51
|
Liu Y, Teng L, Yin B, Meng H, Yin X, Huan S, Song G, Zhang XB. Chemical Design of Activatable Photoacoustic Probes for Precise Biomedical Applications. Chem Rev 2022; 122:6850-6918. [PMID: 35234464 DOI: 10.1021/acs.chemrev.1c00875] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photoacoustic (PA) imaging technology, a three-dimensional hybrid imaging modality that integrates the advantage of optical and acoustic imaging, has great application prospects in molecular imaging due to its high imaging depth and resolution. To endow PA imaging with the ability for real-time molecular visualization and precise biomedical diagnosis, numerous activatable molecular PA probes which can specifically alter their PA intensities upon reacting with the targets or biological events of interest have been developed. This review highlights the recent developments of activatable PA probes for precise biomedical applications including molecular detection of the biotargets and imaging of the biological events. First, the generation mechanism of PA signals will be given, followed by a brief introduction to contrast agents used for PA probe design. Then we will particularly summarize the general design principles for the alteration of PA signals and activatable strategies for developing precise PA probes. Furthermore, we will give a detailed discussion of activatable PA probes in molecular detection and biomedical imaging applications in living systems. At last, the current challenges and outlooks of future PA probes will be discussed. We hope that this review will stimulate new ideas to explore the potentials of activatable PA probes for precise biomedical applications in the future.
Collapse
Affiliation(s)
- Yongchao Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lili Teng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Baoli Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Hongmin Meng
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Xia Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shuangyan Huan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
52
|
Qin Z, Ren TB, Zhou H, Zhang X, He L, Li Z, Zhang XB, Yuan L. NIRII‐HDs: A Versatile Platform for Developing Activatable NIR‐II Fluorogenic Probes for Reliable In Vivo Analyte Sensing. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | - Long He
- Hunan University Chemistry CHINA
| | - Zhe Li
- Hunan University Chemistry CHINA
| | | | - Lin Yuan
- Hunan University College of Chemistry and Chemical Engineering NO372, Lushan Rd. Yuelu District. 410082 Changsha CHINA
| |
Collapse
|
53
|
Shang W, Peng L, He K, Guo P, Deng H, Liu Y, Chen Z, Tian J, Xu W. A clinical study of a CD44v6-targeted fluorescent agent for the detection of non-muscle invasive bladder cancer. Eur J Nucl Med Mol Imaging 2022; 49:3033-3045. [PMID: 35190862 DOI: 10.1007/s00259-022-05701-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/20/2022] [Indexed: 01/16/2023]
Abstract
BACKGROUND Bladder cancer is the fifth most common malignancy in humans. Cystoscopy under white light imaging is the gold standard for bladder cancer diagnosis, but some tumors are difficult to visualize and can be overlooked, resulting in high recurrence rates. We previously developed a phage display-derived peptide-based near-infrared imaging probe, PLSWT7-DMI, which binds specifically to bladder cancer cells and is nontoxic to animals. Here, we report a clinical research of this probe for near-infrared fluorescence endoscopic detection of bladder cancer. RESULTS The purity, efficacy, safety, and nontoxicity of PLSWT7-DMI were confirmed prior to its clinical application. Twenty-two patients diagnosed with suspected non-muscle invasive bladder cancer were enrolled in the present study. Following intravesical administration of the probe, the entire mucosa was imaged under white and near-infrared imaging using an in-house developed endoscope that could switch between these two modes. The illuminated lesions under near-infrared light were biopsied and sent for histopathological examination. We observed a 5.1-fold increase in the fluorescence intensity in the tumor samples compared to normal tissue, and the probe demonstrated a sensitivity and specificity of 91.2% and 90%, respectively. Common diagnostic challenges, such as small satellite tumors, carcinoma in situ, and benign suspicious mucosa, were visualized and could be distinguished from cancer. Furthermore, no adverse effects were observed in humans. These first-in-human results indicate that PLSWT7-DMI-based near-infrared fluorescence endoscopy is a safe and effective approach for the improved detection of bladder cancer, and may enable thorough resection to prevent recurrence.
Collapse
Affiliation(s)
- Wenting Shang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li Peng
- Urology Surgery Department, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China.,NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Yiyuan Street #37, Nangang District, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Kunshan He
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Zhongguancun East Road #95, Haidian Dist., Beijing, 100191, China
| | - Pengyu Guo
- Urology Surgery Department, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China.,NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Yiyuan Street #37, Nangang District, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Han Deng
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yu Liu
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Zhongguancun East Road #95, Haidian Dist., Beijing, 100191, China
| | - Ziyin Chen
- Urology Surgery Department, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China.,NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Yiyuan Street #37, Nangang District, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Zhongguancun East Road #95, Haidian Dist., Beijing, 100191, China.
| | - Wanhai Xu
- Urology Surgery Department, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China. .,NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Yiyuan Street #37, Nangang District, Harbin, Heilongjiang, 150001, People's Republic of China.
