51
|
Integrative Bone Metabolomics-Lipidomics Strategy for Pathological Mechanism of Postmenopausal Osteoporosis Mouse Model. Sci Rep 2018; 8:16456. [PMID: 30405156 PMCID: PMC6220250 DOI: 10.1038/s41598-018-34574-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis, characterized by bone mass reduction and increased fractures, has become a global health problem that seriously affects the health of people, especially postmenopausal women; however, the current pathogenesis of postmenopausal osteoporosis (PMOP) has not been thoroughly elucidated to date. In this study, bilateral ovariectomy was performed to establish an OVX mouse model of osteoporosis. UPLC-Q-TOF-MS-based lipidomics in combination with metabolomics were used to analyze the femur tissue of osteoporosis mice. We found that 11 polar metabolites and 93 lipid metabolites were significantly changed and were involved in amino acid metabolism, nucleotide metabolism and lipid metabolism. Among the lipids, fatty acyls, glycerolipids, glycerophospholipids, sphingolipids and sterols showed robust changes. These results revealed that several metabolic disorders caused by changes in the hormone levels in OVX, especially disordered lipid metabolism, are closely related to the imbalance between bone resorption and formation and may underlie the development of PMOP. The data generated via lipidomics and metabolomics presented in this study shows good applicability and wide coverage in the construction of the metabolic profile of bone tissue. Therefore, this approach may provide the pathway focusing and data support at the metabolite level for the in-depth mechanism of PMOP.
Collapse
|
52
|
Li KH, Liu YT, Yang YW, Lin YL, Hung ML, Lin IC. A positive correlation between blood glucose level and bone mineral density in Taiwan. Arch Osteoporos 2018; 13:78. [PMID: 30009330 DOI: 10.1007/s11657-018-0494-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/09/2018] [Indexed: 02/03/2023]
Abstract
UNLABELLED This study was undertaken to assess the effect of blood glucose on BMD and interactions with age, sex, and BMI in a Taiwanese population. Both obese and non-obese people with type 2 diabetes (T2DM) had higher BMD, at lumbar spine and femoral neck, compared with healthy subjects. In addition, the prevalence of osteoporosis significantly decreased with blood sugar and HbA1c. PURPOSE This study was undertaken to assess the effect of blood glucose on BMD and possible interactions with age, sex, and BMI in a Taiwanese population. PATIENTS AND METHODS This study was a retrospective cross-sectional study using data from the Health Examination Database of Changhua Christian Hospital. Data on BMD of the lumbar spine and femoral neck were obtained by dual X-ray absorptiometry (DXA), and other relevant clinical and laboratory data were recorded. RESULTS The type 2 diabetes (T2DM) group had a higher BMD than the controls. When comparing the prevalence of osteoporosis between subjects by glucose and HbA1c level, the prevalence of osteoporosis significantly decreased with blood glucose and HbA1c. In addition, the BMD of the lumbar spine and femoral neck was higher in the T2DM group than in the controls. Osteoporosis was negatively associated with DM, BMI, and drinking, but positively associated with age, female gender, previous fracture history, and other diseases of the musculoskeletal system and connective tissue. The association between diabetes and osteoporosis remained statistically significant after adjusting for the above factors. T2DM was associated with lower odds of osteoporosis in both obese (OR = 0.77) and non-obese (OR = 0.63) (p for interaction = 0.555). CONCLUSIONS Both obese and non-obese people with T2DM had higher BMD, at lumbar spine and femoral neck, compared with healthy subjects. In addition, the prevalence of osteoporosis significantly decreased with blood glucose and HbA1c.
Collapse
Affiliation(s)
- Kun-Hong Li
- Department of Family Medicine, Changhua Christian Hospital, Changhua County, Taiwan
| | - Yen-Tze Liu
- Department of Family Medicine, Changhua Christian Hospital, Changhua County, Taiwan
| | - Yu-Wen Yang
- Department of Family Medicine, Changhua Christian Hospital, Changhua County, Taiwan
| | - Ying-Li Lin
- Department of Family Medicine, Changhua Christian Hospital, Changhua County, Taiwan
| | - Min-Ling Hung
- Department of Pharmacy, Changhua Christian Hospital, Changhua County, Taiwan
| | - I-Ching Lin
- Department of Family Medicine, Changhua Christian Hospital, Changhua County, Taiwan. .,School of Medicine, Chung Shan Medical University, Taichung City, Taiwan. .,School of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| |
Collapse
|
53
|
Malekzadeh BÖ, Erlandsson MC, Tengvall P, Palmquist A, Ransjo M, Bokarewa MI, Westerlund A. Effects of implant-delivered insulin on bone formation in osteoporotic rats. J Biomed Mater Res A 2018; 106:2472-2480. [PMID: 29673097 DOI: 10.1002/jbm.a.36442] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/06/2018] [Accepted: 03/15/2018] [Indexed: 02/05/2023]
Abstract
Osteoporosis is a major cause of age-related fractures. Healing complications in osteoporotic patients are often associated with increased mortality and morbidity. Stimulation of the implant-adjacent bone could be beneficial in terms of the surgical outcome. Over the past decade, numerous investigations have implicated insulin in normal bone growth, and recent studies have described the advantages of administering insulin locally to increase bone formation. Therefore, we hypothesized that insulin-coated titanium implants would increase bone formation in osteoporotic animals. The aim of this study was to evaluate the effects of insulin delivered from an implant surface on bone-related gene expression and bone formation in osteoporotic rats. Characterizations of the surfaces of insulin-coated and control implants were performed using ellipsometry and interferometry. Forty ovariectomized and four healthy Sprague Dawley rats were used and implants were inserted in the tibias. The systemic effect of insulin was assessed by measuring the blood glucose levels and total body weight. The animals were sacrificed either 1 day or 3 weeks postimplantation. Implant-adherent cells were analyzed by quantitative real-time PCR, and the bone adjacent to the implants was examined by microcomputed tomography and histomorphometry. The insulin-coated implants had no systemic effects. The insulin-coated samples demonstrated significantly lower expression of the gene for interleukin 1β (p = 0.019) at 1 day, and significantly exhibited more periosteal callus (p = 0.029) at 3 weeks. Locally delivered insulin has potential for promoting bone formation and it exerts potentially anti-inflammatory effects in osteoporotic rats. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A:2472-2480, 2018.
Collapse
Affiliation(s)
- Behnosh Ö Malekzadeh
- Department of Orthodontics, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Biomaterials, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Malin C Erlandsson
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pentti Tengvall
- Department of Biomaterials, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria Ransjo
- Department of Orthodontics, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria I Bokarewa
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Westerlund
- Department of Orthodontics, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
54
|
Qi Z, Xia P, Pan S, Zheng S, Fu C, Chang Y, Ma Y, Wang J, Yang X. Combined treatment with electrical stimulation and insulin-like growth factor-1 promotes bone regeneration in vitro. PLoS One 2018; 13:e0197006. [PMID: 29746517 PMCID: PMC5944947 DOI: 10.1371/journal.pone.0197006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/24/2018] [Indexed: 12/12/2022] Open
Abstract
Electrical stimulation (ES) and insulin-like growth factor-1 (IGF-1) are widely used in bone regeneration because of their osteogenic activity. However, the combined effects of ES and supplemental IGF-1 on the whole bone formation process remain unclear. In this study, fluorescence staining and an MTT assay were first utilized to observe the influence of ES and IGF-1 on MC3T3-E1 cell proliferation and adhesion in vitro. Subsequently, osteogenic differentiation was evaluated by the alkaline phosphatase activity (ALP) and the expression of osteogenic marker genes. In addition, cell mineralization was determined by alizarin red staining and scanning electron microscopy (SEM). We demonstrated that the MC3T3-E1 cell proliferation was significantly higher for treatments combining IGF-1 and ES than for treatments with IGF-1 alone. The combination of IGF-1 and ES increased the MC3T3-E1 cell ALP activity, the expression of osteogenesis-related genes and the calcium deposition with a clear dose-dependent effect. Our data show the synergistic effect of IGF-1 and ES in promoting the proliferation, differentiation and mineralization of MC3T3-E1 cells, which suggests that it would be more effective to combine the proper dose of IGF-1 with ES to promote local bone damage repair and regeneration.
Collapse
Affiliation(s)
- Zhiping Qi
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, PR China
| | - Peng Xia
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, PR China
| | - Su Pan
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, PR China
| | - Shuang Zheng
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, PR China
| | - Chuan Fu
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, PR China
| | - Yuxin Chang
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, PR China
| | - Yue Ma
- Department of Gynecological Oncology, the First Hospital of Jilin University, Changchun, PR China
| | - Jincheng Wang
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, PR China
- * E-mail: (JW); (XY)
| | - Xiaoyu Yang
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, PR China
- * E-mail: (JW); (XY)
| |
Collapse
|
55
|
Chaves Neto AH, Brito VGB, Landim de Barros T, do Amaral CCF, Sumida DH, Oliveira SHP. Chronic high glucose and insulin stimulate bone‐marrow stromal cells adipogenic differentiation in young spontaneously hypertensive rats. J Cell Physiol 2018; 233:6853-6865. [DOI: 10.1002/jcp.26445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/05/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Antonio H. Chaves Neto
- Department of Basic Sciences, School of DentistrySão Paulo State University—UNESPAraçatubaSão PauloBrazil
| | - Victor G. B. Brito
- Department of Basic Sciences, School of DentistrySão Paulo State University—UNESPAraçatubaSão PauloBrazil
- Department of Basic Sciences, Programa de Pós‐graduação Multicêntrico em Ciências Fisiológicas‐SBFIs, School of DentistrySão Paulo State University—UNESPAraçatubaSão PauloBrazil
| | - Thamine Landim de Barros
- Department of Basic Sciences, School of DentistrySão Paulo State University—UNESPAraçatubaSão PauloBrazil
- Department of Basic Sciences, Programa de Pós‐graduação Multicêntrico em Ciências Fisiológicas‐SBFIs, School of DentistrySão Paulo State University—UNESPAraçatubaSão PauloBrazil
| | - Caril C. F. do Amaral
- Department of Basic Sciences, School of DentistrySão Paulo State University—UNESPAraçatubaSão PauloBrazil
- Department of Basic Sciences, Programa de Pós‐graduação Multicêntrico em Ciências Fisiológicas‐SBFIs, School of DentistrySão Paulo State University—UNESPAraçatubaSão PauloBrazil
| | - Dóris H. Sumida
- Department of Basic Sciences, School of DentistrySão Paulo State University—UNESPAraçatubaSão PauloBrazil
- Department of Basic Sciences, Programa de Pós‐graduação Multicêntrico em Ciências Fisiológicas‐SBFIs, School of DentistrySão Paulo State University—UNESPAraçatubaSão PauloBrazil
| | - Sandra H. P. Oliveira
- Department of Basic Sciences, School of DentistrySão Paulo State University—UNESPAraçatubaSão PauloBrazil
- Department of Basic Sciences, Programa de Pós‐graduação Multicêntrico em Ciências Fisiológicas‐SBFIs, School of DentistrySão Paulo State University—UNESPAraçatubaSão PauloBrazil
| |
Collapse
|
56
|
Qian W, Su Y, Zhang Y, Yao N, Gu N, Zhang X, Yin H. Secretome analysis of rat osteoblasts during icariin treatment induced osteogenesis. Mol Med Rep 2018. [PMID: 29532868 PMCID: PMC5928639 DOI: 10.3892/mmr.2018.8715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Osteoporosis is a serious public health problem and icariin (ICA) is the active component of the Epimedium sagittatum, a traditional Chinese medicinal herb. The present study aimed to investigate the effects and underlying mechanisms of ICA as a potential therapy for osteoporosis. Calvaria osteoblasts were isolated from newborn rats and treated with ICA. Cell viability, apoptosis, alkaline phosphatase activity and calcium deposition were analyzed. Bioinformatics analyses were performed to identify differentially expressed proteins (DEPs) in response to ICA treatment. Western blot analysis was performed to validate the expression of DEPs. ICA administration promoted osteoblast viability, alkaline phosphatase activity, calcium deposition and inhibited osteoblast apoptosis. Secretome analysis of ICA-treated cells was performed using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. A total of 56 DEPs were identified, including serpin family F member 1 (PEDF), protein disulfide isomerase family A, member 3 (PDIA3), nuclear protein, co-activator of histone transcription (NPAT), c-Myc and heat shock protein 70 (HSP70). These proteins were associated with signaling pathways, including Fas and p53. Bioinformatics and western blot analyses confirmed that the expression levels of the six DEPs were upregulated following ICA treatment. These genes may be directly or indirectly involved in ICA-mediated osteogenic differentiation and osteogenesis. It was demonstrated that ICA treatment promoted osteogenesis by modulating the expression of PEDF, PDIA3, NPAT and HSP70 through signaling pathways, including Fas and p53.
