51
|
Fabrizius A, Hoff MLM, Engler G, Folkow LP, Burmester T. When the brain goes diving: transcriptome analysis reveals a reduced aerobic energy metabolism and increased stress proteins in the seal brain. BMC Genomics 2016; 17:583. [PMID: 27507242 PMCID: PMC4979143 DOI: 10.1186/s12864-016-2892-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 07/06/2016] [Indexed: 12/19/2022] Open
Abstract
Background During long dives, the brain of whales and seals experiences a reduced supply of oxygen (hypoxia). The brain neurons of the hooded seal (Cystophora cristata) are more tolerant towards low-oxygen conditions than those of mice, and also better survive other hypoxia-related stress conditions like a reduction in glucose supply and high concentrations of lactate. Little is known about the molecular mechanisms that support the hypoxia tolerance of the diving brain. Results Here we employed RNA-seq to approach the molecular basis of the unusual stress tolerance of the seal brain. An Illumina-generated transcriptome of the visual cortex of the hooded seal was compared with that of the ferret (Mustela putorius furo), which served as a terrestrial relative. Gene ontology analyses showed a significant enrichment of transcripts related to translation and aerobic energy production in the ferret but not in the seal brain. Clusterin, an extracellular chaperone, is the most highly expressed gene in the seal brain and fourfold higher than in the ferret or any other mammalian brain transcriptome. The largest difference was found for S100B, a calcium-binding stress protein with pleiotropic function, which was 38-fold enriched in the seal brain. Notably, significant enrichment of S100B mRNA was also found in the transcriptomes of whale brains, but not in the brains of terrestrial mammals. Conclusion Comparative transcriptomics indicates a lower aerobic capacity of the seal brain, which may be interpreted as a general energy saving strategy. Elevated expression of stress-related genes, such as clusterin and S100B, possibly contributes to the remarkable hypoxia tolerance of the brain of the hooded seal. Moreover, high levels of S100B that possibly protect the brain appear to be the result of the convergent adaptation of diving mammals. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2892-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrej Fabrizius
- Institute of Zoology, Biocenter Grindel, University of Hamburg, Martin-Luther-King-Platz 3, D-20146, Hamburg, Germany
| | - Mariana Leivas Müller Hoff
- Institute of Zoology, Biocenter Grindel, University of Hamburg, Martin-Luther-King-Platz 3, D-20146, Hamburg, Germany
| | - Gerhard Engler
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Lars P Folkow
- Department of Arctic and Marine Biology, University of Tromsø - The Arctic University of Norway, NO-9037, Tromsø, Norway
| | - Thorsten Burmester
- Institute of Zoology, Biocenter Grindel, University of Hamburg, Martin-Luther-King-Platz 3, D-20146, Hamburg, Germany.
| |
Collapse
|
52
|
Cartwright R, Newton C, West KM, Rice J, Niemeyer M, Burek K, Wilson A, Wall AN, Remonida-Bennett J, Tejeda A, Messi S, Marcial-Hernandez L. Tracking the Development of Muscular Myoglobin Stores in Mysticete Calves. PLoS One 2016; 11:e0145893. [PMID: 26788728 PMCID: PMC4720374 DOI: 10.1371/journal.pone.0145893] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/09/2015] [Indexed: 11/30/2022] Open
Abstract
For marine mammals, the ability to tolerate apnea and make extended dives is a defining adaptive trait, facilitating the exploitation of marine food resources. Elevated levels of myoglobin within the muscles are a consistent hallmark of this trait, allowing oxygen collected at the surface to be stored in the muscles and subsequently used to support extended dives. In mysticetes, the largest of marine predators, details on muscular myoglobin levels are limited. The developmental trajectory of muscular myoglobin stores has yet to be documented and any physiological links between early behavior and the development of muscular myoglobin stores remain unknown. In this study, we used muscle tissue samples from stranded mysticetes to investigate these issues. Samples from three different age cohorts and three species of mysticetes were included (total sample size = 18). Results indicate that in mysticete calves, muscle myoglobin stores comprise only a small percentage (17–23%) of conspecific adult myoglobin complements. Development of elevated myoglobin levels is protracted over the course of extended maturation in mysticetes. Additionally, comparisons of myoglobin levels between and within muscles, along with details of interspecific differences in rates of accumulation of myoglobin in very young mysticetes, suggest that levels of exercise may influence the rate of development of myoglobin stores in young mysticetes. This new information infers a close interplay between the physiology, ontogeny and early life history of young mysticetes and provides new insight into the pressures that may shape adaptive strategies in migratory mysticetes. Furthermore, the study highlights the vulnerability of specific age cohorts to impending changes in the availability of foraging habitat and marine resources.
