51
|
Vidhani DV, Ubeda R, Sautie T, Vidhani D, Mariappan M. Zwitterionic Bergman cyclization triggered polymerization gives access to metal-graphene nanoribbons using a boron metal couple. Commun Chem 2023; 6:66. [PMID: 37029210 PMCID: PMC10082089 DOI: 10.1038/s42004-023-00866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
With the rapid growth in artificial intelligence, designing high-speed and low-power semiconducting materials is of utmost importance. This investigation provides a theoretical basis to access covalently bonded transition metal-graphene nanoribbon (TM-GNR) hybrid semiconductors whose DFT-computed bandgaps were much narrower than the commonly used pentacene. Systematic optimization of substrates containing remotely placed boryl groups and the transition metals produced the zwitterions via ionic Bergman cyclization (i-BC) and unlocked the polymerization of metal-substituted polyenynes. Aside from i-BC, the subsequent steps were barrierless, which involved structureless transition regions. Multivariate analysis revealed the strong dependence of activation energy and the cyclization mode on the electronic nature of boron and Au(I). Consequently, three regions corresponding to radical Bergman (r-BC), ionic Bergman (i-BC), and ionic Schreiner-Pascal (i-SP) cyclizations were identified. The boundaries between these regions corresponded to the mechanistic shift induced by the three-center-three-electron (3c-3e) hydrogen bond, three-center-four-electron (3c-4e) hydrogen bond, and vacant p-orbital on boron. The ideal combination for cascade polymerization was observed near the boundary between i-BC and i-SP.
Collapse
Affiliation(s)
- Dinesh V Vidhani
- Department of Math & Natural Science, Miami Dade College, Miami Dade College, 627 SW 27th Ave, Miami, FL, 33135, USA.
| | - Rosemary Ubeda
- Department of Math & Natural Science, Miami Dade College, Miami Dade College, 627 SW 27th Ave, Miami, FL, 33135, USA
| | - Thalia Sautie
- Department of Math & Natural Science, Miami Dade College, Miami Dade College, 627 SW 27th Ave, Miami, FL, 33135, USA
| | - Diana Vidhani
- Miami Dade Virtual School, 560 NW 151st, Miami, FL, 33169, USA
| | - Manoharan Mariappan
- Department of Natural Science North Florida College, 325 Turner Davis Dr, Madison, FL, 32340, USA
| |
Collapse
|
52
|
Liu Y, Resch SG, Chen H, Dechert S, Demeshko S, Bill E, Ye S, Meyer F. Fully Delocalized Mixed-Valent Cu 1.5 Cu 1.5 Complex: Strong Cu-Cu interaction and Fast Electron Self-Exchange Rate Despite Large Structural Changes. Angew Chem Int Ed Engl 2023; 62:e202215840. [PMID: 36504436 DOI: 10.1002/anie.202215840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
A flexible macrocyclic ligand with two tridentate {CNC} compartments can host two Cu ions in reversibly interconvertible states, CuI CuI (1) and mixed-valent Cu1.5 Cu1.5 (2). They were characterized by XRD and multiple spectroscopic methods, including EPR, UV/Vis absorption and MCD, in combination with TD-DFT and CASSCF calculations. 2 features a short Cu⋅⋅⋅Cu distance (≈2.5 Å; compared to ≈4.0 Å in 1) and a very high delocalization energy of 13 000 cm-1 , comparable to the mixed-valent state of the biological CuA site. Electron self-exchange between 1 and 2 is rapid despite large structural reorganization, and is proposed to proceed via a sequential mechanism involving an active conformer of 1, viz. 1'; the latter has been characterized by XRD. Such electron transfer (ET) process is reminiscent of the conformationally gated ET proposed for biological systems. This redox couple is a unique pair of flexible dicopper complexes, achieving fast electron self-exchange closely related to the function of the CuA site.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Stefan G Resch
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Haowei Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Sebastian Dechert
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Eckhard Bill
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| |
Collapse
|
53
|
Wang YJ, Shi XY, Xing P, Zang SQ. Metallophilic Interactions Drive Supramolecular Chirality Evolution and Amplify Circularly Polarized Luminescence. JACS AU 2023; 3:565-574. [PMID: 36873685 PMCID: PMC9976340 DOI: 10.1021/jacsau.2c00653] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Metallophilic interactions, which are ubiquitous among d10 metal complexes with linear coordination geometries, can direct one-dimensional assembly. However, the ability of these interactions to manipulate chirality at the hierarchical level largely remains unknown. In this work, we unveiled the role of Au···Cu metallophilic interactions in directing the chirality of multicomponent assemblies. N-heterocyclic carbene-Au(I) complexes bearing amino acid residues formed chiral co-assemblies with [CuI2]- anions via Au···Cu interactions. These metallophilic interactions changed the molecular packing modes of the co-assembled nanoarchitectures from lamellar to columnar chiral packing. This transformation initiated the emergence, inversion, and evolution of supramolecular chirality, thereby affording helical superstructures, depending on the geometry of building units. In addition, the Au···Cu interactions altered the luminescence properties and induced the emergence and amplification of circularly polarized luminescence. This work, for the first time, revealed the role of Au···Cu metallophilic interactions in modulating supramolecular chirality, paving the way for the construction of functional chiroptical materials based on d10 metal complexes.
Collapse
Affiliation(s)
- Ya-Jie Wang
- Henan
Key Laboratory of Crystalline Molecular Functional Materials, Henan
International Joint Laboratory of Tumor Theranostical Cluster Materials,
Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou450001, People’s Republic
of China
| | - Xiao-Yan Shi
- Henan
Key Laboratory of Crystalline Molecular Functional Materials, Henan
International Joint Laboratory of Tumor Theranostical Cluster Materials,
Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou450001, People’s Republic
of China
| | - Pengyao Xing
- School
of Chemistry and Chemical Engineering, Shandong
University, Jinan250100, People’s Republic
of China
| | - Shuang-Quan Zang
- Henan
Key Laboratory of Crystalline Molecular Functional Materials, Henan
International Joint Laboratory of Tumor Theranostical Cluster Materials,
Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou450001, People’s Republic
of China
| |
Collapse
|
54
|
Wu H, Anumula R, Andrew GN, Luo Z. A stable superatomic Cu 6(SMPP) 6 nanocluster with dual emission. NANOSCALE 2023; 15:4137-4142. [PMID: 36745061 DOI: 10.1039/d2nr07223h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We have synthesized single crystals of a highly stable Cu6 nanocluster protected by six ligands of 2-mercapto-5-n-propylpyrimidine (SMPP). This Cu6(SMPP)6 cluster has a quasi-octahedral superatomic Cu6 core, with the Cu atoms being protected by both -S- and N-bidentate coordination of the SMPP ligands. Interestingly, each Cu atom is linked with an N atom, while the two neighboring Cu atoms on the same triangular facet are linked by the -S- bridge of the ligand. Single-crystal parsing results show that the altered orientation of the SMPP ligands give rise to three packing modes (named as 1, 2, and 3) of the Cu6(SMPP)6 NCs. Apart from the well-organized coordination, this Cu6(SMPP)6 nanocluster exhibits superatomic stability with a metallic core of 4 valence electrons (1S22S2||3S2), enabling to largely balance the interactions between the polynuclear core and delocalized electrons. Interestingly, the Cu6(SMPP)6 NCs display dual emissions in both ultraviolet-visible (UV-Vis) and near-infrared (NIR) regions. First-principles calculations well reproduce the experimental spectrum, shedding light on the nature of excitation states and metal-ligand interactions in the Cu6(SMPP)6 cluster.
Collapse
Affiliation(s)
- Haiming Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Rajini Anumula
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Gaya N Andrew
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
55
|
Liu C, Wang M, Ye J, Liu L, Li L, Li Y, Huang X. Highly Selective CO 2 Electroreduction to C 2+ Products over Cu 2O-Decorated 2D Metal-Organic Frameworks with Rich Heterogeneous Interfaces. NANO LETTERS 2023; 23:1474-1480. [PMID: 36779931 DOI: 10.1021/acs.nanolett.2c04911] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The electroreduction of carbon dioxide into high-value-added products is an effective approach to alleviating the energy crisis and pollution issues. However, there are still significant challenges for multicarbon (C2+) product production due to the lack of efficient catalysts with high selectivity. Herein, a Cu-rich electrocatalyst, where Cu2O nanoparticles are decorated on two-dimensional (2D) Cu-BDC metal-organic frameworks (MOFs) with abundant heterogeneous interfaces, is synthesized for highly selective CO2 electroreduction into C2+ products. A high C2+ Faradaic efficiency of 72.1% in an H-type cell and 58.2% in a flow cell are obtained, respectively. The heterogeneous interfaces of Cu2O/Cu-BDC can optimize the adsorption energy of reaction intermediates during CO2 electroreduction. An in situ infrared spectroscopy study indicates that the constructed interfaces can maintain the particular distribution of Cu valence states, where the C-C coupling is promoted to efficiently produce C2+ products owing to the stabilization of *CHO and *COH intermediates.