| |
Collapse
|
54
|
Li H, Kim H, Xu F, Han J, Yao Q, Wang J, Pu K, Peng X, Yoon J. Activity-based NIR fluorescent probes based on the versatile hemicyanine scaffold: design strategy, biomedical applications, and outlook. Chem Soc Rev 2022; 51:1795-1835. [PMID: 35142301 DOI: 10.1039/d1cs00307k] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery of a near-infrared (NIR, 650-900 nm) fluorescent chromophore hemicyanine dye with high structural tailorability is of great significance in the field of detection, bioimaging, and medical therapeutic applications. It exhibits many outstanding advantages including absorption and emission in the NIR region, tunable spectral properties, high photostability as well as a large Stokes shift. These properties are superior to those of conventional fluorogens, such as coumarin, fluorescein, naphthalimides, rhodamine, and cyanine. Researchers have made remarkable progress in developing activity-based multifunctional fluorescent probes based on hemicyanine skeletons for monitoring vital biomolecules in living systems through the output of fluorescence/photoacoustic signals, and integration of diagnosis and treatment of diseases using chemotherapy or photothermal/photodynamic therapy or combination therapy. These achievements prompted researchers to develop more smart fluorescent probes using a hemicyanine fluorogen as a template. In this review, we begin by describing the brief history of the discovery of hemicyanine dyes, synthetic approaches, and design strategies for activity-based functional fluorescent probes. Then, many selected hemicyanine-based probes that can detect ions, small biomolecules, overexpressed enzymes and diagnostic reagents for diseases are systematically highlighted. Finally, potential drawbacks and the outlook for future investigation and clinical medicine transformation of hemicyanine-based activatable functional probes are also discussed.
Collapse
Affiliation(s)
- Haidong Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China. .,School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Heejeong Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | - Feng Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China. .,The Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Jingjing Han
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China. .,School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore. .,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China. .,Research Institute of Dalian University of Technology in Shenzhen, Nanshan District, Shenzhen 518057, China
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
55
|
Guo J, Shen R, Shen X, Zeng B, Yang N, Liang H, Yang Y, Yuan Q. Construction of high stability indium gallium zinc oxide transistor biosensors for reliable detection of bladder cancer-associated microRNA. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
56
|
Yao C, Chen Y, Zhao M, Wang S, Wu B, Yang Y, Yin D, Yu P, Zhang H, Zhang F. A Bright, Renal‐Clearable NIR‐II Brush Macromolecular Probe with Long Blood Circulation Time for Kidney Disease Bioimaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chenzhi Yao
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Ying Chen
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Mengyao Zhao
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Shangfeng Wang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Bin Wu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Yiwei Yang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Dongrui Yin
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Peng Yu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Hongxin Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Fan Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| |
Collapse
|
57
|
Yao C, Chen Y, Zhao M, Wang S, Wu B, Yang Y, Yin D, Yu P, Zhang H, Zhang F. A Bright, Renal-Clearable NIR-II Brush Macromolecular Probe with Long Blood Circulation Time for Kidney Disease Bioimaging. Angew Chem Int Ed Engl 2022; 61:e202114273. [PMID: 34850517 DOI: 10.1002/anie.202114273] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 01/31/2023]
Abstract
Early detection of kidney disease is of vital importance due to its current prevalence worldwide. Fluorescence imaging, especially in the second near-infrared window (NIR-II) has been regarded as a promising technique for the early diagnosis of kidney disease due to the superior resolution and sensitivity. However, the reported NIR-II organic renal-clearable probes are hampered by their low brightness (ϵmax Φf>1000 nm <10 M-1 cm-1 ) and limited blood circulation time (t1/2 <2 h), which impede the targeted imaging performance. Herein, we develop the aza-boron-dipyrromethene (aza-BODIPY) brush macromolecular probes (Fudan BDIPY Probes (FBP 912)) with high brightness (ϵmax Φf>1000 nm ≈60 M-1 cm-1 ), which is about 10-fold higher than that of previously reported NIR-II renal-clearable organic probes. FBP 912 exhibits an average diameter of ≈4 nm and high renal clearance efficiency (≈65 % excretion through the kidney within 12 h), showing superior performance for non-invasively diagnosis of renal ischemia-reperfusion injury (RIR) earlier than clinical serum-based protocols. Additionally, the high molecular weight polymer brush enables FBP 912 with prolonged circulation time (t1/2 ≈6.1 h) and higher brightness than traditional PEGylated renal-clearable control fluorophores (t1/2 <2 h), facilitating for 4T1 tumor passive targeted imaging and renal cell carcinoma active targeted imaging with higher signal-to-noise ratio and extended retention time.
Collapse
Affiliation(s)
- Chenzhi Yao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Ying Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Mengyao Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Bin Wu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Yiwei Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Dongrui Yin
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Peng Yu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Hongxin Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| |
Collapse
|
58
|
Xie Q, Liu J, Chen B, Ge X, Zhang X, Gao S, Ma Q, Song J. NIR-II Fluorescent Activatable Drug Delivery Nanoplatform for Cancer-Targeted Combined Photodynamic and Chemotherapy. ACS APPLIED BIO MATERIALS 2022; 5:711-722. [PMID: 35044163 DOI: 10.1021/acsabm.1c01139] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanotheranostics with integrated imaging functions can help monitor nanoparticle accumulation in tumors, thus achieving synergism and higher therapeutic accuracy in cancer therapy. However, it remains challenging to monitor the release of therapeutic drugs in real time from a nanoparticulate drug delivery system (nano-DDS) in the body. Herein, we developed a nano-DDS for fluorescence imaging in the second near-infrared window (NIR-II) region, which can be used for monitoring the responsive release of drugs and cancer-targeted combined photodynamic and chemotherapy. There is a linear correlation between the cumulative release of the drug and the NIR-II fluorescence intensity. Moreover, hyaluronidase/glutathione dual-response RGD-SS-DOX/Ce6@HA-IR-1061 (RSSDCHI) exhibited a higher tumor-to-normal-tissue ratio in NIR-II fluorescence imaging and enhanced antitumor efficacy in vivo. This makes it possible to visualize drug release at the cellular level by the nanocomposites and to predict the treatment effect according to the NIR-II fluorescence intensity in the tumor site, serving as a promising nanoplatform for precision nanomedicine.