Collapse
Affiliation(s)
- Weiqing Qian
- Department of Orthopedics, The 3rd Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China
| | - Yan Su
- Reproductive Center, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210023, P.R. China
| | - Yajie Zhang
- Laboratory Center, The 3rd Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Nianwei Yao
- Department of Orthopedics, The 3rd Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China
| | - Nin Gu
- Cardiovascular Department, The 3rd Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Xu Zhang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Hong Yin
- Department of Orthopedics, The 3rd Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China
| |
Collapse
|
57
|
Acute effects of lead on porcine neonatal Sertoli cells in vitro. Toxicol In Vitro 2017; 48:45-52. [PMID: 29273543 DOI: 10.1016/j.tiv.2017.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/17/2017] [Accepted: 12/18/2017] [Indexed: 01/08/2023]
Abstract
Environmental pollution is one of the main factors responsible for reducing fertility in males. Lead is one of the major heavy metal contaminants that impairs several organs; it preferentially accumulates in male reproductive organs and alters sperm quality both in vivo and in vitro. However, the underlying mechanisms remain unclear. Sertoli cells (SCs) provide structural and physiological support to spermatogenic cells within seminiferous tubules. Therefore, changes in SCs affect the developing germ cells and alter spermatogenesis. This study aimed to assess whether exposure to subtoxic doses of adversely affects SC functioning in higher mammals. Purified and functional porcine neonatal SCs were exposed to lead acetate at three different concentrations. Lead exposure decreased the mRNA expression and protein levels of inhibin B and anti-Mullerian hormone (AMH) compared to control, indicating loss of FSH-r integrity in terms of 17-β-oestradiol production under FSH stimulation. In addition, we observed an increase in the mRNA levels of Akt and mTOR, and the phosphorylation of p38 and Akt in SCs exposed to lead at all concentrations compared to unexposed control SCs. In conclusion, lead is toxic to SCs, even at low concentrations, and is expected to alter spermatogenesis.
Collapse
|
58
|
Görögh T, Quabius ES, Georgitsis A, Hoffmann M, Lippross S. Sequential activation of the AKT pathway in human osteoblasts treated with Oscarvit: a bioactive product with positive effect both on skeletal pain and mineralization in osteoblasts. BMC Musculoskelet Disord 2017; 18:500. [PMID: 29183350 PMCID: PMC5706336 DOI: 10.1186/s12891-017-1860-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/20/2017] [Indexed: 11/10/2022] Open
Abstract
Background Oscarvit (OSC) is an in-house preparation consisting of calcium, magnesium, phosphorus, strontium, Vitamin D, and eggshell membrane hydrolysate containing naturally occurring glycosaminoglycans and sulfated glycoproteins. OSC has been used both in an open-label human study and in vitro in osteoblasts. Methods Fifteen patients divided into three groups received oral OSC 0.6 g three times daily for 20 days. The main outcome measures were regional skeletal pain over the treatment period. For the in vitro experiments eight primary human osteoblasts cultures were established from trabecular bone, six of them from the femoral head, and two from the tibia. Cells were cultured for five to 20 days in the presence of 20 μg/ml OSC. Immunocytochemistry and RT-PCR were used to detect molecular alterations involved in the mineralization process. Calcium concentration was measured by means of a colorimetric assay and cell viability was analyzed using the LDH cytotoxicity assay. To investigate whether the osteoblasts response to OSC is associated with signaling processes the ERK1/2 and AKT signal transduction pathways were analyzed. Results Open label human study: OSC, 0.6 g three times daily, resulted in a significant positive effect on pain alleviation of 42% after 5 days (p < 0.001), 57% after 10 days and 68% after 20 days (p < 0.0001; for both time points), with no side-effects being reported. In vitro analysis: In osteoblasts, growing in OSC-supplemented media significant overexpression of bone γ-carboxylglutamic acid-containing protein, secreted phosphoprotein-1, integrin binding sialoprotein, and dentin matrix phosphoprotein genes could be detected when compared to control osteoblasts grown in the absence of OSC. Moreover, OSC-treated osteoblasts produced over the study period vast extracellular calcium deposits without any loss of cellular integrity or signs of cellular toxicity. In addition OSC promotes osteoblast differentiation and activates the AKT signaling pathway. Conclusion This open label study provides preliminary evidence of the efficacy of OSC. Despite the limitations (small heterogeneous patient group) the findings can be viewed as a necessary investigation that supports further clinical trials with a double-blind controlled design. Experiments at cellular and molecular level provide supplementary information about OSC that increases mineralization in osteoblasts and activation of the AKT pathway. Trial registration DRKS00013233, 06th November 2017, retrospectively registered.
Collapse
Affiliation(s)
- Tibor Görögh
- Department of Otorhinolaryngology, Head and Neck Surgery, Christian-Albrechts-University Kiel, Germany, Arnold-Heller-Str. 3 House 27, 24105, Kiel, Germany.
| | - Elgar S Quabius
- Department of Otorhinolaryngology, Head and Neck Surgery, Christian-Albrechts-University Kiel, Germany, Arnold-Heller-Str. 3 House 27, 24105, Kiel, Germany.,Institute of Immunology, Christian-Albrechts-University Kiel, Germany, Arnold-Heller-Str. 3 House 17, 24105, Kiel, Germany
| | - Alexander Georgitsis
- Department of Otorhinolaryngology, Head and Neck Surgery, Christian-Albrechts-University Kiel, Germany, Arnold-Heller-Str. 3 House 27, 24105, Kiel, Germany
| | - Markus Hoffmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Christian-Albrechts-University Kiel, Germany, Arnold-Heller-Str. 3 House 27, 24105, Kiel, Germany
| | - Sebastian Lippross
- Department of Orthopaedic Trauma Surgery, Christian-Albrechts-University Kiel, Germany, Arnold-Heller-Str. 3 House 18, 24105, Kiel, Germany
| |
Collapse
|
59
|
Scudeller LA, Mavropoulos E, Tanaka MN, Costa AM, Braga CA, López EO, Mello A, Rossi AM. Effects on insulin adsorption due to zinc and strontium substitution in hydroxyapatite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
60
|
The roles of the exoribonucleases DIS3L2 and XRN1 in human disease. Biochem Soc Trans 2017; 44:1377-1384. [PMID: 27911720 DOI: 10.1042/bst20160107] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 12/19/2022]
Abstract
RNA degradation is a vital post-transcriptional process which ensures that transcripts are maintained at the correct level within the cell. DIS3L2 and XRN1 are conserved exoribonucleases that are critical for the degradation of cytoplasmic RNAs. Although the molecular mechanisms of RNA degradation by DIS3L2 and XRN1 have been well studied, less is known about their specific roles in the development of multicellular organisms or human disease. This review focusses on the roles of DIS3L2 and XRN1 in the pathogenesis of human disease, particularly in relation to phenotypes seen in model organisms. The known diseases associated with loss of activity of DIS3L2 and XRN1 are discussed, together with possible mechanisms and cellular pathways leading to these disease conditions.
Collapse
|
61
|
Curneen JMG, Casey M, Laird E. The relationship between protein quantity, BMD and fractures in older adults. Ir J Med Sci 2017; 187:111-121. [PMID: 28674746 DOI: 10.1007/s11845-017-1642-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/26/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Previously, no large-scale literature reviews have focussed on the relationship between dietary protein and its impact on bone mineral density (BMD) and fracture risk-as measures of bone health-in older adults and its potential impact as a primary prevention tool. AIMS The aim of this study was to assess the impact of varying dietary protein levels on bone health. METHODS A literature review of trials concerning older adults' (>50 years of age) and animals' varying protein intake in the diet and its effect on BMD (human and animal) and fracture risk (human only) was carried out. Additionally, a review of dietary assessment tools used in these studies was also analysed. RESULTS Ten out of fourteen trials assessing BMD and dietary protein quantity in humans and 3/4 in animal trials found a positive relationship between these two parameters. Four out of seven trials investigating the relationship between dietary protein quantity and fracture risk displayed a positive, protective effect of dietary protein levels on fracture risk. Sixty-two percent of studies used the Food-Frequency Questionnaire assessment method. DISCUSSION Increased protein intake in the diet is beneficial to bone health and reduces morbidity and mortality. The importance of using dietary protein, along with calcium and vitamin D, as a primary preventative strategy should be stressed, given the health and cost benefits that this would deliver, with a possible need for a higher level of protein in the diet of an elderly person than what is currently recommended.
Collapse
Affiliation(s)
- J M G Curneen
- University College Dublin, Belfield, Dublin 4, County Dublin, Ireland.
| | - M Casey
- Department of Geriatric Medicine, St James' Hospital, James' Street, Dublin 8, County Dublin, Ireland.
| | - E Laird
- Trinity College School of Biochemistry and Immunology, St James' Hospital, James' Street, Dublin 8, County Dublin, Ireland
| |
Collapse
|
62
|
Kindler JM, Pollock NK, Laing EM, Oshri A, Jenkins NT, Isales CM, Hamrick MW, Ding KH, Hausman DB, McCabe GP, Martin BR, Hill Gallant KM, Warden SJ, Weaver CM, Peacock M, Lewis RD. Insulin Resistance and the IGF-I-Cortical Bone Relationship in Children Ages 9 to 13 Years. J Bone Miner Res 2017; 32:1537-1545. [PMID: 28300329 PMCID: PMC5489353 DOI: 10.1002/jbmr.3132] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 12/27/2022]
Abstract
IGF-I is a pivotal hormone in pediatric musculoskeletal development. Although recent data suggest that the role of IGF-I in total body lean mass and total body bone mass accrual may be compromised in children with insulin resistance, cortical bone geometric outcomes have not been studied in this context. Therefore, we explored the influence of insulin resistance on the relationship between IGF-I and cortical bone in children. A secondary aim was to examine the influence of insulin resistance on the lean mass-dependent relationship between IGF-I and cortical bone. Children were otherwise healthy, early adolescent black and white boys and girls (ages 9 to 13 years) and were classified as having high (n = 147) or normal (n = 168) insulin resistance based on the homeostasis model assessment of insulin resistance (HOMA-IR). Cortical bone at the tibia diaphysis (66% site) and total body fat-free soft tissue mass (FFST) were measured by peripheral quantitative computed tomography (pQCT) and dual-energy X-ray absorptiometry (DXA), respectively. IGF-I, insulin, and glucose were measured in fasting sera and HOMA-IR was calculated. Children with high HOMA-IR had greater unadjusted IGF-I (p < 0.001). HOMA-IR was a negative predictor of cortical bone mineral content, cortical bone area (Ct.Ar), and polar strength strain index (pSSI; all p ≤ 0.01) after adjusting for race, sex, age, maturation, fat mass, and FFST. IGF-I was a positive predictor of most musculoskeletal endpoints (all p < 0.05) after adjusting for race, sex, age, and maturation. However, these relationships were moderated by HOMA-IR (pInteraction < 0.05). FFST positively correlated with most cortical bone outcomes (all p < 0.05). Path analyses demonstrated a positive relationship between IGF-I and Ct.Ar via FFST in the total cohort (βIndirect Effect = 0.321, p < 0.001). However, this relationship was moderated in the children with high (βIndirect Effect = 0.200, p < 0.001) versus normal (βIndirect Effect = 0.408, p < 0.001) HOMA-IR. These data implicate insulin resistance as a potential suppressor of IGF-I-dependent cortical bone development, though prospective studies are needed. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Joseph M Kindler
- Department of Foods and Nutrition, The University of Georgia, Athens, GA, USA
| | | | - Emma M Laing
- Department of Foods and Nutrition, The University of Georgia, Athens, GA, USA
| | - Assaf Oshri
- Department of Human Development and Family Science, The University of Georgia, Athens, GA, USA
| | - Nathan T Jenkins
- Department of Kinesiology, The University of Georgia, Athens, GA, USA
| | - Carlos M Isales
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, USA
| | - Mark W Hamrick
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Ke-Hong Ding
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, USA
| | - Dorothy B Hausman
- Department of Foods and Nutrition, The University of Georgia, Athens, GA, USA
| | - George P McCabe
- Department of Statistics, Purdue University, West Lafayette, IN, USA
| | - Berdine R Martin
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | | | - Stuart J Warden
- Department of Physical Therapy, Indiana University, Indianapolis, IN, USA
| | - Connie M Weaver
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Munro Peacock
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Richard D Lewis
- Department of Foods and Nutrition, The University of Georgia, Athens, GA, USA
| |
Collapse
|
63
|
Park YE, Musson DS, Naot D, Cornish J. Cell–cell communication in bone development and whole-body homeostasis and pharmacological avenues for bone disorders. Curr Opin Pharmacol 2017; 34:21-35. [DOI: 10.1016/j.coph.2017.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/07/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
|
64
|
Abstract
In an increasingly obese and ageing population, type 2 diabetes (T2DM) and osteoporotic fracture are major public health concerns. Understanding how obesity and type 2 diabetes modulate fracture risk is important to identify and treat people at risk of fracture. Additionally, the study of the mechanisms of action of obesity and T2DM on bone has already offered insights that may be applicable to osteoporosis in the general population. Most available evidence indicates lower risk of proximal femur and vertebral fracture in obese adults. However the risk of some fractures (proximal humerus, femur and ankle) is higher, and a significant number fractures occur in obese people. BMI is positively associated with BMD and the mechanisms of this association in vivo may include increased loading, adipokines such as leptin, and higher aromatase activity. However, some fat depots could have negative effects on bone; cytokines from visceral fat are pro-resorptive and high intramuscular fat content is associated with poorer muscle function, attenuating loading effects and increasing falls risk. T2DM is also associated with higher bone mineral density (BMD), but increased overall and hip fracture risk. There are some similarities between bone in obesity and T2DM, but T2DM seems to have additional harmful effects and emerging evidence suggests that glycation of collagen may be an important factor. Higher BMD but higher fracture risk presents challenges in fracture prediction in obesity and T2DM. Dual energy X-ray absorptiometry underestimates risk, standard clinical risk factors may not capture all relevant information, and risk is under-recognised by clinicians. However, the limited available evidence suggests that osteoporosis treatment does reduce fracture risk in obesity and T2DM with generally similar efficacy to other patients.
