51
|
Wan C, Wang Y, Lian C, Chang Q, An Y, Chen J, Sun J, Hou Z, Yang D, Guo X, Yin F, Wang R, Li Z. Histidine-specific bioconjugation via visible-light-promoted thioacetal activation. Chem Sci 2022; 13:8289-8296. [PMID: 35919717 PMCID: PMC9297702 DOI: 10.1039/d2sc02353a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/25/2022] [Indexed: 11/21/2022] Open
Abstract
Histidine (His, H) undergoes various post-translational modifications (PTMs) and plays multiple roles in protein interactions and enzyme catalyzed reactions. However, compared with other amino acids such as Lys or Cys, His modification is much less explored. Herein we describe a novel visible-light-driven thioacetal activation reaction which enables facile modification on histidine residues. An efficient addition to histidine imidazole N3 under biocompatible conditions was achieved with an electrophilic thionium intermediate. This method allows chemo-selective modification on peptides and proteins with good conversions and efficient histidine-proteome profiling with cell lysates. 78 histidine containing proteins were for the first time found with significant enrichment, most functioning in metal accumulation in brain related diseases. This facile His modification method greatly expands the chemo-selective toolbox for histidine-targeted protein conjugation and helps to reveal histidine's role in protein functions. Functionalization of histidine residues in proteins via visible-light-promoted thioacetal activation is reported. ∼2000 proteins with reactive and exposed histidine residues from the MCF7 cell line are characterized using ABPP by this method.![]()
Collapse
Affiliation(s)
- Chuan Wan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Yuena Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Chenshan Lian
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, P. R. China
| | - Qi Chang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, P. R. China
| | - Yuhao An
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, P. R. China
| | - Jiean Chen
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, P. R. China
| | - Jinming Sun
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Zhanfeng Hou
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, P. R. China
| | - Dongyan Yang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Xiaochun Guo
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, P. R. China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, P. R. China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, P. R. China
| |
Collapse
|
52
|
Abstract
Natural metalloproteins perform many functions - ranging from sensing to electron transfer and catalysis - in which the position and property of each ligand and metal, is dictated by protein structure. De novo protein design aims to define an amino acid sequence that encodes a specific structure and function, providing a critical test of the hypothetical inner workings of (metallo)proteins. To date, de novo metalloproteins have used simple, symmetric tertiary structures - uncomplicated by the large size and evolutionary marks of natural proteins - to interrogate structure-function hypotheses. In this Review, we discuss de novo design applications, such as proteins that induce complex, increasingly asymmetric ligand geometries to achieve function, as well as the use of more canonical ligand geometries to achieve stability. De novo design has been used to explore how proteins fine-tune redox potentials and catalyse both oxidative and hydrolytic reactions. With an increased understanding of structure-function relationships, functional proteins including O2-dependent oxidases, fast hydrolases, and multi-proton/multi-electron reductases, have been created. In addition, proteins can now be designed using xeno-biological metals or cofactors and principles from inorganic chemistry to derive new-to-nature functions. These results and the advances in computational protein design suggest a bright future for the de novo design of diverse, functional metalloproteins.
Collapse
Affiliation(s)
- Matthew J. Chalkley
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, (CA), USA
| | - Samuel I. Mann
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, (CA), USA
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, (CA), USA
| |
Collapse
|
53
|
Cros A, Alfaro-Espinoza G, De Maria A, Wirth NT, Nikel PI. Synthetic metabolism for biohalogenation. Curr Opin Biotechnol 2021; 74:180-193. [PMID: 34954625 DOI: 10.1016/j.copbio.2021.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022]
Abstract
The pressing need for novel bioproduction approaches faces a limitation in the number and type of molecules accessed through synthetic biology. Halogenation is widely used for tuning physicochemical properties of molecules and polymers, but traditional halogenation chemistry often lacks specificity and generates harmful by-products. Here, we pose that deploying synthetic metabolism tailored for biohalogenation represents an unique opportunity towards economically attractive and environmentally friendly organohalide production. On this background, we discuss growth-coupled selection of functional metabolic modules that harness the rich repertoire of biosynthetic and biodegradation capabilities of environmental bacteria for in vivo biohalogenation. By rationally combining these approaches, the chemical landscape of living cells can accommodate bioproduction of added-value organohalides which, as of today, are obtained by traditional chemistry.
Collapse
Affiliation(s)
- Antonin Cros
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Gabriela Alfaro-Espinoza
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; Division Biodeterioration and Reference Organisms, Federal Institute for Materials Research and Testing (BAM), 12205 Berlin, Germany
| | - Alberto De Maria
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Nicolas T Wirth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
54
|
Yuan DQ, Tominaga T, Fukuda K, Koga K, Fukudome M. Three-in-one: Miniature Models of Natural Acyl-transfer Systems Enable Vector-selective Reaction on the Primary Side of Cyclodextrins. Chemistry 2021; 28:e202103940. [PMID: 34889479 DOI: 10.1002/chem.202103940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 11/09/2022]
Abstract
Miniature models of acyl-transfer systems in cells, which were composed by replacing the protein, coenzyme and substrate with CD, functional group, and CD, respectively, and combining them all together in one, displayed definite role-sharing and exact cooperation of the functional groups and hydrophobic cavity, and thus enabled the regio-specific reaction.
Collapse
Affiliation(s)
- De-Qi Yuan
- Kobe Gakuin University, Faculty of Pharmaceutical Sciences, 1-1-3 Minatojima, Chuoku, 650-0056, Kobe, JAPAN
| | - Tatsuro Tominaga
- Kobe Gakuin University, Graduate School of Pharmaceutical Sciences, JAPAN
| | - Koki Fukuda
- Kobe Gakuin University, Graduate School of Pharmaceutical Sciences, JAPAN
| | - Kazutaka Koga
- Daiichi University of Pharmacy: Daiichi Yakka Daigaku, Faculty of Pharmacy, JAPAN
| | - Makoto Fukudome
- Kobe Gakuin University: Kobe Gakuin Daigaku, Faculty of Pharmaceutical Sciences, JAPAN
| |
Collapse
|
55
|
Mardirossian M, Rubini M, Adamo MFA, Scocchi M, Saviano M, Tossi A, Gennaro R, Caporale A. Natural and Synthetic Halogenated Amino Acids-Structural and Bioactive Features in Antimicrobial Peptides and Peptidomimetics. Molecules 2021; 26:7401. [PMID: 34885985 PMCID: PMC8659048 DOI: 10.3390/molecules26237401] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
The 3D structure and surface characteristics of proteins and peptides are crucial for interactions with receptors or ligands and can be modified to some extent to modulate their biological roles and pharmacological activities. The introduction of halogen atoms on the side-chains of amino acids is a powerful tool for effecting this type of tuning, influencing both the physico-chemical and structural properties of the modified polypeptides, helping to first dissect and then rationally modify features that affect their mode of action. This review provides examples of the influence of different types of halogenation in amino acids that replace native residues in proteins and peptides. Examples of synthetic strategies for obtaining halogenated amino acids are also provided, focusing on some representative compounds and their biological effects. The role of halogenation in native and designed antimicrobial peptides (AMPs) and their mimetics is then discussed. These are in the spotlight for the development of new antimicrobial drugs to counter the rise of antibiotic-resistant pathogens. AMPs represent an interesting model to study the role that natural halogenation has on their mode of action and also to understand how artificially halogenated residues can be used to rationally modify and optimize AMPs for pharmaceutical purposes.
Collapse
Affiliation(s)
- Mario Mardirossian
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale, 1, 34125 Trieste, Italy
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland;
| | - Mauro F. A. Adamo
- Department of Chemistry, Centre for Synthesis and Chemical Biology (CSCB), RCSI, 123 St. Stephens Green, Dublin 2, Ireland;
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Michele Saviano
- Institute of Crystallography (IC), National Research Council (CNR), Via Amendola, 122, 70126 Bari, Italy;
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Renato Gennaro
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Andrea Caporale
- Institute of Crystallography (IC), National Research Council (CNR), c/o Area Science Park, S.S. 14 Km 163.5, Basovizza, 34149 Trieste, Italy
| |
Collapse
|
56
|
Juma WP, Nyoni D, Brady D, Bode ML. The Application of Biocatalysis in the Preparation and Resolution of Morita-Baylis-Hillman Adducts and Their Derivatives. Chembiochem 2021; 23:e202100527. [PMID: 34822736 DOI: 10.1002/cbic.202100527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/25/2021] [Indexed: 12/16/2022]
Abstract
The Morita-Baylis-Hillman (MBH) reaction affords highly functionalised allylic alcohols containing a new stereogenic centre. These MBH adducts are very versatile and have been transformed into a large range of products, some of which have medicinal potential. Several examples of asymmetric syntheses of MBH adducts have been reported, although a generally applicable method remains to be developed. Biocatalytic approaches for the synthesis and enzymatic kinetic resolution of MBH adducts have been reported, and are discussed in detail in this review. Enzymes able to catalyse the asymmetric MBH reaction have been identified, but selectivity and efficiency have generally been low. Lipases, esterases and nitrile-converting enzymes have all been successfully applied in the resolution of MBH adducts, with excellent selectivity being realised in most cases.
