51
|
Clément S, Peyrou M, Foti M, Negro F. Statins May Protect Against Hepatocellular Carcinoma Development in Patients Infected With Hepatitis C Virus, but What Are the Mechanisms? J Clin Oncol 2013; 31:4160-1. [DOI: 10.1200/jco.2013.51.0354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
52
|
Tsan YT, Lee CS, Ho WC, Lin MH, Wang JD, Chen PC. Reply to S. Bonovas et al, S. Clément et al, and J.L. Lund et al. J Clin Oncol 2013; 31:4162-4. [DOI: 10.1200/jco.2013.51.7623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yu-Tse Tsan
- National Taiwan University College of Public Health, Taipei; Taichung Veterans General Hospital; and Chung Shan Medical University School of Medicine, Taichung, Taiwan
| | - Chang-Sing Lee
- National Taiwan University College of Public Health, Taipei; Ton Yen General Hospital, Hsin-Chu, Taiwan
| | | | | | - Jung-Der Wang
- National Cheng Kung University, College of Medicine and Hospital, Tainan, Taiwan
| | - Pau-Chung Chen
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health; and National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| |
Collapse
|
53
|
Peyrou M, Clément S, Maier C, Bourgoin L, Branche E, Conzelmann S, Kaddai V, Foti M, Negro F. PTEN protein phosphatase activity regulates hepatitis C virus secretion through modulation of cholesterol metabolism. J Hepatol 2013; 59:420-6. [PMID: 23623999 DOI: 10.1016/j.jhep.2013.04.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 03/22/2013] [Accepted: 04/15/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) infection is dependent on lipid metabolism. Hepatocyte steatosis occurs frequently in HCV infection, but the relationship between steatosis and HCV life cycle is unclear. We showed that HCV induces steatosis via the downregulation of the phosphatase and tensin homolog deleted on chromosome 10 (PTEN). We here investigated how PTEN may affect HCV production. METHODS The effect of overexpression or silencing of PTEN on HCV secretion was assessed in genomic-length Jc1 infected HuH7 cells. The role of PTEN protein and lipid phosphatase activities on lipid metabolism and infectious viral particle secretion was investigated using dominant-negative PTEN mutants. The importance of cholesterol metabolism for PTEN-dependent lipid droplet biogenesis and viral particle secretion was examined using statins. RESULTS PTEN silencing in Jc1 infected HuH7 cells stimulated HCV particle secretion, while PTEN overexpression decreased virus egress. Viral secretion was also increased by overexpression of protein phosphatase-deleted (PTENY138L), but not lipid phosphatase-deleted (PTENG129E), PTEN mutant, thus indicating that the protein phosphatase activity of PTEN controls viral secretion. Similarly, PTENY138L, but not PTENG129E mutant induced the formation of large lipid droplets. PTENY138L mutant did not affect biosynthesis of triglycerides, but promoted the biosynthesis of cholesterol esters. Consistently, statins prevented the increased cholesterol ester production, large lipid droplet formation, and viral secretion in cells expressing the PTENY138L mutant. CONCLUSIONS Downregulation of PTEN protein phosphatase activity by HCV affects cholesterol metabolism, thereby inducing the appearance of large lipid droplets and increasing virion egress.