Collapse
Affiliation(s)
- Rachel Cartwright
- California State University Channel Islands, Camarillo, California, United States of America
- The Keiki Kohola Project, Lahaina, Hawaii, United States of America
- * E-mail:
| | - Cori Newton
- California State University Channel Islands, Camarillo, California, United States of America
| | - Kristi M. West
- Hawaii Pacific University Stranding Program, College of Natural and Computational Sciences, Hawaii Pacific University, Kaneohe, Hawaii, United States of America
| | - Jim Rice
- Oregon Marine Mammal Stranding Network, Marine Mammal Institute, Oregon State University, Newport, Oregon, United States of America
| | - Misty Niemeyer
- International Fund for Animal Welfare, Yarmouth Port, Massachusetts, United States of America
| | - Kathryn Burek
- Alaska Veterinary Pathology Services, Eagle River, Alaska, United States of America
| | - Andrew Wilson
- California State University Channel Islands, Camarillo, California, United States of America
| | - Alison N. Wall
- California State University Channel Islands, Camarillo, California, United States of America
| | - Jean Remonida-Bennett
- California State University Channel Islands, Camarillo, California, United States of America
| | - Areli Tejeda
- California State University Channel Islands, Camarillo, California, United States of America
| | - Sarah Messi
- California State University Channel Islands, Camarillo, California, United States of America
| | - Lila Marcial-Hernandez
- California State University Channel Islands, Camarillo, California, United States of America
| |
Collapse
|
53
|
Fago A, Jensen FB. Hypoxia tolerance, nitric oxide, and nitrite: lessons from extreme animals. Physiology (Bethesda) 2015; 30:116-26. [PMID: 25729057 DOI: 10.1152/physiol.00051.2014] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Among vertebrates able to tolerate periods of oxygen deprivation, the painted and red-eared slider turtles (Chrysemys picta and Trachemys scripta) and the crucian carp (Carassius carassius) are the most extreme and can survive even months of total lack of oxygen during winter. The key to hypoxia survival resides in concerted physiological responses, including strong metabolic depression, protection against oxidative damage and-in air-breathing animals-redistribution of blood flow. Each of these responses is known to be tightly regulated by nitric oxide (NO) and during hypoxia by its metabolite nitrite. The aim of this review is to highlight recent work illustrating the widespread roles of NO and nitrite in the tolerance to extreme oxygen deprivation, in particular in the red-eared slider turtle and crucian carp, but also in diving marine mammals. The emerging picture underscores the importance of NO and nitrite signaling in the adaptive response to hypoxia in vertebrate animals.
Collapse
Affiliation(s)
- Angela Fago
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark; and
| | - Frank B Jensen
- Department of Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
54
|
Zhang S, Pan C, Zhou F, Yuan Z, Wang H, Cui W, Zhang G. Hydrogen Sulfide as a Potential Therapeutic Target in Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:593407. [PMID: 26078809 PMCID: PMC4442300 DOI: 10.1155/2015/593407] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/29/2014] [Indexed: 12/24/2022]
Abstract
Hydrogen sulfide (H2S), produced endogenously by the activation of two major H2S-generating enzymes (cystathionine β-synthase and cystathionine γ-lyase), plays important regulatory roles in different physiologic and pathologic conditions. The abnormal metabolism of H2S is associated with fibrosis pathogenesis, causing damage in structure and function of different organs. A number of in vivo and in vitro studies have shown that both endogenous H2S level and the expressions of H2S-generating enzymes in plasma and tissues are significantly downregulated during fibrosis. Supplement with exogenous H2S mitigates the severity of fibrosis in various experimental animal models. The protective role of H2S in the development of fibrosis is primarily attributed to its antioxidation, antiapoptosis, anti-inflammation, proangiogenesis, and inhibition of fibroblasts activities. Future studies might focus on the potential to intervene fibrosis by targeting the pathway of endogenous H2S-producing enzymes and H2S itself.