Collapse
Affiliation(s)
- Wanyama Peter Juma
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, Johannesburg, South Africa
| | - Dubekile Nyoni
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, Johannesburg, South Africa
| | - Dean Brady
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, Johannesburg, South Africa
| | - Moira L Bode
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, Johannesburg, South Africa
| |
Collapse
|
57
|
Adhikari A, Bhattarai BR, Aryal A, Thapa N, Kc P, Adhikari A, Maharjan S, Chanda PB, Regmi BP, Parajuli N. Reprogramming natural proteins using unnatural amino acids. RSC Adv 2021; 11:38126-38145. [PMID: 35498070 PMCID: PMC9044140 DOI: 10.1039/d1ra07028b] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022] Open
Abstract
Unnatural amino acids have gained significant attention in protein engineering and drug discovery as they allow the evolution of proteins with enhanced stability and activity. The incorporation of unnatural amino acids into proteins offers a rational approach to engineer enzymes for designing efficient biocatalysts that exhibit versatile physicochemical properties and biological functions. This review highlights the biological and synthetic routes of unnatural amino acids to yield a modified protein with altered functionality and their incorporation methods. Unnatural amino acids offer a wide array of applications such as antibody-drug conjugates, probes for change in protein conformation and structure-activity relationships, peptide-based imaging, antimicrobial activities, etc. Besides their emerging applications in fundamental and applied science, systemic research is necessary to explore unnatural amino acids with novel side chains that can address the limitations of natural amino acids.
Collapse
Affiliation(s)
- Anup Adhikari
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Bibek Raj Bhattarai
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Ashika Aryal
- Department of Chemistry, Birendra Multiple Campus, Tribhuvan University Bharatpur Chitwan Nepal
| | - Niru Thapa
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Puja Kc
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Ashma Adhikari
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Sushila Maharjan
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Prem B Chanda
- Department of Chemistry and Physics, Southeastern Louisiana University Hammond Louisiana 70402 USA
| | - Bishnu P Regmi
- Department of Chemistry, Florida Agricultural and Mechanical University Tallahassee Florida 32307 USA
| | - Niranjan Parajuli
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| |
Collapse
|
58
|
Giri P, Pagar AD, Patil MD, Yun H. Chemical modification of enzymes to improve biocatalytic performance. Biotechnol Adv 2021; 53:107868. [PMID: 34774927 DOI: 10.1016/j.biotechadv.2021.107868] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/23/2022]
Abstract
Improvement in intrinsic enzymatic features is in many instances a prerequisite for the scalable applicability of many industrially important biocatalysts. To this end, various strategies of chemical modification of enzymes are maturing and now considered as a distinct way to improve biocatalytic properties. Traditional chemical modification methods utilize reactivities of amine, carboxylic, thiol and other side chains originating from canonical amino acids. On the other hand, noncanonical amino acid- mediated 'click' (bioorthogoal) chemistry and dehydroalanine (Dha)-mediated modifications have emerged as an alternate and promising ways to modify enzymes for functional enhancement. This review discusses the applications of various chemical modification tools that have been directed towards the improvement of functional properties and/or stability of diverse array of biocatalysts.
Collapse
Affiliation(s)
- Pritam Giri
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Mahesh D Patil
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, PO Manauli, S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
59
|
Lee BS, Choi WJ, Lee SW, Ko BJ, Yoo TH. Towards Engineering an Orthogonal Protein Translation Initiation System. Front Chem 2021; 9:772648. [PMID: 34765589 PMCID: PMC8576571 DOI: 10.3389/fchem.2021.772648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
In the last two decades, methods to incorporate non-canonical amino acids (ncAAs) into specific positions of a protein have advanced significantly; these methods have become general tools for engineering proteins. However, almost all these methods depend on the translation elongation process, and strategies leveraging the initiation process have rarely been reported. The incorporation of a ncAA specifically at the translation initiation site enables the installation of reactive groups for modification at the N-termini of proteins, which are attractive positions for introducing abiological groups with minimal structural perturbations. In this study, we attempted to engineer an orthogonal protein translation initiation system. Introduction of the identity elements of Escherichia coli initiator tRNA converted an engineered Methanococcus jannaschii tRNATyr into an initiator tRNA. The engineered tRNA enabled the site-specific incorporation of O-propargyl-l-tyrosine (OpgY) into the amber (TAG) codon at the translation initiation position but was inactive toward the elongational TAG codon. Misincorporation of Gln was detected, and the engineered system was demonstrated only with OpgY. We expect further engineering of the initiator tRNA for improved activity and specificity to generate an orthogonal translation initiation system.
Collapse
Affiliation(s)
- Byeong Sung Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Woon Jong Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Sang Woo Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Byoung Joon Ko
- School of Biopharmaceutical and Medical Sciences, Sungshin Women's University, Seoul, South Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| |
Collapse
|
60
|
Zhu HQ, Tang XL, Zheng RC, Zheng YG. Recent advancements in enzyme engineering via site-specific incorporation of unnatural amino acids. World J Microbiol Biotechnol 2021; 37:213. [PMID: 34741210 DOI: 10.1007/s11274-021-03177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/23/2021] [Indexed: 11/28/2022]
Abstract
With increased attention to excellent biocatalysts, evolving methods based on nature or unnatural amino acid (UAAs) mutagenesis have become an important part of enzyme engineering. The emergence of powerful method through expanding the genetic code allows to incorporate UAAs with unique chemical functionalities into proteins, endowing proteins with more structural and functional features. To date, over 200 diverse UAAs have been incorporated site-specifically into proteins via this methodology and many of them have been widely exploited in the field of enzyme engineering, making this genetic code expansion approach possible to be a promising tool for modulating the properties of enzymes. In this context, we focus on how this robust method to specifically incorporate UAAs into proteins and summarize their applications in enzyme engineering for tuning and expanding the functional properties of enzymes. Meanwhile, we aim to discuss how the benefits can be achieved by using the genetically encoded UAAs. We hope that this method will become an integral part of the field of enzyme engineering in the future.
Collapse
Affiliation(s)
- Hang-Qin Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiao-Ling Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ren-Chao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China. .,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
61
|
Koch NG, Goettig P, Rappsilber J, Budisa N. Engineering Pyrrolysyl-tRNA Synthetase for the Incorporation of Non-Canonical Amino Acids with Smaller Side Chains. Int J Mol Sci 2021; 22:11194. [PMID: 34681855 PMCID: PMC8538471 DOI: 10.3390/ijms222011194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 01/11/2023] Open
Abstract
Site-specific incorporation of non-canonical amino acids (ncAAs) into proteins has emerged as a universal tool for systems bioengineering at the interface of chemistry, biology, and technology. The diversification of the repertoire of the genetic code has been achieved for amino acids with long and/or bulky side chains equipped with various bioorthogonal tags and useful spectral probes. Although ncAAs with relatively small side chains and similar properties are of great interest to biophysics, cell biology, and biomaterial science, they can rarely be incorporated into proteins. To address this gap, we report the engineering of PylRS variants capable of incorporating an entire library of aliphatic "small-tag" ncAAs. In particular, we performed mutational studies of a specific PylRS, designed to incorporate the shortest non-bulky ncAA (S-allyl-l-cysteine) possible to date and based on this knowledge incorporated aliphatic ncAA derivatives. In this way, we have not only increased the number of translationally active "small-tag" ncAAs, but also determined key residues responsible for maintaining orthogonality, while engineering the PylRS for these interesting substrates. Based on the known plasticity of PylRS toward different substrates, our approach further expands the reassignment capacities of this enzyme toward aliphatic amino acids with smaller side chains endowed with valuable functionalities.
Collapse
Affiliation(s)
- Nikolaj G. Koch
- Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany;
- Institut für Biotechnologie-Bioanalytik, Technische Universität Berlin, 10623 Berlin, Germany;
| | - Peter Goettig
- Structural Biology Group, Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria;
| | - Juri Rappsilber
- Institut für Biotechnologie-Bioanalytik, Technische Universität Berlin, 10623 Berlin, Germany;
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Nediljko Budisa
- Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany;
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
62
|
Liu L, Wang B, Li S, Xu F, He Q, Pan C, Gao X, Yao W, Song X. Convenient Genetic Encoding of Phenylalanine Derivatives through Their α-Keto Acid Precursors. Biomolecules 2021; 11:1358. [PMID: 34572570 PMCID: PMC8470325 DOI: 10.3390/biom11091358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
The activity and function of proteins can be improved by incorporation of non-canonical amino acids (ncAAs). To avoid the tedious synthesis of a large number of chiral phenylalanine derivatives, we synthesized the corresponding phenylpyruvic acid precursors. Escherichia coli strain DH10B and strain C321.ΔA.expΔPBAD were selected as hosts for phenylpyruvic acid bioconversion and genetic code expansion using the MmPylRS/pyltRNACUA system. The concentrations of keto acids, PLP and amino donors were optimized in the process. Eight keto acids that can be biotransformed and their coupled genetic code expansions were identified. Finally, the genetic encoded ncAAs were tested for incorporation into fluorescent proteins with keto acids.