Collapse
Affiliation(s)
- Jennifer S Walsh
- Academic Unit of Bone Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK.
| | - Tatiane Vilaca
- Academic Unit of Bone Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
| |
Collapse
|
65
|
Schussler SD, Uske K, Marwah P, Kemp FW, Bogden JD, Lin SS, Livingston Arinzeh T. Controlled Release of Vanadium from a Composite Scaffold Stimulates Mesenchymal Stem Cell Osteochondrogenesis. AAPS JOURNAL 2017; 19:1017-1028. [PMID: 28332167 DOI: 10.1208/s12248-017-0073-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/06/2017] [Indexed: 01/03/2023]
Abstract
Large bone defects often require the use of autograft, allograft, or synthetic bone graft augmentation; however, these treatments can result in delayed osseous integration. A tissue engineering strategy would be the use of a scaffold that could promote the normal fracture healing process of endochondral ossification, where an intermediate cartilage phase is later transformed to bone. This study investigated vanadyl acetylacetonate (VAC), an insulin mimetic, combined with a fibrous composite scaffold, consisting of polycaprolactone with nanoparticles of hydroxyapatite and beta-tricalcium phosphate, as a potential bone tissue engineering scaffold. The differentiation of human mesenchymal stem cells (MSCs) was evaluated on 0.05 and 0.025 wt% VAC containing composite scaffolds (VAC composites) in vitro using three different induction media: osteogenic (OS), chondrogenic (CCM), and chondrogenic/osteogenic (C/O) media, which mimics endochondral ossification. The controlled release of VAC was achieved over 28 days for the VAC composites, where approximately 30% of the VAC was released over this period. MSCs cultured on the VAC composites in C/O media had increased alkaline phosphatase activity, osteocalcin production, and collagen synthesis over the composite scaffold without VAC. In addition, gene expressions for chondrogenesis (Sox9) and hypertrophic markers (VEGF, MMP-13, and collagen X) were the highest on VAC composites. Almost a 1000-fold increase in VEGF gene expression and VEGF formation, as indicated by immunostaining, was achieved for cells cultured on VAC composites in C/O media, suggesting VAC will promote angiogenesis in vivo. These results demonstrate the potential of VAC composite scaffolds in supporting endochondral ossification as a bone tissue engineering strategy.
Collapse
Affiliation(s)
- S D Schussler
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA
| | - K Uske
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey, 07102, USA
| | - P Marwah
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey, 07102, USA
| | - F W Kemp
- Department of Preventive Medicine and Community Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, 07103, USA
| | - J D Bogden
- Department of Preventive Medicine and Community Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, 07103, USA
| | - S S Lin
- Department of Orthopaedic Surgery, New Jersey Medical School, Rutgers University, Newark, New Jersey, 07103, USA
| | - Treena Livingston Arinzeh
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey, 07102, USA.
| |
Collapse
|
66
|
Lv T, Wu Y, Mu C, Liu G, Yan M, Xu X, Wu H, Du J, Yu J, Mu J. Insulin-like growth factor 1 promotes the proliferation and committed differentiation of human dental pulp stem cells through MAPK pathways. Arch Oral Biol 2016; 72:116-123. [DOI: 10.1016/j.archoralbio.2016.08.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 06/15/2016] [Accepted: 08/08/2016] [Indexed: 01/07/2023]
|
67
|
Pigossi SC, Medeiros MC, Saska S, Cirelli JA, Scarel-Caminaga RM. Role of Osteogenic Growth Peptide (OGP) and OGP(10-14) in Bone Regeneration: A Review. Int J Mol Sci 2016; 17:ijms17111885. [PMID: 27879684 PMCID: PMC5133884 DOI: 10.3390/ijms17111885] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/24/2016] [Accepted: 11/02/2016] [Indexed: 12/16/2022] Open
Abstract
Bone regeneration is a process that involves several molecular mediators, such as growth factors, which directly affect the proliferation, migration and differentiation of bone-related cells. The osteogenic growth peptide (OGP) and its C-terminal pentapeptide OGP(10–14) have been shown to stimulate the proliferation, differentiation, alkaline phosphatase activity and matrix mineralization of osteoblastic lineage cells. However, the exact molecular mechanisms that promote osteoblastic proliferation and differentiation are not completely understood. This review presents the main chemical characteristics of OGP and/or OGP(10–14), and also discusses the potential molecular pathways induced by these growth factors to promote proliferation and differentiation of osteoblasts. Furthermore, since these peptides have been extensively investigated for bone tissue engineering, the clinical applications of these peptides for bone regeneration are discussed.
Collapse
Affiliation(s)
- Suzane C Pigossi
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP-São Paulo State University, Humaita St, 1680, CEP 14801-903 Araraquara, São Paulo, Brazil.
- Department of Morphology, School of Dentistry, UNESP- São Paulo State University, Humaita St, 1680, CEP 14801-903 Araraquara, São Paulo, Brazil.
| | - Marcell C Medeiros
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP-São Paulo State University, Humaita St, 1680, CEP 14801-903 Araraquara, São Paulo, Brazil.
| | - Sybele Saska
- Department of General and Inorganic Chemistry, Institute of Chemistry, UNESP-São Paulo State University, Professor Francisco Degni St, 55, CEP 14800-900 Araraquara, São Paulo, Brazil.
| | - Joni A Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP-São Paulo State University, Humaita St, 1680, CEP 14801-903 Araraquara, São Paulo, Brazil.
| | - Raquel M Scarel-Caminaga
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP-São Paulo State University, Humaita St, 1680, CEP 14801-903 Araraquara, São Paulo, Brazil.
- Department of Morphology, School of Dentistry, UNESP- São Paulo State University, Humaita St, 1680, CEP 14801-903 Araraquara, São Paulo, Brazil.
| |
Collapse
|
68
|
Seref-Ferlengez Z, Suadicani SO, Thi MM. A new perspective on mechanisms governing skeletal complications in type 1 diabetes. Ann N Y Acad Sci 2016; 1383:67-79. [PMID: 27571221 DOI: 10.1111/nyas.13202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/11/2016] [Accepted: 07/18/2016] [Indexed: 12/29/2022]
Abstract
This review focuses on bone mechanobiology in type 1 diabetes (T1D), an area of research on diabetes-associated skeletal complications that is still in its infancy. We first provide a brief overview of the deleterious effects of diabetes on the skeleton and of the knowledge gained from studies with rodent models of T1D. Second, we discuss two specific hallmarks of T1D, low insulin and high glucose, and address the extent to which they affect skeletal health. Third, we highlight the mechanosensitive nature of bone tissue and the importance of mechanical loading for bone health. We also summarize recent advances in bone mechanobiology that implicate osteocytes as the mechanosensors and major regulatory cells in the bone. Finally, we discuss recent evidence indicating that the diabetic bone is "deaf" to mechanical loading and that osteocytes are central players in mechanisms that lead to bone loss in T1D.
Collapse
Affiliation(s)
- Zeynep Seref-Ferlengez
- Department of Orthopaedic Surgery.,Laboratories of Musculoskeletal Orthopedic Research at Einstein-Montefiore (MORE)
| | - Sylvia O Suadicani
- Laboratories of Musculoskeletal Orthopedic Research at Einstein-Montefiore (MORE).,Department of Neuroscience.,Department of Urology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | - Mia M Thi
- Department of Orthopaedic Surgery.,Laboratories of Musculoskeletal Orthopedic Research at Einstein-Montefiore (MORE).,Department of Neuroscience
| |
Collapse
|
69
|
Gao CQ, Zhi R, Yang Z, Li HC, Yan HC, Wang XQ. Low dose of IGF-I increases cell size of skeletal muscle satellite cells via Akt/S6K signaling pathway. J Cell Biochem 2016; 116:2637-48. [PMID: 25923195 DOI: 10.1002/jcb.25212] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/22/2015] [Indexed: 12/17/2022]
Abstract
The objective of this study was to investigate the effect of insulin growth factor-I (IGF-I) on the size of pig skeletal muscle satellite cells (SCs). Using microarray, real-time RT-PCR, radioimmunoassay analysis and western blot, we first showed that supplementation of low-dose of IGF-I in culture medium resulted in enlarged cell size of Lantang SCs, only Akt and S6K were up-regulated at both the mRNA and protein levels among almost all of the mTOR pathway key genes, but had no effect on cell number. To elucidate the signaling mechanisms responsible for regulating cell size under low-dose of IGF-I treatment, we blocked Akt and S6K activity with the specific inhibitors MK2206 and PF4708671, respectively. Both inhibitors caused a decrease in cell size. In addition, MK2206 lowered the protein level of p-Akt (Ser473), p-S6K (Thr389), and p-rpS6 (Ser235/236), whereas PF4708671 lowered the protein level of p-S6K (Thr389) and p-rpS6 (Ser235/236). However, low dose of IGF-I didn't affect the protein level of p-mTOR (Ser2448) and p-mTOR (Ser2481). When both inhibitors were applied simultaneously, the effect was the same as that of the Akt inhibition alone. Taken together, we report for the first time that low-dose of IGF-I treatment increases cell size via Akt/S6K signaling pathway.