Collapse
Affiliation(s)
- Shufang Zhang
- Department of Cardiovascular Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Binjiang Branch, Hangzhou 310009, China
| | - Chuli Pan
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Feifei Zhou
- Department of Critical Care Medicine, Ningbo Medical Center, Lihuili Hospital, Ningbo University, Ningbo 315041, China
| | - Zhi Yuan
- Department of Respiratory Medicine, Fenghua People's Hospital, Fenghua, Ningbo 315000, China
| | - Huiying Wang
- Department of Allergy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wei Cui
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Gensheng Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
55
|
Guimarães JP, Febronio AMB, Vergara-Parente JE, Werneck MR. Lesions Associated withHalocercus brasiliensisLins de Almeida, 1933 in the Lungs of Dolphins Stranded in the Northeast of Brazil. J Parasitol 2015; 101:248-51. [DOI: 10.1645/14-513.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
56
|
Dzal YA, Jenkin SEM, Lague SL, Reichert MN, York JM, Pamenter ME. Oxygen in demand: How oxygen has shaped vertebrate physiology. Comp Biochem Physiol A Mol Integr Physiol 2015; 186:4-26. [PMID: 25698654 DOI: 10.1016/j.cbpa.2014.10.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
Abstract
In response to varying environmental and physiological challenges, vertebrates have evolved complex and often overlapping systems. These systems detect changes in environmental oxygen availability and respond by increasing oxygen supply to the tissues and/or by decreasing oxygen demand at the cellular level. This suite of responses is termed the oxygen transport cascade and is comprised of several components. These components include 1) chemosensory detectors that sense changes in oxygen, carbon dioxide, and pH in the blood, and initiate changes in 2) ventilation and 3) cardiac work, thereby altering the rate of oxygen delivery to, and carbon dioxide clearance from, the tissues. In addition, changes in 4) cellular and systemic metabolism alters tissue-level metabolic demand. Thus the need for oxygen can be managed locally when increasing oxygen supply is not sufficient or possible. Together, these mechanisms provide a spectrum of responses that facilitate the maintenance of systemic oxygen homeostasis in the face of environmental hypoxia or physiological oxygen depletion (i.e. due to exercise or disease). Bill Milsom has dedicated his career to the study of these responses across phylogenies, repeatedly demonstrating the power of applying the comparative approach to physiological questions. The focus of this review is to discuss the anatomy, signalling pathways, and mechanics of each step of the oxygen transport cascade from the perspective of a Milsomite. That is, by taking into account the developmental, physiological, and evolutionary components of questions related to oxygen transport. We also highlight examples of some of the remarkable species that have captured Bill's attention through their unique adaptations in multiple components of the oxygen transport cascade, which allow them to achieve astounding physiological feats. Bill's research examining the oxygen transport cascade has provided important insight and leadership to the study of the diverse suite of adaptations that maintain cellular oxygen content across vertebrate taxa, which underscores the value of the comparative approach to the study of physiological systems.
Collapse
Affiliation(s)
- Yvonne A Dzal
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sarah E M Jenkin
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sabine L Lague
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Michelle N Reichert
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Julia M York
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Matthew E Pamenter
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
57
|
Tift MS, Ponganis PJ, Crocker DE. Elevated carboxyhemoglobin in a marine mammal, the northern elephant seal. ACTA ACUST UNITED AC 2015; 217:1752-7. [PMID: 24829326 DOI: 10.1242/jeb.100677] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Low concentrations of endogenous carbon monoxide (CO), generated primarily through degradation of heme from heme-proteins, have been shown to maintain physiological function of organs and to exert cytoprotective effects. However, high concentrations of carboxyhemoglobin (COHb), formed by CO binding to hemoglobin, potentially prevent adequate O2 delivery to tissues by lowering arterial O2 content. Elevated heme-protein concentrations, as found in marine mammals, are likely associated with greater heme degradation, more endogenous CO production and, consequently, elevated COHb concentrations. Therefore, we measured COHb in elephant seals, a species with large blood volumes and elevated hemoglobin and myoglobin concentrations. The levels of COHb were positively related to the total hemoglobin concentration. The maximum COHb value was 10.4% of total hemoglobin concentration. The mean (± s.e.m.) value in adult seals was 8.7 ± 0.3% (N=6), while juveniles and pups (with lower heme-protein contents) had lower mean COHb values of 7.6 ± 0.2% and 7.1 ± 0.3%, respectively (N=9 and N=9, respectively). Serial samples over several hours revealed little to no fluctuation in COHb values. This consistent elevation in COHb suggests that the magnitude and/or rate of heme-protein turnover is much higher than in terrestrial mammals. The maximum COHb values from this study decrease total body O2 stores by 7%, thereby reducing the calculated aerobic dive limit for this species. However, the constant presence of elevated CO in blood may also protect against potential ischemia-reperfusion injury associated with the extreme breath-holds of elephant seals. We suggest the elephant seal represents an ideal model for understanding the potential cytoprotective effects, mechanisms of action and evolutionary adaptation associated with chronically elevated concentrations of endogenously produced CO.
