51
|
Wang Z, Wang Q, Li S, Li XJ, Yang W, He D. Microglial autophagy in Alzheimer's disease and Parkinson's disease. Front Aging Neurosci 2023; 14:1065183. [PMID: 36704504 PMCID: PMC9872664 DOI: 10.3389/fnagi.2022.1065183] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases, characterized by gradual and selective loss of neurons in the central nervous system. They affect more than 50 million people worldwide, and their incidence increases with age. Although most cases of AD and PD are sporadic, some are caused by genetic mutations that are inherited. Both sporadic and familial cases display complex neuropathology and represent the most perplexing neurological disorders. Because of the undefined pathogenesis and complex clinical manifestations, there is still no effective treatment for both AD and PD. Understanding the pathogenesis of these important neurodegenerative diseases is important for developing successful therapies. Increasing evidence suggests that microglial autophagy is associated with the pathogenesis of AD and PD, and its dysfunction has been implicated in disease progression. In this review, we focus on the autophagy function in microglia and its dysfunction in AD and PD disease models in an attempt to help our understanding of the pathogenesis and identifying new therapeutic targets of AD and PD.
Collapse
Affiliation(s)
| | | | | | | | | | - Dajian He
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
52
|
Shinoda Y, Akiyama M, Toyama T. Potential Association between Methylmercury Neurotoxicity and Inflammation. Biol Pharm Bull 2023; 46:1162-1168. [PMID: 37661394 DOI: 10.1248/bpb.b23-00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Methylmercury (MeHg) is the causal substrate of Minamata disease and a major environmental toxicant. MeHg is widely distributed, mainly in the ocean, meaning its bioaccumulation in seafood is a considerable problem for human health. MeHg has been intensively investigated and is known to induce inflammatory responses and neurodegeneration. However, the relationship between MeHg-induced inflammatory responses and neurodegeneration is not understood. In the present review, we first describe recent findings showing an association between inflammatory responses and certain MeHg-unrelated neurological diseases caused by neurodegeneration. In addition, cell-specific MeHg-induced inflammatory responses are summarized for the central nervous system including those of microglia, astrocytes, and neurons. We also describe MeHg-induced inflammatory responses in peripheral cells and tissue, such as macrophages and blood. These findings provide a concept of the relationship between MeHg-induced inflammatory responses and neurodegeneration, as well as direction for future research of MeHg-induced neurotoxicity.
Collapse
Affiliation(s)
- Yo Shinoda
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Masahiro Akiyama
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University
| | - Takashi Toyama
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
53
|
Bolon B. Toxicologic Pathology Forum Opinion: Interpretation of Gliosis in the Brain and Spinal Cord Observed During Nonclinical Safety Studies. Toxicol Pathol 2023; 51:68-76. [PMID: 37057409 DOI: 10.1177/01926233231164557] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Gliosis, defined as a nonneoplastic reaction (hypertrophy and/or proliferation) of astrocytes and/or microglial cells, is a frequent finding in the central nervous system (CNS [brain and/or spinal cord]) in nonclinical safety studies. Gliosis in rodents and nonrodents occurs at low incidence as a spontaneous finding and is induced by various test articles (e.g., biomolecules, cell and gene therapies, small molecules) delivered centrally (i.e., by injection or infusion into cerebrospinal fluid or neural tissue) or systemically. Several CNS gliosis patterns occur in nonclinical species. First, gliosis may accompany degeneration and/or necrosis of cells (mainly neurons) or neural parenchyma (neuron processes and myelin). Second, gliosis often follows inflammation (i.e., leukocyte accumulation causing parenchymal damage) or neoplasm formation. Third, gliosis may appear as variably sized, randomly scattered foci of reactive glial cells in the absence of visible parenchymal damage or inflammation. In interpreting test article-related CNS gliosis, adversity is indicated by parenchymal injury (e.g., degeneration, necrosis, or inflammation) and not the mere existence of a glial reaction. In the absence of clear structural damage to the parenchyma, gliosis as a standalone CNS finding should be interpreted as a nonadverse reaction to regional alterations in microenvironmental conditions rather than as evidence of a glial reaction associated with neurotoxicity.
Collapse
|
54
|
Kumari A, Borooah S. The Role of Microglia in Inherited Retinal Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:197-205. [PMID: 37440034 DOI: 10.1007/978-3-031-27681-1_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Inherited retinal diseases (IRDs) are a leading cause of irreversible visual loss in the developed world. The primary driver of pathology in IRDs is pathogenic genetic variant. However, there is increasing evidence, from recent studies, for a role of the immune system in disease mechanism, particularly retinal microglia. Microglia are the primary immune cells in the retina and actively contribute to disease pathogenesis when activated locally by phagocytosing photoreceptors, inducing inflammation and signaling infiltration of circulating monocytes. In this article, we discuss the evidence for the contribution of retinal microglia to IRD pathogenesis reported so far using mice model.
Collapse
Affiliation(s)
- Asha Kumari
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Shyamanga Borooah
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
55
|
Tzioras M, McGeachan RI, Durrant CS, Spires-Jones TL. Synaptic degeneration in Alzheimer disease. Nat Rev Neurol 2023; 19:19-38. [PMID: 36513730 DOI: 10.1038/s41582-022-00749-z] [Citation(s) in RCA: 196] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 12/15/2022]
Abstract
Alzheimer disease (AD) is characterized by progressive cognitive decline in older individuals accompanied by the presence of two pathological protein aggregates - amyloid-β and phosphorylated tau - in the brain. The disease results in brain atrophy caused by neuronal loss and synapse degeneration. Synaptic loss strongly correlates with cognitive decline in both humans and animal models of AD. Indeed, evidence suggests that soluble forms of amyloid-β and tau can cause synaptotoxicity and spread through neural circuits. These pathological changes are accompanied by an altered phenotype in the glial cells of the brain - one hypothesis is that glia excessively ingest synapses and modulate the trans-synaptic spread of pathology. To date, effective therapies for the treatment or prevention of AD are lacking, but understanding how synaptic degeneration occurs will be essential for the development of new interventions. Here, we highlight the mechanisms through which synapses degenerate in the AD brain, and discuss key questions that still need to be answered. We also cover the ways in which our understanding of the mechanisms of synaptic degeneration is leading to new therapeutic approaches for AD.
Collapse
Affiliation(s)
- Makis Tzioras
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Robert I McGeachan
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK.,The Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Claire S Durrant
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK. .,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
56
|
Zhou Z, Hui ES, Kranz GS, Chang JR, de Luca K, Pinto SM, Chan WW, Yau SY, Chau BK, Samartzis D, Jensen MP, Wong AYL. Potential mechanisms underlying the accelerated cognitive decline in people with chronic low back pain: A scoping review. Ageing Res Rev 2022; 82:101767. [PMID: 36280211 DOI: 10.1016/j.arr.2022.101767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/13/2022] [Accepted: 10/20/2022] [Indexed: 01/31/2023]
Abstract
A growing body of evidence has shown that people with chronic low back pain (CLBP) demonstrate significantly greater declines in multiple cognitive domains than people who do not have CLBP. Given the high prevalence of CLBP in the ever-growing aging population that may be more vulnerable to cognitive decline, it is important to understand the mechanisms underlying the accelerated cognitive decline observed in this population, so that proper preventive or treatment approaches can be developed and implemented. The current scoping review summarizes what is known regarding the potential mechanisms underlying suboptimal cognitive performance and cognitive decline in people with CLBP and discusses future research directions. Five potential mechanisms were identified based on the findings from 34 included studies: (1) altered activity in the cortex and neural networks; (2) grey matter atrophy; (3) microglial activation and neuroinflammation; (4) comorbidities associated with CLBP; and (5) gut microbiota dysbiosis. Future studies should deepen the understanding of mechanisms underlying this association so that proper prevention and treatment strategies can be developed.
Collapse
Affiliation(s)
- Zhixing Zhou
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Edward S Hui
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Georg S Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; The State Key Laboratory of Brain and Cognitive Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Jeremy R Chang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Katie de Luca
- School of Health, Medical and Applied Sciences, CQ University, Brisbane, Australia
| | - Sabina M Pinto
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Winnie Wy Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Bolton Kh Chau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Dino Samartzis
- Department of Orthopedic Surgery, Rush University Medical Centre, Chicago, IL, USA
| | - Mark P Jensen
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Arnold Y L Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China.
| |
Collapse
|
57
|
Vidal-Itriago A, Radford RAW, Aramideh JA, Maurel C, Scherer NM, Don EK, Lee A, Chung RS, Graeber MB, Morsch M. Microglia morphophysiological diversity and its implications for the CNS. Front Immunol 2022; 13:997786. [PMID: 36341385 PMCID: PMC9627549 DOI: 10.3389/fimmu.2022.997786] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/20/2022] [Indexed: 07/30/2023] Open
Abstract
Microglia are mononuclear phagocytes of mesodermal origin that migrate to the central nervous system (CNS) during the early stages of embryonic development. After colonizing the CNS, they proliferate and remain able to self-renew throughout life, maintaining the number of microglia around 5-12% of the cells in the CNS parenchyma. They are considered to play key roles in development, homeostasis and innate immunity of the CNS. Microglia are exceptionally diverse in their morphological characteristics, actively modifying the shape of their processes and soma in response to different stimuli. This broad morphological spectrum of microglia responses is considered to be closely correlated to their diverse range of functions in health and disease. However, the morphophysiological attributes of microglia, and the structural and functional features of microglia-neuron interactions, remain largely unknown. Here, we assess the current knowledge of the diverse microglial morphologies, with a focus on the correlation between microglial shape and function. We also outline some of the current challenges, opportunities, and future directions that will help us to tackle unanswered questions about microglia, and to continue unravelling the mysteries of microglia, in all its shapes.