Collapse
Affiliation(s)
- Chun-qi Gao
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou, Guangdong province, China
| | - Rui Zhi
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou, Guangdong province, China.,Guizhou Agricultural Vocational College, Guiyang, Guizhou, China
| | - Zhou Yang
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou, Guangdong province, China.,College of Science and Engineering, Guangxi Open University, Nanning, Guangxi, China
| | - Hai-chang Li
- Davis Heart & Lung Research Institute, Wexner Medical Center at the Ohio State University, Columbus, Ohio
| | - Hui-chao Yan
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou, Guangdong province, China
| | - Xiu-qi Wang
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou, Guangdong province, China
| |
Collapse
|
70
|
Reddi S, Shanmugam VP, Kapila S, Kapila R. Identification of buffalo casein-derived bioactive peptides with osteoblast proliferation activity. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2710-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
71
|
Malekzadeh BÖ, Ransjo M, Tengvall P, Mladenovic Z, Westerlund A. Insulin released from titanium discs with insulin coatings-Kinetics and biological activity. J Biomed Mater Res B Appl Biomater 2016; 105:1847-1854. [DOI: 10.1002/jbm.b.33717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 05/04/2016] [Accepted: 05/09/2016] [Indexed: 02/01/2023]
Affiliation(s)
- B. Ö. Malekzadeh
- Department of Orthodontics; Institute of Odontology, Sahlgrenska Academy, University of Gothenburg; Gothenburg Sweden
- Department of Oral and Maxillofacial Surgery; Mölndal Hospital; Sweden
- Department of Biomaterials; Sahlgrenska Academy, University of Gothenburg; Gothenburg Sweden
| | - M. Ransjo
- Department of Orthodontics; Institute of Odontology, Sahlgrenska Academy, University of Gothenburg; Gothenburg Sweden
| | - P. Tengvall
- Department of Biomaterials; Sahlgrenska Academy, University of Gothenburg; Gothenburg Sweden
| | - Z. Mladenovic
- Department of Orthodontics; Institute of Odontology, Sahlgrenska Academy, University of Gothenburg; Gothenburg Sweden
| | - A. Westerlund
- Department of Orthodontics; Institute of Odontology, Sahlgrenska Academy, University of Gothenburg; Gothenburg Sweden
| |
Collapse
|
72
|
Jennings A, MacGregor A, Spector T, Cassidy A. Amino Acid Intakes Are Associated With Bone Mineral Density and Prevalence of Low Bone Mass in Women: Evidence From Discordant Monozygotic Twins. J Bone Miner Res 2016; 31:326-35. [PMID: 26334651 PMCID: PMC4832262 DOI: 10.1002/jbmr.2703] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/02/2022]
Abstract
Although a higher protein intake, particularly from vegetable sources, has been shown to be associated with higher bone mineral density (BMD) the relative impact of specific amino acids on BMD and risk of osteoporosis remains to be determined. Mechanistic research suggests that a number of specific amino acids, including five nonessential amino acids--alanine, arginine, glutamic acid, glycine, and proline--may play a role in bone health, principally through improved production of insulin and insulin-like growth factor 1 and the synthesis of collagen and muscle protein. However to date, no previous studies have examined the associations between habitual intake of amino acids and direct measures of BMD and prevalence of osteoporosis or osteopenia, and no studies have examined this relationship in discordant identical twin-pairs. In these analyses of female monozygotic twin-pairs discordant for amino acid intake (n = 135), twins with higher intakes of alanine and glycine had significantly higher BMD at the spine than their co-twins with within-pair differences in spine-BMD of 0.012 g/cm(2) (SE 0.01; p = 0.039) and 0.014 g/cm(2) (SE 0.01; p = 0.026), respectively. Furthermore, in cross-sectional multivariable analyses of 3160 females aged 18 to 79 years, a higher intake of total protein was significantly associated with higher DXA-measured BMD at the spine (quartile Q4 to quartile Q1: 0.017 g/cm(2), SE 0.01, p = 0.035) and forearm (Q4 to Q1: 0.010 g/cm(2), SE 0.003, p = 0.002). Intake of six amino acids (alanine, arginine, glutamic acid, leucine, lysine, and proline) were associated with higher BMD at the spine and forearm with the strongest association observed for leucine (Q4 to Q1: 0.024 g/cm(2), SE 0.01, p = 0.007). When intakes were stratified by protein source, vegetable or animal, prevalence of osteoporosis or osteopenia was 13% to 19% lower comparing extreme quartiles of vegetable intake for five amino acids (not glutamic acid or proline). These data provide evidence to suggest that intake of protein and several amino acids, including alanine and glycine, may be beneficial for bone health, independent of genetic background.
Collapse
Affiliation(s)
- Amy Jennings
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Alexander MacGregor
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Tim Spector
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK
| | - Aedín Cassidy
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
73
|
Amiri N, Christians JK. PAPP-A2 expression by osteoblasts is required for normal postnatal growth in mice. Growth Horm IGF Res 2015; 25:274-280. [PMID: 26385171 DOI: 10.1016/j.ghir.2015.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/17/2015] [Accepted: 09/07/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Pregnancy associated plasma protein-A2 (PAPP-A2) is a protease that cleaves insulin-like growth factor binding protein-5 (IGFBP-5), the most abundant IGFBP in bone. Deletion of Pappa2 reduces postnatal growth and bone length in mice. The aim of this study was to determine whether locally produced PAPP-A2 is required for normal bone growth. DESIGN We deleted Pappa2 primarily in osteoblasts by crossing conditional Pappa2 deletion mice with mice expressing Cre recombinase under the control of the Sp7 (Osterix) promoter. Effects of disrupting Pappa2 in Sp7-expressing cells were examined by measuring body mass and tail length at 3, 6, 10 and 12 weeks of age and bone dimensions at 12 weeks. RESULTS Body mass, tail length, and linear bone dimensions were significantly reduced at all ages by osteoblast-specific Pappa2 deletion. Mice homozygous for the conditional Pappa2 deletion allele and carrying the Cre transgene were smaller than controls carrying the Cre transgene, whereas mice homozygous for the conditional Pappa2 deletion allele were not smaller than controls when comparing mice not carrying the transgene. This result unambiguously demonstrates that PAPP-A2 produced by Sp7 expressing cells is required for normal growth. However, constitutive Pappa2 deletion had greater effects than osteoblast-specific Pappa2 deletion for many traits, indicating that post-natal growth is also affected by other sources of PAPP-A2. Immunohistochemistry revealed that PAPP-A2 localized in the epiphysis and metaphysis as well as osteoblasts, consistent with a role in bone growth. CONCLUSION Locally-produced PAPP-A2 is required for normal bone growth.
Collapse
Affiliation(s)
- Neilab Amiri
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Julian K Christians
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
74
|
Ivaska KK, Heliövaara MK, Ebeling P, Bucci M, Huovinen V, Väänänen HK, Nuutila P, Koistinen HA. The effects of acute hyperinsulinemia on bone metabolism. Endocr Connect 2015; 4:155-62. [PMID: 26047829 PMCID: PMC4496528 DOI: 10.1530/ec-15-0022] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 12/20/2022]
Abstract
Insulin signaling in bone-forming osteoblasts stimulates bone formation and promotes the release of osteocalcin (OC) in mice. Only a few studies have assessed the direct effect of insulin on bone metabolism in humans. Here, we studied markers of bone metabolism in response to acute hyperinsulinemia in men and women. Thirty-three subjects from three separate cohorts (n=8, n=12 and n=13) participated in a euglycaemic hyperinsulinemic clamp study. Blood samples were collected before and at the end of infusions to determine the markers of bone formation (PINP, total OC, uncarboxylated form of OC (ucOC)) and resorption (CTX, TRAcP5b). During 4 h insulin infusion (40 mU/m(2) per min, low insulin), CTX level decreased by 11% (P<0.05). High insulin infusion rate (72 mU/m(2) per min) for 4 h resulted in more pronounced decrease (-32%, P<0.01) whereas shorter insulin exposure (40 mU/m(2) per min for 2 h) had no effect (P=0.61). Markers of osteoblast activity remained unchanged during 4 h insulin, but the ratio of uncarboxylated-to-total OC decreased in response to insulin (P<0.05 and P<0.01 for low and high insulin for 4 h respectively). During 2 h low insulin infusion, both total OC and ucOC decreased significantly (P<0.01 for both). In conclusion, insulin decreases bone resorption and circulating levels of total OC and ucOC. Insulin has direct effects on bone metabolism in humans and changes in the circulating levels of bone markers can be seen within a few hours after administration of insulin.
Collapse
Affiliation(s)
- Kaisa K Ivaska
- Department of Cell Biology and AnatomyInstitute of Biomedicine, University of Turku, FI-20520 Turku, FinlandDepartment of MedicineUniversity of Helsinki and Helsinki University Central Hospital, Helsinki, FinlandTurku PET CentreUniversity of Turku, Turku, FinlandDepartment of RadiologyUniversity of Turku, Turku, FinlandMedical Imaging Centre of Southwest FinlandTurku University Hospital, Turku, FinlandDepartment of EndocrinologyTurku University Hospital, Turku, FinlandAbdominal Center: EndocrinologyUniversity of Helsinki and Helsinki University Central Hospital, Helsinki, FinlandMinerva Foundation Institute for Medical ResearchHelsinki, Finland
| | - Maikki K Heliövaara
- Department of Cell Biology and AnatomyInstitute of Biomedicine, University of Turku, FI-20520 Turku, FinlandDepartment of MedicineUniversity of Helsinki and Helsinki University Central Hospital, Helsinki, FinlandTurku PET CentreUniversity of Turku, Turku, FinlandDepartment of RadiologyUniversity of Turku, Turku, FinlandMedical Imaging Centre of Southwest FinlandTurku University Hospital, Turku, FinlandDepartment of EndocrinologyTurku University Hospital, Turku, FinlandAbdominal Center: EndocrinologyUniversity of Helsinki and Helsinki University Central Hospital, Helsinki, FinlandMinerva Foundation Institute for Medical ResearchHelsinki, Finland
| | - Pertti Ebeling
- Department of Cell Biology and AnatomyInstitute of Biomedicine, University of Turku, FI-20520 Turku, FinlandDepartment of MedicineUniversity of Helsinki and Helsinki University Central Hospital, Helsinki, FinlandTurku PET CentreUniversity of Turku, Turku, FinlandDepartment of RadiologyUniversity of Turku, Turku, FinlandMedical Imaging Centre of Southwest FinlandTurku University Hospital, Turku, FinlandDepartment of EndocrinologyTurku University Hospital, Turku, FinlandAbdominal Center: EndocrinologyUniversity of Helsinki and Helsinki University Central Hospital, Helsinki, FinlandMinerva Foundation Institute for Medical ResearchHelsinki, Finland
| | - Marco Bucci
- Department of Cell Biology and AnatomyInstitute of Biomedicine, University of Turku, FI-20520 Turku, FinlandDepartment of MedicineUniversity of Helsinki and Helsinki University Central Hospital, Helsinki, FinlandTurku PET CentreUniversity of Turku, Turku, FinlandDepartment of RadiologyUniversity of Turku, Turku, FinlandMedical Imaging Centre of Southwest FinlandTurku University Hospital, Turku, FinlandDepartment of EndocrinologyTurku University Hospital, Turku, FinlandAbdominal Center: EndocrinologyUniversity of Helsinki and Helsinki University Central Hospital, Helsinki, FinlandMinerva Foundation Institute for Medical ResearchHelsinki, Finland
| | - Ville Huovinen