Collapse
Affiliation(s)
- Chang Liu
- Department of Chemical and Biochemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Fujian 361005, People's Republic of China
| | - Mingmin Wang
- Department of Chemical and Biochemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Fujian 361005, People's Republic of China
| | - Jinyu Ye
- Department of Chemical and Biochemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Fujian 361005, People's Republic of China
| | - Liangbin Liu
- Department of Chemical and Biochemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Fujian 361005, People's Republic of China
| | - Leigang Li
- Department of Chemical and Biochemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Fujian 361005, People's Republic of China
| | - Yunhua Li
- Department of Chemical and Biochemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Fujian 361005, People's Republic of China
| | - Xiaoqing Huang
- Department of Chemical and Biochemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Fujian 361005, People's Republic of China
| |
Collapse
|
56
|
Prakasham AP, Patil SK, Nettem C, Dey S, Rajaraman G, Ghosh P. Discrete Singular Metallophilic Interaction in Stable Large 12-Membered Binuclear Silver and Gold Metallamacrocycles of Amido-Functionalized Imidazole and 1,2,4-Triazole-Derived N-Heterocyclic Carbenes. ACS OMEGA 2023; 8:6439-6454. [PMID: 36844527 PMCID: PMC9947987 DOI: 10.1021/acsomega.2c06729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Metallophilic interactions were observed in four pairs of 12-membered metallamacrocyclic silver and gold complexes of imidazole-derived N-heterocyclic carbenes (NHCs), [1-(R1)-3-N-(2,6-di-(R2)-phenylacetamido)-imidazol-2-ylidene]2M2 [R1 = p-MeC6H4, R2 = Me, M = Ag (1b) and Au (1c); R1 = Me, R2 = i-Pr, M = Ag (2b) and Au (2c); R1 = Et, R2 = i-Pr, M = Ag (3b) and Au (3c)], and a 1,2,4-triazole-derived N-heterocyclic carbene (NHC), [1-(i-Pr)-4-N-(2,6-di-(i-Pr)-phenylacetamido)-1,2,4-triazol-2-ylidene]2M2 [M = Ag (4b) and Au (4c)]. The X-ray diffraction, photoluminescence, and computational studies indicate the presence of metallophilic interactions in these complexes, which are significantly influenced by the sterics and the electronics of the N-amido substituents of the NHC ligands. The argentophilic interaction in the silver 1b-4b complexes was stronger than the aurophilic interaction in the gold 1c-4c complexes, with the metallophilic interaction decreasing in the order 4b > 1b > 1c > 4c > 3b > 3c > 2b > 2c. The 1b-4b complexes were synthesized from the corresponding amido-functionalized imidazolium chloride 1a-3a and the 1,2,4-triazolium chloride 4a salts upon treatment with Ag2O. The reaction of 1b-4b complexes with (Me2S)AuCl gave the gold 1c-4c complexes.
Collapse
|
57
|
Tang J, Liu C, Zhu C, Sun K, Wang H, Yin W, Xu C, Li Y, Wang W, Wang L, Wu R, Liu C, Huang J. High-nuclearity and thiol protected core-shell [Cu 75(S-Adm) 32] 2+: distorted octahedra fixed to Cu 15 core via strong cuprophilic interactions. NANOSCALE 2023; 15:2843-2848. [PMID: 36688503 DOI: 10.1039/d2nr05921e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Atomically precise nanoclusters have a critical role in understanding the structure-property relationships at the atomic level. Copper nanoclusters have attracted considerable attention, but the synthesis is limited because of susceptibility to oxidation. Herein, we developed a reduction speed controlling method to synthesize [Cu75(S-Adm)32]2+ (HS-Adm: 1-Adamantanethiol) nanocluster and reveal the key steps in the nucleation process. Cu75 was first observed and characterized with the following features: (i) composed of a face-centered cubic Cu15 kernel and a Cu60 caged shell including 12 distorted octahedra. (ii) The observation of the shortest Cu-Cu bond (2.166(7) Å) in the Cu nanoclusters, which could result from the distortion of the octahedron. (iii) The sole μ3-S mode of S, which plays two roles as a vertex and bridge atom to connect Cu atoms. This work presents a unique nanoball Cu nanocluster with strong cuprophilic interaction and provides a novel method to expand the family of Cu nanoclusters as well.
Collapse
Affiliation(s)
- Jie Tang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chong Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chenyu Zhu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Keju Sun
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - He Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Wen Yin
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Chuting Xu
- Center for Advanced Mass Spectrometry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yang Li
- Center for Advanced Mass Spectrometry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Weiguo Wang
- Center for Advanced Mass Spectrometry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Li Wang
- Laboratory of High-Resolution Mass Spectrometry Technologies, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Renan Wu
- Laboratory of High-Resolution Mass Spectrometry Technologies, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chao Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jiahui Huang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
58
|
Zuffa C, Cappuccino C, Marchini M, Contini L, Farinella F, Maini L. AgX-based hybrid coordination polymers: mechanochemical synthesis, structure and luminescence property characterization. Faraday Discuss 2023; 241:448-465. [PMID: 36148875 DOI: 10.1039/d2fd00093h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hybrid coordination polymers are interesting for their ability to converge the properties of both inorganic and organic systems in one single compound and recently attention has been focused on silver based hybrid coordination polymers due to their luminescence properties. We searched the CSD to establish the propensity of AgXL (X = Cl-, Br- and I-) with L as an organic ligand to form hybrid coordination polymers. About 800 AgXL structures are deposited in the CSD, with huge structural variability: indeed, it is possible to recognize some structural preferences based on the halide nature. The formation of an inorganic polymeric unit is favoured by iodide but it is also possible with the other halides. This research continues with the synthesis of AgX (X = I-, Br-) based coordination polymers with 2-, 3- and 4-picolylamine (n-pica) as ligands. By mechanochemical synthesis five new hybrid coordination polymers and one coordination polymer have been obtained and their structures determined. While [(AgI)(n-pica)]n are not luminescent, [(AgBr)(n-pica)]n emit and their profile depends on the crystallinity of the sample.
Collapse
Affiliation(s)
- Caterina Zuffa
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via F. Selmi 2, Bologna, Italy.
| | - Chiara Cappuccino
- Department of Chemical Science and Bernal Institute, University of Limerick, Limerick, Ireland
| | - Marianna Marchini
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via F. Selmi 2, Bologna, Italy.
| | - Laura Contini
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via F. Selmi 2, Bologna, Italy.
| | - Francesco Farinella
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via F. Selmi 2, Bologna, Italy.
| | - Lucia Maini
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via F. Selmi 2, Bologna, Italy.