Collapse
Affiliation(s)
- Michael S Tift
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA Department of Biology, Sonoma State University, Rohnert Park, CA 94928, USA
| | - Paul J Ponganis
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA
| | - Daniel E Crocker
- Department of Biology, Sonoma State University, Rohnert Park, CA 94928, USA
| |
Collapse
|
58
|
Miedler S, Fahlman A, Valls Torres M, Alvaro Alvarez T, Garcia-Parraga D. Evaluating cardiac physiology through echocardiography in bottlenose dolphins: using stroke volume and cardiac output to estimate systolic left ventricular function during rest and following exercise. J Exp Biol 2015; 218:3604-10. [DOI: 10.1242/jeb.131532] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/10/2015] [Indexed: 11/20/2022]
Abstract
Heart-rate (fH) changes during diving and exercise are well documented for marine mammals, but changes in stroke volume (SV) and cardiac output (CO) are much less known. We hypothesized that both SV and CO are also modified following intense exercise. Using transthoracic ultrasound Doppler at the level of the aortic valve, we compared blood flow velocities in the left ventricle and cardiac frequencies during rest and at 1, 3 and 4 min after a bout of exercise in 13 adult bottlenose dolphins (Tursiops truncatus, six male and seven female, body mass range: 143-212 kg). Aortic cross sectional area and ventricle blood velocity at the aortic valve were used to calculate SV, which together with fH, provided estimates of left CO at rest and following exercise. The fH and SV stabilized approximately 4-7 sec following the post-respiratory tachycardia, so only data after the fH had stabilized were used for analysis and comparison. There were significant increases in fH, SV, and CO associated with each breath. At rest, fH, SV, and CO were uncorrelated with body mass, and averaged 41±8 beats min−1, 136±19 ml, and 5513±1182 l min−1, respectively. One minute following high intensity exercise, the cardiac variables had increased by 104±43%, 63±11%, and 234±84%, respectively. All variables remained significantly elevated in all animals for at least 4 min after the exercise. These baseline values provide the first data on stroke volume and cardiac output in awake and unrestrained cetaceans in water.
Collapse
Affiliation(s)
- S. Miedler
- Oceanografic, Ciudad de las Artes y las Ciencias, 46013, Valencia Spain
| | - A. Fahlman
- Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX, 78412, USA
| | - M. Valls Torres
- Oceanografic, Ciudad de las Artes y las Ciencias, 46013, Valencia Spain
| | - T. Alvaro Alvarez
- Oceanografic, Ciudad de las Artes y las Ciencias, 46013, Valencia Spain
| | - D. Garcia-Parraga
- Oceanografic, Ciudad de las Artes y las Ciencias, 46013, Valencia Spain
| |
Collapse
|
59
|
Champagne C, Tift M, Houser D, Crocker D. Adrenal sensitivity to stress is maintained despite variation in baseline glucocorticoids in moulting seals. CONSERVATION PHYSIOLOGY 2015; 3:cov004. [PMID: 27293689 PMCID: PMC4778431 DOI: 10.1093/conphys/cov004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 05/18/2023]
Abstract
Stressful disturbances activate the hypothalamic-pituitary-adrenal (HPA) axis and result in the release of glucocorticoid (GC) hormones. This characteristic stress response supports immediate energetic demands and subsequent recovery from disturbance. Increased baseline GC concentrations may indicate chronic stress and can impair HPA axis function during exposure to additional stressors. Levels of GCs, however, vary seasonally and with life-history stage, potentially confounding their interpretation. Our objective was to evaluate HPA axis function across variations in baseline GC levels. Northern elephant seals show substantial baseline variation in GC levels during their annual moulting period. We therefore conducted measurements early, in the middle and at the end of moulting; we simulated an acute stressor by administering adrenocorticotrophic hormone and evaluated the changes in circulating hormones and metabolites over the following 2 h. The stress response was characterized by increases in both cortisol and aldosterone (F 7,105 = 153 and 25.3, respectively; P < 0.001). These hormones increased in parallel and the slopes of their relationship varied by study group, suggesting they are regulated in a co--ordinated manner during acute stress in this species. There was no detectable difference in the total release of cortisol or aldosterone among study groups, indicating that the HPA axis remained sensitive to stimulation by adrenocorticotrophic hormone despite varying baseline levels of GCs. Acute stress influenced carbohydrate and fat metabolism in all study groups, but protein catabolism was affected to a far lesser degree. These findings suggest that elephant seals, and potentially other pinniped species, are resilient to moderate variations in baseline GC levels and remain capable of mounting a response to additional stressors.