- Department of Cell Biology and AnatomyInstitute of Biomedicine, University of Turku, FI-20520 Turku, FinlandDepartment of MedicineUniversity of Helsinki and Helsinki University Central Hospital, Helsinki, FinlandTurku PET CentreUniversity of Turku, Turku, FinlandDepartment of RadiologyUniversity of Turku, Turku, FinlandMedical Imaging Centre of Southwest FinlandTurku University Hospital, Turku, FinlandDepartment of EndocrinologyTurku University Hospital, Turku, FinlandAbdominal Center: EndocrinologyUniversity of Helsinki and Helsinki University Central Hospital, Helsinki, FinlandMinerva Foundation Institute for Medical ResearchHelsinki, Finland Department of Cell Biology and AnatomyInstitute of Biomedicine, University of Turku, FI-20520 Turku, FinlandDepartment of MedicineUniversity of Helsinki and Helsinki University Central Hospital, Helsinki, FinlandTurku PET CentreUniversity of Turku, Turku, FinlandDepartment of RadiologyUniversity of Turku, Turku, FinlandMedical Imaging Centre of Southwest FinlandTurku University Hospital, Turku, FinlandDepartment of EndocrinologyTurku University Hospital, Turku, FinlandAbdominal Center: EndocrinologyUniversity of Helsinki and Helsinki University Central Hospital, Helsinki, FinlandMinerva Foundation Institute for Medical ResearchHelsinki, Finland Department of Cell Biology and AnatomyInstitute of Biomedicine, University of Turku, FI-20520 Turku, FinlandDepartment of MedicineUniversity of Helsinki and Helsinki University Central Hospital, Helsinki, FinlandTurku PET CentreUniversity of Turku, Turku, FinlandDepartment of RadiologyUniversity of Turku, Turku, FinlandMedical Imaging Centre of Southwest FinlandTurku University Hospital, Turku, FinlandDepartment of EndocrinologyTurku University Hospital, Turku, FinlandAbdominal Center: EndocrinologyUniversity of Helsinki and Helsinki University Central Hospital, Helsinki, FinlandMinerva Foundation Institute for Medical ResearchHelsinki, Finland
| | - H Kalervo Väänänen
- Department of Cell Biology and AnatomyInstitute of Biomedicine, University of Turku, FI-20520 Turku, FinlandDepartment of MedicineUniversity of Helsinki and Helsinki University Central Hospital, Helsinki, FinlandTurku PET CentreUniversity of Turku, Turku, FinlandDepartment of RadiologyUniversity of Turku, Turku, FinlandMedical Imaging Centre of Southwest FinlandTurku University Hospital, Turku, FinlandDepartment of EndocrinologyTurku University Hospital, Turku, FinlandAbdominal Center: EndocrinologyUniversity of Helsinki and Helsinki University Central Hospital, Helsinki, FinlandMinerva Foundation Institute for Medical ResearchHelsinki, Finland
| | - Pirjo Nuutila
- Department of Cell Biology and AnatomyInstitute of Biomedicine, University of Turku, FI-20520 Turku, FinlandDepartment of MedicineUniversity of Helsinki and Helsinki University Central Hospital, Helsinki, FinlandTurku PET CentreUniversity of Turku, Turku, FinlandDepartment of RadiologyUniversity of Turku, Turku, FinlandMedical Imaging Centre of Southwest FinlandTurku University Hospital, Turku, FinlandDepartment of EndocrinologyTurku University Hospital, Turku, FinlandAbdominal Center: EndocrinologyUniversity of Helsinki and Helsinki University Central Hospital, Helsinki, FinlandMinerva Foundation Institute for Medical ResearchHelsinki, Finland Department of Cell Biology and AnatomyInstitute of Biomedicine, University of Turku, FI-20520 Turku, FinlandDepartment of MedicineUniversity of Helsinki and Helsinki University Central Hospital, Helsinki, FinlandTurku PET CentreUniversity of Turku, Turku, FinlandDepartment of RadiologyUniversity of Turku, Turku, FinlandMedical Imaging Centre of Southwest FinlandTurku University Hospital, Turku, FinlandDepartment of EndocrinologyTurku University Hospital, Turku, FinlandAbdominal Center: EndocrinologyUniversity of Helsinki and Helsinki University Central Hospital, Helsinki, FinlandMinerva Foundation Institute for Medical ResearchHelsinki, Finland
| | - Heikki A Koistinen
- Department of Cell Biology and AnatomyInstitute of Biomedicine, University of Turku, FI-20520 Turku, FinlandDepartment of MedicineUniversity of Helsinki and Helsinki University Central Hospital, Helsinki, FinlandTurku PET CentreUniversity of Turku, Turku, FinlandDepartment of RadiologyUniversity of Turku, Turku, FinlandMedical Imaging Centre of Southwest FinlandTurku University Hospital, Turku, FinlandDepartment of EndocrinologyTurku University Hospital, Turku, FinlandAbdominal Center: EndocrinologyUniversity of Helsinki and Helsinki University Central Hospital, Helsinki, FinlandMinerva Foundation Institute for Medical ResearchHelsinki, Finland Department of Cell Biology and AnatomyInstitute of Biomedicine, University of Turku, FI-20520 Turku, FinlandDepartment of MedicineUniversity of Helsinki and Helsinki University Central Hospital, Helsinki, FinlandTurku PET CentreUniversity of Turku, Turku, FinlandDepartment of RadiologyUniversity of Turku, Turku, FinlandMedical Imaging Centre of Southwest FinlandTurku University Hospital, Turku, FinlandDepartment of EndocrinologyTurku University Hospital, Turku, FinlandAbdominal Center: EndocrinologyUniversity of Helsinki and Helsinki University Central Hospital, Helsinki, FinlandMinerva Foundation Institute for Medical ResearchHelsinki, Finland
| |
Collapse
|
75
|
Chen Q, Sinha K, Deng JM, Yasuda H, Krahe R, Behringer RR, de Crombrugghe B. Mesenchymal Deletion of Histone Demethylase NO66 in Mice Promotes Bone Formation. J Bone Miner Res 2015; 30:1608-17. [PMID: 25736226 PMCID: PMC4780322 DOI: 10.1002/jbmr.2494] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 02/26/2015] [Accepted: 03/03/2015] [Indexed: 11/07/2022]
Abstract
Our previous studies indicated that the Jumonji C (JmjC)-domain-containing NO66 is a histone demethylase with specificity for methylated histone H3K4 and H3K36. NO66 binds to the transcription factor Osterix (Osx) and inhibits its transcriptional activity in promoter assays. However, the physiological role of NO66 in formation of mammalian bones is unknown. Here, using a genetically engineered mouse model, we show that during early skeletal development, Prx1-Cre-dependent mesenchymal deletion of NO66 promotes osteogenesis and formation of both endochondral as well as intramembranous skeletal elements, leading to a larger skeleton and a high bone mass phenotype in adult mice. The excess bone formation in mice where NO66 was deleted in cells of mesenchymal origin is associated with an increase in the number of preosteoblasts and osteoblasts. Further analysis revealed that in the embryonic limbs and adult calvaria of mice with deletion of NO66 in cells of mesenchymal origin, expression of several genes including bone morphogenetic protein 2 (Bmp2), insulin-like growth factor 1 (Igf1), and osteoclast inhibitor osteoprotegerin was increased, concurrent with an increase in expression of bone formation markers such as osterix (Osx), type I collagen, and bone sialoprotein (Bsp). Taken together, our results provide the first in vivo evidence that NO66 histone demethylase plays an important role in mammalian osteogenesis during early development as well as in adult bone homeostasis. We postulate that NO66 regulates bone formation, at least in part, via regulating the number of bone-forming cells and expression of multiple genes that are critical for these processes.
Collapse
Affiliation(s)
- Qin Chen
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Krishna Sinha
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian Min Deng
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hideyo Yasuda
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ralf Krahe
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard R Behringer
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Benoit de Crombrugghe
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
76
|
Müller WEG, Tolba E, Schröder HC, Wang X. Polyphosphate: A Morphogenetically Active Implant Material Serving as Metabolic Fuel for Bone Regeneration. Macromol Biosci 2015; 15:1182-1197. [DOI: 10.1002/mabi.201500100] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry; University Medical Center of the Johannes Gutenberg University; Duesbergweg 6; D-55128 Mainz Germany
| | - Emad Tolba
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry; University Medical Center of the Johannes Gutenberg University; Duesbergweg 6; D-55128 Mainz Germany
- Biomaterials Department; Inorganic Chemical Industries Division; National Research Center; Doki Cairo; 11884 Egypt
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry; University Medical Center of the Johannes Gutenberg University; Duesbergweg 6; D-55128 Mainz Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry; University Medical Center of the Johannes Gutenberg University; Duesbergweg 6; D-55128 Mainz Germany
| |
Collapse
|
77
|
Silva JC, Sampaio P, Fernandes MH, Gomes PS. The Osteogenic Priming of Mesenchymal Stem Cells is Impaired in Experimental Diabetes. J Cell Biochem 2015; 116:1658-67. [DOI: 10.1002/jcb.25126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/03/2015] [Indexed: 02/01/2023]
Affiliation(s)
- J. C. Silva
- Laboratory for Bone Metabolism and Regeneration; Faculty of Dental Medicine; University of Porto; Rua Dr. Manuel Pereira da Silva Porto 4200-393 Portugal
| | - P. Sampaio
- Institute for Molecular Cell Biology (IBMC); Porto Portugal
| | - M. H. Fernandes
- Laboratory for Bone Metabolism and Regeneration; Faculty of Dental Medicine; University of Porto; Rua Dr. Manuel Pereira da Silva Porto 4200-393 Portugal
| | - P. S. Gomes
- Laboratory for Bone Metabolism and Regeneration; Faculty of Dental Medicine; University of Porto; Rua Dr. Manuel Pereira da Silva Porto 4200-393 Portugal
| |
Collapse
|
78
|
Shibasaki S, Kitano S, Karasaki M, Tsunemi S, Sano H, Iwasaki T. Blocking c-Met signaling enhances bone morphogenetic protein-2-induced osteoblast differentiation. FEBS Open Bio 2015; 5:341-7. [PMID: 25941631 PMCID: PMC4415006 DOI: 10.1016/j.fob.2015.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/02/2015] [Accepted: 04/17/2015] [Indexed: 01/09/2023] Open
Abstract
Role of c-Met signaling in osteoblast differentiation was investigated. Osteoblast differentiation was determined by ALP and osteocalcin production by C2C12 and MC3T3-E1 cells. c-Met signaling negatively regulates osteoblast differentiation. Blocking c-Met signaling might serve as a therapeutic strategy for rheumatoid arthritis.
We previously demonstrated that blocking hepatocyte growth factor (HGF) receptor/c-Met signaling inhibited arthritis and articular bone destruction in mouse models of rheumatoid arthritis (RA). In the present study, we investigated the role of c-Met signaling in osteoblast differentiation using the C2C12 myoblast cell line derived from murine satellite cells and the MC3T3-E1 murine pre-osteoblast cell line. Osteoblast differentiation was induced by treatment with bone morphogenetic protein (BMP)-2 or osteoblast-inducer reagent in the presence or absence of either HGF antagonist (NK4) or c-Met inhibitor (SU11274). Osteoblast differentiation was confirmed by Runx2 expression, and alkaline phosphatase (ALP) and osteocalcin production by the cells. Production of ALP, osteocalcin and HGF was verified by enzyme-linked immunosorbent assay. Runx2 expression was confirmed by reverse transcription-PCR analysis. The phosphorylation status of ERK1/2, AKT, and Smads was determined by Western blot analysis. Both NK4 and SU11274 enhanced Runx2 expression, and ALP and osteocalcin production but suppressed HGF production in BMP-2-stimulated C2C12 cells. SU11274 also enhanced ALP and osteocalcin production in osteoblast-inducer reagent-stimulated MC3T3-E1 cells. SU11274 inhibited ERK1/2 and AKT phosphorylation in HGF-stimulated C2C12 cells. This result suggested that ERK and AKT were functional downstream of the c-Met signaling pathway. However, both mitogen-activated protein kinase/ERK kinase (MEK) and phosphatidylinositol 3-kinase (PI3K) inhibitor suppressed osteocalcin and HGF production in BMP-2-stimulated C2C12 cells. Furthermore, SU11274, MEK, and PI3K inhibitor suppressed Smad phosphorylation in BMP-2-stimulated C2C12 cells. These results indicate that although the c-Met-MEK-ERK-Smad and c-Met-PI3K-AKT-Smad signaling pathways positively regulate osteoblast differentiation, c-Met signaling negatively regulates osteoblast differentiation, independent of the MEK-ERK-Smad and PI3K-AKT-Smad pathways. Therefore, blocking c-Met signaling might serve as a therapeutic strategy for the repair of destructed bone in patients with RA.
