible Fredkin gate, the routing of two data signals between two output channels was controlled by the control signal (third channel). The two data output signals generated by the Fredkin gate were directed toward two electrochemical flow cells, responding to the output signals by releasing DNA molecules that serve as the input signals for the next Feynman logic gate based on the DNA reacting cascade, producing, in turn, two final output signals. The Feynman gate operated as the controlled NOT gate (CNOT), where one of the input channels controlled a NOT operation on another channel. Both logic gates represented a highly sophisticated combination of input-controlled signal-routing logic operations, resulting in redirecting chemical signals in different channels and performing orchestrated computing processes. The biomolecular reaction cascade responsible for the signal processing was realized by moving the solution from one reacting cell to another, including the reacting flow cells and electrochemical flow cells, which were organized in a specific network mimicking electronic computing circuitries. The designed system represents the first example of high complexity biocomputing processes integrating enzyme and DNA reactions and performing logically reversible signal processing.
Collapse
Affiliation(s)
- Nataliia Guz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699-5810, USA
| | - Tatiana A Fedotova
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA
| | - Brian E Fratto
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699-5810, USA
| | - Orr Schlesinger
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| | - Lital Alfonta
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA.
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699-5810, USA.
| |
Collapse
|
69
|
Gamella M, Guz N, Katz E. DNA Release from a Bioelectronic Interface Stimulated by a DNA Signal – Amplification of DNA Signals. ELECTROANAL 2016. [DOI: 10.1002/elan.201600077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Maria Gamella
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699-5810 USA
| | - Nataliia Guz
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699-5810 USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699-5810 USA
| |
Collapse
|
70
|
Fratto BE, Lewer JM, Katz E. An Enzyme-Based Half-Adder and Half-Subtractor with a Modular Design. Chemphyschem 2016; 17:2210-7. [PMID: 27037520 DOI: 10.1002/cphc.201600173] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 01/01/2023]
Abstract
A half-adder and a half-subtractor have been realized using enzymatic reaction cascades performed in a flow cell device. The individual cells were modified with different enzymes and assembled in complex networks to perform logic operations and arithmetic functions. The modular design of the logic devices allowed for easy re-configuration, enabling them to perform various functions. The final output signals, represented by redox species [Fe(CN)6 ](3-/4-) or NADH/NAD(+) , were analyzed optically to derive the calculation results. These output signals might be applicable in the future for actuation processes, for example, substance release activated by logically processed signals.
Collapse
Affiliation(s)
- Brian E Fratto
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699, USA
| | - Jessica M Lewer
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699, USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699, USA.
| |
Collapse
|
71
|
Yao H, Gan Q, Peng J, Huang S, Zhu M, Shi K. A Stimuli-Responsive Biosensor of Glucose on Layer-by-Layer Films Assembled through Specific Lectin-Glycoenzyme Recognition. SENSORS (BASEL, SWITZERLAND) 2016; 16:E563. [PMID: 27104542 PMCID: PMC4851077 DOI: 10.3390/s16040563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 01/14/2023]
Abstract
The research on intelligent bioelectrocatalysis based on stimuli-responsive materials or interfaces is of great significance for biosensors and other bioelectronic devices. In the present work, lectin protein concanavalin A (Con A) and glycoenzyme glucose oxidase (GOD) were assembled into {Con A/GOD}n layer-by-layer (LbL) films by taking advantage of the biospecific lectin-glycoenzyme affinity between them. These film electrodes possess stimuli-responsive properties toward electroactive probes such as ferrocenedicarboxylic acid (Fc(COOH)₂) by modulating the surrounding pH. The CV peak currents of Fc(COOH)₂ were quite large at pH 4.0 but significantly suppressed at pH 8.0, demonstrating reversible stimuli-responsive on-off behavior. The mechanism of stimuli-responsive property of the films was explored by comparative experiments and attributed to the different electrostatic interaction between the films and the probes at different pH. This stimuli-responsive films could be used to realize active/inactive electrocatalytic oxidation of glucose by GOD in the films and mediated by Fc(COOH)₂ in solution, which may establish a foundation for fabricating novel stimuli-responsive electrochemical biosensors based on bioelectrocatalysis with immobilized enzymes.
Collapse
Affiliation(s)
- Huiqin Yao
- Department of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Qianqian Gan
- Department of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Juan Peng
- State Key Laboratory Cultivation Base of Natural Gas Conversion, Ningxia University, Yinchuan 750021, China.