Collapse
Affiliation(s)
- Andrés Vidal-Itriago
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Rowan A. W. Radford
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Jason A. Aramideh
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Cindy Maurel
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Natalie M. Scherer
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Emily K. Don
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Albert Lee
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Roger S. Chung
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Manuel B. Graeber
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Marco Morsch
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
58
|
Sato Y, Falcone-Juengert J, Tominaga T, Su H, Liu J. Remodeling of the Neurovascular Unit Following Cerebral Ischemia and Hemorrhage. Cells 2022; 11:2823. [PMID: 36139398 PMCID: PMC9496956 DOI: 10.3390/cells11182823] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Formulated as a group effort of the stroke community, the transforming concept of the neurovascular unit (NVU) depicts the structural and functional relationship between brain cells and the vascular structure. Composed of both neural and vascular elements, the NVU forms the blood-brain barrier that regulates cerebral blood flow to meet the oxygen demand of the brain in normal physiology and maintain brain homeostasis. Conversely, the dysregulation and dysfunction of the NVU is an essential pathological feature that underlies neurological disorders spanning from chronic neurodegeneration to acute cerebrovascular events such as ischemic stroke and cerebral hemorrhage, which were the focus of this review. We also discussed how common vascular risk factors of stroke predispose the NVU to pathological changes. We synthesized existing literature and first provided an overview of the basic structure and function of NVU, followed by knowledge of how these components remodel in response to ischemic stroke and brain hemorrhage. A greater understanding of the NVU dysfunction and remodeling will enable the design of targeted therapies and provide a valuable foundation for relevant research in this area.
Collapse
Affiliation(s)
- Yoshimichi Sato
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA 94158, USA
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Jaime Falcone-Juengert
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA 94158, USA
| | - Teiji Tominaga
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hua Su
- Department of Anesthesia, UCSF, San Francisco, CA 94143, USA
- Center for Cerebrovascular Research, UCSF, San Francisco, CA 94143, USA
| | - Jialing Liu
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA 94158, USA
| |
Collapse
|
59
|
Tarricone G, Carmagnola I, Chiono V. Tissue-Engineered Models of the Human Brain: State-of-the-Art Analysis and Challenges. J Funct Biomater 2022; 13:146. [PMID: 36135581 PMCID: PMC9501967 DOI: 10.3390/jfb13030146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Neurological disorders affect billions of people across the world, making the discovery of effective treatments an important challenge. The evaluation of drug efficacy is further complicated because of the lack of in vitro models able to reproduce the complexity of the human brain structure and functions. Some limitations of 2D preclinical models of the human brain have been overcome by the use of 3D cultures such as cell spheroids, organoids and organs-on-chip. However, one of the most promising approaches for mimicking not only cell structure, but also brain architecture, is currently represented by tissue-engineered brain models. Both conventional (particularly electrospinning and salt leaching) and unconventional (particularly bioprinting) techniques have been exploited, making use of natural polymers or combinations between natural and synthetic polymers. Moreover, the use of induced pluripotent stem cells (iPSCs) has allowed the co-culture of different human brain cells (neurons, astrocytes, oligodendrocytes, microglia), helping towards approaching the central nervous system complexity. In this review article, we explain the importance of in vitro brain modeling, and present the main in vitro brain models developed to date, with a special focus on the most recent advancements in tissue-engineered brain models making use of iPSCs. Finally, we critically discuss achievements, main challenges and future perspectives.
Collapse
Affiliation(s)
- Giulia Tarricone
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- PolitoBioMedLab, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principle in Teaching and Research, Centro 3R, 56122 Pisa, Italy
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- PolitoBioMedLab, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principle in Teaching and Research, Centro 3R, 56122 Pisa, Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- PolitoBioMedLab, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principle in Teaching and Research, Centro 3R, 56122 Pisa, Italy
| |
Collapse
|
60
|
The Alpha 7 Nicotinic Acetylcholine Receptor Does Not Affect Neonatal Brain Injury. Biomedicines 2022; 10:biomedicines10082023. [PMID: 36009570 PMCID: PMC9405910 DOI: 10.3390/biomedicines10082023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammation plays a central role in the development of neonatal brain injury. The alpha 7 nicotinic acetylcholine receptor (α7nAChR) can modulate inflammation and has shown promising results as a treatment target in rodent models of adult brain injury. However, little is known about the role of the α7nAChR in neonatal brain injury. Hypoxic-ischemic (HI) brain injury was induced in male and female C57BL/6 mice, α7nAChR knock-out (KO) mice and their littermate controls on postnatal day (PND) 9–10. C57BL/6 pups received i.p. injections of α7nAChR agonist PHA 568487 (8 mg/kg) or saline once daily, with the first dose given directly after HI. Caspase-3 activity and cytokine mRNA expression in the brain was analyzed 24 h after HI. Motor function was assessed 24 and 48 h after HI, and immunohistochemistry was used to assess tissue loss at 24 h and 7 days after HI and microglial activation 7 days after HI. Activation of α7nAChR with the agonist PHA 568487 significantly decreased CCL2/MCP-1, CCL5/RANTES and IL-6 gene expression in the injured brain hemisphere 24 h after HI compared with saline controls in male, but not female, pups. However, α7nAChR activation did not alter caspase-3 activity and TNFα, IL-1β and CD68 mRNA expression. Furthermore, agonist treatment did not affect motor function (24 or 48 h), neuronal tissue loss (24 h or 7 days) or microglia activation (7 days) after HI in either sex. Knock-out of α7nAChR did not influence neuronal tissue loss 7 days after HI. In conclusion, targeting the α7nAChR in neonatal brain injury shows some effect on dampening acute inflammatory responses in male pups. However, this does not lead to an effect on overall injury outcome.
Collapse
|
61
|
Yu Z, Sakai M, Fukushima H, Ono C, Kikuchi Y, Koyama R, Matsui K, Furuyashiki T, Kida S, Tomita H. Contextual fear conditioning regulates synapse-related gene transcription in mouse microglia. Brain Res Bull 2022; 189:57-68. [PMID: 35987296 DOI: 10.1016/j.brainresbull.2022.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/04/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
Microglia have been suggested to be involved in the underlying mechanism of conditional fear memory formation by regulating inflammatory cytokines. However, the mechanism linking microglia and neuronal activity related to fear conditioning remains unclear. This study characterized the transcription profile of microglia in a fear memory conditional mouse model. Compared with those in control mice microglia, the most significantly induced genes were synapse-related, whereas immune-related genes were reduced due to fear memory consolidation. Whilst the increased expression of synapse-related genes was reversed after fear memory extinction, that of immunological genes was not, strongly suggesting a connection between microglia, neurons, and a dysregulated immune response following contextual fear conditioning. Furthermore, in the hippocampal microglia, we found that the expression of neurotransmitter release regulators, γ-aminobutyric acid (GABA) receptor GABRB3 and synapsin 1/2, increased under fear memory consolidation and restored (decreased) after extinction. In addition, compared with the transcription profile in peripheral monocytes, few overlapping genes were not enriched in biological processes. Taken together, the identified conditional fear stress-induced changes in mouse microglial transcription profiles suggest that microglia-neuron communication mediates contextual fear conditioning.
Collapse
Affiliation(s)
- Zhiqian Yu
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.
| | - Mai Sakai
- Department of Psychiatry Nursing, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hotaka Fukushima
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Chiaki Ono
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yoshie Kikuchi
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ko Matsui
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Satoshi Kida
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan; Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Department of Disaster Psychiatry, International Research Institute for Disaster Science, Tohoku University, Sendai, Japan
| |
Collapse
|
62
|
Exposure to Cadmium Alters the Population of Glial Cell Types and Disrupts the Regulatory Mechanisms of the HPG Axis in Prepubertal Female Rats. Neurotox Res 2022; 40:1029-1042. [PMID: 35639248 DOI: 10.1007/s12640-022-00516-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/30/2022]
Abstract
Despite the fact that the brain is susceptible to neurotoxicity induced by cadmium (Cd), the effects of Cd on the neuroanatomical development in the hypothalamus and regulatory mechanisms of the hypothalamic-pituitary-gonadal (HPG) axis are not fully understood. To clarify this issue, we investigated the effects of 25 mg/kg BW/day cadmium chloride (CdCl2) on neuroanatomical alterations in the hypothalamus of prepubertal female rats. Twenty-four Sprague-Dawley rats were randomly assigned to two groups (n = 12), and CdCl2 was administered via gavage from postnatal days (PND) 21 to PND35. The results of the stereological analysis demonstrated that prepubertal exposure to Cd reduced the number of neurons and oligodendrocytes in the arcuate (ARC) and dorsomedial hypothalamus nucleus (DMH) nuclei. In contrast, Cd exposure increased the number of microglial cells in the ARC and DMH nuclei. Cd exposure decreased the mRNA levels of gonadotropin-releasing hormone (GnRH) and increased the mRNA levels of RFamide-related peptide (RFRP-3), but not kisspeptin (Kiss1) in the hypothalamus. Moreover, hormonal assay showed that Cd exposure caused a reduction in the concentration of gonadotropins: luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in serum. Immunohistochemical expression of RFRP-3 in neuronal cell bodies demonstrated that the mean number of RFRP-3 expressing neurons in the DMH nucleus of cadmium-treated rats was dramatically higher than the vehicle group. Overall, exposure to Cd during the prepubertal period alters the population of neurons and glial cell types in the hypothalamus. Additionally, Cd exposure disrupts the regulatory mechanisms of the HPG axis.
Collapse
|
63
|
Joshi P, Bisht A, Joshi S, Semwal D, Nema NK, Dwivedi J, Sharma S. Ameliorating potential of curcumin and its analogue in central nervous system disorders and related conditions: A review of molecular pathways. Phytother Res 2022; 36:3143-3180. [PMID: 35790042 DOI: 10.1002/ptr.7522] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/26/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
Curcumin, isolated from turmeric (Curcuma longa L.) is one of the broadly studied phytomolecule owing to its strong antioxidant and anti-inflammatory potential and has been considered a promising therapeutic candidate in a wide range of disorders. Considering, its low bioavailability, different curcumin analogs have been developed to afford desired pharmacokinetic profile and therapeutic outcome in varied pathological states. Several preclinical and clinical studies have indicated that curcumin ameliorates mitochondrial dysfunction, inflammation, oxidative stress apoptosis-mediated neural cell degeneration and could effectively be utilized in the treatment of different neurodegenerative diseases. Hence, in this review, we have summarized key findings of experimental and clinical studies conducted on curcumin and its analogues with special emphasis on molecular pathways, viz. NF-kB, Nrf2-ARE, glial activation, apoptosis, angiogenesis, SOCS/JAK/STAT, PI3K/Akt, ERK1/2 /MyD88 /p38 MAPK, JNK, iNOS/NO, and MMP pathways involved in imparting ameliorative effects in the therapy of neurodegenerative disorders and associated conditions.