Collapse
Affiliation(s)
- Qian Xie
- Department of Nuclear Medicine, NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, China-Japan Union Hospital of Jilin University, Changchun 130000, P. R. China
| | - Junzhi Liu
- Department of Nuclear Medicine, NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, China-Japan Union Hospital of Jilin University, Changchun 130000, P. R. China
| | - Bin Chen
- Department of Nuclear Medicine, NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, China-Japan Union Hospital of Jilin University, Changchun 130000, P. R. China
| | - Xiaoguang Ge
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shi Gao
- Department of Nuclear Medicine, NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, China-Japan Union Hospital of Jilin University, Changchun 130000, P. R. China
| | - Qingjie Ma
- Department of Nuclear Medicine, NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, China-Japan Union Hospital of Jilin University, Changchun 130000, P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
59
|
Tian Z, Yan F, Tian X, Feng L, Cui J, Deng S, Zhang B, Xie T, Huang S, Ma X. A NIR fluorescent probe for Vanin-1 and its applications in imaging, kidney injury diagnosis, and the development of inhibitor. Acta Pharm Sin B 2022; 12:316-325. [PMID: 35127388 PMCID: PMC8799884 DOI: 10.1016/j.apsb.2021.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/22/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Vanin-1 is an amidohydrolase that catalyses the conversion of pantetheine into the amino-thiol cysteamine and pantothenic acid (coenzyme A precursor), which plays a vital role in multiple physiological and pathological processes. In this study, an enzyme-activated near-infrared (NIR) fluorescent probe (DDAV) has been constructed for sensitively detecting Vanin-1 activity in complicated biosamples on the basis of its catalytic characteristics. DDAV exhibited a high selectivity and sensitivity toward Vanin-1 and was successfully applied to the early diagnosis of kidney injury in cisplatin-induced kidney injury model. In addition, DDAV could serve as a visual tool for in situ imaging endogenous Vanin-1 in vivo. More importantly, Enterococcus faecalis 20247 which possessed high expression of Vanin-1 was screened out from intestinal bacteria using DDAV, provided useful guidance for the rational use of NSAIDs in clinic. Finally, oleuropein as a potent natural inhibitor for Vanin-1 was discovered from herbal medicines library using a high-throughput screening method using DDAV, which held great promise for clinical therapy of inflammatory bowel disease.
Collapse
|
60
|
Liew SS, Zeng Z, Cheng P, He S, Zhang C, Pu K. Renal-Clearable Molecular Probe for Near-Infrared Fluorescence Imaging and Urinalysis of SARS-CoV-2. J Am Chem Soc 2021; 143:18827-18831. [PMID: 34672551 PMCID: PMC8547506 DOI: 10.1021/jacs.1c08017] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 12/14/2022]
Abstract
Despite the importance of rapid and accurate detection of SARS-CoV-2 in controlling the COVID-19 pandemic, current diagnostic methods are static and unable to distinguish between viable/nonviable virus or directly reflect viral replication activity. Real-time imaging of protease activity specific to SARS-CoV-2 can overcome these issues but remains lacking. Herein, we report a near-infrared fluorescence (NIRF) activatable molecular probe (SARS-CyCD) for detection of SARS-CoV-2 protease in living mice. The probe comprises a hemicyanine fluorophore caged with a protease peptide substrate and a cyclodextrin unit, which function as an NIRF signaling moiety and a renal-clearable enabler, respectively. The peptide substrate of SARS-CyCD can be specifically cleaved by SARS-CoV-2 main protease (Mpro), resulting in NIRF signal activation and liberation of the renal-clearable fluorescent fragment (CyCD). Such a design not only allows sensitive detection of Mpro in the lungs of living mice after intratracheal administration but also permits optical urinalysis of SARS-CoV-2 infection. Thus, this study presents an in vivo sensor that holds potential in preclinical high-throughput drug screening and clinical diagnostics for respiratory viral infections.
Collapse
Affiliation(s)
- Si Si Liew
- School of Chemical and Biomedical Engineering,
Nanyang Technological University,
Singapore 637457
| | - Ziling Zeng
- School of Chemical and Biomedical Engineering,
Nanyang Technological University,
Singapore 637457
| | - Penghui Cheng
- School of Chemical and Biomedical Engineering,
Nanyang Technological University,
Singapore 637457
| | - Shasha He
- School of Chemical and Biomedical Engineering,
Nanyang Technological University,
Singapore 637457
| | - Chi Zhang
- School of Chemical and Biomedical Engineering,
Nanyang Technological University,
Singapore 637457
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering,
Nanyang Technological University,
Singapore 637457
- School of Physical and Mathematical Sciences,
Nanyang Technological University,
Singapore 637371
- Lee Kong Chian School of Medicine,
Nanyang Technological University,
Singapore 636921
| |
Collapse
|
61
|
Liew SS, Zeng Z, Cheng P, He S, Zhang C, Pu K. Renal-Clearable Molecular Probe for Near-Infrared Fluorescence Imaging and Urinalysis of SARS-CoV-2. J Am Chem Soc 2021. [PMID: 34672551 DOI: 10.1021/jacs.1021c08017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Despite the importance of rapid and accurate detection of SARS-CoV-2 in controlling the COVID-19 pandemic, current diagnostic methods are static and unable to distinguish between viable/nonviable virus or directly reflect viral replication activity. Real-time imaging of protease activity specific to SARS-CoV-2 can overcome these issues but remains lacking. Herein, we report a near-infrared fluorescence (NIRF) activatable molecular probe (SARS-CyCD) for detection of SARS-CoV-2 protease in living mice. The probe comprises a hemicyanine fluorophore caged with a protease peptide substrate and a cyclodextrin unit, which function as an NIRF signaling moiety and a renal-clearable enabler, respectively. The peptide substrate of SARS-CyCD can be specifically cleaved by SARS-CoV-2 main protease (Mpro), resulting in NIRF signal activation and liberation of the renal-clearable fluorescent fragment (CyCD). Such a design not only allows sensitive detection of Mpro in the lungs of living mice after intratracheal administration but also permits optical urinalysis of SARS-CoV-2 infection. Thus, this study presents an in vivo sensor that holds potential in preclinical high-throughput drug screening and clinical diagnostics for respiratory viral infections.