Collapse
Affiliation(s)
- Marion Peyrou
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Mazumder N, Lyn RK, Singaravelu R, Ridsdale A, Moffatt DJ, Hu CW, Tsai HR, McLauchlan J, Stolow A, Kao FJ, Pezacki JP. Fluorescence lifetime imaging of alterations to cellular metabolism by domain 2 of the hepatitis C virus core protein. PLoS One 2013; 8:e66738. [PMID: 23826122 PMCID: PMC3691201 DOI: 10.1371/journal.pone.0066738] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 05/09/2013] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) co-opts hepatic lipid pathways to facilitate its pathogenesis. The virus alters cellular lipid biosynthesis and trafficking, and causes an accumulation of lipid droplets (LDs) that gives rise to hepatic steatosis. Little is known about how these changes are controlled at the molecular level, and how they are related to the underlying metabolic states of the infected cell. The HCV core protein has previously been shown to independently induce alterations in hepatic lipid homeostasis. Herein, we demonstrate, using coherent anti-Stokes Raman scattering (CARS) microscopy, that expression of domain 2 of the HCV core protein (D2) fused to GFP is sufficient to induce an accumulation of larger lipid droplets (LDs) in the perinuclear region. Additionally, we performed fluorescence lifetime imaging of endogenous reduced nicotinamide adenine dinucleotides [NAD(P)H], a key coenzyme in cellular metabolic processes, to monitor changes in the cofactor’s abundance and conformational state in D2-GFP transfected cells. When expressed in Huh-7 human hepatoma cells, we observed that the D2-GFP induced accumulation of LDs correlated with an increase in total NAD(P)H fluorescence and an increase in the ratio of free to bound NAD(P)H. This is consistent with an approximate 10 fold increase in cellular NAD(P)H levels. Furthermore, the lifetimes of bound and free NAD(P)H were both significantly reduced – indicating viral protein-induced alterations in the cofactors’ binding and microenvironment. Interestingly, the D2-expressing cells showed a more diffuse localization of NAD(P)H fluorescence signal, consistent with an accumulation of the co-factor outside the mitochondria. These observations suggest that HCV causes a shift of metabolic control away from the use of the coenzyme in mitochondrial electron transport and towards glycolysis, lipid biosynthesis, and building of new biomass. Overall, our findings demonstrate that HCV induced alterations in hepatic metabolism is tightly linked to alterations in NAD(P)H functional states.
Collapse
Affiliation(s)
- Nirmal Mazumder
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Rodney K. Lyn
- National Research Council of Canada, Ottawa, Ontario, Canada
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
| | - Ragunath Singaravelu
- National Research Council of Canada, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrew Ridsdale
- National Research Council of Canada, Ottawa, Ontario, Canada
| | | | - Chih-Wei Hu
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Han-Ruei Tsai
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - John McLauchlan
- Medical Research Council - University of Glasgow Center for Virus Research, Glasgow, United Kingdom
| | - Albert Stolow
- National Research Council of Canada, Ottawa, Ontario, Canada
- Department of Physics, Queen’s University, Kingston, Ontario, Canada
| | - Fu-Jen Kao
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
- * E-mail: (JPP); (FK)
| | - John Paul Pezacki
- National Research Council of Canada, Ottawa, Ontario, Canada
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail: (JPP); (FK)
| |
Collapse
|
55
|
Roingeard P. Hepatitis C virus diversity and hepatic steatosis. J Viral Hepat 2013; 20:77-84. [PMID: 23301542 DOI: 10.1111/jvh.12035] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/01/2012] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infection is closely associated with lipid metabolism defects throughout the viral lifecycle, with hepatic steatosis frequently observed in patients with chronic HCV infection. Hepatic steatosis is most common in patients infected with genotype 3 viruses, possibly due to direct effects of genotype 3 viral proteins. Hepatic steatosis in patients infected with other genotypes is thought to be mostly due to changes in host metabolism, involving insulin resistance in particular. Specific effects of the HCV genotype 3 core proteins have been observed in cellular models in vitro: mechanisms linked with a decrease in microsomal triglyceride transfer protein activity, decreases in the levels of peroxisome proliferator-activating receptors, increases in the levels of sterol regulatory element-binding proteins, and phosphatase and tensin homologue downregulation. Functional differences between the core proteins of genotype 3 viruses and viruses of other genotypes may reflect differences in amino acid sequences. However, bioclinical studies have failed to identify specific 'steatogenic' sequences in HCV isolates from patients with hepatic steatosis. It is therefore difficult to distinguish between viral and metabolic steatosis unambiguously, and host and viral factors are probably involved in both HCV genotype 3 and nongenotype 3 steatosis.