Collapse
Affiliation(s)
- Priyanka Joshi
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India.,R & D, Patanjali Ayurved Ltd, Patanjali Food and Herbal Park, Haridwar, Uttarakhand, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| | - Sushil Joshi
- R & D, Patanjali Ayurved Ltd, Patanjali Food and Herbal Park, Haridwar, Uttarakhand, India
| | - Deepak Semwal
- Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Dehradun, Uttarakhand, India
| | - Neelesh Kumar Nema
- Paramount Kumkum Private Limited, Prestige Meridian-1, Bangalore, Karnataka, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| |
Collapse
|
64
|
Targeting Microglia in Alzheimer’s Disease: From Molecular Mechanisms to Potential Therapeutic Targets for Small Molecules. Molecules 2022; 27:molecules27134124. [PMID: 35807370 PMCID: PMC9268715 DOI: 10.3390/molecules27134124] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a common, progressive, and devastating neurodegenerative disorder that mainly affects the elderly. Microglial dysregulation, amyloid-beta (Aβ) plaques, and intracellular neurofibrillary tangles play crucial roles in the pathogenesis of AD. In the brain, microglia play roles as immune cells to provide protection against virus injuries and diseases. They have significant contributions in the development of the brain, cognition, homeostasis of the brain, and plasticity. Multiple studies have confirmed that uncontrolled microglial function can result in impaired microglial mitophagy, induced Aβ accumulation and tau pathology, and a chronic neuroinflammatory environment. In the brain, most of the genes that are associated with AD risk are highly expressed by microglia. Although it was initially regarded that microglia reaction is incidental and induced by dystrophic neurites and Aβ plaques. Nonetheless, it has been reported by genome-wide association studies that most of the risk loci for AD are located in genes that are occasionally uniquely and highly expressed in microglia. This finding further suggests that microglia play significant roles in early AD stages and they be targeted for the development of novel therapeutics. In this review, we have summarized the molecular pathogenesis of AD, microglial activities in the adult brain, the role of microglia in the aging brain, and the role of microglia in AD. We have also particularly focused on the significance of targeting microglia for the treatment of AD.
Collapse
|
65
|
Nazarinia D, Behzadifard M, Gholampour J, Karimi R, Gholampour M. Eotaxin-1 (CCL11) in neuroinflammatory disorders and possible role in COVID-19 neurologic complications. Acta Neurol Belg 2022; 122:865-869. [PMID: 35690992 PMCID: PMC9188656 DOI: 10.1007/s13760-022-01984-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 05/18/2022] [Indexed: 12/20/2022]
Abstract
The related neurologic complications of SARS-CoV-2 infection in COVID-19 patients and survivors comprise symptoms including depression, anxiety, muscle pain, dizziness, headaches, fatigue, and anosmia/hyposmia that may continue for months. Recent studies have been demonstrated that chemokines have brain-specific attraction and effects such as chemotaxis, cell adhesion, modulation of neuroendocrine functions, and neuroinflammation. CCL11 is a member of the eotaxin family that is chemotactic agents for eosinophils and participate in innate immunity. Eotaxins may exert physiological and pathological functions in the central nerve system, and CCL11 may induce neuronal cytotoxicity effects by inducing the production of reactive oxygen species (ROS) in microglia cells. Plasma levels of CCL11 elevated in neuroinflammation and neurodegenerative disorders. COVID-19 patients display elevations in CCL11 levels. As CCL11 plays roles in physiosomatic and neuroinflammation, analyzing the level of this chemokine in COVID-19 patients during hospitalization and to predicting post-COVID-19-related neurologic complications may be worthwhile. Moreover, using chemokine modulators may be helpful in lessening the neurologic complications in such patients.
Collapse
Affiliation(s)
- Donya Nazarinia
- Department of Physiology, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Mahin Behzadifard
- Department of Physiology, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran.
| | - Javad Gholampour
- Department of Nursing, Faculty of Nursing and Midwifery, Mashhad Branch of Islamic Azad University, Mashhad, Iran
| | - Roqaye Karimi
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammadali Gholampour
- Department of Medicine, Lung Biology Center, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| |
Collapse
|
66
|
Gonçalves de Andrade E, González Ibáñez F, Tremblay MÈ. Microglia as a Hub for Suicide Neuropathology: Future Investigation and Prevention Targets. Front Cell Neurosci 2022; 16:839396. [PMID: 35663424 PMCID: PMC9158339 DOI: 10.3389/fncel.2022.839396] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/22/2022] [Indexed: 12/27/2022] Open
Abstract
Suicide is a complex public health challenge associated worldwide with one death every 40 s. Research advances in the neuropathology of suicidal behaviors (SB) have defined discrete brain changes which may hold the key to suicide prevention. Physiological differences in microglia, the resident immune cells of the brain, are present in post-mortem tissue samples of individuals who died by suicide. Furthermore, microglia are mechanistically implicated in the outcomes of important risk factors for SB, including early-life adversity, stressful life events, and psychiatric disorders. SB risk factors result in inflammatory and oxidative stress activities which could converge to microglial synaptic remodeling affecting susceptibility or resistance to SB. To push further this perspective, in this Review we summarize current areas of opportunity that could untangle the functional participation of microglia in the context of suicide. Our discussion centers around microglial state diversity in respect to morphology, gene and protein expression, as well as function, depending on various factors, namely brain region, age, and sex.
Collapse
Affiliation(s)
- Elisa Gonçalves de Andrade
- Neuroscience Graduate Program, Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Fernando González Ibáñez
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- *Correspondence: Marie-Ève Tremblay,
| |
Collapse
|
67
|
Prodjinotho UF, Gres V, Henkel F, Lacorcia M, Dandl R, Haslbeck M, Schmidt V, Winkler AS, Sikasunge C, Jakobsson PJ, Henneke P, Esser-von Bieren J, Prazeres da Costa C. Helminthic dehydrogenase drives PGE 2 and IL-10 production in monocytes to potentiate Treg induction. EMBO Rep 2022; 23:e54096. [PMID: 35357743 PMCID: PMC9066053 DOI: 10.15252/embr.202154096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 01/03/2023] Open
Abstract
Immunoregulation of inflammatory, infection‐triggered processes in the brain constitutes a central mechanism to control devastating disease manifestations such as epilepsy. Observational studies implicate the viability of Taenia solium cysts as key factor determining severity of neurocysticercosis (NCC), the most common cause of epilepsy, especially in children, in Sub‐Saharan Africa. Viable, in contrast to decaying, cysts mostly remain clinically silent by yet unknown mechanisms, potentially involving Tregs in controlling inflammation. Here, we show that glutamate dehydrogenase from viable cysts instructs tolerogenic monocytes to release IL‐10 and the lipid mediator PGE2. These act in concert, converting naive CD4+ T cells into CD127−CD25hiFoxP3+CTLA‐4+ Tregs, through the G protein‐coupled receptors EP2 and EP4 and the IL‐10 receptor. Moreover, while viable cyst products strongly upregulate IL‐10 and PGE2 transcription in microglia, intravesicular fluid, released during cyst decay, induces pro‐inflammatory microglia and TGF‐β as potential drivers of epilepsy. Inhibition of PGE2 synthesis and IL‐10 signaling prevents Treg induction by viable cyst products. Harnessing the PGE2‐IL‐10 axis and targeting TGF‐ß signaling may offer an important therapeutic strategy in inflammatory epilepsy and NCC.
Collapse
Affiliation(s)
- Ulrich Fabien Prodjinotho
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,Center for Global Health, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Vitka Gres
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fiona Henkel
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Matthew Lacorcia
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Ramona Dandl
- Department of Chemistry, Technical University Munich (TUM), Garching, Germany
| | - Martin Haslbeck
- Department of Chemistry, Technical University Munich (TUM), Garching, Germany
| | - Veronika Schmidt
- Center for Global Health, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,Department of Neurology, University Hospital, Klinikum rechts der Isar, Technical University Munich (TUM), Munich, Germany.,Center for Global Health, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Andrea Sylvia Winkler
- Center for Global Health, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,Department of Neurology, University Hospital, Klinikum rechts der Isar, Technical University Munich (TUM), Munich, Germany.,Center for Global Health, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Chummy Sikasunge
- Department of Paraclinicals, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Solna, Karolinska University Hospital, Stockholm, Sweden
| | - Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Clarissa Prazeres da Costa
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,Center for Global Health, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,German Center for Infection and Research (DZIF), Munich, Germany
| |
Collapse
|
68
|
Kim JU, Park H, Ok J, Lee J, Jung W, Kim J, Kim J, Kim S, Kim YH, Suh M, Kim TI. Cerebrospinal Fluid-philic and Biocompatibility-Enhanced Soft Cranial Window for Long-Term In Vivo Brain Imaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15035-15046. [PMID: 35344336 DOI: 10.1021/acsami.2c01929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Soft, transparent poly(dimethyl siloxane) (PDMS)-based cranial windows in animal models have created many opportunities to investigate brain functions with multiple in vivo imaging modalities. However, due to the hydrophobic nature of PDMS, the wettability by cerebrospinal fluid (CSF) is poor, which may cause air bubble trapping beneath the window during implantation surgery, and favorable heterogeneous bubble nucleation at the interface between hydrophobic PDMS and CSF. This may result in excessive growth of the entrapped bubble under the soft cranial window. Herein, to yield biocompatibility-enhanced, trapped bubble-minimized, and soft cranial windows, this report introduces a CSF-philic PDMS window coated with hydroxyl-enriched poly(vinyl alcohol) (PVA) for long-term in vivo imaging. The PVA-coated PDMS (PVA/PDMS) film exhibits a low contact angle θACA (33.7 ± 1.9°) with artificial CSF solution and maintains sustained CSF-philicity. The presence of the PVA layer achieves air bubble-free implantation of the soft cranial window, as well as induces the formation of a thin wetting film that shows anti-biofouling performance through abundant water molecules on the surface, leading to long-term optical clarity. In vivo studies on the mice cortex verify that the soft and CSF-philic features of the PVA/PDMS film provide minimal damage to neuronal tissues and attenuate immune response. These advantages of the PVA/PDMS window are strongly correlated with the enhancement of cortical hemodynamic changes and the local field potential recorded through the PVA/PDMS film, respectively. This collection of results demonstrates the potential for future microfluidic platforms for minimally invasive CSF extraction utilizing a CSF-philic fluidic passage.