| |
Collapse
|
59
|
Kumar Parangi R, Domala R. Synthesis, Characterization, Biological Evaluation and Docking Studies of Some novel 5-(2-Methyl-1,8-Naphthyridin-3-yl)-1,3,4-Oxadiazol-2-Amine and its derivatives using symmetrical anhydrides. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
60
|
Krätschmer F, Sun X, Gillhuber S, Kucher H, Franzke YJ, Weigend F, Roesky PW. Fully Tin-Coated Coinage Metal Ions: A Pincer-Type Bis-stannylene Ligand for Exclusive Tetrahedral Complexation. Chemistry 2022; 29:e202203583. [PMID: 36533713 DOI: 10.1002/chem.202203583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/23/2022]
Abstract
The synthesis of a novel bis-stannylene pincer ligand and its complexation with coinage metals (CuI , AgI and AuI ) are described. All coinage metal centres are in tetrahedral coordination environments in the solid state and are exclusively coordinated by four neutral SnII donors. 119 Sn NMR provided information about the behaviour in solution. All of the isolated compounds have photoluminescent properties, and these were investigated at low and elevated temperatures. Compared to the free bis-stannylene ligand, coordination to coinage metals led to an increase in the luminescence intensity. The new compounds were investigated in detail through all-electron relativistic density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Frederic Krätschmer
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Xiaofei Sun
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Sebastian Gillhuber
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Hannes Kucher
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Yannick J Franzke
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| | - Florian Weigend
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131, Karlsruhe, Germany
| |
Collapse
|
61
|
Hall PD, Stevens MA, Wang JYJ, Pham LN, Coote ML, Colebatch AL. Copper and Zinc Complexes of 2,7-Bis(6-methyl-2-pyridyl)-1,8-naphthyridine─A Redox-Active, Dinucleating Bis(bipyridine) Ligand. Inorg Chem 2022; 61:19333-19343. [DOI: 10.1021/acs.inorgchem.2c03126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Peter D. Hall
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia
| | - Michael A. Stevens
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia
| | - Jiao Yu J. Wang
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia
| | - Le Nhan Pham
- Institute for Nanoscale Science & Technology, Flinders University, Adelaide, South Australia5042, Australia
| | - Michelle L. Coote
- Institute for Nanoscale Science & Technology, Flinders University, Adelaide, South Australia5042, Australia
| | - Annie L. Colebatch
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia
| |
Collapse
|
62
|
Mercurophilic Interactions in Heterometallic Ru-Hg carbonyl clusters. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
63
|
Cesari C, Bortoluzzi M, Forti F, Gubbels L, Femoni C, Iapalucci MC, Zacchini S. 2-D Molecular Alloy Ru-M (M = Cu, Ag, and Au) Carbonyl Clusters: Synthesis, Molecular Structure, Catalysis, and Computational Studies. Inorg Chem 2022; 61:14726-14741. [PMID: 36069711 PMCID: PMC9490753 DOI: 10.1021/acs.inorgchem.2c02099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 11/28/2022]
Abstract
The reactions of [HRu3(CO)11]- (1) with M(I) (M = Cu, Ag, and Au) compounds such as [Cu(CH3CN)4][BF4], AgNO3, and Au(Et2S)Cl afford the 2-D molecular alloy clusters [CuRu6(CO)22]- (2), [AgRu6(CO)22]- (3), and [AuRu5(CO)19]- (4), respectively. The reactions of 2-4 with PPh3 result in mixtures of products, among which [Cu2Ru8(CO)26]2- (5), Ru4(CO)12(CuPPh3)4 (6), Ru4(CO)12(AgPPh3)4 (7), Ru(CO)3(PPh3)2 (8), and HRu3(OH)(CO)7(PPh3)3 (9) have been isolated and characterized. The molecular structures of 2-6 and 9 have been determined by single-crystal X-ray diffraction. The metal-metal bonding within 2-5 has been computationally investigated by density functional theory methods. In addition, the [NEt4]+ salts of 2-4 have been tested as catalyst precursors for transfer hydrogenation on the model substrate 4-fluoroacetophenone using iPrOH as a solvent and a hydrogen source.
Collapse
Affiliation(s)
- Cristiana Cesari
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- Center
for Chemical Catalysis—C3, University
of Bologna, Viale Risorgimento
4, 40136 Bologna, Italy
| | - Marco Bortoluzzi
- Dipartimento
di Scienze Molecolari e Nanosistemi, Ca’
Foscari University of Venice, Via Torino 155, 30175 Mestre (Ve), Italy
| | - Francesca Forti
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- Center
for Chemical Catalysis—C3, University
of Bologna, Viale Risorgimento
4, 40136 Bologna, Italy
| | - Lisa Gubbels
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Cristina Femoni
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Maria Carmela Iapalucci
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Stefano Zacchini
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- Center
for Chemical Catalysis—C3, University
of Bologna, Viale Risorgimento
4, 40136 Bologna, Italy
| |
Collapse
|
64
|
Stephan M, Dammann W, Burger P. Synthesis and reactivity of dinuclear copper(I) pyridine diimine complexes. Dalton Trans 2022; 51:13396-13404. [PMID: 35993145 DOI: 10.1039/d2dt02307e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of a tethered pyridine diimine (PDI) ligand with copper(I) chloride yielded a μ-chlorido bridged cationic dicopper(I) PDI complex, which is a rare structural motif. The geometric constraint of the ligand is fostering attractive van der Waals interactions between the coplanar pyridine units. This is supported by an Atoms in Molecules (AIM) and NCI (non-covalent interaction) analysis. Reaction with carbon monoxide yields the corresponding mono- and dicarbonyl complexes, which display reversible binding of carbon monoxide. This equilibrium was studied by 13C-NMR exchange spectroscopy and complemented by DFT and LNO-CCSD(T) calculations.
Collapse
Affiliation(s)
- Michel Stephan
- Institute of Inorganic and Applied Chemistry, Department Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany.
| | - Wiebke Dammann
- Institute of Inorganic and Applied Chemistry, Department Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany.
| | - Peter Burger
- Institute of Inorganic and Applied Chemistry, Department Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany.
| |
Collapse
|
65
|
Flecken F, Grell T, Hanf S. Transition metal complexes of the PPO/POP ligand: variable coordination chemistry and photo-luminescence properties. Dalton Trans 2022; 51:8975-8985. [PMID: 35582983 DOI: 10.1039/d2dt01091g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the current work the tautomeric equilibrium between tetraphenyldiphosphoxane (Ph2P-O-PPh2, POP) and tetraphenyldiphosphine monoxide (Ph2P-P(O)Ph2, PPO) in the absence and presence of transition metal precursors is investigated. Whereas with hard transition metal ions, such as Fe(II) and Y(III), PPO-type complexes, such as [FeCl2(PPO)2] (1) and [YCl3(THF)2(PPO)] (2), are formed, softer transition metals ions tend to form so-called coordination stabilised tautomers of the POP ligand form, such as [Cu2(MeCN)3(μ2-POP)2](PF6)2 (3), [Au2Cl2(μ2-POP)] (4), and [Au2(μ2-POP)2](OTf)2 (5). The photo-optical properties of the PPO- and POP-type transition metal complexes are investigated experimentally using photo-luminescence spectroscopy, whereby the presence of metallophillic interactions was found to play a crucial role. The dinuclear copper complex [Cu2(MeCN)3(μ2-POP)2](PF6)2 (3) shows a very interesting thermochromic behavior and intense photo-luminescence with remarkable phosphoresence lifetimes at 77 K, which can probably be attributed to short intramolecular Cu-Cu distances.
Collapse
Affiliation(s)
- Franziska Flecken
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131 Karlsruhe, Germany.
| | - Toni Grell
- Dipartimento di Chimica, Università degli Studi di Milano, Via Camillo Golgi 19, 20131 Milano, Italy
| | - Schirin Hanf
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131 Karlsruhe, Germany.