Collapse
Affiliation(s)
- Seiji Shibasaki
- General Education Center, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan ; Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Sachie Kitano
- Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Miki Karasaki
- Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Sachi Tsunemi
- General Education Center, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan
| | - Hajime Sano
- Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Tsuyoshi Iwasaki
- Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan ; Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan
| |
Collapse
|
79
|
Chen Q, Zhang L, de Crombrugghe B, Krahe R. Mesenchyme-specific overexpression of nucleolar protein 66 in mice inhibits skeletal growth and bone formation. FASEB J 2015; 29:2555-65. [PMID: 25746793 DOI: 10.1096/fj.14-258970] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/18/2015] [Indexed: 11/11/2022]
Abstract
Previous studies showed that nucleolar protein 66 (NO66), the Jumonji C-domain-containing histone demethylase for methylated histone H3K4 and H3K36 (H3K36me), negatively regulates osteoblast differentiation in vitro by inhibiting the activity of transcription factor osterix (Osx). However, whether NO66 affects mammalian skeletogenesis in vivo is not yet known. Here, we generated transgenic (TG) mice overexpressing a flag-tagged NO66 transgene driven by the Prx1 (paired related homeobox 1) promoter. We found that NO66 overexpression in Prx1-expressing mesenchymal cells inhibited skeletal growth and bone formation. The inhibitory phenotype was associated with >50% decreases in chondrocyte/osteoblast proliferation and differentiation. Moreover, we found that in bones of NO66-TG mice, expression of Igf1, Igf1 receptor (Igf1r), runt-related transcription factor 2, and Osx was significantly down-regulated (P < 0.05). Consistent with these results, we observed >50% reduction in levels of phosphorylated protein kinase B (Akt) and H3K36me3 in bones of NO66-TG mice, suggesting an inverse correlation between NO66 histone demethylase and the activity of IGF1R/Akt signaling. This correlation was further confirmed by in vitro assays of C2C12 cells with NO66 overexpression. We propose that the decrease in the IGF1R/Akt signaling pathway in mice with mesenchymal overexpression of NO66 may contribute in part to the inhibition of skeletal growth and bone formation.
Collapse
Affiliation(s)
- Qin Chen
- *Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA; and Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Liping Zhang
- *Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA; and Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Benoit de Crombrugghe
- *Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA; and Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Ralf Krahe
- *Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA; and Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
80
|
ZHOU RONGPING, DENG MINGTAO, CHEN LANYING, FANG NING, DU CHUAN, CHEN LINPAN, ZOU YEQING, DAI JIANGHUA, ZHU MEILAN, WANG WEI, LIN SIJIAN, LIU RONGHUA, LUO JUN. Shp2 regulates chlorogenic acid-induced proliferation and adipogenic differentiation of bone marrow-derived mesenchymal stem cells in adipogenesis. Mol Med Rep 2015; 11:4489-95. [DOI: 10.3892/mmr.2015.3285] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 12/17/2014] [Indexed: 11/05/2022] Open
|
81
|
Brennan-Speranza TC, Conigrave AD. Osteocalcin: an osteoblast-derived polypeptide hormone that modulates whole body energy metabolism. Calcif Tissue Int 2015; 96:1-10. [PMID: 25416346 DOI: 10.1007/s00223-014-9931-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/11/2014] [Indexed: 02/07/2023]
Abstract
Osteocalcin is a bone-specific protein that is regularly used in the clinical setting as a serum marker of bone turnover. Recent evidence indicates that osteocalcin plays a previously unsuspected role in the control of energy metabolism. Thus, osteocalcin-deficient mice have a profoundly deranged metabolic phenotype that includes insulin resistance, glucose intolerance and abnormal fat deposition. Additionally, osteocalcin administration in mice improves insulin sensitivity and decreases fat pad mass and serum triglyceride levels. The role of osteocalcin in human macronutrient metabolism is less clear but recent studies report positive correlations between serum osteocalcin levels and established indices of metabolic health. Herein, we review key physiological functions of osteocalcin, focussing on the roles of osteocalcin in the modulation of macronutrient metabolism, male reproductive function and foetal brain development. We consider the implications of these findings for the coordination of metabolism with development and fertility. We also consider evidence that a Class C G-protein-coupled receptor from a subgroup known to mediate nutrient-sensing acts as the osteocalcin receptor.
Collapse
Affiliation(s)
- Tara C Brennan-Speranza
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia,
| | | |
Collapse
|
82
|
Hou JM, Chen EY, Lin F, Lin QM, Xue Y, Lan XH, Wu M. Lactoferrin Induces Osteoblast Growth through IGF-1R. Int J Endocrinol 2015; 2015:282806. [PMID: 26290662 PMCID: PMC4531176 DOI: 10.1155/2015/282806] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/11/2014] [Accepted: 11/05/2014] [Indexed: 11/17/2022] Open
Abstract
Objectives. To investigate the role of the IGF-1R by which lactoferrin induces osteoblast growth. Methods. Osteoblast received 5 d lactoferrin intervention at a concentration of 0.1, 1, 10, 100, and 1000 μg/mL, and the IGF-1 and IGF-1R were detected using RT-PCR and western blot. The osteoblast into the control, 100 μg/mL lactoferrin, Neo-scramble (NS, empty vector), NS + 100 μg/mL lactoferrin, shIGF-1R and shIGF-1R + 100 μg/mL lactoferrin group. We test the apoptosis and proliferation and the level of PI3K and RAS in osteoblasts after 5 d intervention. Results. (1) 1, 10, 100, and 1000 μg/mL lactoferrin induced the expression of IGF-1 mRNA and protein. 10 μg/mL and 100 μg/mL lactoferrin induced the expression of IGF-1R mRNA and protein. (2) Lactoferrin (100 μg/mL) induced osteoblast proliferation while inhibiting apoptosis. Osteoblasts with silenced IGF-1R exhibited decreased proliferation but increased apoptosis. MMT staining and flow cytometry both indicated that there was no significant difference between the shIGF-1R group and the shIGF-1R + 100 μg/mL lactoferrin group. (3) Lactoferrin (100 μg/mL) induced PI3K and RAS phosphorylation and silence of IGF-1R resulted in decreased p-PI3K and p-RAS expression. Lactoferrin-treated shIGF-1R cells showed significantly higher level of p-PI3K and p-RAS when compared with shIGF-1R. Conclusion. Lactoferrin induced IGF-1/IGF-1R in a concentration-dependent manner. Lactoferrin promoted osteoblast proliferation while inhibiting apoptosis through IGF-1R. Lactoferrin activated PI3K and RAS phosphorylation via an IGF-1R independent pathway.
Collapse
Affiliation(s)
- Jian-Ming Hou
- Endocrinology Department, Fujian Provincial Hospital, No. 134 Dong Jie Road, Fuzhou, Fujian 350001, China
- *Jian-Ming Hou:
| | - En-Yu Chen
- Endocrinology Department, Fujian Provincial Hospital, No. 134 Dong Jie Road, Fuzhou, Fujian 350001, China
| | - Fan Lin
- Endocrinology Department, Fujian Provincial Hospital, No. 134 Dong Jie Road, Fuzhou, Fujian 350001, China
| | - Qing-Ming Lin
- Provincial Clinical Medical College of Fujian Medical University, No. 134 Dong Jie Road, Fuzhou, Fujian 350001, China
| | - Ying Xue
- Provincial Clinical Medical College of Fujian Medical University, No. 134 Dong Jie Road, Fuzhou, Fujian 350001, China
| | - Xu-Hua Lan
- Provincial Clinical Medical College of Fujian Medical University, No. 134 Dong Jie Road, Fuzhou, Fujian 350001, China
| | - Man Wu
- Provincial Clinical Medical College of Fujian Medical University, No. 134 Dong Jie Road, Fuzhou, Fujian 350001, China
| |
Collapse
|
83
|
Kim HK, Kim MG, Leem KH. Collagen hydrolysates increased osteogenic gene expressions via a MAPK signaling pathway in MG-63 human osteoblasts. Food Funct 2014; 5:573-8. [PMID: 24496382 DOI: 10.1039/c3fo60509d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study investigated the effects of CHs on osteogenic activities and MAPK-regulation on bone matrix gene expressions. The effects of CHs on cell proliferation, alkaline phosphatase (ALP) activity, collagen synthesis, and mineralization were measured in human osteoblastic MG-63 cells. Activation of MAPKs and downstream transcription factors such as extracellular-signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase 1/2 (JNK1/2), p38, ELK1, and cJUN was examined using Western blot analysis. The expressions of osteogenic genes were measured by quantitative real-time PCR. CHs dose-dependently increased MG-63 cell proliferation, ALP activity, collagen synthesis, and calcium deposition. CHs activated ERK1/2, JNK1/2, p38, and ELK1 phosphorylation except cJUN. The COL1A1 (collagen, type I, alpha 1), ALPL (alkaline phosphatase), BGLAP (osteocalcin), and SPP1 (secreted phosphoprotein 1, osteopontin) gene expressions were increased by CH treatment. The ERK1/2 inhibitor (PD98509) blocked the CH-induced COL1A1 and ALPL gene expression, as well as ELK1 phosphorylation. The JNK1/2 inhibitor (SP600125) abolished CH-induced COL1A1 expression. The p38 inhibitor (SB203580) blocked CH-induced COL1A1 and SPP1 gene expression. In conclusion, CH treatment stimulates the osteogenic activities and increases bone matrix gene expressions via the MAPK/ELK1 signaling pathway. These results could provide a mechanistic explanation for the bone-strengthening effects of CHs.
Collapse
Affiliation(s)
- Hye Kyung Kim
- Department of Food & Biotechnology, Hanseo University, Seosan, Chungnam 356-706, South Korea
| | | | | |
Collapse
|
84
|
Developmental pathways hijacked by osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 804:93-118. [PMID: 24924170 DOI: 10.1007/978-3-319-04843-7_5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cancer of any type often can be described by an arrest, alteration or disruption in the normal development of a tissue or organ, and understanding of the normal counterpart's development can aid in understanding the malignant state. This is certainly true for osteosarcoma and the normal developmental pathways that guide osteoblast development that are changed in the genesis of osteogenic sarcoma. A carefully regulated crescendo-decrescendo expression of RUNX2 accompanies the transition from mesenchymal stem cell to immature osteoblast to mature osteoblast. This pivotal role is controlled by several pathways, including bone morphogenic protein (BMP), Wnt/β-catenin, fibroblast growth factor (FGF), and protein kinase C (PKC). The HIPPO pathway and its downstream target YAP help to regulate proliferation of immature osteoblasts and their maturation into non-proliferating mature osteoblasts. This pathway also helps regulate expression of the mature osteoblast protein osteocalcin. YAP also regulates expression of MT1-MMP, a membrane-bound matrix metalloprotease responsible for remodeling the extracellular matrix surrounding the osteoblasts. YAP, in turn, can be regulated by the ERBB family protein Her-4. Osteosarcoma may be thought of as a cell held at the immature osteoblast stage, retaining some of the characteristics of that developmental stage. Disruptions of several of these pathways have been described in osteosarcoma, including BMP, Wnt/b-catenin, RUNX2, HIPPO/YAP, and Her-4. Further, PKC can be activated by several receptor tyrosine kinases implicated in osteosarcoma, including the ERBB family (EGFR, Her-2 and Her-4 in osteosarcoma), IGF1R, FGF, and others. Understanding these functions may aid in the understanding the mechanisms underpinning clinical observations in osteosarcoma, including both the lytic and blastic phenotypes of tumors, the invasiveness of the disease, and the tendency for treated tumors to ossify rather than shrink. Through a better understanding of the relationship between normal osteoblast development and osteosarcoma, we may gain insights into novel therapeutic avenues and improved outcomes.