Collapse
Affiliation(s)
- Cory Champagne
- National Marine Mammal Foundation, San Diego, CA 92106
, USA
- Corresponding author: NationalMarine Mammal Foundation, San Diego, CA 92106
, USA. Tel: +1 707 321 6113.
| | - Michael Tift
- Scripps Institution of Oceanography, La Jolla, CA 92093
, USA
| | - Dorian Houser
- National Marine Mammal Foundation, San Diego, CA 92106
, USA
| | | |
Collapse
|
60
|
Noren SR, Jay CV, Burns JM, Fischbach AS. Rapid maturation of the muscle biochemistry that supports diving in pacific walruses (Odobenus rosmarus divergens). J Exp Biol 2015; 218:3319-29. [PMID: 26347559 DOI: 10.1242/jeb.125757] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/24/2015] [Indexed: 11/20/2022]
Abstract
Physiological constraints dictate animals' abilities to exploit habitats. For marine mammals, it is important to quantify physiological limits that influence diving and their ability to alter foraging behaviors. We characterized age-specific dive limits of walruses by measuring anaerobic (acid buffering capacity) and aerobic (myoglobin content) capacities of the muscles that power hind (longissimus dorsi) and fore (supraspinatus) flipper propulsion. Mean buffering capacities were similar across muscles and age classes (a fetus, 5 neonatal calves, a 3-month old, and 20 adults), ranging from 41.31 – 54.14 slykes and 42.00 – 46.93 slykes in the longissimus and supraspinatus, respectively. Mean myoglobin in the fetus and neonatal calves fell within a narrow range (longissimus: 0.92 – 1.68 g 100 g wet muscle mass−1; supraspinatus: 0.88 – 1.64 g wet muscle mass−1). By 3 months postpartum, myoglobin in the longissimus increased by 79%, but levels in the supraspinatus remained unaltered. From 3-months postpartum to adulthood, myoglobin increased by an additional 26% in the longissimus and increased by 126% in the supraspinatus; myoglobin remained greater in the longissimus compared to the supraspinatus. Walruses are unique among marine mammals because they are born with mature muscle acid buffering capacity and attain mature myoglobin content early in life. Despite rapid physiological development, small body size limits the diving capacity of immature walruses and extreme sexual dimorphism reduces the diving capacity of adult females compared to adult males. Thus, free-ranging immature walruses likely exhibit the shortest foraging dives while adult males are capable of the longest foraging dives.
Collapse
Affiliation(s)
- Shawn R. Noren
- Institute of Marine Science, University of California, Santa Cruz, Center for Ocean Health, 100 Shaffer Road, Santa Cruz, CA 95060, USA
| | - Chadwick V. Jay
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA
| | - Jennifer M. Burns
- University of Alaska, Anchorage, Department of Biological Sciences, CPSB 202C, 3101 Science Circle, University of Alaska, Anchorage, AK 99508, USA
| | - Anthony S. Fischbach
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA
| |
Collapse
|
61
|
Kooyman G. Marine mammals and Emperor penguins: a few applications of the Krogh principle. Am J Physiol Regul Integr Comp Physiol 2014; 308:R96-104. [PMID: 25411360 DOI: 10.1152/ajpregu.00264.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The diving physiology of aquatic animals at sea began 50 years ago with studies of the Weddell seal. Even today with the advancements in marine recording and tracking technology, only a few species are suitable for investigation. The first experiments were in McMurdo Sound, Antarctica. In this paper are examples of what was learned in Antarctica and elsewhere. Some methods employed relied on willingness of Weddell seals and emperor penguins to dive under sea ice. Diving depth and duration were obtained with a time depth recorder. Some dives were longer than an hour and as deep as 600 m. From arterial blood samples, lactate and nitrogen concentrations were obtained. These results showed how Weddell seals manage their oxygen stores, that they become reliant on a positive contribution of anaerobic metabolism during a dive duration of more than 20 min, and that nitrogen blood gases remain so low that lung collapse must occur at about 25 to 50 m. This nitrogen level was similar to that determined in elephant seals during forcible submersion with compression to depths greater than 100 m. These results led to further questions about diving mammal's terminal airway structure in the lungs. Much of the strengthening of the airways is not for avoiding the "bends," by enhancing lung collapse at depth, but for reducing the resistance to high flow rates during expiration. The most exceptional examples are the small whales that maintain high expiratory flow rates throughout the entire vital capacity, which represents about 90% of their total lung capacity.