- School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Shan Huang
- Department of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Meilin Zhu
- Department of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Keren Shi
- State Key Laboratory Cultivation Base of Natural Gas Conversion, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
72
|
Fan D, Zhu J, Liu Y, Wang E, Dong S. Label-free and enzyme-free platform for the construction of advanced DNA logic devices based on the assembly of graphene oxide and DNA-templated AgNCs. NANOSCALE 2016; 8:3834-3840. [PMID: 26814682 DOI: 10.1039/c6nr00032k] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
DNA-based molecular logic computation has drawn extensive attention in bioanalysis, intelligent diagnostics of diseases and other nanotechnology areas. Herein, taking 2-to-1 and 4-to-2 encoders and a 1-to-2 decoder as model molecular logic devices, we for the first time combined the quenching ability of GO (graphene oxide) to DNA-templated AgNCs with G-quadruplex-enhanced fluorescence intensity of porphyrin dyes for the construction of label-free and enzyme-free dual-output advanced DNA molecular logic devices. Also, through the application of negative logic conversion to an XOR logic gate and combined with an INHIBIT logic gate, we also operated a label-free and enzyme-free comparator.
Collapse
Affiliation(s)
- Daoqing Fan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China.
| | | | | | | | | |
Collapse
|
73
|
Privman V, Domanskyi S, Luz RAS, Guz N, Glasser ML, Katz E. Diffusion of Oligonucleotides from within Iron-Cross-Linked, Polyelectrolyte-Modified Alginate Beads: A Model System for Drug Release. Chemphyschem 2016; 17:976-84. [PMID: 26762598 DOI: 10.1002/cphc.201501186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Indexed: 12/24/2022]
Abstract
An analytical model to describe diffusion of oligonucleotides from stable hydrogel beads is developed and experimentally verified. The synthesized alginate beads are Fe(3+) -cross-linked and polyelectrolyte-doped for uniformity and stability at physiological pH. Data on diffusion of oligonucleotides from inside the beads provide physical insights into the volume nature of the immobilization of a fraction of oligonucleotides due to polyelectrolyte cross-linking, that is, the absence of a surface-layer barrier in this case. Furthermore, the results suggest a new simple approach to measuring the diffusion coefficient of mobile oligonucleotide molecules inside hydrogels. The considered alginate beads provide a model for a well-defined component in drug-release systems and for the oligonucleotide-release transduction steps in drug-delivering and biocomputing applications. This is illustrated by destabilizing the beads with citrate, which induces full oligonucleotide release with nondiffusional kinetics.
Collapse
Affiliation(s)
- Vladimir Privman
- Department of Physics, Clarkson University, Potsdam, NY, 13676, USA.
| | - Sergii Domanskyi
- Department of Physics, Clarkson University, Potsdam, NY, 13676, USA
| | - Roberto A S Luz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13676, USA.,Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Nataliia Guz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13676, USA
| | | | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13676, USA.
| |
Collapse
|
74
|
Controlled Logic Gates—Switch Gate and Fredkin Gate Based on Enzyme‐Biocatalyzed Reactions Realized in Flow Cells. Chemphyschem 2016; 17:1046-53. [DOI: 10.1002/cphc.201501095] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Indexed: 12/27/2022]
|
75
|
Li F, Chen H, Pan J, Cha TG, Medintz IL, Choi JH. A DNAzyme-mediated logic gate for programming molecular capture and release on DNA origami. Chem Commun (Camb) 2016; 52:8369-72. [PMID: 27211274 DOI: 10.1039/c6cc02989b] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here we design a DNA origami-based site-specific molecular capture and release platform operated by a DNAzyme-mediated logic gate process.
Collapse
Affiliation(s)
- Feiran Li
- School of Mechanical Engineering
- Purdue University
- West Lafayette
- USA
| | - Haorong Chen
- School of Mechanical Engineering
- Purdue University
- West Lafayette
- USA
| | - Jing Pan
- School of Mechanical Engineering
- Purdue University
- West Lafayette
- USA
| | - Tae-Gon Cha
- School of Mechanical Engineering
- Purdue University
- West Lafayette
- USA
| | - Igor L. Medintz
- Centre for Bio/Molecular Science and Engineering
- Code 6900 U.S. Naval Research Laboratory
- Washington DC 20375
- USA
| | - Jong Hyun Choi
- School of Mechanical Engineering
- Purdue University
- West Lafayette
- USA
| |
Collapse
|
76
|
Fan D, Zhu J, Zhai Q, Wang E, Dong S. Cascade DNA logic device programmed ratiometric DNA analysis and logic devices based on a fluorescent dual-signal probe of a G-quadruplex DNAzyme. Chem Commun (Camb) 2016; 52:3766-9. [DOI: 10.1039/c5cc10556k] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Two fluorescence sensitive substrates of G4 DNAzyme with inverse responses were simultaneously used to a cascade advanced DNA logic device based DNA analysis for the first time.