Collapse
Affiliation(s)
- Jong Uk Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hyejin Park
- IMNEWRUN Inc., N Center Bldg. A 5F, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jehyung Ok
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Juheon Lee
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Woojin Jung
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jiwon Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaehyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Suhyeon Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Yong Ho Kim
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Minah Suh
- IMNEWRUN Inc., N Center Bldg. A 5F, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
69
|
Amirifar L, Shamloo A, Nasiri R, de Barros NR, Wang ZZ, Unluturk BD, Libanori A, Ievglevskyi O, Diltemiz SE, Sances S, Balasingham I, Seidlits SK, Ashammakhi N. Brain-on-a-chip: Recent advances in design and techniques for microfluidic models of the brain in health and disease. Biomaterials 2022; 285:121531. [DOI: 10.1016/j.biomaterials.2022.121531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/10/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022]
|
70
|
Adhikari P, Shukla PK, Alharthi F, Rao R, Pradhan P. Photonic technique to study the effects of probiotics on chronic alcoholic brain cells by quantifying their molecular specific structural alterations via confocal imaging. JOURNAL OF BIOPHOTONICS 2022; 15:e202100247. [PMID: 34786860 DOI: 10.1002/jbio.202100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Molecular specific photonics localization method, the inverse participation ratio (IPR) technique, is a powerful procedure to probe the nano- to submicron scales structural alterations in cells/tissues in their abnormalities due to chronic alcoholism using confocal imaging. Chronic alcoholism introduces abnormalities in brain cells/tissue at the nanoscale level that results in behavioural and psychological disorders which are not well understood. On the other hand, probiotics such as Lactobacillus plantarum enhances brain functions in chronic alcoholism. Using the IPR technique, we probe the molecular specific spatial structural alterations in glial brain cells astrocytes and microglia, as well as in chromatins in the nuclei of cortex brain cells, with or without probiotic treatments in chronic alcoholism. The results show chronic alcoholism alone harms brain cells and the probiotic treatment in chronic alcoholism reverses alcoholic damage in the brain cells/tissues toward normalcy.
Collapse
Affiliation(s)
- Prakash Adhikari
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, Mississippi, USA
| | - Pradeep K Shukla
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Fatemah Alharthi
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, Mississippi, USA
| | - Radhakrishna Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Prabhakar Pradhan
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
71
|
Weiss F, Labrador-Garrido A, Dzamko N, Halliday G. Immune responses in the Parkrtdinson's disease brain. Neurobiol Dis 2022; 168:105700. [DOI: 10.1016/j.nbd.2022.105700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022] Open
|
72
|
Stress induced microglial activation contributes to depression. Pharmacol Res 2022; 179:106145. [DOI: 10.1016/j.phrs.2022.106145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023]
|
73
|
Noble K, Brown L, Elvis P, Lang H. Cochlear Immune Response in Presbyacusis: a Focus on Dysregulation of Macrophage Activity. J Assoc Res Otolaryngol 2022; 23:1-16. [PMID: 34642854 PMCID: PMC8782976 DOI: 10.1007/s10162-021-00819-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/25/2021] [Indexed: 02/03/2023] Open
Abstract
Age-related hearing loss, or presbyacusis, is a prominent chronic degenerative disorder that affects many older people. Based on presbyacusis pathology, the degeneration occurs in both sensory and non-sensory cells, along with changes in the cochlear microenvironment. The progression of age-related neurodegenerative diseases is associated with an altered microenvironment that reflects chronic inflammatory signaling. Under these conditions, resident and recruited immune cells, such as microglia/macrophages, have aberrant activity that contributes to chronic neuroinflammation and neural cell degeneration. Recently, researchers identified and characterized macrophages in human cochleae (including those from older donors). Along with the age-related changes in cochlear macrophages in animal models, these studies revealed that macrophages, an underappreciated group of immune cells, may play a critical role in maintaining the functional integrity of the cochlea. Although several studies deciphered the molecular mechanisms that regulate microglia/macrophage dysfunction in multiple neurodegenerative diseases, limited studies have assessed the mechanisms underlying macrophage dysfunction in aged cochleae. In this review, we highlight the age-related changes in cochlear macrophage activities in mouse and human temporal bones. We focus on how complement dysregulation and the nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 inflammasome could affect macrophage activity in the aged peripheral auditory system. By understanding the molecular mechanisms that underlie these regulatory systems, we may uncover therapeutic strategies to treat presbyacusis and other forms of sensorineural hearing loss.
Collapse
Affiliation(s)
- Kenyaria Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
- Akouos, Inc, Boston, MA, 02210, USA
| | - LaShardai Brown
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Biology, Winthrop University, Rock Hill, SD, 29733, USA
| | - Phillip Elvis
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
74
|
Bile acids attenuate PKM2 pathway activation in proinflammatory microglia. Sci Rep 2022; 12:1459. [PMID: 35087114 PMCID: PMC8795255 DOI: 10.1038/s41598-022-05408-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/11/2022] [Indexed: 12/30/2022] Open
Abstract
Glycolysis is the metabolic pathway that converts glucose into pyruvate. Central nervous system (CNS) pathologies, such as spinal cord injury (SCI) and ischemia, are accompanied by an increase of the glycolytic pathway in the damaged areas as part of the inflammatory response. Pyruvate kinase is a key glycolytic enzyme that converts phosphoenolpyruvate and ADP to pyruvate and ATP. The protein has two isoforms, PKM1 and PKM2, originated from the same gene. As a homodimer, PKM2 loses the pyruvate kinase activity and acts as a transcription factor that regulates the expression of target genes involved in glycolysis and inflammation. After SCI, resident microglia and hematogenous macrophages are key inducers of the inflammatory response with deleterious effects. Activation of the bile acid receptor TGR5 inhibits the pro-inflammatory NFκB pathway in microglia and macrophages. In the present study we have investigated whether bile acids affect the expression of glycolytic enzymes and their regulation by PKM2. Bacterial lipopolysaccharide (LPS) induced the expression of PKM1, PKM2 and its target genes in primary cultures of microglial and Raw264.7 macrophage cells. SCI caused an increase of PKM2 immunoreactivity in macrophages after SCI. Pretreatment with tauroursodeoxycholic acid (TUDCA) or taurolithocholic acid (TLCA) reduced the expression of PKM2 and its target genes in cell cultures. Similarly, after SCI, TUDCA treatment reduced the expression of PKM2 in the lesion center. These results confirm the importance of PKM2 in the inflammatory response in CNS pathologies and indicate a new mechanism of bile acids as regulators of PKM2 pathway.
Collapse
|
75
|
Ali M, Tabassum H, Alam MM, Parvez S. N-acetyl-L-cysteine ameliorates mitochondrial dysfunction in ischemia/reperfusion injury via attenuating Drp-1 mediated mitochondrial autophagy. Life Sci 2022; 293:120338. [PMID: 35065167 DOI: 10.1016/j.lfs.2022.120338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND PURPOSE Ischemic reperfusion (I/R) injury causes a wide array of functional and structure alternations of mitochondria, associated with oxidative stress and increased the severity of injury. Despite the previous evidence for N-acetyl-L-cysteine (NAC) provide neuroprotection after I/R injury, it is unknown to evaluate the effect of NAC on altered mitochondrial autophagy forms an essential axis to impaired mitochondrial quality control in cerebral I/R injury. METHODS Male wistar rats subjected to I/R injury were used as transient Middle Cerebral Artery Occlusion (tMCAO) model. After I/R injury, the degree of cerebral tissue injury was detected by infarct volume, H&E staining and behavioral assessment. We also performed mitochondrial reactive oxygen species and mitochondrial membrane potential by flow cytometry and mitochondrial respiratory complexes to evaluate the mitochondrial dysfunction. Finally, we performed the western blotting analysis to measure the apoptotic and autophagic marker. RESULTS We found that NAC administration significantly ameliorates brain injury, improves neurobehavioral outcome, decreases neuroinflammation and mitochondrial mediated oxidative stress. We evaluated the neuroprotective effect of NAC against neuronal apoptosis by assessing its ability to sustained mitochondrial integrity and function. Further studies revealed that beneficial effects of NAC is through targeting the mitochondrial autophagy via regulating the GSK-3β/Drp1mediated mitochondrial fission and inhibiting the expression of beclin-1 and conversion of LC3, as well as activating the p-Akt pro-survival pathway. CONCLUSION Our results suggest that NAC exerts neuroprotective effects to inhibit the altered mitochondrial changes and cell death in I/R injury via regulation of p-GSK-3β mediated Drp-1 translocation to the mitochondria.
Collapse
Affiliation(s)
- Mubashshir Ali
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Heena Tabassum
- Division of Basic Medical Sciences, Indian Council of Medical Research, Government of India, V. Ramalingaswamy Bhawan, New Delhi 110029, India
| | - M Mumtaz Alam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
76
|
Chen CC, Brumberg JC. Sensory Experience as a Regulator of Structural Plasticity in the Developing Whisker-to-Barrel System. Front Cell Neurosci 2022; 15:770453. [PMID: 35002626 PMCID: PMC8739903 DOI: 10.3389/fncel.2021.770453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022] Open
Abstract
Cellular structures provide the physical foundation for the functionality of the nervous system, and their developmental trajectory can be influenced by the characteristics of the external environment that an organism interacts with. Historical and recent works have determined that sensory experiences, particularly during developmental critical periods, are crucial for information processing in the brain, which in turn profoundly influence neuronal and non-neuronal cortical structures that subsequently impact the animals' behavioral and cognitive outputs. In this review, we focus on how altering sensory experience influences normal/healthy development of the central nervous system, particularly focusing on the cerebral cortex using the rodent whisker-to-barrel system as an illustrative model. A better understanding of structural plasticity, encompassing multiple aspects such as neuronal, glial, and extra-cellular domains, provides a more integrative view allowing for a deeper appreciation of how all aspects of the brain work together as a whole.