Collapse
|
85
|
Maniscalco L, Iussich S, Morello E, Martano M, Gattino F, Miretti S, Biolatti B, Accornero P, Martignani E, Sánchez-Céspedes R, Buracco P, De Maria R. Increased expression of insulin-like growth factor-1 receptor is correlated with worse survival in canine appendicular osteosarcoma. Vet J 2014; 205:272-80. [PMID: 25257352 DOI: 10.1016/j.tvjl.2014.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 12/24/2022]
Abstract
Insulin-like growth factor 1 receptor (IGF-1R) is a cell membrane receptor widely expressed in tissues and involved in different cancers in humans. IGF-1R expression in human osteosarcoma has been associated with the development of tumour metastasis and with prognosis, and represents an attractive therapeutic target. The goal of this study was to investigate the expression of IGF-1R in canine osteosarcoma tissues and cell lines and assess its role and prognostic value. Samples from 34 dogs were examined by immunohistochemistry for IGF-1R expression. IGF-1R/AKT/MAPK signalling was evaluated by western blot and quantitative polymerase chain reaction in the cell lines. In addition, the in vitro inhibition of IGF-1R with pycropodophillin (PPP) was used to evaluate molecular and biological effects. Immunohistochemical data showed that IGF-1R was expressed in 71% of the analysed osteosarcoma samples and that dogs with higher levels of IGF-IR expression (47% of cases) had decreased survival (P < 0.05) when compared to dogs with lower IGF-IR expression. Molecular studies demonstrated that in canine osteosarcoma IGF-IR is activated by IGF-1 mostly in a paracrine or endocrine (rather than autocrine) manner, leading to activation of AKT/MAPK signalling. PPP caused p-IGF-1R dephosphorylation with partial blocking of p-MAPK and p-AKT, as well as apoptosis. It was concluded that IGF-1R is expressed and plays a role in canine osteosarcoma and that its expression is correlated with a poor prognosis. As in humans, IGF-1R may represent a good therapeutic target and a prognostic factor for canine osteosarcoma.
Collapse
Affiliation(s)
- Lorella Maniscalco
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy.
| | - Selina Iussich
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Emanuela Morello
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Marina Martano
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Francesca Gattino
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Silvia Miretti
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Bartolomeo Biolatti
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Paolo Accornero
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Eugenio Martignani
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Raquel Sánchez-Céspedes
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Raffaella De Maria
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| |
Collapse
|
86
|
Effects of egg yolk-derived peptide on osteogenic gene expression and MAPK activation. Molecules 2014; 19:12909-24. [PMID: 25157462 PMCID: PMC6271094 DOI: 10.3390/molecules190912909] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/07/2014] [Accepted: 08/12/2014] [Indexed: 01/01/2023] Open
Abstract
The present study investigated the effects of egg yolk-derived peptide (YPEP) on osteogenic activities and MAPK-regulation of osteogenic gene expressions. The effects of YPEP on cell proliferation, alkaline phosphatase activity, collagen synthesis, and mineralization were measured in human osteoblastic MG-63 cells. Activation of MAPKs and downstream transcription factors such as extracellular-signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase 1/2 (JNK1/2), p38, ELK1, and cJUN were examined using western blot analysis. YPEP dose-dependently increased MG-63 cell proliferation, ALP activity, collagen synthesis, and calcium deposition. YPEP activated ERK1/2, p38, and ELK1 phosphorylation whereas JNK and cJUN were not affected by YPEP. The COL1A1 (collagen, type I, alpha 1), ALPL (alkaline phosphatase), and SPP1 (secreted phosphoprotein 1, osteopontin) gene expressions were increased while BGLAP (osteocalcin) was not affected by YPEP. The ERK1/2 inhibitor (PD98509) blocked the YPEP-induced COL1A1 and ALPL gene expressions as well as ELK1 phosphorylation. The p38 inhibitor (SB203580) blocked YPEP-induced COL1A1 and ALPL gene expressions. SPP1 gene expression was not affected by these MAPK inhibitors. In conclusion, YPEP treatment stimulates the osteogenic differentiation via the MAPK/ELK1 signaling pathway. These results could provide a mechanistic explanation for the bone-strengthening effects of YPEP.
Collapse
|
87
|
Mantripragada VP, Jayasuriya AC. IGF-1 release kinetics from chitosan microparticles fabricated using environmentally benign conditions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:506-16. [PMID: 25063148 DOI: 10.1016/j.msec.2014.05.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/05/2014] [Accepted: 05/30/2014] [Indexed: 01/23/2023]
Abstract
The main objective of this study is to maximize growth factor encapsulation efficiency into microparticles. The novelty of this study is to maximize the encapsulated growth factors into microparticles by minimizing the use of organic solvents and using relatively low temperatures. The microparticles were fabricated using chitosan biopolymer as a base polymer and cross-linked with tripolyphosphate (TPP). Insulin like-growth factor-1 (IGF-1) was encapsulated into microparticles to study release kinetics and bioactivity. In order to authenticate the harms of using organic solvents like hexane and acetone during microparticle preparation, IGF-1 encapsulated microparticles prepared by the emulsification and coacervation methods were compared. The microparticles fabricated by emulsification method have shown a significant decrease (p<0.05) in IGF-1 encapsulation efficiency, and cumulative release during the two-week period. The biocompatibility of chitosan microparticles and the bioactivity of the released IGF-1 were determined in vitro by live/dead viability assay. The mineralization data observed with von Kossa assay, was supported by mRNA expression levels of osterix and runx2, which are transcription factors necessary for osteoblasts differentiation. Real time RT-PCR data showed an increased expression of runx2 and a decreased expression of osterix over time, indicating differentiating osteoblasts. Chitosan microparticles prepared in optimum environmental conditions are a promising controlled delivery system for cells to attach, proliferate, differentiate and mineralize, thereby acting as a suitable bone repairing material.
Collapse
Affiliation(s)
| | - Ambalangodage C Jayasuriya
- Biomedical Engineering Program, The University of Toledo, Toledo, OH 43614-5807, USA; Department of Orthopaedic Surgery, The University of Toledo, Toledo, OH 43614-5807, USA.
| |
Collapse
|
88
|
Niehoff A, Lechner P, Ratiu O, Reuter S, Hamann N, Brüggemann GP, Schönau E, Bloch W, Beccard R. Effect of whole-body vibration and insulin-like growth factor-I on muscle paralysis-induced bone degeneration after botulinum toxin injection in mice. Calcif Tissue Int 2014; 94:373-83. [PMID: 24292598 DOI: 10.1007/s00223-013-9818-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/13/2013] [Indexed: 10/26/2022]
Abstract
Botulinum toxin A (BTX)-induced muscle paralysis results in pronounced bone degradation with substantial bone loss. We hypothesized that whole-body vibration (WBV) and insulin-like growth factor-I (IGF-I) treatment can counteract paralysis-induced bone degradation following BTX injections by activation of the protein kinase B (Akt) signaling pathway. Female C57BL/6 mice (n = 60, 16 weeks) were assigned into six groups (n = 10 each): SHAM, BTX, BTX+WBV, BTX+IGF-I, BTX+WBV+IGF-I, and a baseline group, which was killed at the beginning of the study. Mice received a BTX (1.0 U/0.1 mL) or saline (SHAM) injection in the right hind limb. The BTX+IGF-I and BTX+WBV+IGF-I groups obtained daily subcutaneous injections of human IGF-I (1 μg/day). The BTX+WBV and BTX+WBV+IGF-I groups underwent WBV (25 Hz, 2.1 g, 0.83 mm) for 30 min/day, 5 days/week for 4 weeks. Femora were scanned by pQCT, and mechanical properties were determined. On tibial sections TRAP staining, static histomorphometry, and immunohistochemical staining against Akt, phospho-Akt, IGF-IR (IGF-I receptor), and phospho-IGF-IR were conducted. BTX injection decreased trabecular and cortical bone mineral density. The WBV and WBV+IGF-I groups showed no difference in trabecular bone mineral density compared to the SHAM group. The phospho-IGF-IR and phospho-Akt stainings were not differentially altered in the injected hind limbs between groups. We found that high-frequency, low-magnitude WBV can counteract paralysis-induced bone loss following BTX injections, while we could not detect any effect of treatment with IGF-I.
Collapse
Affiliation(s)
- Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Yun-Kai L, Hui W, Xin-wei Z, Liang G, Jin-liang Z. The polymorphism of Insulin-like growth factor-I (IGF-I) is related to osteoporosis and bone mineral density in postmenopausal population. Pak J Med Sci 2014; 30:131-5. [PMID: 24639846 PMCID: PMC3955557 DOI: 10.12669/pjms.301.4264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 10/19/2013] [Accepted: 10/22/2013] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE It has been shown that Insulin-like growth factor-1 (IGF-1) may be related with bone mineral density (BMD) or osteoporosis. But there are few evidences on the role of genetic variation of IGF-1 on the BMD or osteoporosis. We observed the relationship between polymorphisms of IGF-1(rs35767, rs2288377 and rs5742612) with osteoporosis and BMD in the postmenopausal female population in our study. METHODS A total of 216 postmenopausal women with a primary diagnosis of osteoporosis and 220 normal healthy women were included in the study. Genomic DNA of IGF-1 rs35767, rs2288377 and rs5742612 was extracted from the whole blood using QIAamp blood DNA mini kits (QIAGEN, Hilden, Germany) according to the methods recommended by the manufacturer. RESULTS We found that T allele of rs35767 had higher increased risk of osteoporosis (OR=1.34, 95%CI=1.0-1.81). Those carrying T allele of rs35767 had a significant lower BMD at L1-L4 vertebrae, femoral neck, total hip and trochanter when compared with those carrying C allele (P < 0.05). In addition, the BMD of L1-L4 vertebrae, femoral neck, total hip and trochanter decreased by 2.09%, 3.74%, 3.52% and 2.54% in women carrying T alleles compared with those carrying C alleles. CONCLUSION Our study suggests that polymorphism in IGF-I rs35767 was significantly associated with BMD and osteoporosis in postmenopausal female population, and polymorphism of rs35767 could be a marker for lower BMD and risk of osteoporosis.
Collapse
Affiliation(s)
- Li Yun-Kai
- Li Yun-Kai, The Fifth Surgical Department, The Fourth People’s Hospital, Jinan, 250013, China
| | - Wang Hui
- Wang Hui, Department of Stomatology, Jinan Traditional Chinese Medicine Hospital,Jinan, 250012, China
| | - Zhu Xin-wei
- Zhu Xin-wei, The Fifth Surgical Department, The Fourth People’s Hospital, Jinan, 250013, China
| | - Guo Liang
- Guo Liang, Department of Radiotherapy, The Fourth People’s Hospital, Jinan, 250013, China
| | - Zuo Jin-liang
- Zuo Jin-liang, The Fifth Surgical Department, The Fourth People’s Hospital, Jinan, 250013, China
| |
Collapse
|
90
|
Wang X, Yu C, Zhang B, Wang Y. The Injurious Effects of Hyperinsulinism on Blood Vessels. Cell Biochem Biophys 2013; 69:213-8. [DOI: 10.1007/s12013-013-9810-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
91
|
Kämmerer PW, Schiegnitz E, Alshihri A, Draenert FG, Wagner W. Modification of xenogenic bone substitute materials--effects on the early healing cascade in vitro. Clin Oral Implants Res 2013; 25:852-8. [PMID: 23551638 DOI: 10.1111/clr.12153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2013] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Initial platelet activation with subsequent cytokine release at the defect site plays a crucial role in tissue integration. The aim of this study was to evaluate the influence of topographic and biomimetic collagen modifications of a xenogenic bone substitute material (BSM) on in vitro platelet activation and cytokine release. MATERIAL AND METHODS Three types of xenogenic BSM were used. Two BSM with different levels of granularity (large granule BSM [XBSM/L], small granule BSM [XBSM/S]) and a BSM with collagen (XBSM/C). All three samples were incubated with platelet concentrate of four healthy volunteers at room temperature for 15 min. For all groups, highly thrombogenic collagen type 1 served as a reference and an additional preparation with platelet concentrate only (without XBSM) served as control. Platelet count and cytokine release of VEGF, PDGF, TGF-β, and IGF into the supernatant were measured. RESULTS Compared with the control group, XBSM/C showed an increase in platelets consumption (mean 41,000 ± 26,000/ml vs. 471,000 ± 38,000/ml), cytokine release of VEGF (mean 46.8 ± 7.2 pg/ml vs. 18.8 ± 2.7 pg/ml), and PDGF (mean 18,350 ± 795 pg/ml vs. 2726 ± 410 pg/ml) but not IGF (194,728 ± 51,608 pg/ml vs. 1,333,911 ± 35,314 pg/ml). There was also an increase in cytokine release of TGF-ß in XBSM/C compared with XBSM/S (77,188 ± 27,413 pg/ml vs. 38,648 ± 13,191 pg/ml), but no such difference when compared with XBSM/L (77,188 ± 27,413 pg/ml vs. 53,309 ± 29,430 pg/ml). XBSM/L showed higher platelets consumption (301,000 ± 45,000 vs. 415,000 ± 98,000) and a higher cytokine release of PDGF (3511 ± 247 pg/ml vs. 3165 ± 78 pg/ml) compared with XBSM/S. There was no distinct difference in the levels of VEGF, TGF-ß, and IGF between XBSM/L and XBSM/S. CONCLUSIONS Topographic as well as biomimetic modifications of the xenogenic BSM showed an increased platelet activation and cytokine release in vitro. This effect on the intrinsic healing cascade could result in comparable enhanced soft- and hard-tissue regeneration in vivo.