Collapse
Affiliation(s)
- Li Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China; (L.L.); (B.W.); (S.L.); (F.X.); (Q.H.)
| | - Bohao Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China; (L.L.); (B.W.); (S.L.); (F.X.); (Q.H.)
| | - Sheng Li
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China; (L.L.); (B.W.); (S.L.); (F.X.); (Q.H.)
| | - Fengyuan Xu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China; (L.L.); (B.W.); (S.L.); (F.X.); (Q.H.)
| | - Qi He
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China; (L.L.); (B.W.); (S.L.); (F.X.); (Q.H.)
| | - Chun Pan
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China; (L.L.); (B.W.); (S.L.); (F.X.); (Q.H.)
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China; (L.L.); (B.W.); (S.L.); (F.X.); (Q.H.)
| | - Xiaoda Song
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China; (L.L.); (B.W.); (S.L.); (F.X.); (Q.H.)
| |
Collapse
|
63
|
Haim A, Neubacher S, Grossmann TN. Protein Macrocyclization for Tertiary Structure Stabilization. Chembiochem 2021; 22:2672-2679. [PMID: 34060202 PMCID: PMC8453710 DOI: 10.1002/cbic.202100111] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/26/2021] [Indexed: 12/30/2022]
Abstract
Proteins possess unique molecular recognition capabilities and enzymatic activities, features that are usually tied to a particular tertiary structure. To make use of proteins for biotechnological and biomedical purposes, it is often required to enforce their tertiary structure in order to ensure sufficient stability under the conditions inherent to the application of interest. The introduction of intramolecular crosslinks has proven efficient in stabilizing native protein folds. Herein, we give an overview of methods that allow the macrocyclization of expressed proteins, discussing involved reaction mechanisms and structural implications.
Collapse
Affiliation(s)
- Anissa Haim
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamAmsterdamThe Netherlands
| | - Saskia Neubacher
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamAmsterdamThe Netherlands
- Incircular B.V.De Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Tom N. Grossmann
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute of Molecular and Life SciencesVU University AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
64
|
Mariz BDP, Carvalho S, Batalha IL, Pina AS. Artificial enzymes bringing together computational design and directed evolution. Org Biomol Chem 2021; 19:1915-1925. [PMID: 33443278 DOI: 10.1039/d0ob02143a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Enzymes are proteins that catalyse chemical reactions and, as such, have been widely used to facilitate a variety of natural and industrial processes, dating back to ancient times. In fact, the global enzymes market is projected to reach $10.5 billion in 2024. The development of computational and DNA editing tools boosted the creation of artificial enzymes (de novo enzymes) - synthetic or organic molecules created to present abiological catalytic functions. These novel catalysts seek to expand the catalytic power offered by nature through new functions and properties. In this manuscript, we discuss the advantages of combining computational design with directed evolution for the development of artificial enzymes and how this strategy allows to fill in the gaps that these methods present individually by providing key insights about the sequence-function relationship. We also review examples, and respective strategies, where this approach has enabled the creation of artificial enzymes with promising catalytic activity. Such key enabling technologies are opening new windows of opportunity in a variety of industries, including pharmaceutical, chemical, biofuels, and food, contributing towards a more sustainable development.
Collapse
Affiliation(s)
- Beatriz de Pina Mariz
- UCIBIO, Chemistry Department, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| | - Sara Carvalho
- UCIBIO, Chemistry Department, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| | - Iris L Batalha
- Nanoscience Centre, Department of Engineering, University of Cambridge, 11 J.J. Thomson Avenue, Cambridge, CB3 0FF, UK
| | - Ana Sofia Pina
- UCIBIO, Chemistry Department, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| |
Collapse
|
65
|
Song P, Zhang R, He C, Chen T. Transcription, Reverse Transcription, and Amplification of Backbone-Modified Nucleic Acids with Laboratory-Evolved Thermophilic DNA Polymerases. Curr Protoc 2021; 1:e188. [PMID: 34232574 DOI: 10.1002/cpz1.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Backbone-modified nucleic acids are usually more stable enzymatically than their natural counterparts, enabling their broad application as potential diagnostic or therapeutic agents. Moreover, the development of nucleic acids with unnatural backbones has expanded the pool of genetic information carriers and paved the way toward synthetic xenobiology. However, synthesizing these molecules remains very challenging due to the requirement for harsh reaction conditions and the low coupling efficiency during their traditional solid-phase synthesis. Although enzymatic synthesis provides an attractive alternative that also allows the replication and artificial evolution of these molecules, it is crucially dependent on the availability of polymerases capable of synthesizing these backbone-modified nucleotides. Previously, a series of thermostable polymerases that can efficiently synthesize or even amplify backbone-modified DNA or RNA have been evolved through a polymerase evolution method based on phage display. Herein we summarize protocols to use these evolved polymerase mutants to transcribe, reverse transcribe, and PCR amplify backbone-modified nucleic acids. We also outline the polymerase chain transcription method, developed later for the rapid production of RNA or backbone-modified RNA with one of these evolved polymerases, SFM4-3. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Transcription/synthesis of modified DNA/RNA from DNA templates with evolved polymerases SFM4-3 or SFM4-6 Basic Protocol 2: Reverse transcription of modified DNA/RNA with evolved polymerase SFM4-9 Basic Protocol 3: PCR amplification of modified DNA with evolved polymerase SFM4-3 Basic Protocol 4: Polymerase chain transcription for the production of RNA/modified RNA oligonucleotides with evolved polymerase SFM4-3.
Collapse
Affiliation(s)
- Ping Song
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P. R. China
| | - Rujie Zhang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P. R. China
| | - Chuanping He
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P. R. China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P. R. China
| |
Collapse
|
66
|
Song W, Ko J, Choi YH, Hwang NS. Recent advancements in enzyme-mediated crosslinkable hydrogels: In vivo-mimicking strategies. APL Bioeng 2021; 5:021502. [PMID: 33834154 PMCID: PMC8018798 DOI: 10.1063/5.0037793] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
Enzymes play a central role in fundamental biological processes and have been traditionally used to trigger various processes. In recent years, enzymes have been used to tune biomaterial responses and modify the chemical structures at desired sites. These chemical modifications have allowed the fabrication of various hydrogels for tissue engineering and therapeutic applications. This review provides a comprehensive overview of recent advancements in the use of enzymes for hydrogel fabrication. Strategies to enhance the enzyme function and improve biocompatibility are described. In addition, we describe future opportunities and challenges for the production of enzyme-mediated crosslinkable hydrogels.
Collapse
Affiliation(s)
- Wonmoon Song
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Junghyeon Ko
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Hwan Choi
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Nathaniel S. Hwang
- Author to whom correspondence should be addressed:. Tel.: 82-2-880-1635. Fax: 82-2-880-7295
| |
Collapse
|
67
|
Full incorporation of the noncanonical amino acid hydroxylysine as a surrogate for lysine in green fluorescent protein. Bioorg Med Chem 2021; 41:116207. [PMID: 34000506 DOI: 10.1016/j.bmc.2021.116207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/28/2022]
Abstract
The canonical set of amino acids leads to an exceptionally wide range of protein functionality, nevertheless, this set still exhibits limitations. The incorporation of noncanonical amino acids into proteins can enlarge its functional scope. Although proofreading will counteract the charging of tRNAs with other amino acids than the canonical ones, the translation machinery may still accept noncanonical amino acids as surrogates and incorporate them at the canonically prescribed locations within the protein sequence. Here, we use a cell-free expression system to demonstrate the full replacement of l-lysine by l-hydroxylysine at all lysine sites of recombinantly produced GFP. In vivo, as a main component of collagen, post-translational l-hydroxylysine generation enables the formation of cross-links. Our work represents a first step towards in vitro production of (modified) collagens, more generally of proteins that can easily be crosslinked.