| |
Collapse
|
66
|
Ríos P, See MS, Handford RC, Teat SJ, Tilley TD. Robust dicopper(i) μ-boryl complexes supported by a dinucleating naphthyridine-based ligand. Chem Sci 2022; 13:6619-6625. [PMID: 35756530 PMCID: PMC9172574 DOI: 10.1039/d2sc00848c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022] Open
Abstract
Copper boryl species have been widely invoked as reactive intermediates in Cu-catalysed C–H borylation reactions, but their isolation and study have been challenging. Use of the robust dinucleating ligand DPFN (2,7-bis(fluoro-di(2-pyridyl)methyl)-1,8-naphthyridine) allowed for the isolation of two very thermally stable dicopper(i) boryl complexes, [(DPFN)Cu2(μ-Bpin)][NTf2] (2) and [(DPFN)Cu2(μ-Bcat)][NTf2] (4) (pin = 2,3-dimethylbutane-2,3-diol; cat = benzene-1,2-diol). These complexes were prepared by cleavage of the corresponding diborane via reaction with the alkoxide [(DPFN)Cu2(μ-OtBu)][NTf2] (3). Reactivity studies illustrated the exceptional stability of these boryl complexes (thermal stability in solution up to 100 °C) and their role in the activation of C(sp)–H bonds. X-ray diffraction and computational studies provide a detailed description of the bonding and electronic structures in these complexes, and suggest that the dinucleating character of the naphthyridine-based ligand is largely responsible for their remarkable stability. Cu(i) boryl species have been widely invoked as reactive intermediates in Cu-catalysed C–H borylations, but their isolation has been challenging. In this work, thermally robust dicopper(I) boryl complexes have been synthesized and studied in detail.![]()
Collapse
Affiliation(s)
- Pablo Ríos
- Department of Chemistry, University of California Berkeley USA
| | - Matthew S See
- Department of Chemistry, University of California Berkeley USA
| | - Rex C Handford
- Department of Chemistry, University of California Berkeley USA
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - T Don Tilley
- Department of Chemistry, University of California Berkeley USA
| |
Collapse
|
67
|
Asadizadeh S, Sohrabi M, Mereiter K, Farrokhpour H, Meghdadi S, Amirnasr M. Novel octanuclear copper(I) clusters [Cu8{(N)-(μ4-S)}4(μ3-I)2I2(PPh3)2] produced via reductive S-S bond cleavage of disulfide Schiff base ligands and their use as efficient heterogeneous catalysts in CuAAC click reaction. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
68
|
Crystalline phase transitions and water-soluble complexes of copper(I) 2-hydroxyethanethiolate. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
69
|
Naina VR, Krätschmer F, Roesky PW. Selective coordination of coinage metals using orthogonal ligand scaffolds. Chem Commun (Camb) 2022; 58:5332-5346. [PMID: 35416815 DOI: 10.1039/d2cc01093c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Group 11 metal complexes with their ability to form metallophilic interations are widely pursued to develop multifunctional luminescent materials. Heteronuclear coinage metal complexes are promising candidates to tune electronic and optical properties which are not readily accessed by their homometallic congeners. In this review, we present the concept of orthogonal ligands which are rationally designed to access heteronuclear coinage metal complexes and studied in terms of their photophysical properties. Bifunctional ligands containing soft and hard donor atoms have the potential of providing different coordination modes to selectively synthesise heterobimetallic complexes in a predictable manner. This review deals with ligand sets composed of pyridine, bipyridine- or iminopyridine-substituted NHCs featuring C-N coordination modes, phosphine-based N-heterocycles and amidinate ligand scaffolds comprising of P-N functionalities and mixed phosphine-phosphine oxide with P-O donor sites. Therefore, the scope of this perspective is the discussion of heteronuclear coinage metal complexes supported by recently developed bifunctional ligands in terms of their synthesis, coordination geometries and tunability of optical properties when compared to their homometallic analogues.
Collapse
Affiliation(s)
- Vanitha R Naina
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131 Karlsruhe, Germany.
| | - Frederic Krätschmer
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131 Karlsruhe, Germany.
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131 Karlsruhe, Germany.
| |
Collapse
|
70
|
Moutier F, Schiller J, Lecourt C, Khalil AM, Delmas V, Calvez G, Costuas K, Lescop C. Impact of Intermolecular Non‐Covalent Interactions in a Cu
I
8
Pd
II
1
Discrete Assembly: Conformers’ Geometries and Stimuli‐Sensitive Luminescence Properties. Chemistry 2022; 28:e202104497. [DOI: 10.1002/chem.202104497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Florent Moutier
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | - Jana Schiller
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | - Constance Lecourt
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | | | - Vincent Delmas
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | - Guillaume Calvez
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | - Karine Costuas
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | - Christophe Lescop
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| |
Collapse
|
71
|
Zou W, Fettinger JC, Vasko P, Power PP. The Unusual Structural Behavior of Heteroleptic Aryl Copper(I) Thiolato Molecules: Cis vs Trans Structures and London Dispersion Effects. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenxing Zou
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - James C. Fettinger
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Petra Vasko
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Philip P. Power
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
72
|
Pawlȩdzio S, Malinska M, Kleemiss F, Grabowsky S, Woźniak K. Aurophilic Interactions Studied by Quantum Crystallography. Inorg Chem 2022; 61:4235-4239. [PMID: 35230099 PMCID: PMC8924918 DOI: 10.1021/acs.inorgchem.1c03333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
This is the first
use of a wave-function-based crystallographic
method to characterize aurophilic interactions from X-ray diffraction
data. Theoretical calculations previously suggested the importance
of electron correlation and dispersion forces, but no influence of
relativistic corrections to the Au...Au interaction energy was found.
In this study, we confirm the importance of relativistic corrections
in the characterization of aurophilic interactions in addition to
electron correlation and dispersion. Hirshfeld
atom refinement was used to characterize aurophilic
interactions from X-ray diffraction data. An intermediate closed-shell
type of aurophilic interaction with some features of covalency was
identified when both electron correlation and relativistic corrections
were applied. Relativistic correction changes the electron density
distribution more than electron correlation. Relativistic effects
strongly dominate the metal core region also in the direction of the
noncovalent interactions and all of the valence and bonding regions
with regard to the Au···Au interaction.
Collapse
Affiliation(s)
- Sylwia Pawlȩdzio
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Maura Malinska
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Florian Kleemiss
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.,Faculty for Chemistry und Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Simon Grabowsky
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Krzysztof Woźniak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| |
Collapse
|
73
|
Luo XL, Lan D, Lin Y, Pan Z, Yang T, Lu R. A two-dimensional framework with U-shaped Cu4I4 Cluster linked by semi-rigid ligand: Synthesis, crystal structure and Luminescent Properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
74
|
Abstract
Metal-containing polymers, or metallopolymers, have diverse applications in the fields of sensors, catalysis, information storage, optoelectronics, and neuromorphic computing, among other areas. The approach of metal-templated subcomponent self-assembly using dynamic covalent linkages allows complex architectures to be formed with relative synthetic ease. The dynamic nature of the linkages between subunits in these systems facilitates error checking during the assembly process and also provides a route to disassemble the structure, rendering these materials recyclable. This Account summarizes a class of double-helical metallopolymers. These metallopolymers are formed via subcomponent self-assembly and consist of two conjugated helical strands wrapping a linear array of CuI centers. Starting from discrete model helicates, we discuss how, through the judicious design of subcomponents, long helical metallopolymers can be obtained and detail their subsequent assembly into nanometer-scale aggregates. Two approaches to generate these helical metallopolymers are compared. We describe methods to govern (i) the length of the metallopolymers, (ii) the relative orientations (head-to-head vs head-to-tail) of the two organic strands, and (iii) the screw-sense of the double helix. Achieving structural control allowed the growth behavior of these systems to be probed. The structure influenced properties in ways that are relevant to specific applications; for example, the length of the metallopolymer determines the color of the light it emits in solution. In the solid state, the ionic nature of these helices renders them useful as both emitters and ionic additives in light-emitting electrochemical cells. Moreover, recent experimental work has clarified the role of the linear array of Cu ions in the transport of charge through these materials. The conductivity displayed by a film of metallopolymer depends upon its history of applied voltage and current, behavior characteristic of a memristor. In addition to the prospective applications already identified, others may be on the horizon, potentially combing stimuli-responsive electronic behavior with the chirality of the helical twist.
Collapse
Affiliation(s)
- Jake L. Greenfield
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, United Kingdom
| | - Jonathan R. Nitschke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
75
|
Menzel S, Heinen T, Boldog I, Beglau THY, Xing S, Spieß A, Woschko D, Janiak C. Metal-organic framework structures of fused hexagonal motifs with cuprophilic interactions of a triangular Cu(I)3(pyrazolate-benzoate) metallo-linker. CrystEngComm 2022. [DOI: 10.1039/d2ce00268j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of the N,O-heteroditopic bifunctional ligand 4-(3,5-dimethyl-1H-pyrazol-4-yl)benzoic acid (H2mpba) with Cu(NO3)2·2.5H2O and Zn(NO3)2·4H2O or Zn(CH3COO)2·2H2O in N,N-dimethylformamide (DMF) results in concomitant formation of three bimetallic metal-organic frameworks (MOFs) with...
Collapse
|
76
|
Schulz J, Cisarova I, Gyepes R, Štěpnička P. Metalation of a gold(I) metalloligand with P,C-bridging phosphinoferrocenyl groups enables construction of defined multimetallic arrays. Dalton Trans 2022; 51:6410-6415. [DOI: 10.1039/d2dt00850e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions of gold(I) metalloligand [Au2{µ(P,C)-Ph2Pfc}2], where fc stands for ferrocene-1,1ʹ-diyl, with bare or ligand-stabilised group 11 metal ions open an access to diverse oligometallic clusters stabilised by Au-Au, Au-Ag...