Collapse
Affiliation(s)
- Peer W Kämmerer
- Harvard Medical School, Boston, MA, USA; Department of Oral, Maxillofacial and Plastic Surgery, University Medical Centre Mainz, Mainz, Germany
| | | | | | | | | |
Collapse
|
92
|
Zhou B, Li H, Xu L, Zang W, Wu S, Sun H. Osteocalcin reverses endoplasmic reticulum stress and improves impaired insulin sensitivity secondary to diet-induced obesity through nuclear factor-κB signaling pathway. Endocrinology 2013; 154:1055-68. [PMID: 23407450 DOI: 10.1210/en.2012-2144] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Osteocalcin, a synthetic osteoblast-specific protein, has recently emerged as an important regulator of energy metabolism, but the underlying mechanisms are not fully understood. In the present study, mice fed a high-fat diet and receiving osteocalcin showed reduced body weight gain, less fat pad gain, and improved insulin sensitivity as well as increased energy expenditure compared with mice fed a high-fat diet and receiving vehicle. Meanwhile, increased endoplasmic reticulum (ER) stress, defective insulin signaling, and mitochondrial dysfunction induced by obesity were also effectively alleviated by treatment with osteocalcin. Consistent with these findings, the addition of osteocalcin to the culture medium of 3T3-L1 adipocytes, Fao liver cells, and L6 muscle cells markedly reduced ER stress and restored insulin sensitivity. These effects were nullified by blockade of nuclear factor-κB (NF-κB) or phosphatidylinositol 3-kinase but not by U0126, a mitogen-activated protein kinase inhibitor, indicating the causative role of phosphatidylinositol 3-kinase/NF-κB in action of osteocalcin. In addition, the reversal effects of osteocalcin in cells deficient in X-box-binding protein-1, a transcription factor that modulates ER stress response, further confirmed its protective role against ER stress and insulin resistance. Our findings suggest that osteocalcin attenuates ER stress and rescues impaired insulin sensitivity in insulin resistance via the NF-κB signaling pathway, which may offer novel opportunities for treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Bo Zhou
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | | | | | | | | | | |
Collapse
|
93
|
Zhao YF, Zeng DL, Xia LG, Zhang SM, Xu LY, Jiang XQ, Zhang FQ. Osteogenic potential of bone marrow stromal cells derived from streptozotocin-induced diabetic rats. Int J Mol Med 2013; 31:614-20. [PMID: 23292283 DOI: 10.3892/ijmm.2013.1227] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 11/09/2012] [Indexed: 01/09/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is associated with a series of bone complications, which are still a great challenge in the clinic. Bone marrow stromal cells (BMSCs) are crucial to bone remodeling and are attractive candidates for tissue engineering. Hence, we aimed to investigate whether impaired functions of BMSCs play a role in the pathogenesis of bone complications associated with T1DM. BMSCs were isolated from normal and streptozotocin-induced diabetic rats, and their proliferation and osteogenic differentiation ability were analyzed. Diabetic BMSCs demonstrated reduced proliferation ability, osteoblast gene expression, alkaline phosphatase activity and mineralization. Nude mice transplanted with diabetic BMSCs in a calcium phosphate cement scaffold exhibited reduced new bone formation, as detected by hematoxylin and eosin staining and immunohistochemistry. These changes may be partially related to impaired insulin and insulin-like growth factor 1 (IGF-1) signaling. Weak gene expression of insulin receptor (IR), IGF-1, insulin-like growth factor 1 receptor (IGF-1R), and insulin receptor substrate-1 (IRS-1) was observed in the diabetic BMSCs compared with normal BMSCs, together with decreased protein level of IGF-1, IGF-1R, IRS-1 and phosphorylated extracellular signal-regulated kinase. Therefore, impaired proliferation and osteogenic potential of BMSCs may be responsible for bone complications related to T1DM, mediated partially by impaired insulin and IGF-1 signaling. These findings may provide a new target with which to devise strategies for therapy.
Collapse
Affiliation(s)
- Yan-Fang Zhao
- Department of Prosthodontics, Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
94
|
Li B, Wang Y, Liu Y, Ma J, Li Y. Altered gene expression involved in insulin signaling pathway in type II diabetic osteoporosis rats model. Endocrine 2013; 43:136-46. [PMID: 22820932 DOI: 10.1007/s12020-012-9757-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 07/12/2012] [Indexed: 01/06/2023]
Abstract
It is well established that both estrogen loss and type II diabetes mellitus (DMII) can impair bone metabolism, but whether estrogen loss exacerbates the effects of DMII is unclear. Therefore, we determined if ovariectomy (OVX) of rats on a long-term high-fat/sugar diet and injection of a low dose of streptozotocin (DMII) decreased bone mineral density (BMD) more than OVX or DMII alone. Bone insulin signaling is known to support bone metabolism; therefore, we also tested the hypothesis that OVX DMII rats (DOVX) would exhibit greater reductions in the expression of proteins important in insulin signaling, including IRS-1, IRS-2, and IGF-1. As hypothesized, BMD and plasma estrogen levels were decreased more in DOVX rats than in rats following OVX (NOVX) or DMII (DS) alone. IGF-1 expression was decreased in the liver, kidney, skeletal muscle, and bone of DOVX, DS, and NOVX rats; however, the decrease was larger and occurred sooner in DOVX rats. While IRS-1 and IRS-2 decreased in most groups in all tissues examined, the expression patterns differed in both a group- and tissue-dependent fashion. In conclusion, these data demonstrate that estrogen loss and DMII induced by a high-fat/sugar diet interact to produce osteoporosis and support the hypothesis that the bone loss may be mediated at least in part by concurrent decreases in the insulin signaling proteins in bone.
Collapse
Affiliation(s)
- Baoxin Li
- Second Department of Endocrinology, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China.
| | | | | | | | | |
Collapse
|
95
|
Wu SS, Liang QH, Liu Y, Cui RR, Yuan LQ, Liao EY. Omentin-1 Stimulates Human Osteoblast Proliferation through PI3K/Akt Signal Pathway. Int J Endocrinol 2013; 2013:368970. [PMID: 23606838 PMCID: PMC3626246 DOI: 10.1155/2013/368970] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/08/2013] [Indexed: 12/31/2022] Open
Abstract
It has been presumed that adipokines deriving from adipose tissue may play important roles in bone metabolism. Omentin-1, a novel adipokine, which is selectively expressed in visceral adipose tissue, has been reported to stimulate proliferation and inhibit differentiation of mouse osteoblast. However, little information refers to the effect of omentin-1 on human osteoblast (hOB) proliferation. The current study examined the potential effects of omentin-1 on proliferation in hOB and the signal pathway involved. Omentin-1 promoted hOB proliferation in a dose-dependent manner as determined by [(3)H]thymidine incorporation. Western blot analysis revealed that omentin-1 induced activation of Akt (phosphatidylinositol-3 kinase downstream effector) and such effect was impeded by transfection of hOB with Akt-siRNA. Furthermore, LY294002 (a selective PI3K inhibitor) and HIMO (a selective Akt inhibitor) abolished the omentin-1-induced hOB proliferation. These findings indicate that omentin-1 induces hOB proliferation via the PI3K/Akt signaling pathway and suggest that osteoblast is a direct target of omentin-1.
Collapse
|
96
|
Sustained local delivery of insulin for potential improvement of peri-implant bone formation in diabetes. SCIENCE CHINA-LIFE SCIENCES 2012; 55:948-57. [DOI: 10.1007/s11427-012-4392-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/05/2012] [Indexed: 10/27/2022]
|
97
|
Steiner D, Lampert F, Stark GB, Finkenzeller G. Effects of endothelial cells on proliferation and survival of human mesenchymal stem cells and primary osteoblasts. J Orthop Res 2012; 30:1682-9. [PMID: 22508550 DOI: 10.1002/jor.22130] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/29/2012] [Indexed: 02/04/2023]
Abstract
Angiogenesis is a fundamental process in bone formation, remodeling, and regeneration. Moreover, for the regeneration of bone in tissue engineering applications, it is essential to support neovascularization. This can be achieved by cell-based therapies using primary endothelial cells, which are able to form functional blood vessels upon implantation. In bone composite grafts, coimplanted endothelial cells do not only support neovascularization but also support osteogenic differentiation of osteoblasts and osteoprogenitor cells. In this study, we investigated the effect of endothelial cells on proliferation and cell survival of human primary osteoblasts (hOBs) and human mesenchymal stem cells (MSCs). Human umbilical vein endothelial cells (HUVECs) stimulated hOB and MSC proliferation, whereas proliferation of HUVECs was unaffected by cocultured hOBs or MSCs. The effect of HUVEC cocultivation on hOB and MSC proliferation was more pronounced in direct cocultures than in indirect cocultures, indicating that this effect is at least partially dependent on the formation of heterotypic cell contacts between HUVECs and hOBs or MSCs. Furthermore, HUVEC cocultivation reduced low-serum induced apotosis of hOBs and MSCs by a mechanism involving increased phosphorylation and inactivation of the proapoptotic protein Bad. In summary, our experiments have shown that cocultured HUVECs increase the proliferation and reduce low-serum induced apoptosis of hOBs and MSCs.
Collapse
Affiliation(s)
- Dominik Steiner
- Department of Plastic and Hand Surgery, University of Freiburg Medical Center, D-79106 Freiburg, Germany
| | | | | | | |
Collapse
|
98
|
McGonnell IM, Grigoriadis AE, Lam EWF, Price JS, Sunters A. A specific role for phosphoinositide 3-kinase and AKT in osteoblasts? Front Endocrinol (Lausanne) 2012; 3:88. [PMID: 22833734 PMCID: PMC3400941 DOI: 10.3389/fendo.2012.00088] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 06/29/2012] [Indexed: 12/25/2022] Open
Abstract
The phosphoinositide 3-kinase and AKT (protein kinase B) signaling pathway (PI3K/AKT) plays a central role in the control of cell survival, growth, and proliferation throughout the body. With regard to bone, and particularly in osteoblasts, there is an increasing amount of evidence that the many signaling molecules exert some of their bone-specific effects in part via selectively activating some of the generic effects of the PI3K/AKT pathway in osteoblasts. There is further data demonstrating that PI3K/AKT has the capacity to specifically cross-talk with other signaling pathways and transcriptional networks controlling bone cells' development in order to fine-tune the osteoblast phenotype. There is also evidence that perturbations in the PI3K/AKT pathway may well be responsible for certain bone pathologies. In this review, we discuss some of these findings and suggest that the PI3K/AKT pathway is a central nexus in the extensive network of extracellular signaling pathways that control the osteoblast.
Collapse
Affiliation(s)
- Imelda M. McGonnell
- Department of Veterinary Basic Sciences, The Royal Veterinary College,London, UK
| | - Agamemnon E. Grigoriadis
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, Guy’s Hospital,London, UK
| | - Eric W.-F. Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital,London, UK
| | - Joanna S. Price
- School of Veterinary Sciences, University of Bristol,Bristol, UK
| | - Andrew Sunters
- Department of Veterinary Basic Sciences, The Royal Veterinary College,London, UK
- *Correspondence: Andrew Sunters, Department of Veterinary Basic Sciences, The Royal Veterinary College, Royal College Street, Camden, London NW1 0TU, UK. e-mail:
| |
Collapse
|