Collapse
|
68
|
Development of a versatile and efficient C–N lyase platform for asymmetric hydroamination via computational enzyme redesign. Nat Catal 2021. [DOI: 10.1038/s41929-021-00604-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
69
|
Pagar AD, Patil MD, Flood DT, Yoo TH, Dawson PE, Yun H. Recent Advances in Biocatalysis with Chemical Modification and Expanded Amino Acid Alphabet. Chem Rev 2021; 121:6173-6245. [PMID: 33886302 DOI: 10.1021/acs.chemrev.0c01201] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The two main strategies for enzyme engineering, directed evolution and rational design, have found widespread applications in improving the intrinsic activities of proteins. Although numerous advances have been achieved using these ground-breaking methods, the limited chemical diversity of the biopolymers, restricted to the 20 canonical amino acids, hampers creation of novel enzymes that Nature has never made thus far. To address this, much research has been devoted to expanding the protein sequence space via chemical modifications and/or incorporation of noncanonical amino acids (ncAAs). This review provides a balanced discussion and critical evaluation of the applications, recent advances, and technical breakthroughs in biocatalysis for three approaches: (i) chemical modification of cAAs, (ii) incorporation of ncAAs, and (iii) chemical modification of incorporated ncAAs. Furthermore, the applications of these approaches and the result on the functional properties and mechanistic study of the enzymes are extensively reviewed. We also discuss the design of artificial enzymes and directed evolution strategies for enzymes with ncAAs incorporated. Finally, we discuss the current challenges and future perspectives for biocatalysis using the expanded amino acid alphabet.
Collapse
Affiliation(s)
- Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Mahesh D Patil
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Dillon T Flood
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
70
|
Schmidt M, Kubyshkin V. How To Quantify a Genetic Firewall? A Polarity-Based Metric for Genetic Code Engineering. Chembiochem 2021; 22:1268-1284. [PMID: 33231343 PMCID: PMC8049029 DOI: 10.1002/cbic.202000758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/20/2020] [Indexed: 12/14/2022]
Abstract
Genetic code engineering aims to produce organisms that translate genetic information in a different way from that prescribed by the standard genetic code. This endeavor could eventually lead to genetic isolation, where an organism that operates under a different genetic code will not be able to transfer functional genes with other living species, thereby standing behind a genetic firewall. It is not clear however, how distinct the code should be, or how to measure the distance. We have developed a metric (Δcode ) where we assigned polarity indices (clog D7 ) to amino acids to calculate the distances between pairs of genetic codes. We then calculated the distance between a set of 204 genetic codes, including the 24 known distinct natural codes, 11 extreme-distance codes created computationally, nine theoretical special purpose codes from literature and 160 codes in which canonical amino acids were replaced by noncanonical chemical analogues. The metric can be used for building strategies towards creating semantically alienated organisms, and testing the strength of genetic firewalls. This metric provides the basis for a map of the genetic codes that could guide future efforts towards novel biochemical worlds, biosafety and deep barcoding applications.
Collapse
Affiliation(s)
| | - Vladimir Kubyshkin
- Department of ChemistryUniversity of ManitobaDysart Road 144WinnipegR3T 2N2Canada
| |
Collapse
|
71
|
Varga A, Csuka P, Sonesouphap O, Bánóczi G, Toşa MI, Katona G, Molnár Z, Bencze LC, Poppe L, Paizs C. A novel phenylalanine ammonia-lyase from Pseudozyma antarctica for stereoselective biotransformations of unnatural amino acids. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
72
|
Yasue R, Yoshida K. Enantioselective Desymmetrization of 1,3‐Disubstituted Adamantane Derivatives via Rhodium‐Catalyzed C−H Bond Amination: Access to Optically Active Amino Acids Containing Adamantane Core. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Risa Yasue
- Department of Chemistry Graduate School of Science Chiba University Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| | - Kazuhiro Yoshida
- Department of Chemistry Graduate School of Science Chiba University Yayoi-cho, Inage-ku Chiba 263-8522 Japan
- Molecular Chirality Research Center Chiba University Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| |
Collapse
|
73
|
Wątły J, Miller A, Kozłowski H, Rowińska-Żyrek M. Peptidomimetics - An infinite reservoir of metal binding motifs in metabolically stable and biologically active molecules. J Inorg Biochem 2021; 217:111386. [PMID: 33610030 DOI: 10.1016/j.jinorgbio.2021.111386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Abstract
The involvement of metal ions in interactions with therapeutic peptides is inevitable. They are one of the factors able to fine-tune the biological properties of antimicrobial peptides, a promising group of drugs with one large drawback - a problematic metabolic stability. Appropriately chosen, proteolytically stable peptidomimetics seem to be a reasonable solution of the problem, and the use of D-, β-, γ-amino acids, unnatural amino acids, azapeptides, peptoids, cyclopeptides and dehydropeptides is an infinite reservoir of metal binding motifs in metabolically stable, well-designed, biologically active molecules. Below, their specific structural features, metal-chelating abilities and antimicrobial potential are discussed.
Collapse
Affiliation(s)
- Joanna Wątły
- Faculty of Chemistry, University of Wroclaw, Joliot - Curie 14, Wroclaw 50-383, Poland.
| | - Adriana Miller
- Faculty of Chemistry, University of Wroclaw, Joliot - Curie 14, Wroclaw 50-383, Poland
| | - Henryk Kozłowski
- Faculty of Chemistry, University of Wroclaw, Joliot - Curie 14, Wroclaw 50-383, Poland; Department of Health Sciences, University of Opole, Katowicka 68, Opole 45-060, Poland
| | | |
Collapse
|
74
|
De Cesare S, Campopiano DJ. The N-Acetyl Amino Acid Racemases (NAAARs); Native and evolved biocatalysts applied to the synthesis of canonical and non-canonical amino acids. Curr Opin Biotechnol 2021; 69:212-220. [PMID: 33556834 DOI: 10.1016/j.copbio.2021.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/15/2020] [Accepted: 01/10/2021] [Indexed: 02/08/2023]
Abstract
Amino acids are one of the most important synthons employed in the biotechnology, pharmaceutical and agrochemical industries for the preparation of active agents. Recently, the emerging use of these compounds as tools for protein engineering, has also been reported. Numerous chemo- and biocatalytic strategies have been developed for the stereoselective synthesis of these compounds. One of the most efficient processes is the enzymatic dynamic kinetic resolution of N-acylated derivatives, where an N-acyl amino acid racemase (NAAAR) is coupled with an enantioselective, hydrolytic enzyme (aminoacylase), and used to convert a racemic mixture of starting materials to enantiopure products. Here we provide a brief overview of the structure and mechanism of NAAAR. We will also review the applications of this class of biocatalyst, as well as discussing the various strategies employed to obtain an efficient system for the synthesis of optically pure canonical and non-canonical amino acids.
Collapse
Affiliation(s)
- Silvia De Cesare
- EaStChem School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK
| | - Dominic J Campopiano
- EaStChem School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
75
|
Fu Y, Huang J, Wu Y, Liu X, Zhong F, Wang J. Biocatalytic Cross-Coupling of Aryl Halides with a Genetically Engineered Photosensitizer Artificial Dehalogenase. J Am Chem Soc 2021; 143:617-622. [PMID: 33410683 DOI: 10.1021/jacs.0c10882] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Devising artificial photoenzymes for abiological bond-forming reactions is of high synthetic value but also a tremendous challenge. Disclosed herein is the first photobiocatalytic cross-coupling of aryl halides enabled by a designer artificial dehalogenase, which features a genetically encoded benzophenone chromophore and site-specifically modified synthetic NiII(bpy) cofactor with tunable proximity to streamline the dual catalysis. Transient absorption studies suggest the likelihood of energy transfer activation in the elementary organometallic event. This design strategy is viable to significantly expand the catalytic repertoire of artificial photoenzymes for useful organic transformations.
Collapse
Affiliation(s)
- Yu Fu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology (HUST), 1037 Luoyu Road, Wuhan 430074, P.R. China.,Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, 15 Datun Road, Beijing 100020, P.R. China
| | - Jian Huang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, 15 Datun Road, Beijing 100020, P.R. China
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology (HUST), 1037 Luoyu Road, Wuhan 430074, P.R. China
| | - Xiaohong Liu
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, 15 Datun Road, Beijing 100020, P.R. China
| | - Fangrui Zhong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology (HUST), 1037 Luoyu Road, Wuhan 430074, P.R. China
| | - Jiangyun Wang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, 15 Datun Road, Beijing 100020, P.R. China
| |
Collapse
|
76
|
Watkins-Dulaney E, Straathof S, Arnold F. Tryptophan Synthase: Biocatalyst Extraordinaire. Chembiochem 2021; 22:5-16. [PMID: 32677310 PMCID: PMC7935429 DOI: 10.1002/cbic.202000379] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/15/2020] [Indexed: 12/23/2022]
Abstract
Tryptophan synthase (TrpS) has emerged as a paragon of noncanonical amino acid (ncAA) synthesis and is an ideal biocatalyst for synthetic and biological applications. TrpS catalyzes an irreversible, C-C bond-forming reaction between indole and serine to make l-tryptophan; native TrpS complexes possess fairly broad specificity for indole analogues, but are difficult to engineer to extend substrate scope or to confer other useful properties due to allosteric constraints and their heterodimeric structure. Directed evolution freed the catalytically relevant TrpS β-subunit (TrpB) from allosteric regulation by its TrpA partner and has enabled dramatic expansion of the enzyme's substrate scope. This review examines the long and storied career of TrpS from the perspective of its application in ncAA synthesis and biocatalytic cascades.