Collapse
Affiliation(s)
- Si Si Liew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Ziling Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Penghui Cheng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Shasha He
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Chi Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
| |
Collapse
|
62
|
Zhang DY, Tu T, Younis MR, Zhu KS, Liu H, Lei S, Qu J, Lin J, Huang P. Clinically translatable gold nanozymes with broad spectrum antioxidant and anti-inflammatory activity for alleviating acute kidney injury. Theranostics 2021; 11:9904-9917. [PMID: 34815794 PMCID: PMC8581429 DOI: 10.7150/thno.66518] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/01/2021] [Indexed: 01/15/2023] Open
Abstract
Rationale: Acute kidney injury (AKI) is associated with aberrant generation of oxidative species and inflammation, leading to high mortality of in-hospitalized patients. Although N-acetylcysteine (NAC) showed positive effects in alleviating contrast-induced AKI, the clinical applications are strongly restrained due to the low bioavailability, low renal accumulation, short renal retention time, and high dosage-induced toxicity. Methods: We addressed the clinical dilemma of NAC by developing ultrasmall gold nanoclusters (1-2 nm) capped with NAC (denoted as Au NCs-NAC) as a nanozyme-based antioxidant defense system for AKI alleviation. Rhabdomyolysis-induced AKI mice model was developed, and the same dose of free NAC (as a control) and NAC onto Au NCs (Au NCs-NAC) was used for in vivo investigation of AKI restoration. Results: The as-developed gold nanozyme exhibited high bioavailability and good physicochemical stability as compared to NAC. Meanwhile, Au NCs-NAC showed broad-spectrum antioxidant activity of Au NCs-NAC, offering in vitro renoprotective effects, as well as macrophages by relieving inflammation under hydrogen peroxide or lipopolysaccharide stimulation. Notably, owing to the smaller size than kidney threshold (5.5 nm), Au NCs-NAC displayed preferential renal enrichment (< 2 h) and longer retention (> 24 h) in AKI mice as revealed by fluorescence imaging, thereby largely enhancing the restoration of renal function in AKI mice than free NAC by protecting the kidneys from oxidative injury and inflammation without systemic toxicity, as demonstrated by tissues staining, inflammatory cytokines and biomarkers detection, and mice survival rate. Conclusion: Owing to the synergistic anti-inflammatory/antioxidative effects, and enhanced bioavailability and renal accumulation/retention, Au NCs-NAC displayed far superior therapeutic performance than NAC alone. This work will facilitate the development of high-performance antioxidative nanoplatforms, as well as overcome the clinical limitations of small molecular drugs for AKI treatment and other inflammatory diseases.
Collapse
Affiliation(s)
- Dong-Yang Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tianhui Tu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Muhammad Rizwan Younis
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kathy S. Zhu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Oral Digital Medicine, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Hengke Liu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Shan Lei
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| |
Collapse
|
63
|
Zeng Z, Liew SS, Wei X, Pu K. Hemicyanine‐Based Near‐Infrared Activatable Probes for Imaging and Diagnosis of Diseases. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107877] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ziling Zeng
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Si Si Liew
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Xin Wei
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
- School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
64
|
Li H, Kim D, Yao Q, Ge H, Chung J, Fan J, Wang J, Peng X, Yoon J. Activity‐Based NIR Enzyme Fluorescent Probes for the Diagnosis of Tumors and Image‐Guided Surgery. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009796] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Haidong Li
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 Korea
| | - Dayeh Kim
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 Korea
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road, Hi-tech Zone Dalian 116024 China
| | - Haoying Ge
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road, Hi-tech Zone Dalian 116024 China
| | - Jeewon Chung
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 Korea
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road, Hi-tech Zone Dalian 116024 China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 China
| | - Jingyun Wang
- School of Bioengineering Dalian University of Technology 2 Linggong Road, Hi-tech Zone Dalian 116024 China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road, Hi-tech Zone Dalian 116024 China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 Korea
| |
Collapse
|
65
|
Turkoglu G, Koygun GK, Zafer Yurt MN, Pirencioglu SN, Erbas-Cakmak S. A therapeutic keypad lock decoded in drug resistant cancer cells. Chem Sci 2021; 12:9754-9758. [PMID: 34349948 PMCID: PMC8293978 DOI: 10.1039/d1sc02521j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/17/2021] [Indexed: 12/23/2022] Open
Abstract
A molecular keypad lock that displays photodynamic activity when exposed to glutathione (GSH), esterase and light in the given order, is fabricated and its efficacy in drug resistant MCF7 cancer cells is investigated. The first two inputs are common drug resistant tumor markers. GSH reacts with the agent and shifts the absorption wavelength. Esterase separates the quencher from the structure, further activating the agent. After these sequential exposures, the molecular keypad lock is exposed to light and produces cytotoxic singlet oxygen. Among many possible combinations, only one 'key' can activate the agent, and initiate a photodynamic response. Paclitaxel resistant MCF7 cells are selectively killed. This work presents the first ever biological application of small molecular keypad locks.