Collapse
|
77
|
Shekhovtsov N, Kokina TE, Vinogradova KA, Panarin AY, Rakhmanova MI, Naumov DY, Pervukhina NV, Nikolaenkova EB, Krivopalov VP, Czerwieniec R, Bushuev MB. Near-infrared emitting copper(I) complexes with a pyrazolylpyrimidine ligand: exploring relaxation pathways. Dalton Trans 2022; 51:2898-2911. [DOI: 10.1039/d1dt04325k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mononuclear copper(I) complexes [CuL2]I (1), [CuL2]2[Cu2I4]·2MeCN (2) and [CuL2]PF6 (3) with a new chelating pyrazolylpyrimidine ligand, 2-(3,5-dimethyl-1H-pyrazol-1-yl)-4,6-diphenylpyrimidine (L), were synthesized. In the structures of complex cations [CuL2]+, Cu+ ions coordinate...
Collapse
|
78
|
Zou W, Zhu Q, Fettinger JC, Power PP. Dimeric Copper and Lithium Thiolates: Comparison of Copper Thiolates with Their Lithium Congeners. Inorg Chem 2021; 60:17641-17648. [PMID: 34812614 DOI: 10.1021/acs.inorgchem.1c02226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The direct reactions of the large terphenyl thiols HSAriPr4 (AriPr4= -C6H3-2,6-(C6H3-2,6-iPr2)2) and HSAriPr6 (AriPr6= -C6H3-2,6-(C6H2-2,4,6-iPr3)2) with stoichiometric amounts of mesitylcopper(I) in THF at ca. 80 °C afforded the first well-characterized dimeric copper thiolato species {CuSAriPr4}2 (1) and {CuSAriPr6}2 (2) with elimination of mesitylene. The complexes 1 and 2 were characterized by NMR and electronic spectroscopy as well as by X-ray crystallography. They have dimeric Cu2S2 core structures in which the two copper atoms are bridged by the sulfurs from the thiolato ligands and feature short Cu--Cu distances near 2.4 Å as well as a weak copper-flanking aryl ring interaction from a terphenyl substituent. The structures of the planar Cu2S2 cores bear a resemblance to the CuA site in nitrous oxide reductase in which two cysteines also bridge two copper atoms. The related dimeric Li2S2 structural motif was also observed in the lithium congeners {LiSAriPr4}2 (3) and {LiSAriPr6}2 (4) which were synthesized directly from the thiols and n-BuLi in hexanes. However, despite the very similar effective ionic radii of the Li+ (0.59 Å) and Cu+ (0.60 Å) ions, the Li--Li structures display very much longer (by more than ca. 0.5 Å) separations than the corresponding Cu--Cu distances in 1 and 2, which may be due to weaker dispersion interactions.
Collapse
Affiliation(s)
- Wenxing Zou
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Qihao Zhu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - James C Fettinger
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Philip P Power
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
79
|
Copper halide-chalcogenoether and -chalcogenone networks: Chain and cluster motifs, polymer dimensionality and photophysical properties. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
80
|
Kallenbach P, Bayat E, Ströbele M, Romao CP, Meyer HJ. Tricopper Melaminate, a Metal-Organic Framework Containing Dehydrogenated Melamine and Cu-Cu Bonding. Inorg Chem 2021; 60:16303-16307. [PMID: 34665613 DOI: 10.1021/acs.inorgchem.1c02145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Crystals of Cu3(C3N6H3) are formed by a solid-state reaction of CuCl with melamine to form a layered framework structure with open pores running along the hexagonal axis direction of the P6/mcc structure. The compound contains the hitherto unknown (C3N6H3)3- ion, assigned as melaminate. Bonding interactions within and between Cu-Cu dumbbells, which connect melaminate ions into layers, are analyzed by density functional theory calculations of the electron localization function and directional Young's modulus. Band structure calculations reveal the material to be a semiconductor with a band gap on the order of 2 eV.
Collapse
Affiliation(s)
- Paula Kallenbach
- Section for Solid State and Theoretical Inorganic Chemistry Institute of Inorganic Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Elaheh Bayat
- Section for Solid State and Theoretical Inorganic Chemistry Institute of Inorganic Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Markus Ströbele
- Section for Solid State and Theoretical Inorganic Chemistry Institute of Inorganic Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Carl P Romao
- Section for Solid State and Theoretical Inorganic Chemistry Institute of Inorganic Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Hans-Jürgen Meyer
- Section for Solid State and Theoretical Inorganic Chemistry Institute of Inorganic Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
81
|
Schlachter A, Tanner K, Scheel R, Karsenti PL, Strohmann C, Knorr M, Harvey PD. A Fused Poly(truncated rhombic dodecahedron)-Containing 3D Coordination Polymer: A Multifunctional Material with Exceptional Properties. Inorg Chem 2021; 60:13528-13538. [PMID: 34424679 DOI: 10.1021/acs.inorgchem.1c01856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design of new and inexpensive metal-containing functional materials is of great interest. Herein is reported a unique thermochromic near-IR emitting coordination polymer, 3D-[Cu8I8(L1)2]n, CP2, which is formed when ArS(CH2)4SAr (L1, Ar = 4-C6H4OMe) reacts with 2 equiv of CuI in EtCN. In MeCN, CP1 ([Cu4I4(L1)(MeCN)2]n, consisting of an alternating [-Cu4I4-L1-Cu4I4-L1-]n chain where the Cu4I4 cubane units bear two metal-bound MeCN molecules, is formed. Heat-driven elimination of these MeCN's in solid CP1 also leads to CP2 through a predisposed organization of the Cu4I4 units prone to fusion after MeCN eliminations (i.e., a rare case of template effect). The CP2 structure exhibits parallel 1D-(Cu8I8)n chains, (z-axis; designated 1D-[CuI]n) as secondary building units (SBU) held together by parallel thioether ligands (x,y-axes), forming a nonporous 3D network. The structure of this 1D-[CuI]n SBU is unprecedented and consists of a series of fused and twisted open Cu4I4 cubanes forming a fused poly(truncated rhombic dodecahedron). Unexpectedly, the compact 3D CP2 exhibits a solid-to-solid phase transition at 100 °C and a hysteresis of ∼20 °C. CP1 emits intensively (298 K: λemi = 564 nm; Φe = 0.35), whereas CP2 presents a strongly red-shifted weaker emission (298 K: λemi ∼ 740 nm, Φe < 0.0001). Moreover, CP2, which is stable over long periods of time, exhibits thermochromism where the emission intensity of the near-IR band decreases significantly at the benefit of a ligand-centered phosphorescence at 415 nm. Altogether, these properties listed above make CP2 exceptional. The low-energy singlet and triplet excited states have been assigned to ligand/metal-to-ligand charge transfer based on DFT and TD-DFT computations.
Collapse
Affiliation(s)
- Adrien Schlachter
- Département de Chimie, Université de Sherbrooke, 2550 Boulevard Université, Sherbrooke, PQ, Canada, J1K 2R1
| | - Kevin Tanner
- Département de Chimie, Université de Sherbrooke, 2550 Boulevard Université, Sherbrooke, PQ, Canada, J1K 2R1
| | - Rebecca Scheel
- Anorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Paul-Ludovic Karsenti
- Département de Chimie, Université de Sherbrooke, 2550 Boulevard Université, Sherbrooke, PQ, Canada, J1K 2R1
| | - Carsten Strohmann
- Anorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Michael Knorr
- Institut UTINAM, UMR CNRS 6213, Université Bourgogne Franche-Comté, 16, Route de Gray, 25030 Besançon, France
| | - Pierre D Harvey
- Département de Chimie, Université de Sherbrooke, 2550 Boulevard Université, Sherbrooke, PQ, Canada, J1K 2R1
| |
Collapse
|
82
|
Delaney AR, Yu LJ, Coote ML, Colebatch AL. Synthesis of an expanded pincer ligand and its bimetallic coinage metal complexes. Dalton Trans 2021; 50:11909-11917. [PMID: 34374394 DOI: 10.1039/d1dt01741a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An expanded pincer ligand tBu-PONNOP (2,7-bis(di-tert-butylphosphinito)-1,8-naphthyridine) has been synthesised and its coordination to coinage metals has been studied. Bimetallic complexes were produced with metal halide salts of the type [M2X2(tBu-PONNOP)] (X = Cl, M = Au, Ag, Cu; X = I, M = Cu) with a varying degree of interaction with the naphthyridyl backbone in the order Au < Ag < Cu. The salts [Ag2(tBu-PONNOP)2][BArF4]2 (ArF = 3,5-C6H3(CF3)2) and [Ag2(NCMe)2(tBu-PONNOP)]X2 (X = BArF4, PF6) were prepared, which may serve as a source of tBu-PONNOP via transmetallation.