Collapse
Affiliation(s)
- Ella Watkins-Dulaney
- Division of Biology and Biological Engineering, California Institute of Technology, MC 210-41, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Sabine Straathof
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 210-41, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Frances Arnold
- Division of Biology and Biological Engineering, California Institute of Technology, MC 210-41, 1200 E. California Boulevard, Pasadena, CA 91125, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 210-41, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
77
|
Singh T, Yadav SK, Vainstein A, Kumar V. Genome recoding strategies to improve cellular properties: mechanisms and advances. ABIOTECH 2021; 2:79-95. [PMID: 34377578 PMCID: PMC7675020 DOI: 10.1007/s42994-020-00030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/07/2020] [Indexed: 11/10/2022]
Abstract
The genetic code, once believed to be universal and immutable, is now known to contain many variations and is not quite universal. The basis for genome recoding strategy is genetic code variation that can be harnessed to improve cellular properties. Thus, genome recoding is a promising strategy for the enhancement of genome flexibility, allowing for novel functions that are not commonly documented in the organism in its natural environment. Here, the basic concept of genetic code and associated mechanisms for the generation of genetic codon variants, including biased codon usage, codon reassignment, and ambiguous decoding, are extensively discussed. Knowledge of the concept of natural genetic code expansion is also detailed. The generation of recoded organisms and associated mechanisms with basic targeting components, including aminoacyl-tRNA synthetase-tRNA pairs, elongation factor EF-Tu and ribosomes, are highlighted for a comprehensive understanding of this concept. The research associated with the generation of diverse recoded organisms is also discussed. The success of genome recoding in diverse multicellular organisms offers a platform for expanding protein chemistry at the biochemical level with non-canonical amino acids, genetically isolating the synthetic organisms from the natural ones, and fighting viruses, including SARS-CoV2, through the creation of attenuated viruses. In conclusion, genome recoding can offer diverse applications for improving cellular properties in the genome-recoded organisms.
Collapse
Affiliation(s)
- Tanya Singh
- Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151001 India
| | | | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Vinay Kumar
- Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151001 India
| |
Collapse
|
78
|
Fok JA, Mayer C. Genetic-Code-Expansion Strategies for Vaccine Development. Chembiochem 2020; 21:3291-3300. [PMID: 32608153 PMCID: PMC7361271 DOI: 10.1002/cbic.202000343] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/29/2020] [Indexed: 12/16/2022]
Abstract
By providing long-term protection against infectious diseases, vaccinations have significantly reduced death and morbidity worldwide. In the 21st century, (bio)technological advances have paved the way for developing prophylactic vaccines that are safer and more effective as well as enabling the use of vaccines as therapeutics to treat human diseases. Here, we provide a focused review of the utility of genetic code expansion as an emerging tool for the development of vaccines. Specifically, we discuss how the incorporation of immunogenic noncanonical amino acids can aid in eliciting immune responses against adverse self-proteins and highlight the potential of an expanded genetic code for the construction of replication-incompetent viruses. We close the review by discussing the future prospects and remaining challenges for the application of these approaches in the development of both prophylactic and therapeutic vaccines in the near future.
Collapse
Affiliation(s)
- Jelle A. Fok
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49474 AGGroningen (TheNetherlands
| | - Clemens Mayer
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49474 AGGroningen (TheNetherlands
| |
Collapse
|
79
|
Pandurangan S, Murugesan P, Ramudu KN, Krishnaswamy B, Ayyadurai N. Enhanced Cellular Uptake and Sustained Transdermal Delivery of Collagen for Skin Regeneration. ACS APPLIED BIO MATERIALS 2020; 3:7540-7549. [PMID: 35019495 DOI: 10.1021/acsabm.0c00755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study reports a method for transporting high molecular weight collagen for skin regeneration. An independent engineered enzymatic vehicle that has the ability for efficient transdermal delivery of regenerative biomaterial was developed for tissue regeneration. Collagen has been well recognized as a skin regeneration molecule due to its interaction with the extracellular matrix to stimulate skin cell growth, proliferation, and differentiation. However, the transdermal delivery of collagen poses a significant challenge due to its high molecular weight as well as a lack of efficient approaches. Here, to improve the transdermal delivery efficiency, α-1,4-glycosidic hydrolase was engineered with genetically encoded 3,4-dihydroxy-L-phenylalanine, which enhanced its biological activity as revealed by microscale thermophoresis. The remodeled catalytic pocket resulted in enhanced substrate binding activity of the enzyme with a predominant glycosaminoglycan (chondroitin sulfate) present in the extracellular matrix of the skin. The engineered enzyme rapidly opened up the skin extracellular matrix fiber (15 min) to ferry collagen across the wall, without disturbing the cellular bundle architecture. Confocal microscopy indicated that macromolecules had diffused three times deeper into the engineered enzyme-treated skin than the native enzyme-treated skin. Gene expression, histopathology, and hematology analysis also supported the penetration of macromolecules. Cytotoxicity (mammalian cell culture) and in vivo (Caenorhabditis elegans and Rattus noryegicus) studies revealed that the congener enzyme could potentially be used as a penetration enhancer, which is of paramount importance for the multimillion cosmetic industries. Hence, it offers promise as a pharmaceutical enzyme for transdermal delivery bioenhancement and dermatological applications.
Collapse
Affiliation(s)
- Suryalakshmi Pandurangan
- Division of Biochemistry and Biotechnology Council of Scientific and Industrial Research, Central Leather Research Institute, Chennai 600 020, India.,Academy of Scientific and Innovative Research Central Leather Research Institute Campus, Chennai 600 020, India
| | | | - Kamini Numbi Ramudu
- Division of Biochemistry and Biotechnology Council of Scientific and Industrial Research, Central Leather Research Institute, Chennai 600 020, India.,Academy of Scientific and Innovative Research Central Leather Research Institute Campus, Chennai 600 020, India
| | | | - Niraikulam Ayyadurai
- Division of Biochemistry and Biotechnology Council of Scientific and Industrial Research, Central Leather Research Institute, Chennai 600 020, India.,Academy of Scientific and Innovative Research Central Leather Research Institute Campus, Chennai 600 020, India
| |
Collapse
|
80
|
Karbalaei-Heidari HR, Budisa N. Combating Antimicrobial Resistance With New-To-Nature Lanthipeptides Created by Genetic Code Expansion. Front Microbiol 2020; 11:590522. [PMID: 33250877 PMCID: PMC7674664 DOI: 10.3389/fmicb.2020.590522] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/13/2020] [Indexed: 01/10/2023] Open
Abstract
Due to the rapid emergence of multi-resistant bacterial strains in recent decades, the commercially available effective antibiotics are becoming increasingly limited. On the other hand, widespread antimicrobial peptides (AMPs) such as the lantibiotic nisin has been used worldwide for more than 40 years without the appearance of significant bacterial resistance. Lantibiotics are ribosomally synthesized antimicrobials generated by posttranslational modifications. Their biotechnological production is of particular interest to redesign natural scaffolds improving their pharmaceutical properties, which has great potential for therapeutic use in human medicine and other areas. However, conventional protein engineering methods are limited to 20 canonical amino acids prescribed by the genetic code. Therefore, the expansion of the genetic code as the most advanced approach in Synthetic Biology allows the addition of new amino acid building blocks (non-canonical amino acids, ncAAs) during protein translation. We now have solid proof-of-principle evidence that bioexpression with these novel building blocks enabled lantibiotics with chemical properties transcending those produced by natural evolution. The unique scaffolds with novel structural and functional properties are the result of this bioengineering. Here we will critically examine and evaluate the use of the expanded genetic code and its alternatives in lantibiotics research over the last 7 years. We anticipate that Synthetic Biology, using engineered lantibiotics and even more complex scaffolds will be a promising tool to address an urgent problem of antibiotic resistance, especially in a class of multi-drug resistant microbes known as superbugs.
Collapse
Affiliation(s)
- Hamid Reza Karbalaei-Heidari
- Department of Biology, Faculty of Sciences, Shiraz University, Shiraz, Iran
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Nediljko Budisa
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
- Institute of Chemistry, Technical University of Berlin, Berlin, Germany
| |
Collapse
|
81
|
Drienovská I, Scheele RA, Gutiérrez de Souza C, Roelfes G. A Hydroxyquinoline-Based Unnatural Amino Acid for the Design of Novel Artificial Metalloenzymes. Chembiochem 2020; 21:3077-3081. [PMID: 32585070 PMCID: PMC7689906 DOI: 10.1002/cbic.202000306] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/25/2020] [Indexed: 11/11/2022]
Abstract
We have examined the potential of the noncanonical amino acid (8-hydroxyquinolin-3-yl)alanine (HQAla) for the design of artificial metalloenzymes. HQAla, a versatile chelator of late transition metals, was introduced into the lactococcal multidrug-resistance regulator (LmrR) by stop codon suppression methodology. LmrR_HQAla was shown to complex efficiently with three different metal ions, CuII , ZnII and RhIII to form unique artificial metalloenzymes. The catalytic potential of the CuII -bound LmrR_HQAla enzyme was shown through its ability to catalyse asymmetric Friedel-Craft alkylation and water addition, whereas the ZnII -coupled enzyme was shown to mimic natural Zn hydrolase activity.