Collapse
Affiliation(s)
- Gerald Kooyman
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
| |
Collapse
|
62
|
Czech-Damal N, Geiseler S, Hoff M, Schliep R, Ramirez JM, Folkow L, Burmester T. The role of glycogen, glucose and lactate in neuronal activity during hypoxia in the hooded seal (Cystophora cristata) brain. Neuroscience 2014; 275:374-83. [DOI: 10.1016/j.neuroscience.2014.06.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
|
63
|
Correa L, Castellini JM, Wells RS, O'Hara T. Distribution of mercury and selenium in blood compartments of bottlenose dolphins (Tursiops truncatus) from Sarasota Bay, Florida. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:2441-2448. [PMID: 23861289 DOI: 10.1002/etc.2327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/11/2013] [Accepted: 07/14/2013] [Indexed: 06/02/2023]
Abstract
Total mercury and selenium concentrations ([THg], [Se]) in serum, plasma, whole blood, and packed cells were examined in a resident population of free-ranging bottlenose dolphins (Tursiops truncatus) from Sarasota Bay, Florida, USA. The authors determined how these elements partition in blood and assess compartment-specific associations. Determining the distribution of Se and THg can provide physiologic insight into potential association of Hg with selenol-containing biomolecules (e.g., antioxidants) in blood compartments. Concentrations of THg were ranked serum < plasma < whole blood < packed cells; whereas for Se concentrations, plasma < serum < whole blood < packed cells. The Se:THg molar ratio was greater than 1 in all compartments, with the higher ratios found in serum and plasma (plasma < serum) and the lower in whole blood and packed cells (packed cells < whole blood). Age was positively correlated with [THg] in all blood compartments and with [Se] in serum, plasma, and whole blood. Age was negatively correlated with Se:THg molar ratios in all blood compartments, driven by low [THg] in young animals. Although [THg] was highly correlated among all blood compartments, this was not the case for [Se]. The feasibility of calculating packed cell [THg], [Se], and Se:THg molar ratios using hematocrit measurements in combination with whole blood and plasma [THg] and [Se] was validated, allowing routine assessment of compartmentalization within erythrocytes using standard clinical measurements.
Collapse
Affiliation(s)
- Lucero Correa
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | | | | | | |
Collapse
|
64
|
Ponganis P. AFTER 73 YEARS, STILL THE FOUNDATION OF DIVING PHYSIOLOGY RESEARCH. J Exp Biol 2013; 216:3381-3. [DOI: 10.1242/jeb.076455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
65
|
Dasmeh P, Serohijos AWR, Kepp KP, Shakhnovich EI. Positively selected sites in cetacean myoglobins contribute to protein stability. PLoS Comput Biol 2013; 9:e1002929. [PMID: 23505347 PMCID: PMC3591298 DOI: 10.1371/journal.pcbi.1002929] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/05/2013] [Indexed: 12/03/2022] Open
Abstract
Since divergence ∼50 Ma ago from their terrestrial ancestors, cetaceans underwent a series of adaptations such as a ∼10-20 fold increase in myoglobin (Mb) concentration in skeletal muscle, critical for increasing oxygen storage capacity and prolonging dive time. Whereas the O2-binding affinity of Mbs is not significantly different among mammals (with typical oxygenation constants of ∼0.8-1.2 µM(-1)), folding stabilities of cetacean Mbs are ∼2-4 kcal/mol higher than for terrestrial Mbs. Using ancestral sequence reconstruction, maximum likelihood and bayesian tests to describe the evolution of cetacean Mbs, and experimentally calibrated computation of stability effects of mutations, we observe accelerated evolution in cetaceans and identify seven positively selected sites in Mb. Overall, these sites contribute to Mb stabilization with a conditional probability of 0.8. We observe a correlation between Mb folding stability and protein abundance, suggesting that a selection pressure for stability acts proportionally to higher expression. We also identify a major divergence event leading to the common ancestor of whales, during which major stabilization occurred. Most of the positively selected sites that occur later act against other destabilizing mutations to maintain stability across the clade, except for the shallow divers, where late stability relaxation occurs, probably due to the shorter aerobic dive limits of these species. The three main positively selected sites 66, 5, and 35 undergo changes that favor hydrophobic folding, structural integrity, and intra-helical hydrogen bonds.