Collapse
Affiliation(s)
- Chia-Chien Chen
- Department of Psychology, Queens College City University of New York, Flushing, NY, United States.,Department of Neuroscience, Duke Kunshan University, Suzhou, China
| | - Joshua C Brumberg
- Department of Psychology, Queens College City University of New York, Flushing, NY, United States.,The Biology (Neuroscience) and Psychology (Behavioral and Cognitive Neuroscience) PhD Programs, The Graduate Center, The City University of New York, New York, NY, United States
| |
Collapse
|
77
|
del Zoppo GJ, Moskowitz MA, Nedergaard M. The Neurovascular Unit and Responses to Ischemia. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
78
|
Quilapi AM, Vargas-Lagos C, Martínez D, Muñoz JL, Spies J, Esperguel I, Tapia J, Oyarzún-Salazar R, Vargas-Chacoff L. Brain immunity response of fish Eleginops maclovinus to infection with Francisella noatunensis. FISH & SHELLFISH IMMUNOLOGY 2022; 120:695-705. [PMID: 34808359 DOI: 10.1016/j.fsi.2021.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The brain's immune system is selective and hermetic in most species, including fish, favoring immune responses mediated by soluble immunomodulatory factors such as serotonin and the availability of nutrients against infectious processes. Francisella noatunensis coexist with fish such as Eleginops maclovinus, which raises questions about the susceptibility and immune response of the brain of E. maclovinus against Francisella. In this study, we inoculated fish with different doses of Francisella and took samples for 28 days. We detected bacteria in the brain of fish injected with a high concentration of Francisella at all time points. qPCR analysis of immune genes indicated a response mainly in the medium-dose and early expression of genes involved in iron metabolism. Finally, brain serotonin levels were higher than in uninfected fish in all conditions, suggesting possible immunomodulatory participation in an infectious process.
Collapse
Affiliation(s)
- Ana María Quilapi
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Universidad Santo Tomás, Osorno, Chile; Magister en Ciencias Mención Microbiología, Universidad Austral de Chile, Valdivia, Chile.
| | - Carolina Vargas-Lagos
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP-IDEAL, Universidad Austral de Chile, Valdivia, Chile
| | - Danixa Martínez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Jose Luis Muñoz
- Centro de Investigación y Desarrollo i ∼ mar, Universidad de los Lagos, Casilla 557, Puerto Montt, Chile
| | - Johana Spies
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Ivan Esperguel
- Magister en Ciencias Mención Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - Jaime Tapia
- Institute of Chemistry and Natural Resources, Universidad de Talca, Chile
| | | | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP-IDEAL, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
79
|
Rodríguez AM, Rodríguez J, Giambartolomei GH. Microglia at the Crossroads of Pathogen-Induced Neuroinflammation. ASN Neuro 2022; 14:17590914221104566. [PMID: 35635133 PMCID: PMC9158411 DOI: 10.1177/17590914221104566] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Microglia are the resident tissue macrophages of the central nervous system (CNS). Recent findings point out that in the steady state the major role of microglia, is to instruct and regulate the correct function of the neuronal networks and different components of the neurovascular unit in the adult CNS, while providing immune surveillance. Paradoxically, during CNS infection immune activation of microglia generates an inflammatory milieu that contributes to the clearance of the pathogen but can, in the process, harm nearby cells of CNS. Most of the knowledge about the harmful effects of activated microglia on CNS has arisen from studies on neurodegenerative diseases. In this review we will focus on the beneficial role and detrimental functions of microglial cells on the neighboring cells of the CNS upon infection.
Collapse
Affiliation(s)
- Ana María Rodríguez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM). CONICET. Facultad de Farmacia y Bioquímica, 28196Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julia Rodríguez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM). CONICET. Facultad de Farmacia y Bioquímica, 28196Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo Hernán Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM). CONICET. Facultad de Farmacia y Bioquímica, 28196Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
80
|
Ganguly U, Singh S, Chakrabarti S, Saini AK, Saini RV. Immunotherapeutic interventions in Parkinson's disease: Focus on α-Synuclein. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 129:381-433. [PMID: 35305723 DOI: 10.1016/bs.apcsb.2021.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized classically by motor manifestations. However, nonmotor symptoms appear early in the course of the disease progression, making both diagnosis and treatment difficult. The pathology of PD is complicated by the accumulation and aggregation of misfolded proteins in intracellular cytoplasmic inclusions called Lewy bodies (LBs). The main toxic component of LBs is the protein α-Synuclein which plays a pivotal role in PD pathogenesis. α-Synuclein can propagate from cell-to-cell exhibiting prion-like properties and spread PD pathology throughout the central nervous system. Immunotherapeutic interventions in PD, both active and passive immunization, have targeted α-Synuclein in both experimental models and clinical trials. In addition, targeting the hyperactive inflammation in PD also holds promise in designing potential immunotherapeutics. The inflammatory and proteotoxic pathways are interlinked and contribute immensely to the disease pathology. In this chapter, we critically review the targets of immunotherapeutic interventions in PD, focusing on the pathogenetic mechanisms of PD, particularly neuroinflammation and α-Synuclein misfolding, aggregation, and propagation. We thoroughly summarized the various immunotherapeutic strategies designed to treat PD-in vitro, in vivo, and clinical trials. The development of these targeted immunotherapies could open a new avenue in the treatment of patients with PD.
Collapse
Affiliation(s)
- Upasana Ganguly
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, India
| | - Sukhpal Singh
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, India
| | - Sasanka Chakrabarti
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, India
| | - Adesh K Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, India
| | - Reena V Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, India.
| |
Collapse
|
81
|
Timmerman R, Zuiderwijk-Sick EA, Oosterhof N, 't Jong AEJ, Veth J, Burm SM, van Ham TJ, Bajramovic JJ. Transcriptome analysis reveals the contribution of oligodendrocyte and radial glia-derived cues for maintenance of microglia identity. Glia 2021; 70:728-747. [PMID: 34961968 DOI: 10.1002/glia.24136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/26/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022]
Abstract
Microglia are increasingly being recognized as druggable targets in neurodegenerative disorders, and good in vitro models are crucial to address cell biological questions. Major challenges are to recapitulate the complex microglial morphology and their in vivo transcriptome. We have therefore exposed primary microglia from adult rhesus macaques to a variety of different culture conditions including exposure to soluble factors as M-CSF, IL-34, and TGF-β as well as serum replacement approaches, and compared their morphologies and transcriptomes to those of mature, homeostatic in vivo microglia. This enabled us to develop a new, partially serum-free, monoculture protocol, that yields high numbers of ramified cells. We also demonstrate that exposure of adult microglia to M-CSF or IL-34 induces similar transcriptomes, and that exposure to TGF-β has much less pronounced effects than it does on rodent microglia. However, regardless of culture conditions, the transcriptomes of in vitro and in vivo microglia remained substantially different. Analysis of differentially expressed genes inspired us to perform 3D-spherical coculture experiments of microglia with oligodendrocytes and radial glia. In such spheres, microglia signature genes were strongly induced, even in the absence of neurons and astrocytes. These data reveal a novel role for oligodendrocyte and radial glia-derived cues in the maintenance of microglial identity, providing new anchor points to study microglia in health and disease.
Collapse
Affiliation(s)
- Raissa Timmerman
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | | | - Nynke Oosterhof
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Anke E J 't Jong
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Jennifer Veth
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Saskia M Burm
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Tjakko J van Ham
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jeffrey J Bajramovic
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| |
Collapse
|
82
|
Shukla A, Rastogi M, Singh SK. Zika virus NS1 suppresses the innate immune responses via miR-146a in human microglial cells. Int J Biol Macromol 2021; 193:2290-2296. [PMID: 34798192 DOI: 10.1016/j.ijbiomac.2021.11.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/27/2022]
Abstract
Zika virus (ZIKV) is a positive-single strand RNA virus that belongs to the Flaviviridae family. ZIKV infection causes congenital ZIKV syndrome (CZS) in children and Guillain Barre Syndrome (GBS) in adults. ZIKV infected cells secrete non-structural protein 1 (sNS1), which plays an important role in viral replication and immune evasion. The microglial cells are the brain resident macrophages that mediate the immune responses in CNS. The miRNAs are small non-coding RNAs that regulate the expression of their target genes by binding to the 3'UTR region. The present study highlights the bystander effect of ZIKV-NS1 via miR-146a. The Real-Time PCR, Immunoblotting, overexpression, knockdown studies, and reactive oxygen species measurement have been done to study the immunomodulatory effects of ZIKV-NS1 in human microglial cells. ZIKV-NS1 induced the expression of miR-146a and suppressed the ROS activity in human microglial cells. The up-regulated miR-146a led to the decreased expression of TRAF6 and STAT-1. The reduced expression of TRAF6 in turn led to the suppression of pNF-κBp65 and TNF-α downstream. The miR-146a suppressed the pro-inflammatory and cellular antiviral responses in microglial cells. Our findings demonstrate the bystander role of ZIKV-NS1 in suppressing the pro-inflammatory and cellular antiviral responses through miR-146a in human microglial cells.
Collapse
Affiliation(s)
- Astha Shukla
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Meghana Rastogi
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sunit K Singh
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
83
|
Nagano T, Tsuda N, Fujimura K, Ikezawa Y, Higashi Y, Kimura SH. Prostaglandin E 2 increases the expression of cyclooxygenase-2 in cultured rat microglia. J Neuroimmunol 2021; 361:577724. [PMID: 34610503 DOI: 10.1016/j.jneuroim.2021.577724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/21/2022]
Abstract
Prostaglandin E2 (PGE2) plays pivotal roles in controlling microglial activation with the EP2 receptor, a PGE2 receptor subtype. Activated microglia are often reported to increase cyclooxygenase (COX)-2 expression, followed by PGE2 production, but it is unclear whether extracellular PGE2 is involved in microglial PGE2 synthesis. In the present study, we report that PGE2 increases COX-2 protein in microglia. In a culture system, PGE2 at 10-6 M for 3 h increased COX-2 and microsomal PGE synthase (mPGES)-1 mRNA levels, and reduced mPGES-2, but did not affect COX-1 or cytosolic PGE synthase (cPGES) in microglia. PGE2 at 10-6 M for 3 h also increased the COX-2 protein level, but did not affect COX-1, mPGES-1, mPGES-2, or cPGES. An EP2 agonist, ONO-AE1-259-01, also increased COX-2 and mPGES-1 mRNA levels, and reduced mPGES-2, but did not affect COX-1 or cPGES, whereas an EP1 agonist, ONO-DI-004, an EP3 agonist, ONO-AE-248, and an EP4 agonist, ONO-AE1-329, had no effect. Similar to PGE2, ONO-AE1-259-01 increased the COX-2 protein level, but did not affect COX-1, mPGES-1, mPGES-2, or cPGES. In addition, the effects of PGE2 were inhibited by an EP2 antagonist, PF-04418948, but not by an EP1 antagonist, ONO-8713, an EP3 antagonist, ONO-AE3-240, or an EP4 antagonist, ONO-AE3-208, at 10-6 M. On the other hand, lipopolysaccharide (LPS) increased PGE2 production, but the LPS-induced PGE2 production was not affected by ONO-8713, PF-04418948, ONO-AE3-240, or ONO-AE3-208. These results indicate that PGE2 increases COX-2 protein in microglia through the EP2 receptor supporting the idea that extracellular PGE2 has a triggering aspect for microglial activation.