Collapse
Affiliation(s)
- Ivana Drienovská
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Remkes A. Scheele
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Cora Gutiérrez de Souza
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Gerard Roelfes
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
82
|
Calero P, Volke DC, Lowe PT, Gotfredsen CH, O'Hagan D, Nikel PI. A fluoride-responsive genetic circuit enables in vivo biofluorination in engineered Pseudomonas putida. Nat Commun 2020; 11:5045. [PMID: 33028813 PMCID: PMC7541441 DOI: 10.1038/s41467-020-18813-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
Fluorine is a key element in the synthesis of molecules broadly used in medicine, agriculture and materials. Addition of fluorine to organic structures represents a unique strategy for tuning molecular properties, yet this atom is rarely found in Nature and approaches to integrate fluorometabolites into the biochemistry of living cells are scarce. In this work, synthetic gene circuits for organofluorine biosynthesis are implemented in the platform bacterium Pseudomonas putida. By harnessing fluoride-responsive riboswitches and the orthogonal T7 RNA polymerase, biochemical reactions needed for in vivo biofluorination are wired to the presence of fluoride (i.e. circumventing the need of feeding expensive additives). Biosynthesis of fluoronucleotides and fluorosugars in engineered P. putida is demonstrated with mineral fluoride both as only fluorine source (i.e. substrate of the pathway) and as inducer of the synthetic circuit. This approach expands the chemical landscape of cell factories by providing alternative biosynthetic strategies towards fluorinated building-blocks. Addition of fluorine to organic structures is a unique strategy for tuning molecular properties, but approaches to integrate fluorometabolites into the biochemistry of living cells are scarce. Here, the authors develop a fluoride-responsive genetic circuit to enable in vivo biofluorination in engineered Pseudomonas putida.
Collapse
Affiliation(s)
- Patricia Calero
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Phillip T Lowe
- School of Chemistry, University of St. Andrews, KY16 9ST St, Andrews, UK
| | | | - David O'Hagan
- School of Chemistry, University of St. Andrews, KY16 9ST St, Andrews, UK
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
83
|
More S, Bampidis V, Benford D, Bragard C, Halldorsson T, Hernández‐Jerez A, Susanne HB, Koutsoumanis K, Machera K, Naegeli H, Nielsen SS, Schlatter J, Schrenk D, Silano V, Turck D, Younes M, Glandorf B, Herman L, Tebbe C, Vlak J, Aguilera J, Schoonjans R, Cocconcelli PS. Evaluation of existing guidelines for their adequacy for the microbial characterisation and environmental risk assessment of microorganisms obtained through synthetic biology. EFSA J 2020; 18:e06263. [PMID: 33144886 PMCID: PMC7592124 DOI: 10.2903/j.efsa.2020.6263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
EFSA was asked by the European Commission to consider synthetic biology developments for agri-food use in the near future and to determine if the use of this technology is expected to constitute potential risks and hazards for the environment. Moreover, EFSA was requested to evaluate the adequacy of existing guidelines for risk assessment and if updated guidance is needed. The scope of this Opinion covers viable synthetic biology microorganisms (SynBioMs) expected to be deliberately released into the environment. The evaluation was based on: (i) horizon scanning of published information, (ii) gap analysis of existing guidelines covering the scope of this mandate, and (iii) future outlooks. A horizon scan showed that SynBioM applications could be ready for deliberate release into the environment of the EU in the next decade. However, extensively engineered SynBioMs are only expected in the wider future. For the microbial characterisation and the environmental risk assessment, the existing EFSA Guidances are useful as a basis. The extent to which existing Guidances can be used depends on the familiarity of the SynBioM with non-modified organisms. Among the recommendations for updated Guidance, the range of uses of products to be assessed covering all agri-food uses and taking into account all types of microorganisms, their relevant exposure routes and receiving environments. It is suggested that new EFSA Guidances address all 'specific areas of risk' as per Directive 2001/18/EC. No novel environmental hazards are expected for current and near future SynBioMs. However, the efficacy by which the SynBioMs interact with the environment may differ. This could lead to increased exposure and risk. Novel hazards connected with the development of xenobionts may be expected in the wider future.
Collapse
|
84
|
Tinzl M, Hilvert D. Trapping Transient Protein Species by Genetic Code Expansion. Chembiochem 2020; 22:92-99. [PMID: 32810341 DOI: 10.1002/cbic.202000523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/18/2020] [Indexed: 12/24/2022]
Abstract
Nature employs a limited number of genetically encoded amino acids for the construction of functional proteins. By engineering components of the cellular translation machinery, however, it is now possible to genetically encode noncanonical building blocks with tailored electronic and structural properties. The ability to incorporate unique chemical functionality into proteins provides a powerful tool to probe mechanism and create novel function. In this minireview, we highlight several recent studies that illustrate how noncanonical amino acids have been used to capture and characterize reactive intermediates, fine-tune the catalytic properties of enzymes, and stabilize short-lived protein-protein complexes.
Collapse
Affiliation(s)
- Matthias Tinzl
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| |
Collapse
|
85
|
Tseng HW, Baumann T, Sun H, Wang YS, Ignatova Z, Budisa N. Expanding the Scope of Orthogonal Translation with Pyrrolysyl-tRNA Synthetases Dedicated to Aromatic Amino Acids. Molecules 2020; 25:E4418. [PMID: 32992991 PMCID: PMC7582959 DOI: 10.3390/molecules25194418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022] Open
Abstract
In protein engineering and synthetic biology, Methanosarcina mazei pyrrolysyl-tRNA synthetase (MmPylRS), with its cognate tRNAPyl, is one of the most popular tools for site-specific incorporation of non-canonical amino acids (ncAAs). Numerous orthogonal pairs based on engineered MmPylRS variants have been developed during the last decade, enabling a substantial genetic code expansion, mainly with aliphatic pyrrolysine analogs. However, comparatively less progress has been made to expand the substrate range of MmPylRS towards aromatic amino acid residues. Therefore, we set to further expand the substrate scope of orthogonal translation by a semi-rational approach; redesigning the MmPylRS efficiency. Based on the randomization of residues from the binding pocket and tRNA binding domain, we identify three positions (V401, W417 and S193) crucial for ncAA specificity and enzyme activity. Their systematic mutagenesis enabled us to generate MmPylRS variants dedicated to tryptophan (such as β-(1-Azulenyl)-l-alanine or 1-methyl-l-tryptophan) and tyrosine (mainly halogenated) analogs. Moreover, our strategy also significantly improves the orthogonal translation efficiency with the previously activated analog 3-benzothienyl-l-alanine. Our study revealed the engineering of both first shell and distant residues to modify substrate specificity as an important strategy to further expand our ability to discover and recruit new ncAAs for orthogonal translation.
Collapse
Affiliation(s)
- Hsueh-Wei Tseng
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany; (H.-W.T.); (T.B.); (H.S.)
| | - Tobias Baumann
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany; (H.-W.T.); (T.B.); (H.S.)
| | - Huan Sun
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany; (H.-W.T.); (T.B.); (H.S.)
| | - Yane-Shih Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 116, Taiwan;
- Institute of Biochemical Sciences, National Taiwan University, Taipei 116, Taiwan
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany;
| | - Nediljko Budisa
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany; (H.-W.T.); (T.B.); (H.S.)
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
86
|
Hu JJ, He PY, Li YM. Chemical modifications of tryptophan residues in peptides and proteins. J Pept Sci 2020; 27:e3286. [PMID: 32945039 DOI: 10.1002/psc.3286] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/27/2022]
Abstract
Chemical protein modifications facilitate the investigation of natural posttranslational protein modifications and allow the design of proteins with new functions. Proteins can be modified at a late stage on amino acid side chains by chemical methods. The indole moiety of tryptophan residues is an emerging target of such chemical modification strategies because of its unique reactivity and low abundance. This review provides an overview of the recently developed methods of tryptophan modification at the peptide and protein levels.