Collapse
Affiliation(s)
- Gulsen Turkoglu
- Department of Molecular Biology and Genetics, Konya Food and Agriculture University Meram Konya Turkey
- Research and Development Center for Diagnostic Kits (KIT-ARGEM), Konya Food and Agriculture University Konya Turkey
| | | | - Mediha Nur Zafer Yurt
- Research and Development Center for Diagnostic Kits (KIT-ARGEM), Konya Food and Agriculture University Konya Turkey
| | - Seyda Nur Pirencioglu
- Department of Molecular Biology and Genetics, Necmettin Erbakan University Konya Turkey
| | - Sundus Erbas-Cakmak
- Department of Molecular Biology and Genetics, Konya Food and Agriculture University Meram Konya Turkey
- Research and Development Center for Diagnostic Kits (KIT-ARGEM), Konya Food and Agriculture University Konya Turkey
| |
Collapse
|
66
|
Zeng Z, Liew SS, Wei X, Pu K. Hemicyanine-Based Near-Infrared Activatable Probes for Imaging and Diagnosis of Diseases. Angew Chem Int Ed Engl 2021; 60:26454-26475. [PMID: 34263981 DOI: 10.1002/anie.202107877] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Indexed: 12/18/2022]
Abstract
Molecular activatable probes with near-infrared (NIR) fluorescence play a critical role in in vivo imaging of biomarkers for drug screening and disease diagnosis. With structural diversity and high fluorescence quantum yields, hemicyanine dyes have emerged as a versatile scaffold for the construction of activatable optical probes. This Review presents a survey of hemicyanine-based NIR activatable probes (HNAPs) for in vivo imaging and early diagnosis of diseases. The molecular design principles of HNAPs towards activatable optical signaling against various biomarkers are discussed with a focus on their broad applications in the detection of diseases including inflammation, acute organ failure, skin diseases, intestinal diseases, and cancer. This progress not only proves the unique value of HNAPs in preclinical research but also highlights their high translational potential in clinical diagnosis.
Collapse
Affiliation(s)
- Ziling Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Si Si Liew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Xin Wei
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.,School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
67
|
Ferreira CA, Goel S, Ehlerding EB, Rosenkrans ZT, Jiang D, Sun T, Aluicio-Sarduy E, Engle JW, Ni D, Cai W. Ultrasmall Porous Silica Nanoparticles with Enhanced Pharmacokinetics for Cancer Theranostics. NANO LETTERS 2021; 21:4692-4699. [PMID: 34029471 PMCID: PMC8265214 DOI: 10.1021/acs.nanolett.1c00895] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Theranostic nanoparticles hold the potential to greatly improve cancer management by providing personalized medicine. Although many theranostic nanoconstructs have been successful in preclinical studies, clinical translation is still hampered by their limited targeting capability and lack of successful therapeutic efficacy. We report the use of novel ultrasmall porous silica nanoparticles (UPSN) with enhanced in vivo pharmacokinetics such as high target tissue accumulation (12% ID/g in the tumor) and evasion from the reticuloendothelial system (RES) organs. Herein, UPSN is conjugated with the isotopic pair 90/86Y, enabling both noninvasive imaging as well as internal radiotherapy. In vivo PET imaging demonstrates prolonged blood circulation and excellent tumor contrast with 86Y-DOTA-UPSN. Tumor-to-muscle and tumor-to-liver uptake values were significantly high (12.4 ± 1.7 and 1.5 ± 0.5, respectively), unprecedented for inorganic nanomaterials. 90Y-DOTA-UPSN significantly inhibits tumor growth and increases overall survival, indicating the promise of UPSN for future clinical translation as a cancer theranostic agent.
Collapse
|
68
|
Lyu Y, Yang C, Lyu X, Pu K. Active Delivery of CRISPR System Using Targetable or Controllable Nanocarriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005222. [PMID: 33759340 DOI: 10.1002/smll.202005222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/30/2020] [Indexed: 05/17/2023]
Abstract
Among programmable nuclease-based genome editing tools, the clustered regularly interspaced short palindromic repeats (CRISPR) system with accuracy and the convenient operation is most promising to be applied in gene therapy. The development of effective delivery carriers for the CRISPR system is the major premise to achieve practical applications. Although many nanocarrier-mediated deliveries have been reported to be safer and cheaper over the physical and viral delivery, the accumulation at disease sites or controllability with the spatial or temporal resolution are still desired on nanocarriers to reduce side effects and off-target from the CRISPR system. Therefore, the targetable and controllable nanocarriers to actively deliver the CRISPR system are summarized. The cell or even organ selective nanocarriers are introduced first, followed by the discussion of nanocarriers controlled by biochemical or physical signals. At last, the potential challenges faced by existing nanocarriers are discussed.