Collapse
Affiliation(s)
- P Roingeard
- INSERM U966, Université François Rabelais & CHRU de Tours, Tours, France.
| |
Collapse
|
56
|
Abstract
MicroRNAs (miRNAs) can exert a profound effect on Hepatitis C virus (HCV) replication. The interaction of HCV with the highly liver-enriched miRNA, miR-122 represents one such unique example of viruses having evolved mechanism(s) to usurp the host miRNA machinery to support viral life cycle. Furthermore, HCV infection can also trigger changes in the cellular miRNA profile, which may ultimately contribute to the outcome of viral infection. Accumulating knowledge on HCV-host miRNA interactions has ultimately influenced the design of therapeutic interventions against chronic HCV infection. The importance of microRNA modulation in Human Immunodeficiency Virus (HIV-1) replication has been reported, albeit only in the context of HIV-1 mono-infection. The development of HCV infection is dramatically influenced during co-infection with HIV-1. Here, we review the current knowledge on miRNAs in HCV mono-infection. In addition, we discuss the potential role of some miRNAs, identified from the analyses of public data, in HCV/HIV-1 co-infection.
Collapse
|
57
|
The hepatitis C virus modulates insulin signaling pathway in vitro promoting insulin resistance. PLoS One 2012; 7:e47904. [PMID: 23133528 PMCID: PMC3485021 DOI: 10.1371/journal.pone.0047904] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/17/2012] [Indexed: 12/22/2022] Open
Abstract
Insulin is critical for controlling energy functions including glucose and lipid metabolism. Insulin resistance seems to interact with hepatitis C promoting fibrosis progression and impairing sustained virological response to peginterferon and ribavirin. The main aim was to elucidate the direct effect of hepatitis C virus (HCV) infection on insulin signaling both in vitro analyzing gene expression and protein abundance. Huh7.5 cells and JFH-1 viral particles were used for in vitro studies. Experiments were conducted by triplicate in control cells and infected cells. Genes and proteins involved in insulin signaling pathway were modified by HCV infection. Moreover, metformin treatment increased gene expression of PI3K, IRS1, MAP3K, AKT and PTEN more than >1.5 fold. PTP1B, encoding a tyrosin phosphatase, was found highly induced (>3 fold) in infected cells treated with metformin. However, PTP1B protein expression was reduced in metformin treated cells after JFH1 infection. Other proteins related to insulin pathway like Akt, PTEN and phosphorylated MTOR were also found down-regulated. Viral replication was inhibited in vitro by metformin. A strong effect of HCV infection on insulin pathway-related gene and protein expression was found in vitro. These results could lead to the identification of new therapeutic targets in HCV infection and its co-morbidities.
Collapse
|
58
|
Abstract
Eukaryotes possess seven different phosphoinositides (PIPs) that help form the unique signatures of various intracellular membranes. PIPs serve as docking sites for the recruitment of specific proteins to mediate membrane alterations and integrate various signaling cascades. The spatio-temporal regulation of PI kinases and phosphatases generates distinct intracellular hubs of PIP signaling. Hepatitis C virus (HCV), like other plus-strand RNA viruses, promotes the rearrangement of intracellular membranes to assemble viral replication complexes. HCV stimulates enrichment of phosphatidylinositol 4-phosphate (PI4P) pools near endoplasmic reticulum (ER) sites by activating PI4KIIIα, the kinase responsible for generation of ER-specific PI4P pools. Inhibition of PI4KIIIα abrogates HCV replication. PI4P, the most abundant phosphoinositide, predominantly localizes to the Golgi and plays central roles in Golgi secretory functions by recruiting effector proteins involved in transport vesicle generation. The PI4P effector proteins also include the lipid-transfer and structural proteins such as ceramide transfer protein (CERT), oxysterol binding protein (OSBP) and Golgi phosphoprotein 3 (GOLPH3) that help maintain Golgi-membrane composition and structure. Depletion of Golgi-specific PI4P pools by silencing PI4KIIIβ, expression of dominant negative CERT and OSBP mutants, or silencing GOLPH3 perturb HCV secretion. In this review we highlight the role of PIPs and specifically PI4P in the HCV life cycle.