Collapse
Affiliation(s)
- Jin-Jian Hu
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Pei-Yang He
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yan-Mei Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.,Beijing Institute for Brain Disorders, Beijing, 100069, China
| |
Collapse
|
87
|
Drienovská I, Gajdoš M, Kindler A, Takhtehchian M, Darnhofer B, Birner-Gruenberger R, Dörr M, Bornscheuer UT, Kourist R. Folding Assessment of Incorporation of Noncanonical Amino Acids Facilitates Expansion of Functional-Group Diversity for Enzyme Engineering. Chemistry 2020; 26:12338-12342. [PMID: 32347609 PMCID: PMC7590180 DOI: 10.1002/chem.202002077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 12/31/2022]
Abstract
Protein design is limited by the diversity of functional groups provided by the canonical protein „building blocks“. Incorporating noncanonical amino acids (ncAAs) into enzymes enables a dramatic expansion of their catalytic features. For this, quick identification of fully translated and correctly folded variants is decisive. Herein, we report the engineering of the enantioselectivity of an esterase utilizing several ncAAs. Key for the identification of active and soluble protein variants was the use of the split‐GFP method, which is crucial as it allows simple determination of the expression levels of enzyme variants with ncAA incorporations by fluorescence. Several identified variants led to improved enantioselectivity or even inverted enantiopreference in the kinetic resolution of ethyl 3‐phenylbutyrate.
Collapse
Affiliation(s)
- Ivana Drienovská
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Matúš Gajdoš
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Alexia Kindler
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Mahsa Takhtehchian
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Barbara Darnhofer
- Diagnostic and Research Institute of Patholoy, Diagnostic and Research Center of Molecular Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria.,Omics Center Graz, BioTechMed-Graz, Stiftingtalstraße 24, 8010, Graz, Austria
| | - Ruth Birner-Gruenberger
- Diagnostic and Research Institute of Patholoy, Diagnostic and Research Center of Molecular Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria.,Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060, Wien, Austria.,Omics Center Graz, BioTechMed-Graz, Stiftingtalstraße 24, 8010, Graz, Austria
| | - Mark Dörr
- Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Uwe T Bornscheuer
- Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| |
Collapse
|
88
|
Ding Y, Ting JP, Liu J, Al-Azzam S, Pandya P, Afshar S. Impact of non-proteinogenic amino acids in the discovery and development of peptide therapeutics. Amino Acids 2020; 52:1207-1226. [PMID: 32945974 PMCID: PMC7544725 DOI: 10.1007/s00726-020-02890-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/05/2020] [Indexed: 12/14/2022]
Abstract
With the development of modern chemistry and biology, non-proteinogenic amino acids (NPAAs) have become a powerful tool for developing peptide-based drug candidates. Drug-like properties of peptidic medicines, due to the smaller size and simpler structure compared to large proteins, can be changed fundamentally by introducing NPAAs in its sequence. While peptides composed of natural amino acids can be used as drug candidates, the majority have shown to be less stable in biological conditions. The impact of NPAA incorporation can be extremely beneficial in improving the stability, potency, permeability, and bioavailability of peptide-based therapies. Conversely, undesired effects such as toxicity or immunogenicity should also be considered. The impact of NPAAs in the development of peptide-based therapeutics is reviewed in this article. Further, numerous examples of peptides containing NPAAs are presented to highlight the ongoing development in peptide-based therapeutics.
Collapse
Affiliation(s)
- Yun Ding
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Joey Paolo Ting
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Jinsha Liu
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Shams Al-Azzam
- Professional Scientific Services, Eurofins Lancaster Laboratories, Lancaster, PA, 17605, USA
| | - Priyanka Pandya
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA.
| |
Collapse
|
89
|
Martínez-Rodríguez S, Torres JM, Sánchez P, Ortega E. Overview on Multienzymatic Cascades for the Production of Non-canonical α-Amino Acids. Front Bioeng Biotechnol 2020; 8:887. [PMID: 32850740 PMCID: PMC7431475 DOI: 10.3389/fbioe.2020.00887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
The 22 genetically encoded amino acids (AAs) present in proteins (the 20 standard AAs together with selenocysteine and pyrrolysine), are commonly referred as proteinogenic AAs in the literature due to their appearance in ribosome-synthetized polypeptides. Beyond the borders of this key set of compounds, the rest of AAs are generally named imprecisely as non-proteinogenic AAs, even when they can also appear in polypeptide chains as a result of post-transductional machinery. Besides their importance as metabolites in life, many of D-α- and L-α-"non-canonical" amino acids (NcAAs) are of interest in the biotechnological and biomedical fields. They have found numerous applications in the discovery of new medicines and antibiotics, drug synthesis, cosmetic, and nutritional compounds, or in the improvement of protein and peptide pharmaceuticals. In addition to the numerous studies dealing with the asymmetric synthesis of NcAAs, many different enzymatic pathways have been reported in the literature allowing for the biosynthesis of NcAAs. Due to the huge heterogeneity of this group of molecules, this review is devoted to provide an overview on different established multienzymatic cascades for the production of non-canonical D-α- and L-α-AAs, supplying neophyte and experienced professionals in this field with different illustrative examples in the literature. Whereas the discovery of new or newly designed enzymes is of great interest, dusting off previous enzymatic methodologies by a "back and to the future" strategy might accelerate the implementation of new or improved multienzymatic cascades.
Collapse
|
90
|
Yi D, Xing J, Gao Y, Pan X, Xie P, Yang J, Wang Q, Gao X. Enhancement of keratin-degradation ability of the keratinase KerBL from Bacillus licheniformis WHU by proximity-triggered chemical crosslinking. Int J Biol Macromol 2020; 163:1458-1470. [PMID: 32771518 DOI: 10.1016/j.ijbiomac.2020.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023]
Abstract
Keratinases are valuable enzymes, given their application in keratin-rich waste recycling. Considering that keratinases usually require reducing agents to efficiently degrade keratin, improving the stability of keratinases under reducing conditions is highly desirable for practical applications. Here, we show that the introduction of several tyrosine derivatives containing para-substituted long-chain haloalkanes into the keratinase KerBL, which enabled proximity-triggered covalent crosslinking by rational design, could improve both the thermostability and autolytic resistance of the enzyme. After screening a series of noncanonical amino acid (ncAA)-based variants generated by rational design, two variants, N159C/Y260BprY and N159C/Y260BbtY, with enhanced keratinolytic activity were obtained. Both variants increased the Tm of the enzyme by approximately 10 °C. The potential mechanism underlying these improvements was investigated by molecular dynamics (MD) analysis. The results indicated that BprY-Cys and BbtY-Cys covalent bonds in the N159C/Y260TAG variant could significantly decrease the flexibility and fluctuations of the long loop (residues 151-162).
Collapse
Affiliation(s)
- Dong Yi
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Juan Xing
- Department of Pathophysiology, College of Basic Medical Science, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yanping Gao
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xianchao Pan
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Peijuan Xie
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Jian Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Qin Wang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Xiaowei Gao
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
91
|
Ding W, Zhao H, Chen Y, Zhang B, Yang Y, Zang J, Wu J, Lin S. Chimeric design of pyrrolysyl-tRNA synthetase/tRNA pairs and canonical synthetase/tRNA pairs for genetic code expansion. Nat Commun 2020; 11:3154. [PMID: 32572025 PMCID: PMC7308279 DOI: 10.1038/s41467-020-16898-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/28/2020] [Indexed: 01/24/2023] Open
Abstract
An orthogonal aminoacyl-tRNA synthetase/tRNA pair is a crucial prerequisite for site-specific incorporation of unnatural amino acids. Due to its high codon suppression efficiency and full orthogonality, the pyrrolysyl-tRNA synthetase/pyrrolysyl-tRNA pair is currently the ideal system for genetic code expansion in both eukaryotes and prokaryotes. There is a pressing need to discover or engineer other fully orthogonal translation systems. Here, through rational chimera design by transplanting the key orthogonal components from the pyrrolysine system, we create multiple chimeric tRNA synthetase/chimeric tRNA pairs, including chimera histidine, phenylalanine, and alanine systems. We further show that these engineered chimeric systems are orthogonal and highly efficient with comparable flexibility to the pyrrolysine system. Besides, the chimera phenylalanine system can incorporate a group of phenylalanine, tyrosine, and tryptophan analogues efficiently in both E. coli and mammalian cells. These aromatic amino acids analogous exhibit unique properties and characteristics, including fluorescence, post-translation modification. Orthogonal aminoacyl-tRNA synthetase/tRNA pairs are crucial for the incorporation of unnatural amino acids in a site-specific manner. Here the authors use rational chimera design to create multiple efficient pairs that function in bacterial and mammalian systems for genetic code expansion.