Collapse
Affiliation(s)
- Takayuki Nagano
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.
| | - Naohiko Tsuda
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Kenichi Fujimura
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Yuji Ikezawa
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Yuki Higashi
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Shinya H Kimura
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
84
|
Zuiderwijk-Sick EA, van der Putten C, Timmerman R, Veth J, Pasini EM, van Straalen L, van der Valk P, Amor S, Bajramovic JJ. Exposure of Microglia to Interleukin-4 Represses NF-κB-Dependent Transcription of Toll-Like Receptor-Induced Cytokines. Front Immunol 2021; 12:771453. [PMID: 34880868 PMCID: PMC8645606 DOI: 10.3389/fimmu.2021.771453] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022] Open
Abstract
Interleukin (IL)-4 is a cytokine that affects both adaptive and innate immune responses. In the central nervous system, microglia express IL-4 receptors and it has been described that IL-4-exposed microglia acquire anti-inflammatory properties. We here demonstrate that IL-4 exposure induces changes in the cell surface protein expression profile of primary rhesus macaque microglia and enhances their potential to induce proliferation of T cells with a regulatory signature. Moreover, we show that Toll like receptor (TLR)-induced cytokine production is broadly impaired in IL-4-exposed microglia at the transcriptional level. IL-4 type 2 receptor-mediated signaling is shown to be crucial for the inhibition of microglial innate immune responses. TLR-induced nuclear translocalization of NF-κB appeared intact, and we found no evidence for epigenetic modulation of target genes. By contrast, nuclear extracts from IL-4-exposed microglia contained significantly less NF-κB capable of binding to its DNA consensus site. Further identification of the molecular mechanisms that underlie the inhibition of TLR-induced responses in IL-4-exposed microglia may aid the design of strategies that aim to modulate innate immune responses in the brain, for example in gliomas.
Collapse
Affiliation(s)
| | | | - Raissa Timmerman
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Jennifer Veth
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Erica M Pasini
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Linda van Straalen
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Paul van der Valk
- Department of Pathology, Vrije Universiteit (VU) Medical Centre, Amsterdam, Netherlands
| | - Sandra Amor
- Department of Pathology, Vrije Universiteit (VU) Medical Centre, Amsterdam, Netherlands
| | - Jeffrey J Bajramovic
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| |
Collapse
|
85
|
Levi H, Bar E, Cohen-Adiv S, Sweitat S, Kanner S, Galron R, Mitiagin Y, Barzilai A. Dysfunction of cerebellar microglia in Ataxia-telangiectasia. Glia 2021; 70:536-557. [PMID: 34854502 DOI: 10.1002/glia.24122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
Ataxia-telangiectasia (A-T) is a multisystem autosomal recessive disease caused by mutations in the ATM gene and characterized by cerebellar atrophy, progressive ataxia, immunodeficiency, male and female sterility, radiosensitivity, cancer predisposition, growth retardation, insulin-resistant diabetes, and premature aging. ATM phosphorylates more than 1500 target proteins, which are involved in cell cycle control, DNA repair, apoptosis, modulation of chromatin structure, and other cytoplasmic as well as mitochondrial processes. In our quest to better understand the mechanisms by which ATM deficiency causes cerebellar degeneration, we hypothesized that specific vulnerabilities of cerebellar microglia underlie the etiology of A-T. Our hypothesis is based on the recent finding that dysfunction of glial cells affect a variety of process leading to impaired neuronal functionality (Song et al., 2019). Whereas astrocytes and neurons descend from the neural tube, microglia originate from the hematopoietic system, invade the brain at early embryonic stage, and become the innate immune cells of the central nervous system and important participants in development of synaptic plasticity. Here we demonstrate that microglia derived from Atm-/- mouse cerebellum display accelerated cell migration and are severely impaired in phagocytosis, secretion of neurotrophic factors, and mitochondrial activity, suggestive of apoptotic processes. Interestingly, no microglial impairment was detected in Atm-deficient cerebral cortex, and Atm deficiency had less impact on astroglia than microglia. Collectively, our findings validate the roles of glial cells in cerebellar attrition in A-T.
Collapse
Affiliation(s)
- Hadar Levi
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ela Bar
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Stav Cohen-Adiv
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Suzan Sweitat
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sivan Kanner
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Galron
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Mitiagin
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ari Barzilai
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
86
|
Borrajo A, Spuch C, Penedo MA, Olivares JM, Agís-Balboa RC. Important role of microglia in HIV-1 associated neurocognitive disorders and the molecular pathways implicated in its pathogenesis. Ann Med 2021; 53:43-69. [PMID: 32841065 PMCID: PMC7877929 DOI: 10.1080/07853890.2020.1814962] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
The development of effective combined anti-retroviral therapy (cART) led to a significant reduction in the death rate associated with human immunodeficiency virus type 1 (HIV-1) infection. However, recent studies indicate that considerably more than 50% of all HIV-1 infected patients develop HIV-1-associated neurocognitive disorder (HAND). Microglia are the foremost cells infected by HIV-1 in the central nervous system (CNS), and so, are also likely to contribute to the neurotoxicity observed in HAND. The activation of microglia induces the release of pro-inflammatory markers and altered secretion of cytokines, chemokines, secondary messengers, and reactive oxygen species (ROS) which activate signalling pathways that initiate neuroinflammation. In turn, ROS and inflammation also play critical roles in HAND. However, more efforts are required to understand the physiology of microglia and the processes involved in their activation in order to better understand the how HIV-1-infected microglia are involved in the development of HAND. In this review, we summarize the current state of knowledge about the involvement of oxidative stress mechanisms and role of HIV-induced ROS in the development of HAND. We also examine the academic literature regarding crucial HIV-1 pathogenicity factors implicated in neurotoxicity and inflammation in order to identify molecular pathways that could serve as potential therapeutic targets for treatment of this disease. KEY MESSAGES Neuroinflammation and excitotoxicity mechanisms are crucial in the pathogenesis of HAND. CNS infiltration by HIV-1 and immune cells through the blood brain barrier is a key process involved in the pathogenicity of HAND. Factors including calcium dysregulation and autophagy are the main challenges involved in HAND.
Collapse
Affiliation(s)
- A. Borrajo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Roma, Italy
| | - C. Spuch
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur)-Área Sanitaria de Vigo, SERGAS-UVigo, CIBERSAM, Vigo, Spain
| | - M. A. Penedo
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur)-Área Sanitaria de Vigo, SERGAS-UVigo, CIBERSAM, Vigo, Spain
| | - J. M. Olivares
- Department of Psychiatry, Área Sanitaria de Vigo, Vigo, Spain
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur)-Área Sanitaria de Vigo, SERGAS-UVigo, CIBERSAM, Vigo, Spain
| | - R. C. Agís-Balboa
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur)-Área Sanitaria de Vigo, SERGAS-UVigo, CIBERSAM, Vigo, Spain
| |
Collapse
|
87
|
Doremus-Fitzwater TL, Deak T. Adolescent neuroimmune function and its interaction with alcohol. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:167-208. [PMID: 34801169 DOI: 10.1016/bs.irn.2021.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adolescence is an evolutionarily conserved developmental period associated with behavioral change, including increased risk-taking and alcohol use. Experimentation with alcohol typically begins in adolescence and transitions to binge-like patterns of consumption. Alcohol exposure during adolescence can alter normative changes in brain structure and function. Understanding mechanisms by which ethanol impacts neurodevelopmental processes is important for preventing and ameliorating the deleterious consequences of adolescent alcohol abuse. This review focuses on the neuroimmune system as a key contributor to ethanol-induced changes in adolescent brain and behavior. After brief review of neuroimmune system development, acute and chronic effects of ethanol on adolescent neuroimmune functioning are addressed. Comparisons between stress/immunological challenges and ethanol on adolescent neuroimmunity are reviewed, as cross-sensitization is relevant during adolescence. The mechanisms by which ethanol alters neuroimmune functioning are then discussed, as they may portend development of neuropathological consequences and thus increase vulnerability to subsequent challenges and potentiate addictive behaviors.
Collapse
Affiliation(s)
- T L Doremus-Fitzwater
- Department of Psychology, Ithaca College, Ithaca, NY, United States; Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States.
| | - T Deak
- Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States; Binghamton University-SUNY, Binghamton, NY, United States
| |
Collapse
|
88
|
Crotalphine Attenuates Pain and Neuroinflammation Induced by Experimental Autoimmune Encephalomyelitis in Mice. Toxins (Basel) 2021; 13:toxins13110827. [PMID: 34822611 PMCID: PMC8624587 DOI: 10.3390/toxins13110827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease of inflammatory and autoimmune origin, which induces sensory and progressive motor impairments, including pain. Cells of the immune system actively participate in the pathogenesis and progression of MS by inducing neuroinflammation, tissue damage, and demyelination. Crotalphine (CRO), a structural analogue to a peptide firstly identified in Crotalus durissus terrificus snake venom, induces analgesia by endogenous opioid release and type 2 cannabinoid receptor (CB2) activation. Since CB2 activation downregulates neuroinflammation and ameliorates symptoms in mice models of MS, it was presently investigated whether CRO has a beneficial effect in the experimental autoimmune encephalomyelitis (EAE). CRO was administered on the 5th day after immunization, in a single dose, or five doses starting at the peak of disease. CRO partially reverted EAE-induced mechanical hyperalgesia and decreased the severity of the clinical signs. In addition, CRO decreases the inflammatory infiltrate and glial cells activation followed by TNF-α and IL-17 downregulation in the spinal cord. Peripherally, CRO recovers the EAE-induced impairment in myelin thickness in the sciatic nerve. Therefore, CRO interferes with central and peripheral neuroinflammation, opening perspectives to MS control.