Collapse
Affiliation(s)
- Pouria Dasmeh
- Technical University of Denmark, DTU Chemistry, Kongens Lyngby, Denmark
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Adrian W. R. Serohijos
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Kasper P. Kepp
- Technical University of Denmark, DTU Chemistry, Kongens Lyngby, Denmark
| | - Eugene I. Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
66
|
Soegaard LB, Hansen MN, van Elk C, Brahm J, Jensen FB. Respiratory properties of blood in the harbor porpoise, Phocoena phocoena. J Exp Biol 2012; 215:1938-43. [DOI: 10.1242/jeb.069872] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Harbor porpoises are active divers that exchange O2 and CO2 with the environment during a fast single breath upon surfacing. We investigated blood O2-transporting properties, buffer characteristics, Cl– transport via the erythrocyte anion exchanger (AE1), circulating nitric oxide metabolites and hemoglobin nitrite reduction in harbor porpoises with the aim to evaluate traits that are adaptive for diving behavior. Blood O2 affinity was higher in harbor porpoises than in similar sized terrestrial mammals, as supported by our parallel recordings of O2 equilibria in sheep and pig blood. Further, O2 affinity tended to increase with increasing body mass. A high O2 affinity favors O2 extraction from the lungs, but a normal Bohr effect (ΔlogP50/ΔpH=–0.46) gradually lowers O2 affinity during dives (where CO2 accumulates) to assist O2 off-loading to perfused tissues. The true plasma non-bicarbonate buffer value was moderately higher than in terrestrial mammals and increased upon deoxygenation. Plasma bicarbonate was also relatively high, contributing to increase the overall buffer capacity. The apparent Cl– permeability of harbor porpoise erythrocytes was similar to the human value at 37°C, showing absence of a comparative increase in the velocity of erythrocyte HCO –3/Cl– exchange to aid CO2 excretion. The Q10 for AE1-mediated Cl– transport in harbor porpoises was lower than in humans and seemed to match the Q10 for metabolism (Q10≈2). Plasma nitrite, plasma nitrate and hemoglobin-mediated nitrite reduction were elevated compared with mammalian standards, suggesting that increased nitric oxide bioavailability and nitrite-derived nitric oxide could play important roles in diving physiology.
Collapse
Affiliation(s)
- Lisette B. Soegaard
- Institute of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
- Fjord and Belt, DK-5300 Kerteminde, Denmark
| | - Marie N. Hansen
- Institute of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | - Jesper Brahm
- Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Frank B. Jensen
- Institute of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
67
|
Ponganis PJ, Meir JU, Williams CL. In pursuit of Irving and Scholander: a review of oxygen store management in seals and penguins. J Exp Biol 2011; 214:3325-39. [DOI: 10.1242/jeb.031252] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Since the introduction of the aerobic dive limit (ADL) 30 years ago, the concept that most dives of marine mammals and sea birds are aerobic in nature has dominated the interpretation of their diving behavior and foraging ecology. Although there have been many measurements of body oxygen stores, there have been few investigations of the actual depletion of those stores during dives. Yet, it is the pattern, rate and magnitude of depletion of O2 stores that underlie the ADL. Therefore, in order to assess strategies of O2 store management, we review (a) the magnitude of O2 stores, (b) past studies of O2 store depletion and (c) our recent investigations of O2 store utilization during sleep apnea and dives of elephant seals (Mirounga angustirostris) and during dives of emperor penguins (Aptenodytes forsteri). We conclude with the implications of these findings for (a) the physiological responses underlying O2 store utilization, (b) the physiological basis of the ADL and (c) the value of extreme hypoxemic tolerance and the significance of the avoidance of re-perfusion injury in these animals.
Collapse
Affiliation(s)
- Paul J. Ponganis
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA
| | - Jessica U. Meir
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Cassondra L. Williams
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|