Collapse
Affiliation(s)
- Wenlong Ding
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Hongxia Zhao
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yulin Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Bin Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yang Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046, China
| | - Jia Zang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wu
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Shixian Lin
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
92
|
Guerrero I, Correa A. Site‐Selective Trifluoromethylation Reactions of Oligopeptides. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000170] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Itziar Guerrero
- Department of Organic Chemistry IUniversity of the Basque Country (UPV/EHU) Joxe Mari Korta R&D Center, Avda. Tolosa 72 20018 Donostia-San Sebastián Spain
| | - Arkaitz Correa
- Department of Organic Chemistry IUniversity of the Basque Country (UPV/EHU) Joxe Mari Korta R&D Center, Avda. Tolosa 72 20018 Donostia-San Sebastián Spain
| |
Collapse
|
93
|
Tharp JM, Krahn N, Varshney U, Söll D. Hijacking Translation Initiation for Synthetic Biology. Chembiochem 2020; 21:1387-1396. [PMID: 32023356 PMCID: PMC7237318 DOI: 10.1002/cbic.202000017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Indexed: 12/17/2022]
Abstract
Genetic code expansion (GCE) has revolutionized the field of protein chemistry. Over the past several decades more than 150 different noncanonical amino acids (ncAAs) have been co-translationally installed into proteins within various host organisms. The vast majority of these ncAAs have been incorporated between the start and stop codons within an open reading frame. This requires that the ncAA be able to form a peptide bond at the α-amine, limiting the types of molecules that can be genetically encoded. In contrast, the α-amine of the initiating amino acid is not required for peptide bond formation. Therefore, including the initiator position in GCE allows for co-translational insertion of more diverse molecules that are modified, or completely lacking an α-amine. This review explores various methods which have been used to initiate protein synthesis with diverse molecules both in vitro and in vivo.
Collapse
Affiliation(s)
- Jeffery M Tharp
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
94
|
Perfumo A, Freiherr von Sass GJ, Nordmann EL, Budisa N, Wagner D. Discovery and Characterization of a New Cold-Active Protease From an Extremophilic Bacterium via Comparative Genome Analysis and in vitro Expression. Front Microbiol 2020; 11:881. [PMID: 32528424 PMCID: PMC7247812 DOI: 10.3389/fmicb.2020.00881] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/16/2020] [Indexed: 01/05/2023] Open
Abstract
Following a screening of Antarctic glacier forefield-bacteria for novel cold-active enzymes, a psychrophilic strain Psychrobacter sp. 94-6PB was selected for further characterization of enzymatic activities. The strain produced lipases and proteases in the temperature range of 4-18°C. The coding sequence of an extracellular serine-protease was then identified via comparative analysis across Psychrobacter sp. genomes, PCR-amplified in our strain 94-6PB and expressed in the heterologous host E. coli. The purified enzyme (80 kDa) resulted to be a cold-active alkaline protease, performing best at temperatures of 20-30°C and pH 7-9. It was stable in presence of common inhibitors [β-mercaptoethanol (β-ME), dithiothreitol (DTT), urea, phenylmethylsulfonyl fluoride (PMSF) and ethylenediaminetetraacetic acid (EDTA)] and compatible with detergents and surfactants (Tween 20, Tween 80, hydrogen peroxide and Triton X-100). Because of these properties, the P94-6PB protease may be suitable for use in a new generation of laundry products for cold washing. Furthermore, we assessed the microdiversity of this enzyme in Psychrobacter organisms from different cold habitats and found several gene clusters that correlated with specific ecological niches. We then discussed the role of habitat specialization in shaping the biodiversity of proteins and enzymes and anticipate far-reaching implications for the search of novel variants of biotechnological products.
Collapse
Affiliation(s)
- Amedea Perfumo
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, Potsdam, Germany
- Polar Terrestrial Environmental System Division, Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Potsdam, Germany
| | | | - Eva-Lena Nordmann
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, Potsdam, Germany
- Institute of Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Nediljko Budisa
- Institute of Chemistry, Technische Universität Berlin, Berlin, Germany
- Institute of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, Potsdam, Germany
- Institute of Geosciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|
95
|
Nieto-Domínguez M, Nikel PI. Intersecting Xenobiology and Neometabolism To Bring Novel Chemistries to Life. Chembiochem 2020; 21:2551-2571. [PMID: 32274875 DOI: 10.1002/cbic.202000091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/09/2020] [Indexed: 12/19/2022]
Abstract
The diversity of life relies on a handful of chemical elements (carbon, oxygen, hydrogen, nitrogen, sulfur and phosphorus) as part of essential building blocks; some other atoms are needed to a lesser extent, but most of the remaining elements are excluded from biology. This circumstance limits the scope of biochemical reactions in extant metabolism - yet it offers a phenomenal playground for synthetic biology. Xenobiology aims to bring novel bricks to life that could be exploited for (xeno)metabolite synthesis. In particular, the assembly of novel pathways engineered to handle nonbiological elements (neometabolism) will broaden chemical space beyond the reach of natural evolution. In this review, xeno-elements that could be blended into nature's biosynthetic portfolio are discussed together with their physicochemical properties and tools and strategies to incorporate them into biochemistry. We argue that current bioproduction methods can be revolutionized by bridging xenobiology and neometabolism for the synthesis of new-to-nature molecules, such as organohalides.
Collapse
Affiliation(s)
- Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
96
|
Vornholt T, Jeschek M. The Quest for Xenobiotic Enzymes: From New Enzymes for Chemistry to a Novel Chemistry of Life. Chembiochem 2020; 21:2241-2249. [PMID: 32294286 DOI: 10.1002/cbic.202000121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/13/2020] [Indexed: 12/19/2022]
Abstract
Enzyme engineering has made impressive progress in the past decades, paving the way for the widespread use of enzymes for various purposes. In contrast to "classical" enzyme engineering, which focuses on optimizing specific properties of natural enzymes, a more recent trend towards the creation of artificial enzymes that catalyze fundamentally distinct, new-to-nature reactions is observable. While approaches for creating such enzymes differ significantly, they share the common goal of enabling biocatalytic novelty to broaden the range of applications for enzymes. Although most artificial enzymes reported to date are only moderately active and barely function in vivo, they have the potential to endow cells with capabilities that were previously out of reach and thus herald a new wave of "functional xenobiology". Herein, we highlight recent developments in the field of artificial enzymes with a particular focus on challenges and opportunities for their use in xenobiology.
Collapse
Affiliation(s)
- Tobias Vornholt
- Department of Biosystems Science and Engineering ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Markus Jeschek
- Department of Biosystems Science and Engineering ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| |
Collapse
|
97
|
Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-Goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
98
|
Lopez S, Mayes DM, Crouzy S, Cavazza C, Leprêtre C, Moreau Y, Burzlaff N, Marchi-Delapierre C, Ménage S. A Mechanistic Rationale Approach Revealed the Unexpected Chemoselectivity of an Artificial Ru-Dependent Oxidase: A Dual Experimental/Theoretical Approach. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sarah Lopez
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
- Univ. Grenoble-Alpes, DCM-SeRCO, F-38000 Grenoble, France
| | | | - Serge Crouzy
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| | - Christine Cavazza
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| | - Chloé Leprêtre
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| | - Yohann Moreau
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| | - Nicolai Burzlaff
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University of Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | | | - Stéphane Ménage
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| |
Collapse
|
99
|
Zhang Y, Li JK, Zhang FG, Ma JA. Catalytic Asymmetric Access to Noncanonical Chiral α-Amino Acids from Cyclic Iminoglyoxylates and Enamides. J Org Chem 2020; 85:5580-5589. [PMID: 32223256 DOI: 10.1021/acs.joc.0c00436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Here we describe an enantioselective Mannich reaction of cyclic iminoglyoxylates with enamides by virtue of chiral phosphoric acid catalysis in a one-pot manner. The wide substrate scope, mild reaction conditions, and constantly excellent enantioselectivities (>95% ee in most cases) render this protocol highly practical for the rapid construction of valuable noncanonical chiral α-amino-acid building blocks.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China
| | - Jun-Kuan Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China.,Joint School of NUS & TJU, International Campus of Tianjin University, Fuzhou 350207, P. R. of China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China.,Joint School of NUS & TJU, International Campus of Tianjin University, Fuzhou 350207, P. R. of China
| |
Collapse
|
100
|
Brewitz L, Noda H, Kumagai N, Shibasaki M. (
2R
,
3S
)‐3,4,4,4‐Tetrafluorovaline: A Fluorinated Bioisostere of Isoleucine. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lennart Brewitz
- Institute of Microbial Chemistry (BIKAKEN) Tokyo Kamiosaki 3‐14‐23, Shinagawa‐ku 141‐0021 Tokyo Japan
| | - Hidetoshi Noda
- Institute of Microbial Chemistry (BIKAKEN) Tokyo Kamiosaki 3‐14‐23, Shinagawa‐ku 141‐0021 Tokyo Japan
| | - Naoya Kumagai
- Institute of Microbial Chemistry (BIKAKEN) Tokyo Kamiosaki 3‐14‐23, Shinagawa‐ku 141‐0021 Tokyo Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry (BIKAKEN) Tokyo Kamiosaki 3‐14‐23, Shinagawa‐ku 141‐0021 Tokyo Japan
| |
Collapse
|