Collapse
|
89
|
Dyne E, Cawood M, Suzelis M, Russell R, Kim MH. Ultrastructural analysis of the morphological phenotypes of microglia associated with neuroinflammatory cues. J Comp Neurol 2021; 530:1263-1275. [PMID: 34773250 DOI: 10.1002/cne.25274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022]
Abstract
Microglia are the primary resident immune cells of the central nervous system that are responsible for the maintenance of brain homeostasis. There is a plethora of evidence to suggest that microglia display distinct phenotypes that are associated with the alteration of cell morphology under varying environmental cues. However, it has not been fully explored how the varying states of microglial activation are linked to the alteration of microglia morphology, especially in the microdomain. The objective of this study was to quantitatively characterize the ultrastructural morphology of human microglia under neuroinflammatory cues. To address this, a human cell line of microglia was stimulated by antiinflammatory (IL-4), proinflammatory (TNF-α), and Alzheimer's disease (AD)-associated cues (Aβ, Aβ + TNF-α). The resulting effects on microglia morphology associated with changes in microdomain were analyzed using a high-resolution scanning electron microscopy. Our findings demonstrated that microglial activation under proinflammatory and AD-cues were closely linked to changes not only in cell shape but also in cell surface topography and higher-order branching of processes. Furthermore, our results revealed that microglia under proinflammatory cues exhibited unique morphological features involving cell-to-cell contact and the formation of vesicle-like structures. Our study provides insight into the fine details of microglia morphology associated with varying status of microglial activation.
Collapse
Affiliation(s)
- Eric Dyne
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Meghan Cawood
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Matthew Suzelis
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Reagan Russell
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Min-Ho Kim
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA.,Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|
90
|
Brain Immunoinformatics: A Symmetrical Link between Informatics, Wet Lab and the Clinic. Symmetry (Basel) 2021. [DOI: 10.3390/sym13112168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Breakthrough advances in informatics over the last decade have thoroughly influenced the field of immunology. The intermingling of machine learning with wet lab applications and clinical results has hatched the newly defined immunoinformatics society. Immunoinformatics of the central neural system, referred to as neuroimmunoinformatics (NII), investigates symmetrical and asymmetrical interactions of the brain-immune interface. This interdisciplinary overview on NII is addressed to bioscientists and computer scientists. We delineate the dominating trajectories and field-shaping achievements and elaborate on future directions using bridging language and terminology. Computation, varying from linear modeling to complex deep learning approaches, fuels neuroimmunology through three core directions. Firstly, by providing big-data analysis software for high-throughput methods such as next-generation sequencing and genome-wide association studies. Secondly, by designing models for the prediction of protein morphology, functions, and symmetrical and asymmetrical protein–protein interactions. Finally, NII boosts the output of quantitative pathology by enabling the automatization of tedious processes such as cell counting, tracing, and arbor analysis. The new classification of microglia, the brain’s innate immune cells, was an NII achievement. Deep sequencing classifies microglia in “sensotypes” to accurately describe the versatility of immune responses to physiological and pathological challenges, as well as to experimental conditions such as xenografting and organoids. NII approaches complex tasks in the brain-immune interface, recognizes patterns and allows for hypothesis-free predictions with ultimate targeted individualized treatment strategies, and personalizes disease prognosis and treatment response.
Collapse
|
91
|
Wang XL, Li L. Microglia Regulate Neuronal Circuits in Homeostatic and High-Fat Diet-Induced Inflammatory Conditions. Front Cell Neurosci 2021; 15:722028. [PMID: 34720877 PMCID: PMC8549960 DOI: 10.3389/fncel.2021.722028] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia are brain resident macrophages, which actively survey the surrounding microenvironment and promote tissue homeostasis under physiological conditions. During this process, microglia participate in synaptic remodeling, neurogenesis, elimination of unwanted neurons and cellular debris. The complex interplay between microglia and neurons drives the formation of functional neuronal connections and maintains an optimal neural network. However, activation of microglia induced by chronic inflammation increases synaptic phagocytosis and leads to neuronal impairment or death. Microglial dysfunction is implicated in almost all brain diseases and leads to long-lasting functional deficiency, such as hippocampus-related cognitive decline and hypothalamus-associated energy imbalance (i.e., obesity). High-fat diet (HFD) consumption triggers mediobasal hypothalamic microglial activation and inflammation. Moreover, HFD-induced inflammation results in cognitive deficits by triggering hippocampal microglial activation. Here, we have summarized the current knowledge of microglial characteristics and biological functions and also reviewed the molecular mechanism of microglia in shaping neural circuitries mainly related to cognition and energy balance in homeostatic and diet-induced inflammatory conditions.
Collapse
Affiliation(s)
- Xiao-Lan Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lianjian Li
- Department of Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
92
|
Shariati M, Esfahani RJ, Bidkhori HR, Sabouri E, Mehrzad S, Sadr-Nabavi A. Cell-based treatment of cerebral palsy: still a long way ahead. Curr Stem Cell Res Ther 2021; 17:741-749. [PMID: 34727864 DOI: 10.2174/1574888x16666211102090230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cerebral palsy (CP) is a permanent neurodevelopmental disorder with considerable global disability. Various rehabilitation strategies are currently available. However, none represents a convincing curative result. Cellular therapy recently holds much promise as an alternative strategy to repair neurologic defects. METHOD In this narrative review, a comprehensive search of the MEDLINE and ClinicalTrials.gov was made, using the terms: "cell therapy" and "cerebral palsy", including published and registered clinical studies, respectively. RESULTS The early effects of these studies demonstrated that using cell therapy in CP patients is safe and improves the deficits for a variable duration. Despite such hopeful early bird results, the long-term outcomes are not conclusive. CONCLUSIONS Due to the heterogeneous nature of CP, personal factors seem essential to consider. Cell dosage, routes of administration, and repeated dosing are pivotal to establish optimal personalized treatments. Future clinical trials should consider employing other cell types, specific cell modifications before administration, and cell-free platforms.
Collapse
Affiliation(s)
- Mohammad Shariati
- Stem Cells and Regenerative Medicine Research Department, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad. Iran
| | - Reza Jafarzadeh Esfahani
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR)- Khorasan Razavi, Mashhad. Iran
| | - Hamid Reza Bidkhori
- Stem Cells and Regenerative Medicine Research Department, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad. Iran
| | - Ehsan Sabouri
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Shadi Mehrzad
- Stem Cells and Regenerative Medicine Research Department, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad. Iran
| | - Ariane Sadr-Nabavi
- Department of Neurology, School of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| |
Collapse
|
93
|
Pajarskienė J, Kašėta V, Vaikšnoraitė K, Tunaitis V, Pivoriūnas A. MicroRNA-124 acts as a positive regulator of IFN-β signaling in the lipopolysaccharide-stimulated human microglial cells. Int Immunopharmacol 2021; 101:108262. [PMID: 34688135 DOI: 10.1016/j.intimp.2021.108262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/20/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
miR-124 is ubiquitously expressed in the nervous tissue and acts as a negative regulator of neuroinflammation. In the present study, we analyzed the possible role of miR-124 in response to LPS in the human microglial cell line. Our data revealed that the miR-124 anti-inflammatory effect is based not only on the suppression of MyD88 - NFκB pathway and downregulation of pro-inflammatory cytokines IL-1β and IL-6 but also on the enhancement of TRAM-TRIF signaling and increased IFN-β expression. Furthermore, the NFκB reporter assay demonstrated that specific miR-124 - induced NFκB activity changes could be detected only using NFκB reporter promoters lacking ATF/CREB binding site.
Collapse
Affiliation(s)
- Justina Pajarskienė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania
| | - Vytautas Kašėta
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania
| | - Kristina Vaikšnoraitė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania
| | - Virginijus Tunaitis
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| |
Collapse
|
94
|
Ziaka M, Exadaktylos A. Brain-lung interactions and mechanical ventilation in patients with isolated brain injury. Crit Care 2021; 25:358. [PMID: 34645485 PMCID: PMC8512596 DOI: 10.1186/s13054-021-03778-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/30/2021] [Indexed: 11/29/2022] Open
Abstract
During the last decade, experimental and clinical studies have demonstrated that isolated acute brain injury (ABI) may cause severe dysfunction of peripheral extracranial organs and systems. Of all potential target organs and systems, the lung appears to be the most vulnerable to damage after brain injury (BI). The pathophysiology of these brain–lung interactions are complex and involve neurogenic pulmonary oedema, inflammation, neurodegeneration, neurotransmitters, immune suppression and dysfunction of the autonomic system. The systemic effects of inflammatory mediators in patients with BI create a systemic inflammatory environment that makes extracranial organs vulnerable to secondary procedures that enhance inflammation, such as mechanical ventilation (MV), surgery and infections. Indeed, previous studies have shown that in the presence of a systemic inflammatory environment, specific neurointensive care interventions—such as MV—may significantly contribute to the development of lung injury, regardless of the underlying mechanisms. Although current knowledge supports protective ventilation in patients with BI, it must be born in mind that ABI-related lung injury has distinct mechanisms that involve complex interactions between the brain and lungs. In this context, the role of extracerebral pathophysiology, especially in the lungs, has often been overlooked, as most physicians focus on intracranial injury and cerebral dysfunction. The present review aims to fill this gap by describing the pathophysiology of complications due to lung injuries in patients with a single ABI, and discusses the possible impact of MV in neurocritical care patients with normal lungs.
Collapse
Affiliation(s)
- Mairi Ziaka
- Department of Internal Medicine, Thun General Hospital, Thun, Switzerland.
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
95
|
Karunia J, Niaz A, Mandwie M, Thomas Broome S, Keay KA, Waschek JA, Al-Badri G, Castorina A. PACAP and VIP Modulate LPS-Induced Microglial Activation and Trigger Distinct Phenotypic Changes in Murine BV2 Microglial Cells. Int J Mol Sci 2021; 22:ijms222010947. [PMID: 34681607 PMCID: PMC8535941 DOI: 10.3390/ijms222010947] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/01/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are two structurally related immunosuppressive peptides. However, the underlying mechanisms through which these peptides regulate microglial activity are not fully understood. Using lipopolysaccharide (LPS) to induce an inflammatory challenge, we tested whether PACAP or VIP differentially affected microglial activation, morphology and cell migration. We found that both peptides attenuated LPS-induced expression of the microglial activation markers Iba1 and iNOS (### p < 0.001), as well as the pro-inflammatory mediators IL-1β, IL-6, Itgam and CD68 (### p < 0.001). In contrast, treatment with PACAP or VIP exerted distinct effects on microglial morphology and migration. PACAP reversed LPS-induced soma enlargement and increased the percentage of small-sized, rounded cells (54.09% vs. 12.05% in LPS-treated cells), whereas VIP promoted a phenotypic shift towards cell subpopulations with mid-sized, spindle-shaped somata (48.41% vs. 31.36% in LPS-treated cells). Additionally, PACAP was more efficient than VIP in restoring LPS-induced impairment of cell migration and the expression of urokinase plasminogen activator (uPA) in BV2 cells compared with VIP. These results suggest that whilst both PACAP and VIP exert similar immunosuppressive effects in activated BV2 microglia, each peptide triggers distinctive shifts towards phenotypes of differing morphologies and with differing migration capacities.