Collapse
Affiliation(s)
- Yan Lyu
- Cosmetic Innovation Center, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Cheng Yang
- Cosmetic Innovation Center, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiaomei Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| |
Collapse
|
69
|
Usama SM, Inagaki F, Kobayashi H, Schnermann MJ. Norcyanine-Carbamates Are Versatile Near-Infrared Fluorogenic Probes. J Am Chem Soc 2021; 143:5674-5679. [PMID: 33844539 DOI: 10.1021/jacs.1c02112] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fluorogenic probes in the near-infrared (NIR) region have the potential to provide stimuli-dependent information in living organisms. Here, we describe a new class of fluorogenic probes based on the heptamethine cyanine scaffold, the most broadly used NIR chromophore. These compounds result from modification of heptamethine norcyanines with stimuli-responsive carbamate linkers. The resulting cyanine carbamates (CyBams) exhibit exceptional turn-ON ratios (∼170×) due to dual requirements for NIR emission: carbamate cleavage through 1,6-elimination and chromophore protonation. Illustrating their utility in complex in vivo settings, a γ-glutamate substituted CyBam was applied to imaging γ-glutamyl transpeptidase (GGT) activity in a metastatic model of ovarian cancer. Overall, CyBams have significant potential to extend the reach of fluorogenic strategies to intact tissue and live animal imaging applications.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Fuyuki Inagaki
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
70
|
Activity‐Based NIR Enzyme Fluorescent Probes for the Diagnosis of Tumors and Image‐Guided Surgery. Angew Chem Int Ed Engl 2021; 60:17268-17289. [DOI: 10.1002/anie.202009796] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 02/02/2023]
|
71
|
Jiang D, Rosenkrans ZT, Ni D, Lin J, Huang P, Cai W. Nanomedicines for Renal Management: From Imaging to Treatment. Acc Chem Res 2020; 53:1869-1880. [PMID: 32786331 DOI: 10.1021/acs.accounts.0c00323] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanomedicine has benefited from recent advances in chemistry and biomedical engineering to produce nanoscale materials as theranostic agents. Well-designed nanomaterials may present optimal biological properties, influencing circulation, retention, and excretion for imaging and treatment of various diseases. As the understanding of nanomedicine pharmacokinetics expands continuously, efficient renal clearance of nanomedicines can significantly increase the signal-to-background ratio for precision diagnosis and lower potential toxicity for improved treatment. Studies on nanomaterial-kidney interactions have led to many novel findings on the underlying principles of nanomaterial renal clearance, targeting, and accumulation. In return, the optimized nanomedicines confer significant benefits to the detection and treatment of kidney dysfunction.In this Account, we present an overview of recent progress in the development of nanomaterials for kidney theranostics, aiming to speed up translation and expand possible applications. We start by introducing biological structures of the kidney and their influence on renal targeting, retention, and clearance. Several key factors regarding renal accumulation and excretion, including nanomaterial types, sizes, and shapes, surface charges, and chemical modifications, are identified and discussed. Next, we highlight our recent efforts investigating kidney-interacting nanomaterials and introduce representative nanomedicines for imaging and treatment of kidney diseases. Multiple renal-clearable and renal-accumulating nanomedicines were devised for kidney function imaging. By employing renal-clearable nanomedicines, including gold nanoparticles, porphyrin polymers, DNA frameworks, and polyoxometalate clusters, we were able to noninvasively evaluate split renal function in healthy and diseased mice. Further engineering of renal-accumulating nanosystems has shifted attention from renal diagnosis to precision kidney protection. Many biocompatible nanomedicines, such as DNA origami, selenium-doped carbon quantum dots, melanin nanoparticles, and black phosphorus have all played essential roles in diminishing excessive reactive oxygen species for kidney treatment and protection. Finally, we discuss the challenges and perspectives of nanomaterials for renal care, their future clinical translation, and how they may affect the current landscape of clinical practices. We believe that this Account updates our current understanding of nanomaterial-kidney interactions for further design and control of nanomedicines for specific kidney diagnosis and treatment. This timely Account will generate broad interest in integrating nanotechnology and nanomaterial-biological interaction for state-of-the-art theranostics of renal diseases.
Collapse
Affiliation(s)
- Dawei Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangzhou 518060, China
- Hubei Province Key Laboratory of Molecular Imaging, Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Departments of Radiology and Medical Physics, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Zachary T. Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Dalong Ni
- Departments of Radiology and Medical Physics, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangzhou 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangzhou 518060, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
72
|
Kilian HI, Kang H, Nyayapathi N, Fukuda T, Adluru E, Zhang H, Quinn B, Xia J, Choi HS, Lovell JF. Facile formulation of a long-wavelength cyanine for optical imaging in the second near-infrared window. Biomater Sci 2020; 8:4199-4205. [PMID: 32515752 PMCID: PMC7390685 DOI: 10.1039/d0bm00572j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The second near-infrared window (NIR-II) beyond 1000 nm has attracted attention for optical contrast imaging in small animals. We sought to assess whether commercially available NIR-II dyes could be easily formulated for this purpose. 13 hydrophobic NIR-II dyes were purchased and screened by formulating them in simple solubilizing agents with established use in humans: propylene glycol, Cremaphor EL, Kolliphor HS15 (HS15), Tween 80, and cyclodextrin. Based on the absorption at 1064 nm (matching the Nd:YAG laser output commonly used in photoacoustic imaging), three of the dyes were further assessed at varying dye and surfactant concentrations. Of these, benzo indole butyl diphenylaminocyclopentene heptamethine (BIBDAH) tetrafluoroborate in HS15 generally showed the most favorable NIR-II character. 1 mg mL-1 BIBDAH in 25% HS15 exhibited a single absorption peak at 1030 nm with a calculated intensity greater than 100, which was relatively stable for weeks in storage. Following intravenous administration to mice, determination of BIBDAH pharmacokinetics was possible by absorption measurements of sampled plasma, revealing a circulating half-life of about one hour. Most of the dye was taken up by the liver. BIBDAH was used in vitro and in vivo as a photoacoustic contrast imaging agent and its accumulation could be detected in subcutaneous tumors in mice. BIBDAH was used for fluorescence imaging of blood vessels in mice, including in the brain (through intact skull), and dye clearance from blood to the liver was visualized. Taken together, this study confirms that accessible, strongly-absorbing dye can readily be formulated for injection by simply dissolving them in biocompatible surfactants and used for high-contrast preclinical optical imaging in the second NIR window.