Collapse
Affiliation(s)
- Andie R Delaney
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia.
| | | | | | | |
Collapse
|
83
|
Poly[3-methyl-1,3-oxazolidin-2-iminium[µ3-cyanido-tri-µ2-cyanido-κ9C:N-tricuprate(I)]]. MOLBANK 2021. [DOI: 10.3390/m1259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The unexpected formation of an oxazole ring has occurred during synthesis of a copper(I) cyanide network polymer as part of our ongoing studies of the structural chemistry of these networks. Crystals of the title compound were formed during the synthesis of a previously reported CuCN network solid containing protonated N-methylethanolamine and have been characterized by single crystal X-ray structure analysis. The structure shows well-defined oxazole-2-iminium cations sitting in continuous channels along the short a-axis of the crystal in a new three-dimensional copper(I) cyanide polymeric network. Evidently, a reaction has occurred between the cyanide ion and the protonated N-methylethanolamine base.
Collapse
|
84
|
Priola E, Mahmoudi G, Andreo J, Frontera A. Unprecedented [d 9]Cu[d 10]Au coinage bonding interactions in {Cu(NH 3) 4[Au(CN) 2]} +[Au(CN) 2] - salt. Chem Commun (Camb) 2021; 57:7268-7271. [PMID: 34195712 DOI: 10.1039/d1cc02709c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The X-ray structure of the {Cu(NH3)4[Au(CN)2]}+[Au(CN)2]- salt is reported showing an unprecedented [d9]Cu[d10]Au coinage bond. The physical nature of the interaction has been studied using DFT calculations, including the quantum theory of atoms-in-molecules, the noncovalent interaction plot and the natural bond orbital analysis, revealing the nucleophilic role of the [d10]Au metal and the electrophilic role of [d9]Cu metal.
Collapse
Affiliation(s)
- Emanuele Priola
- Department of Chemistry, Universitá di Torino, Via Pietro Giuria 7, Torino 10125, Italy
| | | | | | | |
Collapse
|
85
|
Liu Y, Taylor LJ, Argent SP, McMaster J, Kays DL. Group 11 m-Terphenyl Complexes Featuring Metallophilic Interactions. Inorg Chem 2021; 60:10114-10123. [PMID: 34197113 DOI: 10.1021/acs.inorgchem.0c03623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of group 11 m-terphenyl complexes have been synthesized via a metathesis reaction from the iron(II) complexes (2,6-Mes2C6H3)2Fe and (2,6-Xyl2C6H3)2Fe (Mes = 2,4,6-Me3C6H2; Xyl = 2,6-Me2C6H3). [2,6-Mes2C6H3M]2 (1, M = Cu; 2, M = Ag; 6, M = Au) and [2,6-Xyl2C6H3M]2 (3, M = Cu; 4, M = Ag) are dimeric in the solid state, although different geometries are observed depending on the ligand. These complexes feature short metal-metal distances in the expected range for metallophilic interactions. While 1-4 are readily isolated using this metathetical route, the gold complex 6 is unstable in solution at ambient temperatures and has only been obtained in low yield from the decomposition of (2,6-Mes2C6H3)Au·SMe2 (5). NMR spectroscopic measurements, including diffusion-ordered spectroscopy, suggest that 1-4 remain dimeric in a benzene-d6 solution. The metal-metal interactions have been examined computationally using the Quantum Theory of Atoms in Molecules and by an energy decomposition analysis employing natural orbitals for chemical valence.
Collapse
Affiliation(s)
- Yu Liu
- School of Chemistry, University Park, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Laurence J Taylor
- School of Chemistry, University Park, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Stephen P Argent
- School of Chemistry, University Park, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Jonathan McMaster
- School of Chemistry, University Park, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Deborah L Kays
- School of Chemistry, University Park, University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
86
|
Ogawa S, Katsuragi H, Ikeda T, Oshima K, Satokawa S, Yamazaki Y, Tsubomura T. Dual mechanoluminescence system comprising a solid-state di-copper(I) complex containing N-heterocyclic carbene ligands. Dalton Trans 2021; 50:8845-8850. [PMID: 34100056 DOI: 10.1039/d1dt00501d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple N-heterocyclic carbene (NHC) ligand linked to a flexible propylene linker allows the formation of "Cu-Cu"- and "2 Cu"-type geometries inside a molecular framework. The incorporation of two Cu(i) ions in close proximity was observed in the Cu-Cu-type geometry but not in the 2 Cu-type geometry. In this study, the ground-state geometries of solid-state di-copper(i) complexes containing NHC ligands with ethyl substituents were modulated by external stimuli. A crystal with the 2 Cu-type geometry was obtained by the mechanical grinding and heating of a crystal with the Cu-Cu-type geometry, as confirmed by the disappearance of the absorption peak attributed to cuprophilic interaction in the diffuse reflection spectrum. The mechanical grinding of both crystals afforded composite states comprising small crystallites of the corresponding crystalline phases and an amorphous domain. This structural transition was accompanied by tribochromism and chronochromism. The results suggest that these di-copper(i) complexes show promise for the development of stimuli-responsive photoluminescent Cu(i) complexes.
Collapse
Affiliation(s)
- Shigesaburo Ogawa
- Department of Materials and Life Science, Seikei University, 3-3-1 Kichioji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan.
| | - Haruka Katsuragi
- Department of Materials and Life Science, Seikei University, 3-3-1 Kichioji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan.
| | - Tsukasa Ikeda
- Department of Materials and Life Science, Seikei University, 3-3-1 Kichioji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan.
| | - Kazumasa Oshima
- Department of Materials and Life Science, Seikei University, 3-3-1 Kichioji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan.
| | - Shigeo Satokawa
- Department of Materials and Life Science, Seikei University, 3-3-1 Kichioji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan.
| | - Yasuomi Yamazaki
- Department of Materials and Life Science, Seikei University, 3-3-1 Kichioji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan.
| | - Taro Tsubomura
- Department of Materials and Life Science, Seikei University, 3-3-1 Kichioji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan.
| |
Collapse
|
87
|
Gupta AK, Kishore PVVN, Cyue JY, Liao JH, Duminy W, van Zyl WE, Liu CW. [Cu{SC(O)O iPr}] 96: A Giant Self-Assembled Copper(I) Supramolecular Wheel Exhibiting Photoluminescence Tuning and Correlations with Dynamic Solvation and Solventless Synthesis. Inorg Chem 2021; 60:8973-8983. [PMID: 34081458 DOI: 10.1021/acs.inorgchem.1c00871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hierarchical self-organization of structurally complex high-nuclearity metal clusters with metallosupramolecular wheel architectures that are obtained from the self-assembly of smaller solvated cluster units is rare and unique. Here, we use the potentially heteroditopic monothiocarbonate ligand and demonstrate for the first time the synthesis and structure of a solvated non-cyclic hexadecanuclear cluster [Cu{SC(O)OiPr}]16·2THF (1) that can simultaneously desolvate and self-assemble in solution and subsequently form a giant metallaring, [Cu{SC(O)OiPr}]96 (2). We also demonstrate a luminescent precursor to cluster (2) can be achieved through a solventless and rapid mechanochemical synthesis. Cluster (2) is the highest nuclearity copper(I) wheel and the largest metal cluster containing a heterodichalcogen (O, S) ligand reported to date. Cluster (2) also exhibits solid-state luminescence with relatively long emission lifetimes at 4.1, 13.9 (μs). The synthetic strategy described here opens new research avenues by replacing solvent molecules in stable {Cu16} clusters with designed building units that can form new hybrid and multifunctional finite supramolecular materials. This finding may lead to the development of novel high-nuclearity materials self-assembled in a facile manner with tunable optical properties.