Collapse
Affiliation(s)
- Jocelyn Karunia
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.K.); (A.N.); (M.M.); (S.T.B.); (G.A.-B.)
| | - Aram Niaz
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.K.); (A.N.); (M.M.); (S.T.B.); (G.A.-B.)
| | - Mawj Mandwie
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.K.); (A.N.); (M.M.); (S.T.B.); (G.A.-B.)
| | - Sarah Thomas Broome
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.K.); (A.N.); (M.M.); (S.T.B.); (G.A.-B.)
| | - Kevin A. Keay
- School of Medical Science, [Neuroscience] and Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia;
| | - James A. Waschek
- Intellectual Development and Disabilities Research Centre, Semel Institute for Neuroscience and Human Behaviour/Neuropsychiatric Institute, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA;
| | - Ghaith Al-Badri
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.K.); (A.N.); (M.M.); (S.T.B.); (G.A.-B.)
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.K.); (A.N.); (M.M.); (S.T.B.); (G.A.-B.)
- School of Medical Science, [Neuroscience] and Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia;
- Correspondence:
| |
Collapse
|
96
|
Microglial FACS for Robust RNA Recovery for Next-Generation Sequencing. Methods Mol Biol 2021. [PMID: 34558003 DOI: 10.1007/978-1-0716-1783-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Microglia are immune cells of the central nervous system (CNS), which play an instrumental role in eliminating invading pathogens and help regulate localized inflammation. They also assist in maintaining homeostasis of the brain microenvironment. Microglia isolation from primary brain tissue can be difficult with poor yields from tissue dissociation which precludes many downstream assays from being efficiently conducted. Recovery of intact microglia for single-cell or next-generation RNA sequencing (NGS, RNAseq) can be a difficult process. The recovery of intact RNA transcripts inside viable cells has its challenges. Here we describe a method to enrich CD11b + microglial cells from brain tissue followed by FACS, for a reliable and reproducible method for the recovery of high-quality RNA from sorted microglia for downstream sequencing.
Collapse
|
97
|
Gkekas I, Gioran A, Boziki MK, Grigoriadis N, Chondrogianni N, Petrakis S. Oxidative Stress and Neurodegeneration: Interconnected Processes in PolyQ Diseases. Antioxidants (Basel) 2021; 10:antiox10091450. [PMID: 34573082 PMCID: PMC8471619 DOI: 10.3390/antiox10091450] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative polyglutamine (polyQ) disorders are caused by trinucleotide repeat expansions within the coding region of disease-causing genes. PolyQ-expanded proteins undergo conformational changes leading to the formation of protein inclusions which are associated with selective neuronal degeneration. Several lines of evidence indicate that these mutant proteins are associated with oxidative stress, proteasome impairment and microglia activation. These events may correlate with the induction of inflammation in the nervous system and disease progression. Here, we review the effect of polyQ-induced oxidative stress in cellular and animal models of polyQ diseases. Furthermore, we discuss the interplay between oxidative stress, neurodegeneration and neuroinflammation using as an example the well-known neuroinflammatory disease, Multiple Sclerosis. Finally, we review some of the pharmaceutical interventions which may delay the onset and progression of polyQ disorders by targeting disease-associated mechanisms.
Collapse
Affiliation(s)
- Ioannis Gkekas
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece;
| | - Anna Gioran
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (A.G.); (N.C.)
| | - Marina Kleopatra Boziki
- 2nd Neurological Department, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (M.K.B.); (N.G.)
| | - Nikolaos Grigoriadis
- 2nd Neurological Department, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (M.K.B.); (N.G.)
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (A.G.); (N.C.)
| | - Spyros Petrakis
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece;
- Correspondence: ; Tel.: +30-2311257525
| |
Collapse
|
98
|
The Role of Microglia in Modulating Neuroinflammation after Spinal Cord Injury. Int J Mol Sci 2021; 22:ijms22189706. [PMID: 34575871 PMCID: PMC8470129 DOI: 10.3390/ijms22189706] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 01/10/2023] Open
Abstract
The pathobiology of traumatic and nontraumatic spinal cord injury (SCI), including degenerative myelopathy, is influenced by neuroinflammation. The neuroinflammatory response is initiated by a multitude of injury signals emanating from necrotic and apoptotic cells at the lesion site, recruiting local and infiltrating immune cells that modulate inflammatory cascades to aid in the protection of the lesion site and encourage regenerative processes. While peripheral immune cells are involved, microglia, the resident immune cells of the central nervous system (CNS), are known to play a central role in modulating this response. Microglia are armed with numerous cell surface receptors that interact with neurons, astrocytes, infiltrating monocytes, and endothelial cells to facilitate a dynamic, multi-faceted injury response. While their origin and essential nature are understood, their mechanisms of action and spatial and temporal profiles warrant extensive additional research. In this review, we describe the role of microglia and the cellular network in SCI, discuss tools for their investigation, outline their spatiotemporal profile, and propose translationally-relevant therapeutic targets to modulate neuroinflammation in the setting of SCI.
Collapse
|
99
|
Iwata Y, Miyao M, Hirotsu A, Tatsumi K, Matsuyama T, Uetsuki N, Tanaka T. The inhibitory effects of Orengedokuto on inducible PGE2 production in BV-2 microglial cells. Heliyon 2021; 7:e07759. [PMID: 34458607 PMCID: PMC8377439 DOI: 10.1016/j.heliyon.2021.e07759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 08/09/2021] [Indexed: 12/02/2022] Open
Abstract
Background and aim Reactive microglia has been associated with neuroinflammation caused by the production of proinflammatory molecules such as cytokines, nitric oxide, and prostaglandins. The overexpression of these molecules may provoke neuronal damage that can cause neurodegenerative diseases. A traditional herbal medicine, Orengedokuto (OGT), has been widely used for treating inflammation-related diseases. However, how it influences neuroinflammation remains poorly understood. Experimental procedure This study investigated the effects of OGT on inflammatory molecule induction in BV-2 microglial cells using real-time RT-PCR and ELISA. An in vivo confirmation of these effects was then performed in mice. Results and conclusion OGT showed dose-dependent inhibition of prostaglandin E2 (PGE2) production in BV-2 cells stimulated with lipopolysaccharide (LPS). To elucidate the mechanism of PGE2 inhibition, we examined cyclooxygenases (COXs) and found that OGT did not suppress COX-1 expression or inhibit LPS-induced COX-2 upregulation at either the transcriptional or translational levels. In addition, OGT did not inhibit COX enzyme activities within the concentration that inhibited PGE2 production, suggesting that the effect of OGT is COX-independent. The inhibitory effects of OGT on PGE2 production in BV-2 cells were experimentally replicated in primary cultured astrocytes and mice brains. OGT can be useful in the treatment of neuroinflammatory diseases by modulating PGE2 expression.
Collapse
Affiliation(s)
- Yoshika Iwata
- Department of Anesthesia, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mariko Miyao
- Department of Anesthesia, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akiko Hirotsu
- Department of Anesthesia, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kenichiro Tatsumi
- Department of Anesthesia, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomonori Matsuyama
- Department of Anesthesia, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-0861, Japan
| | - Nobuo Uetsuki
- Department of Anesthesia, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomoharu Tanaka
- Department of Anesthesia, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
100
|
La Torre ME, Villano I, Monda M, Messina A, Cibelli G, Valenzano A, Pisanelli D, Panaro MA, Tartaglia N, Ambrosi A, Carotenuto M, Monda V, Messina G, Porro C. Role of Vitamin E and the Orexin System in Neuroprotection. Brain Sci 2021; 11:1098. [PMID: 34439717 PMCID: PMC8394512 DOI: 10.3390/brainsci11081098] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
Microglia are the first line of defense at the level of the central nervous system (CNS). Phenotypic change in microglia can be regulated by various factors, including the orexin system. Neuroinflammation is an inflammatory process mediated by cytokines, by the lack of interaction between neurotransmitters and their specific receptors, caused by systemic tissue damage or, more often, associated with direct damage to the CNS. Chronic activation of microglia could lead to long-term neurodegenerative diseases. This review aims to explore how tocopherol (vitamin E) and the orexin system may play a role in the prevention and treatment of microglia inflammation and, consequently, in neurodegenerative diseases thanks to its antioxidant properties. The results of animal and in vitro studies provide evidence to support the use of tocopherol for a reduction in microglia inflammation as well as a greater activation of the orexinergic system. Although there is much in vivo and in vitro evidence of vitamin E antioxidant and protective abilities, there are still conflicting results for its use as a treatment for neurodegenerative diseases that speculate that vitamin E, under certain conditions or genetic predispositions, can be pro-oxidant and harmful.
Collapse
Affiliation(s)
- Maria Ester La Torre
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.L.T.); (G.C.); (A.V.); (D.P.); (C.P.)
| | - Ines Villano
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (I.V.); (M.M.); (A.M.); (V.M.)
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (I.V.); (M.M.); (A.M.); (V.M.)
| | - Antonietta Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (I.V.); (M.M.); (A.M.); (V.M.)
| | - Giuseppe Cibelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.L.T.); (G.C.); (A.V.); (D.P.); (C.P.)
| | - Anna Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.L.T.); (G.C.); (A.V.); (D.P.); (C.P.)
| | - Daniela Pisanelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.L.T.); (G.C.); (A.V.); (D.P.); (C.P.)
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy;
| | - Nicola Tartaglia
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto, 71122 Foggia, Italy; (N.T.); (A.A.)
| | - Antonio Ambrosi
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto, 71122 Foggia, Italy; (N.T.); (A.A.)
| | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80100 Naples, Italy;
| | - Vincenzo Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (I.V.); (M.M.); (A.M.); (V.M.)
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.L.T.); (G.C.); (A.V.); (D.P.); (C.P.)
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.L.T.); (G.C.); (A.V.); (D.P.); (C.P.)
| |
Collapse
|