Collapse
Affiliation(s)
- Hailey I Kilian
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Qi J, Duan X, Cai Y, Jia S, Chen C, Zhao Z, Li Y, Peng HQ, Kwok RTK, Lam JWY, Ding D, Tang BZ. Simultaneously boosting the conjugation, brightness and solubility of organic fluorophores by using AIEgens. Chem Sci 2020; 11:8438-8447. [PMID: 34123103 PMCID: PMC8163428 DOI: 10.1039/d0sc03423a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 07/25/2020] [Indexed: 11/21/2022] Open
Abstract
Organic near-infrared (NIR) emitters hold great promise for biomedical applications. Yet, most organic NIR fluorophores face the limitations of short emission wavelengths, low brightness, unsatisfactory processability, and the aggregation-caused quenching effect. Therefore, development of effective molecular design strategies to improve these important properties at the same time is a highly pursued topic, but very challenging. Herein, aggregation-induced emission luminogens (AIEgens) are employed as substituents to simultaneously extend the conjugation length, boost the fluorescence quantum yield, and increase the solubility of organic NIR fluorophores, being favourable for biological applications. A series of donor-acceptor type compounds with different substituent groups (i.e., hydrogen, phenyl, and tetraphenylethene (TPE)) are synthesized and investigated. Compared to the other two analogs, MTPE-TP3 with TPE substituents exhibits the reddest fluorescence, highest brightness, and best solubility. Both the conjugated structure and twisted conformation of TPE groups endow the resulting compounds with improved fluorescence properties and processability for biomedical applications. The in vitro and in vivo applications reveal that the NIR nanoparticles function as a potent probe for tumour imaging. This study would provide new insights into the development of efficient building blocks for improving the performance of organic NIR emitters.
Collapse
Affiliation(s)
- Ji Qi
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Xingchen Duan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University Tianjin 300071 China
| | - Yuanjing Cai
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Shaorui Jia
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Chao Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University Tianjin 300071 China
| | - Zheng Zhao
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Ying Li
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Hui-Qing Peng
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Ryan T K Kwok
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing First RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing First RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University Tianjin 300071 China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing First RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
- NSFC Centre for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
| |
Collapse
|
74
|
Zhang Q, Liang J, Yun SLJ, Liang K, Yang D, Gu Z. Recent advances in improving tumor-targeted delivery of imaging nanoprobes. Biomater Sci 2020; 8:4129-4146. [PMID: 32638731 DOI: 10.1039/d0bm00761g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tumor-targeted delivery of imaging nanoprobes provides a promising approach for the precision imaging diagnosis of cancers. Nanoprobes with desired bio-nano interface properties can preferably enter tumor tissues through the vascular endothelium, penetrate into deep tissues, and detect target lesions. Surface engineering of nanoparticles offers a critical strategy to improve tumor-targeting capacities of nanoprobes. Improvements to the efficacy of targeted nanoprobes have been intensively explored and much of this work centers on the selection of suitable targeting ligands. Herein, in this review, various recent strategies based on different targeting ligands to improve tumor-targeting of imaging nanoprobes have been developed, ranging from small molecule ligands to biomimetic coatings, with highlights on emerging coating techniques using cell membranes and dual-targeting ligands. In particular, construction and surface modification methods, targeting capacities, and imaging/theranostic performance with key issues and potential questions have been described and discussed together with considerations for future development and innovations.
Collapse
Affiliation(s)
- Qianyi Zhang
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | | | |
Collapse
|
75
|
East AK, Lucero MY, Chan J. New directions of activity-based sensing for in vivo NIR imaging. Chem Sci 2020; 12:3393-3405. [PMID: 34163614 PMCID: PMC8179399 DOI: 10.1039/d0sc03096a] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022] Open
Abstract
In vivo imaging is a powerful approach to study biological processes. Beyond cellular methods, in vivo studies allow for biological stimuli (small molecules or proteins) to be studied in their native environment. This has the potential to aid in the discovery of new biology and guide the development of diagnostics and therapies for diseases. To ensure selectivity and an observable readout, the probe development field is shifting towards activity-based sensing (ABS) approaches and near-infrared (NIR) imaging modalities. This perspective will highlight recent in vivo ABS applications that utilize NIR imaging platforms.
Collapse
Affiliation(s)
- Amanda K East
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Melissa Y Lucero
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Jefferson Chan
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
76
|
Huang J, Pu K. Near-infrared fluorescent molecular probes for imaging and diagnosis of nephro-urological diseases. Chem Sci 2020; 12:3379-3392. [PMID: 34163613 PMCID: PMC8179423 DOI: 10.1039/d0sc02925d] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/18/2020] [Indexed: 12/27/2022] Open
Abstract
Near-infrared (NIR) fluorescence imaging has improved imaging depth relative to conventional fluorescence imaging in the visible region, demonstrating great potential in both fundamental biomedical research and clinical practice. To improve the detection specificity, NIR fluorescence imaging probes have been under extensive development. This review summarizes the particular application of optical imaging probes with the NIR-I window (700-900 nm) or the NIR-II window (1000-1700 nm) emission for diagnosis of nephron-urological diseases. These molecular probes have enabled contrast-enhanced imaging of anatomical structures and physiological function as well as molecular imaging and early diagnosis of acute kidney injury, iatrogenic ureteral injury and bladder cancer. The design strategies of molecular probes are specifically elaborated along with representative imaging applications. The potential challenges and perspectives in this field are also discussed.