Collapse
Affiliation(s)
- Arvind K Gupta
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan R.O.C
| | - Pilli V V N Kishore
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan R.O.C.,Chemistry Division, Department of Sciences and Humanities, VFSTR (Deemed to be University), Vadlamudi, Guntur 522213, A.P., India
| | - Jhih-Yu Cyue
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan R.O.C
| | - Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan R.O.C
| | - Welni Duminy
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Werner E van Zyl
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - C W Liu
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan R.O.C
| |
Collapse
|
88
|
Nicolay A, Héron J, Shin C, Kuramarohit S, Ziegler MS, Balcells D, Tilley TD. Unsymmetrical Naphthyridine-Based Dicopper(I) Complexes: Synthesis, Stability, and Carbon–Hydrogen Bond Activations. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Amélie Nicolay
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Julie Héron
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Chungkeun Shin
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Serene Kuramarohit
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Micah S. Ziegler
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David Balcells
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - T. Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
89
|
Ścigała A, Szłyk E, Dobrzańska L, Gregory DH, Szczęsny R. From binary to multinary copper based nitrides – Unlocking the potential of new applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
90
|
Arar W, Khatyr A, Knorr M, Brieger L, Krupp A, Strohmann C, Efrit ML, Ben Akacha A. Synthesis, crystal structures and Hirshfeld analyses of phosphonothioamidates (EtO) 2P(=O)C(=S)N(H)R (R = Cy, Bz) and their coordination on CuI and HgX 2 (X = Br, I). PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1927032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Wafa Arar
- Selective Organic and Heterocyclic Synthesis Biological Activity Evaluation Laboratory, Department of Chemistry, Faculty of Sciences, University El Manar, Tunis, Tunisia
| | - Abderrahim Khatyr
- Institut UTINAM-UMR CNRS 6213, Université Bourgogne Franche-Comté, Besançon, France
| | - Michael Knorr
- Institut UTINAM-UMR CNRS 6213, Université Bourgogne Franche-Comté, Besançon, France
| | - Lukas Brieger
- Anorganische Chemie, Technische Universität Dortmund, Dortmund, Germany
| | - Anna Krupp
- Anorganische Chemie, Technische Universität Dortmund, Dortmund, Germany
| | - Carsten Strohmann
- Anorganische Chemie, Technische Universität Dortmund, Dortmund, Germany
| | - Mohamed Lotfi Efrit
- Selective Organic and Heterocyclic Synthesis Biological Activity Evaluation Laboratory, Department of Chemistry, Faculty of Sciences, University El Manar, Tunis, Tunisia
| | - Azaiez Ben Akacha
- Selective Organic and Heterocyclic Synthesis Biological Activity Evaluation Laboratory, Department of Chemistry, Faculty of Sciences, University El Manar, Tunis, Tunisia
| |
Collapse
|
91
|
Desnoyer AN, Nicolay A, Ziegler MS, Lakshmi KV, Cundari TR, Tilley TD. A Dicopper Nitrenoid by Oxidation of a Cu ICu I Core: Synthesis, Electronic Structure, and Reactivity. J Am Chem Soc 2021; 143:7135-7143. [PMID: 33877827 DOI: 10.1021/jacs.1c02235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A dicopper nitrenoid complex was prepared by formal oxidative addition of the nitrenoid fragment to a dicopper(I) center by reaction with the iminoiodinane PhINTs (Ts = tosylate). This nitrenoid complex, (DPFN)Cu2(μ-NTs)[NTf2]2 (DPFN = 2,7-bis(fluorodi(2-pyridyl)methyl)-1,8-naphthyridine), is a powerful H atom abstractor that reacts with a range of strong C-H bonds to form a mixed-valence Cu(I)/Cu(II) μ-NHTs amido complex in the first example of a clean H atom transfer to a dicopper nitrenoid core. In line with this reactivity, DFT calculations reveal that the nitrenoid is best described as an iminyl (NR radical anion) complex. The nitrenoid was trapped by the addition of water to form a mixed-donor hydroxo/amido dicopper(II) complex, which was independently obtained by reaction of a Cu2(μ-OH)2 complex with an amine through a protonolysis pathway. This mixed-donor complex is an analogue for the proposed intermediate in copper-catalyzed Chan-Evans-Lam coupling, which proceeds via C-X (X = N or O) bond formation. Treatment of the dicopper(II) mixed donor complex with MgPh2(THF)2 resulted in generation of a mixture that includes both phenol and a previously reported dicopper(I) bridging phenyl complex, illustrating that both reduction of dicopper(II) to dicopper(I) and concomitant C-X bond formation are feasible.
Collapse
Affiliation(s)
- Addison N Desnoyer
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Amélie Nicolay
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Micah S Ziegler
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - K V Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy, Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Thomas R Cundari
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas 76203, United States
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
92
|
Horiuchi S, Moon S, Ito A, Tessarolo J, Sakuda E, Arikawa Y, Clever GH, Umakoshi K. Multinuclear Ag Clusters Sandwiched by Pt Complex Units: Fluxional Behavior and Chiral-at-Cluster Photoluminescence. Angew Chem Int Ed Engl 2021; 60:10654-10660. [PMID: 33617126 DOI: 10.1002/anie.202101460] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Indexed: 11/10/2022]
Abstract
Multinuclear Ag clusters sandwiched by Pt complex units were synthesized and characterized by single crystal X-ray diffraction and NMR studies. The sandwich-shaped multinuclear Ag complexes showed two different types of fluxional behavior in solution: rapid slippage of Pt complex units on the Ag3 core and a reversible demetalation-metalation reaction by the treatment with Cl anion and Ag ion, respectively. The Ag2 complex obtained by demetalation reaction from the Ag3 complex displayed U to Z isomerization. These multinuclear Ag complexes showed strong photoluminescence whose properties depended on the existence of Pt→Ag dative bonds. The Ag3 complex, identified to be "chiral-at-cluster", was optically resolved by the formation of a diastereomeric salt with a chiral anion. The enantiomers show circular dichroism (CD) and circularly polarized luminescence (CPL) properties which is unprecedented for compounds based on a chiral sandwich structure. Theoretical calculations allow to understand their structural features and photophysical properties.
Collapse
Affiliation(s)
- Shinnosuke Horiuchi
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki, 852-8521, Japan.,Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Sangjoon Moon
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Akitaka Ito
- School of Environmental Science and Engineering, Graduate School of Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi, 782-8502, Japan
| | - Jacopo Tessarolo
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Eri Sakuda
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki, 852-8521, Japan.,Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Yasuhiro Arikawa
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Keisuke Umakoshi
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki, 852-8521, Japan
| |
Collapse
|
93
|
Kobayashi R, Inaba R, Imoto H, Naka K. Multi-Mode Switchable Luminescence of Tetranuclear Cubic Copper(I) Iodide Complexes with Tertiary Arsine Ligands. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ryosuke Kobayashi
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ryoto Inaba
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
94
|
Giordana A, Priola E, Gariglio G, Bonometti E, Operti L, Diana E. Reticular chemistry applied on coordination polymers of Copper(I) cyanide with tridentate ligands: effect of the ligand flexibility and donor properties on topology, dimensionality and reaction behavior in solvothermal conditions. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
95
|
Horiuchi S, Moon S, Ito A, Tessarolo J, Sakuda E, Arikawa Y, Clever GH, Umakoshi K. Multinuclear Ag Clusters Sandwiched by Pt Complex Units: Fluxional Behavior and Chiral‐at‐Cluster Photoluminescence. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shinnosuke Horiuchi
- Division of Chemistry and Materials Science Graduate School of Engineering Nagasaki University 1–14, Bunkyo-machi Nagasaki 852-8521 Japan
- Department of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Sangjoon Moon
- Division of Chemistry and Materials Science Graduate School of Engineering Nagasaki University 1–14, Bunkyo-machi Nagasaki 852-8521 Japan
| | - Akitaka Ito