Collapse
Affiliation(s)
- Daoqing Fan
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Jinbo Zhu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Qingfeng Zhai
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|
77
|
Zhang J, Xiang Y, Wang M, Basu A, Lu Y. Dose-Dependent Response of Personal Glucose Meters to Nicotinamide Coenzymes: Applications to Point-of-Care Diagnostics of Many Non-Glucose Targets in a Single Step. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507563] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
78
|
Zhang J, Xiang Y, Wang M, Basu A, Lu Y. Dose-Dependent Response of Personal Glucose Meters to Nicotinamide Coenzymes: Applications to Point-of-Care Diagnostics of Many Non-Glucose Targets in a Single Step. Angew Chem Int Ed Engl 2015; 55:732-6. [PMID: 26593219 DOI: 10.1002/anie.201507563] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Indexed: 01/26/2023]
Abstract
We report a discovery that personal glucose meters (PGMs) can give a dose-dependent response to nicotinamide coenzymes, such as the reduced form of nicotinamide adenine dinucleotide (NADH). We have developed methods that take advantage of this discovery to perform one-step homogeneous assays of many non-glucose targets that are difficult to recognize by DNAzymes, aptamers, or antibodies, and without the need for conjugation and multiple steps of sample dilution, separation, or fluid manipulation. The methods are based on the target-induced consumption or production of NADH through cascade enzymatic reactions. Simultaneous monitoring of the glucose and L-lactate levels in human plasma from patients with diabetes is demonstrated and the results are comparable to those from current standard test methods. Since a large number of commercially available enzymatic assay kits utilize NADH in their detection, this discovery will allow the transformation of almost all of these clinical lab tests into POC tests that use a PGM.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana IL 61801 (USA)
| | - Yu Xiang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana IL 61801 (USA).,Department of Chemistry, Tsinghua University, Beijing 100084 (P.R. China)
| | - Miao Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana IL 61801 (USA).,Department of Chemistry, Tsinghua University, Beijing 100084 (P.R. China)
| | - Ananda Basu
- Division of Endocrinology, College of Medicine, Mayo Clinic, Rochester, MN 55905 (USA)
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana IL 61801 (USA).
| |
Collapse
|
79
|
Varghese S, Elemans JAAW, Rowan AE, Nolte RJM. Molecular computing: paths to chemical Turing machines. Chem Sci 2015; 6:6050-6058. [PMID: 28717447 PMCID: PMC5504628 DOI: 10.1039/c5sc02317c] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/06/2015] [Indexed: 11/21/2022] Open
Abstract
In this perspective, we highlight some of the recent advances in the development of molecular and biomolecular systems for performing logic operations and computing. We also present a blueprint of a chemical Turing machine using a processive catalytic approach.
To comply with the rapidly increasing demand of information storage and processing, new strategies for computing are needed. The idea of molecular computing, where basic computations occur through molecular, supramolecular, or biomolecular approaches, rather than electronically, has long captivated researchers. The prospects of using molecules and (bio)macromolecules for computing is not without precedent. Nature is replete with examples where the handling and storing of data occurs with high efficiencies, low energy costs, and high-density information encoding. The design and assembly of computers that function according to the universal approaches of computing, such as those in a Turing machine, might be realized in a chemical way in the future; this is both fascinating and extremely challenging. In this perspective, we highlight molecular and (bio)macromolecular systems that have been designed and synthesized so far with the objective of using them for computing purposes. We also present a blueprint of a molecular Turing machine, which is based on a catalytic device that glides along a polymer tape and, while moving, prints binary information on this tape in the form of oxygen atoms.
Collapse
Affiliation(s)
- Shaji Varghese
- Radboud University , Institute for Molecules and Materials , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands . ;
| | - Johannes A A W Elemans
- Radboud University , Institute for Molecules and Materials , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands . ;
| | - Alan E Rowan
- Radboud University , Institute for Molecules and Materials , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands . ;
| | - Roeland J M Nolte
- Radboud University , Institute for Molecules and Materials , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands . ;
| |
Collapse
|