Collapse
Affiliation(s)
- Jiaguo Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| |
Collapse
|
77
|
Teranishi K. A Near-Infrared Fluorescent Probe Coated with β-Cyclodextrin Molecules for Real-Time Imaging-Guided Intraoperative Ureteral Identification and Diagnosis. Mol Pharm 2020; 17:2672-2681. [PMID: 32427488 DOI: 10.1021/acs.molpharmaceut.0c00364] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although iatrogenic ureteral injury and its lack of recognition due to ureteral invisibility are serious incidents in open and laparoscopic abdominal surgeries, there are currently no safe and effective methods for intraoperative ureteral identification (IUI) and diagnosis (IUD). In this study, I designed and chemically synthesized a near-infrared fluorescence (NIRF) imaging probe (CD-NIR-1) and evaluated its clearance and ability for IUI and IUD in animal models. CD-NIR-1 demonstrated high specificity and ultrarapid clearance by rat kidneys to the urinary bladder following intravenous administration of a single dose (25 nmol/kg of body weight), with 96% of the dose ultimately excreted at the first urination with no chemical modification. Furthermore, urine containing CD-NIR-1 in ureters showed strong NIRF, thereby enabling IUI and IUD via NIRF imaging. These results demonstrated the efficacy of CD-NIR-1 for clinical use.
Collapse
|
78
|
Cheng P, Miao Q, Huang J, Li J, Pu K. Multiplex Optical Urinalysis for Early Detection of Drug-Induced Kidney Injury. Anal Chem 2020; 92:6166-6172. [DOI: 10.1021/acs.analchem.0c00989] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Penghui Cheng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457 Singapore
| | - Qingqing Miao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457 Singapore
| | - Jiaguo Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457 Singapore
| | - Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457 Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457 Singapore
| |
Collapse
|
79
|
Cheng P, Chen W, Li S, He S, Miao Q, Pu K. Fluoro-Photoacoustic Polymeric Renal Reporter for Real-Time Dual Imaging of Acute Kidney Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908530. [PMID: 32141674 DOI: 10.1002/adma.201908530] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/09/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Photoacoustic (PA) imaging agents detect disease tissues and biomarkers with increased penetration depth and enhanced spatial resolution relative to traditional optical imaging, and thus hold great promise for clinical applications. However, existing PA imaging agents often encounter the issues of slow body excretion and low-signal specificity, which compromise their capability for in vivo detection. Herein, a fluoro-photoacoustic polymeric renal reporter (FPRR) is synthesized for real-time imaging of drug-induced acute kidney injury (AKI). FPRR simultaneously turns on both near-infrared fluorescence (NIRF) and PA signals in response to an AKI biomarker (γ-glutamyl transferase) with high sensitivity and specificity. In association with its high renal clearance efficiency (78% at 24 h post-injection), FPRR can detect cisplatin-induced AKI at 24 h post-drug treatment through both real-time imaging and optical urinalysis, which is 48 h earlier than serum biomarker elevation and histological changes. More importantly, the deep-tissue penetration capability of PA imaging results in a signal-to-background ratio that is 2.3-fold higher than NIRF imaging. Thus, the study not only demonstrates the first activatable PA probe for real-time sensitive imaging of kidney function at molecular level, but also highlights the polymeric probe structure with high renal clearance.
Collapse
Affiliation(s)
- Penghui Cheng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Wan Chen
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Shenhua Li
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Shasha He
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| |
Collapse
|
80
|
Huang J, Pu K. Activatable Molecular Probes for Second Near-Infrared Fluorescence, Chemiluminescence, and Photoacoustic Imaging. Angew Chem Int Ed Engl 2020; 59:11717-11731. [PMID: 32134156 DOI: 10.1002/anie.202001783] [Citation(s) in RCA: 325] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Indexed: 01/01/2023]
Abstract
Optical imaging plays a crucial role in biomedicine. However, due to strong light scattering and autofluorescence in biological tissue between 650-900 nm, conventional optical imaging often has a poor signal-to-background ratio and shallow penetration depth, which limits its ability in deep-tissue in vivo imaging. Second near-infrared fluorescence, chemiluminescence, and photoacoustic imaging modalities mitigate these issues by their respective advantages of minimized light scattering, eliminated external excitation, and ultrasound detection. To enable disease detection, activatable molecular probes (AMPs) with the ability to change their second near-infrared fluorescence, chemiluminescence, or photoacoustic signals in response to a biomarker have been developed. This Minireview summarizes the molecular design strategies, sensing mechanisms, and imaging applications of AMPs. The potential challenges and perspectives of AMPs in deep-tissue imaging are also discussed.
Collapse
Affiliation(s)
- Jiaguo Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| |
Collapse
|
81
|
Huang J, Pu K. Activatable Molecular Probes for Second Near‐Infrared Fluorescence, Chemiluminescence, and Photoacoustic Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001783] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jiaguo Huang
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| |
Collapse
|
82
|
Lv M, Zhang Y, Fan J, Yang Y, Chen S, Liang G, Zhang S. A near-infrared fluorescent probe for ratiometric sensing of SO2 in cells and zebrafish. Analyst 2020; 145:7985-7992. [DOI: 10.1039/d0an01468k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SO2 sensing and imaging: the first near-infrared fluorescent probe Mito-HN with AIEE characteristics for ratiometric sensing of SO2 derivatives in vitro, in cells, and in zebrafish was rationally designed and synthesized.
Collapse
Affiliation(s)
- Mengya Lv
- College of Chemistry
- Zhengzhou University
- Zhengzhou
- China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis
- Department of Chemistry
- Hong Kong Baptist University
- Hong Kong SAR
- China
| | - Jiayi Fan
- College of Chemistry
- Zhengzhou University
- Zhengzhou
- China
| | - Yanyun Yang
- College of Chemistry
- Zhengzhou University
- Zhengzhou
- China
| | - Sheng Chen
- College of Chemistry
- Zhengzhou University
- Zhengzhou
- China
- Center for Advanced Analysis & Gene Sequencing
| | - Gaolin Liang
- Center for Advanced Analysis & Gene Sequencing
- Zhengzhou University
- Zhengzhou
- China
| | - Shusheng Zhang
- Center for Advanced Analysis & Gene Sequencing
- Zhengzhou University
- Zhengzhou
- China
| |
Collapse
|