Collapse
Affiliation(s)
- Bryan Bishé
- Division of Biological Sciences, University of California, San Diego. 9500 Gilman Dr., San Diego, CA, 92093, USA;
- Division of Infectious Diseases, University of California, San Diego. 9500 Gilman Dr., San Diego, CA, 92093, USA;
| | - Gulam Syed
- Division of Infectious Diseases, University of California, San Diego. 9500 Gilman Dr., San Diego, CA, 92093, USA;
| | - Aleem Siddiqui
- Division of Infectious Diseases, University of California, San Diego. 9500 Gilman Dr., San Diego, CA, 92093, USA;
- Author to whom correspondence should be addressed; ; Tel.: +858-822-1750; Fax: +858-822-1749
| |
Collapse
|
59
|
Bugianesi E, Salamone F, Negro F. The interaction of metabolic factors with HCV infection: does it matter? J Hepatol 2012; 56 Suppl 1:S56-65. [PMID: 22300466 DOI: 10.1016/s0168-8278(12)60007-5] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Given the pandemic spread of the hepatitis C virus (HCV) infection and the metabolic syndrome (MS), the burden of their interaction is a major public health issue, bound to increase in the near term. A better appreciation of the clinical consequences of the relationship between HCV and MS is needed, not only due to their potential synergism on liver disease severity, but also because of the multifaceted interactions between HCV and glucose and lipid metabolism. HCV infection per se does not carry an increased risk of MS, but is able to perturb glucose homeostasis through several direct and indirect mechanisms, leading to both hepatic and extrahepatic insulin resistance. This translates into accelerated liver disease progression (including the development of hepatocellular carcinoma), reduced response to antivirals and, in susceptible individuals, increased risk of developing full-blown type 2 diabetes. HCV may also cause hepatic steatosis, especially in patients infected with genotype 3, although the clinical impact of viral steatosis is debated. Possibly as a result of HCV-induced insulin resistance, and despite a paradoxically favourable lipid profile, the cardiovascular risk is moderately increased in chronic hepatitis C. In addition, the interaction with the MS further increases the risks of cirrhosis, hepatocellular carcinoma, diabetes, and cardiovascular events. Thus, targeted lifestyle and pharmacological measures are urgently warranted in chronic hepatitis C with metabolic alterations.
Collapse
|
60
|
Depla M, d'Alteroche L, Le Gouge A, Moreau A, Hourioux C, Meunier JC, Gaillard J, de Muret A, Bacq Y, Kazemi F, Avargues A, Roch E, Piver E, Gaudy-Graffin C, Giraudeau B, Roingeard P. Viral sequence variation in chronic carriers of hepatitis C virus has a low impact on liver steatosis. PLoS One 2012; 7:e33749. [PMID: 22479436 PMCID: PMC3315576 DOI: 10.1371/journal.pone.0033749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/16/2012] [Indexed: 12/14/2022] Open
Abstract
Most clinical studies suggest that the prevalence and severity of liver steatosis are higher in patients infected with hepatitis C virus (HCV) genotype 3 than in patients infected with other genotypes. This may reflect the diversity and specific intrinsic properties of genotype 3 virus proteins. We analyzed the possible association of particular residues of the HCV core and NS5A proteins known to dysregulate lipid metabolism with steatosis severity in the livers of patients chronically infected with HCV. We used transmission electron microscopy to quantify liver steatosis precisely in a group of 27 patients, 12 of whom were infected with a genotype 3 virus, the other 15 being infected with viruses of other genotypes. We determined the area covered by lipid droplets in liver tissues and analyzed the diversity of the core and NS5A regions encoded by the viral variants circulating in these patients. The area covered by lipid droplets did not differ significantly between patients infected with genotype 3 viruses and those infected with other genotypes. The core and NS5A protein sequences of the viral variants circulating in patients with mild or severe steatosis were evenly distributed throughout the phylogenic trees established from all the collected sequences. Thus, individual host factors seem to play a much greater role than viral factors in the development of severe steatosis in patients chronically infected with HCV, including those infected with genotype 3 viruses.