- School of Environmental Science and Engineering Graduate School of Engineering Kochi University of Technology 185 Miyanokuchi Tosayamada, Kami Kochi 782-8502 Japan
| | - Jacopo Tessarolo
- Department of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Eri Sakuda
- Division of Chemistry and Materials Science Graduate School of Engineering Nagasaki University 1–14, Bunkyo-machi Nagasaki 852-8521 Japan
- Department of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Yasuhiro Arikawa
- Division of Chemistry and Materials Science Graduate School of Engineering Nagasaki University 1–14, Bunkyo-machi Nagasaki 852-8521 Japan
| | - Guido H. Clever
- Department of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Keisuke Umakoshi
- Division of Chemistry and Materials Science Graduate School of Engineering Nagasaki University 1–14, Bunkyo-machi Nagasaki 852-8521 Japan
| |
Collapse
|
96
|
Zhang L, Li XX, Lang ZL, Liu Y, Liu J, Yuan L, Lu WY, Xia YS, Dong LZ, Yuan DQ, Lan YQ. Enhanced Cuprophilic Interactions in Crystalline Catalysts Facilitate the Highly Selective Electroreduction of CO2 to CH4. J Am Chem Soc 2021; 143:3808-3816. [DOI: 10.1021/jacs.0c11450] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lei Zhang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xiao-Xin Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Zhong-Ling Lang
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130000, P. R. China
| | - Yang Liu
- Analysis and Testing Center, Tianjin University, Tianjin 300072, P. R. China
| | - Jiang Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Lin Yuan
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Wan-Yue Lu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yuan-Sheng Xia
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Long-Zhang Dong
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Da-Qiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002, P. R. China
| | - Ya-Qian Lan
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
97
|
Schlindwein SH, Nieger M, Gudat D. Small Variations, Big Impact: Structural Diversity of the Complexes of a Phosphane‐Decorated Benzenedithiol with Group‐11 Metals. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Simon H. Schlindwein
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| | - Martin Nieger
- Department of Chemistry University of Helsinki P.O Box 55 00014 University of Helsinki Finland
| | - Dietrich Gudat
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| |
Collapse
|
98
|
Giese S, Klimov K, Mikeházi A, Kelemen Z, Frost DS, Steinhauer S, Müller P, Nyulászi L, Müller C. 2‐(Dimethylamino)phosphinin: Ein phosphorhaltiges Anilinderivat. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Steven Giese
- Freie Universität Berlin Institut für Chemie und Biochemie Fabeckstraße 34/36 14195 Berlin Deutschland
| | - Katrin Klimov
- Freie Universität Berlin Institut für Chemie und Biochemie Fabeckstraße 34/36 14195 Berlin Deutschland
| | - Antal Mikeházi
- Department of Inorganic and Analytical Chemistry Budapest University of Technology and Economics and MTA-BME Computation Driven Chemistry Research Group Szt. Gellért tér 4 1111 Budapest Ungarn
| | - Zsolt Kelemen
- Department of Inorganic and Analytical Chemistry Budapest University of Technology and Economics and MTA-BME Computation Driven Chemistry Research Group Szt. Gellért tér 4 1111 Budapest Ungarn
| | - Daniel S. Frost
- Freie Universität Berlin Institut für Chemie und Biochemie Fabeckstraße 34/36 14195 Berlin Deutschland
| | - Simon Steinhauer
- Freie Universität Berlin Institut für Chemie und Biochemie Fabeckstraße 34/36 14195 Berlin Deutschland
| | - Peter Müller
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue, 2-325 Cambridge MA 02139-4307 USA
| | - László Nyulászi
- Department of Inorganic and Analytical Chemistry Budapest University of Technology and Economics and MTA-BME Computation Driven Chemistry Research Group Szt. Gellért tér 4 1111 Budapest Ungarn
| | - Christian Müller
- Freie Universität Berlin Institut für Chemie und Biochemie Fabeckstraße 34/36 14195 Berlin Deutschland
| |
Collapse
|
99
|
Giese S, Klimov K, Mikeházi A, Kelemen Z, Frost DS, Steinhauer S, Müller P, Nyulászi L, Müller C. 2-(Dimethylamino)phosphinine: A Phosphorus-Containing Aniline Derivative. Angew Chem Int Ed Engl 2021; 60:3581-3586. [PMID: 33146935 DOI: 10.1002/anie.202014423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Indexed: 11/09/2022]
Abstract
The yet unknown 2-amino-substituted λ3 ,σ2 -phosphinines are phosphorus-containing aniline derivatives. Calculations show that the strong interaction of the π-donating NR2 group with the aromatic system results in a high π-density at the phosphorus atom. We could now synthesize 2-N(CH3 )2 -functionalized phosphinines, starting from a 3-N(CH3 )2 -substituted 2-pyrone and (CH3 )3 Si-C≡P. Their reaction with CuBr⋅S(CH3 )2 affords CuI complexes with the first example of a neutral phosphinine acting as a rare bridging μ2 -P-4e donor-ligand between two CuI centers. Our experimental and theoretical investigations show that 2-aminophosphinines are missing links in the series of known 2-donor-functionalized phosphinines.
Collapse
Affiliation(s)
- Steven Giese
- Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstrasse 34/36, 14195, Berlin, Germany
| | - Katrin Klimov
- Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstrasse 34/36, 14195, Berlin, Germany
| | - Antal Mikeházi
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics and MTA-BME Computation Driven Chemistry Research Group, Szt. Gellért tér 4, 1111, Budapest, Hungary
| | - Zsolt Kelemen
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics and MTA-BME Computation Driven Chemistry Research Group, Szt. Gellért tér 4, 1111, Budapest, Hungary
| | - Daniel S Frost
- Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstrasse 34/36, 14195, Berlin, Germany
| | - Simon Steinhauer
- Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstrasse 34/36, 14195, Berlin, Germany
| | - Peter Müller
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 2-325, Cambridge, MA, 02139-4307, USA
| | - László Nyulászi
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics and MTA-BME Computation Driven Chemistry Research Group, Szt. Gellért tér 4, 1111, Budapest, Hungary
| | - Christian Müller
- Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstrasse 34/36, 14195, Berlin, Germany
| |
Collapse
|
100
|
Föhrenbacher SA, Krahfuss MJ, Zapf L, Friedrich A, Ignat'ev NV, Finze M, Radius U. Tris(pentafluoroethyl)difluorophosphorane: A Versatile Fluoride Acceptor for Transition Metal Chemistry. Chemistry 2021; 27:3504-3516. [PMID: 33241855 PMCID: PMC7898530 DOI: 10.1002/chem.202004885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/23/2020] [Indexed: 12/13/2022]
Abstract
Fluoride abstraction from different types of transition metal fluoride complexes [Ln MF] (M=Ti, Ni, Cu) by the Lewis acid tris(pentafluoroethyl)difluorophosphorane (C2 F5 )3 PF2 to yield cationic transition metal complexes with the tris(pentafluoroethyl)trifluorophosphate counterion (FAP anion, [(C2 F5 )3 PF3 ]- ) is reported. (C2 F5 )3 PF2 reacted with trans-[Ni(iPr2 Im)2 (ArF )F] (iPr2 Im=1,3-diisopropylimidazolin-2-ylidene; ArF =C6 F5 , 1 a; 4-CF3 -C6 F4 , 1 b; 4-C6 F5 -C6 F4 , 1 c) through fluoride transfer to form the complex salts trans-[Ni(iPr2 Im)2 (solv)(ArF )]FAP (2 a-c[solv]; solv=Et2 O, CH2 Cl2 , THF) depending on the reaction medium. In the presence of stronger Lewis bases such as carbenes or PPh3 , solvent coordination was suppressed and the complexes trans-[Ni(iPr2 Im)2 (PPh3 )(C6 F5 )]FAP (trans-2 a[PPh3 ]) and cis-[Ni(iPr2 Im)2 (Dipp2 Im)(C6 F5 )]FAP (cis-2 a[Dipp2 Im]) (Dipp2 Im=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) were isolated. Fluoride abstraction from [(Dipp2 Im)CuF] (3) in CH2 Cl2 or 1,2-difluorobenzene led to the isolation of [{(Dipp2 Im)Cu}2 ]2+ 2 FAP- (4). Subsequent reaction of 4 with PPh3 and different carbenes resulted in the complexes [(Dipp2 Im)Cu(LB)]FAP (5 a-e, LB=Lewis base). In the presence of C6 Me6 , fluoride transfer afforded [(Dipp2 Im)Cu(C6 Me6 )]FAP (5 f), which serves as a source of [(Dipp2 Im)Cu)]+ . Fluoride abstraction of [Cp2 TiF2 ] (7) resulted in the formation of dinuclear [FCp2 Ti(μ-F)TiCp2 F]FAP (8) (Cp=η5 -C5 H5 ) with one terminal fluoride ligand at each titanium atom and an additional bridging fluoride ligand.
Collapse
Affiliation(s)
- Steffen A. Föhrenbacher
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Mirjam J. Krahfuss
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ludwig Zapf
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Nikolai V. Ignat'ev
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- ConsultantMerck KGaAFrankfurter Strasse 25064293DarmstadtGermany
| | - Maik Finze
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Udo Radius
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|