Collapse
Affiliation(s)
- Marion Depla
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
| | - Louis d'Alteroche
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
- Service d'Hépatogastroentérologie, Hôpital Trousseau, CHRU de Tours, Tours, France
| | - Amélie Le Gouge
- INSERM CIC 0202, Université François Rabelais and CHRU de Tours, Tours, France
| | - Alain Moreau
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
| | - Christophe Hourioux
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
- Unité de Biologie Cellulaire, Hôpital Bretonneau, CHRU de Tours, Tours, France
- Plate-Forme RIO des Microscopies, PPF ASB, Université François Rabelais, Tours, France
| | | | - Julien Gaillard
- Plate-Forme RIO des Microscopies, PPF ASB, Université François Rabelais, Tours, France
| | - Anne de Muret
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Trousseau, CHRU de Tours, Tours, France
| | - Yannick Bacq
- Service d'Hépatogastroentérologie, Hôpital Trousseau, CHRU de Tours, Tours, France
| | - Farhad Kazemi
- Service d'Hépatogastroentérologie, Centre Hospitalier de Blois, Blois, France
| | - Aurélie Avargues
- INSERM CIC 0202, Université François Rabelais and CHRU de Tours, Tours, France
| | - Emmanuelle Roch
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
| | - Eric Piver
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
- Service de Biochmie, Hôpital Trousseau, CHRU de Tours, Tours, France
| | - Catherine Gaudy-Graffin
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
- Service de Bactériologie-Virologie, Hôpital Bretonneau, CHRU de Tours, Tours, France
| | - Bruno Giraudeau
- INSERM CIC 0202, Université François Rabelais and CHRU de Tours, Tours, France
| | - Philippe Roingeard
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
- Unité de Biologie Cellulaire, Hôpital Bretonneau, CHRU de Tours, Tours, France
- Plate-Forme RIO des Microscopies, PPF ASB, Université François Rabelais, Tours, France
- * E-mail:
| |
Collapse
|
61
|
Abstract
Lipid droplets (LDs) are highly dynamic cell organelles involved in energy homeostasis and membrane trafficking. Here, we review how select pathogens interact with LDs. Several RNA viruses use host LDs at different steps of their life cycle. Some intracellular bacteria and parasites usurp host LDs or encode their own lipid biosynthesis machinery, thus allowing production of LDs independently of their host. Although many mechanistic details of host/pathogen LD interactions are unknown, a picture emerges in which the unique cellular architecture and energy stored in LDs are important in the replication of diverse pathogens.
Collapse
Affiliation(s)
- Eva Herker
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, USA
| | | |
Collapse
|
62
|
Harris C, Herker E, Farese RV, Ott M. Hepatitis C virus core protein decreases lipid droplet turnover: a mechanism for core-induced steatosis. J Biol Chem 2011; 286:42615-42625. [PMID: 21984835 DOI: 10.1074/jbc.m111.285148] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Steatosis is a frequent complication of hepatitis C virus infection. In mice, this condition is recapitulated by the expression of a single viral protein, the nucleocapsid core. Core localizes to the surface of lipid droplets (LDs) in infected liver cells through a process dependent on host diacylglycerol acyltransferase 1 (DGAT1), an enzyme that synthesizes triglycerides in the endoplasmic reticulum. Whether DGAT1 also plays a role in core-induced steatosis is uncertain. Here, we show that mouse embryonic fibroblasts isolated from DGAT1(-/-) mice are protected from core-induced steatosis, as are livers of DGAT1(-/-) mice expressing core, demonstrating that the steatosis is DGAT1-dependent. Surprisingly, core expression did not increase DGAT1 activity or triglyceride synthesis, thus excluding the possibility that core activates DGAT1 to cause steatosis. Instead, we find that DGAT1-dependent localization of core to LDs is a prerequisite for the steatogenic properties of the core. Using biochemical and immunofluorescence microscopy techniques, we show that the turnover of lipids in core-coated droplets is decreased, providing a physiological mechanism for core-induced steatosis. Our results support a bipartite model in which core first requires DGAT1 to gain access to LDs, and then LD-localized core interferes with triglyceride turnover, thus stabilizing lipid droplets and leading to steatosis.
Collapse
Affiliation(s)
- Charles Harris
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94158; Liver Center, University of California, San Francisco, California 94158; Department of Medicine, University of California, San Francisco, California 94158
| | - Eva Herker
- Liver Center, University of California, San Francisco, California 94158; Department of Medicine, University of California, San Francisco, California 94158; Gladstone Institute of Virology and Immunology, University of California, San Francisco, California 94158
| | - Robert V Farese
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94158; Liver Center, University of California, San Francisco, California 94158; Department of Medicine, University of California, San Francisco, California 94158; Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158.
| | - Melanie Ott
- Liver Center, University of California, San Francisco, California 94158; Department of Medicine, University of California, San Francisco, California 94158; Gladstone Institute of Virology and Immunology, University of California, San Francisco, California 94158.
| |
Collapse
|