51
|
Dusheiko G. Current and future directions of management of hepatitis B: steps toward a cure. Future Virol 2018. [DOI: 10.2217/fvl-2017-0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Universal hepatitis B virus vaccination has been effective in reducing incident chronic hepatitis B but will not have the requisite effect on the prevalence of end-stage liver disease in chronically infected persons. The natural history and immunological stages of hepatitis B virus infection are still being defined. Over three decades, current therapies have reduced morbidity from chronic hepatitis B. The majority require nucleoside analog maintenance therapy. The preferential preservation of covalently closed circular DNA (cccDNA), and capsid reverse transcriptase–cccDNA interactions currently precludes cure in most. A functional cure in the host may require several synergistic antiviral and immunological intercessions. The correct sequencing and combinations of treatment with either host or viral targeting agents have yet to be determined. Proven surrogates for cccDNA for clinical trials are required. Different strategies may become apparent for patients at different stages of the disease. Curative therapies will require affordability. This review focuses on steps toward a cure.
Collapse
Affiliation(s)
- Geoffrey Dusheiko
- Kings College Hospital & University College London Medical School, Denmark Hill, London SE5 9RS, UK
| |
Collapse
|
52
|
Zhou Z, Xu MJ, Cai Y, Wang W, Jiang JX, Varga ZV, Feng D, Pacher P, Kunos G, Torok NJ, Gao B. Neutrophil-Hepatic Stellate Cell Interactions Promote Fibrosis in Experimental Steatohepatitis. Cell Mol Gastroenterol Hepatol 2018; 5:399-413. [PMID: 29552626 PMCID: PMC5852390 DOI: 10.1016/j.jcmgh.2018.01.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/04/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Hepatic infiltration of neutrophils is a hallmark of steatohepatitis; however, the role of neutrophils in the progression of steatohepatitis remains unknown. METHODS A clinically relevant mouse model of steatohepatitis induced by high-fat diet (HFD) plus binge ethanol feeding was used. Liver fibrosis was examined. In vitro cell culture was used to analyze the interaction of hepatic stellate cells (HSCs) and neutrophils. RESULTS HFD plus one binge ethanol (HFD+1B) feeding induced significant hepatic neutrophil infiltration, liver injury, and fibrosis. HFD plus multiple binges of ethanol (HFD+mB) caused more pronounced liver fibrosis. Microarray analyses showed that the most highly activated signaling pathway in this HFD+1B model was related to liver fibrosis and HSC activation. Blockade of chemokine (C-X-C motif) ligand 1 or intercellular adhesion molecule-1 expression reduced hepatic neutrophil infiltration and ameliorated liver injury and fibrosis. Disruption of the p47phox gene (also called neutrophil cytosolic factor 1), a critical component of reactive oxygen species producing nicotinamide adenine dinucleotide phosphate-oxidase in neutrophils, diminished HFD+1B-induced liver injury and fibrosis. Co-culture of HSCs with neutrophils, but not with neutrophil apoptotic bodies, induced HSC activation and prolonged neutrophil survival. Mechanistic studies showed that activated HSCs produce granulocyte-macrophage colony-stimulating factor and interleukin-15 to prolong the survival of neutrophils, which may serve as a positive forward loop to promote liver damage and fibrosis. CONCLUSIONS The current data from a mouse model of HFD plus binge ethanol feeding suggest that obesity and binge drinking synergize to promote liver fibrosis, which is partially mediated via the interaction of neutrophils and HSCs. Microarray data in this article have been uploaded to NCBI's Gene Expression Omnibus (GEO accession number: GSE98153).
Collapse
Key Words
- 4-HNE, 4-hydroxynonenal
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- Alcohol
- CXCL1, chemokine (C-X-C motif) ligand 1
- Csf, colony-stimulating factor gene
- FBS, fetal bovine serum
- Fatty Liver
- G-CSF, granulocyte colony-stimulating factor
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- HFD+1B, high-fat diet feeding plus 1 binge of ethanol
- HFD+mB, high-fat diet plus multiple binges
- HFD, high-fat diet
- HSC, hepatic stellate cell
- High-Fat Diet
- ICAM-1, intercellular adhesion molecule-1
- IL, interleukin
- Inflammation
- KO, knockout
- MPO, myeloperoxidase
- PCR, polymerase chain reaction
- ROS, reactive oxygen species
- RT-PCR, reverse-transcription polymerase chain reaction
- Reactive Oxygen Species
- TUNEL, terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling
- WT, wild-type
- cDNA, complementary DNA
- mRNA, messenger RNA
Collapse
Affiliation(s)
- Zhou Zhou
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Ming-Jiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Yan Cai
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Wei Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Joy X. Jiang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis Medical Center, Davis, California
| | - Zoltan V. Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Natalie J. Torok
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis Medical Center, Davis, California
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
53
|
Abstract
Adipose tissue represents a large volume of biologically active tissue that exerts substantial systemic effects in health and disease. Alcohol consumption can profoundly disturb the normal functions of adipose tissue by inducing adipocyte death and altering secretion of adipokines, pro-inflammatory mediators and free fatty acids from adipose tissue, which have important direct and indirect effects on the pathogenesis of alcoholic liver disease (ALD). Cessation of alcohol intake quickly reverses inflammatory changes in adipose tissue, and pharmacological treatment that normalizes adipose tissue function improves experimental ALD. Obesity exacerbates liver injury induced by chronic or binge alcohol consumption, and obesity and alcohol can synergize to increase risk of ALD and progression. Physicians who care for individuals with ALD should be aware of the effects of adipose tissue dysfunction on liver function, and consider strategies to manage obesity and insulin resistance. This Review examines the effect of alcohol on adiposity and adipose tissue and the relationship between alcohol, adipose tissue and the liver.
Collapse
|
54
|
Choi Y, Abdelmegeed MA, Song BJ. Preventive effects of indole-3-carbinol against alcohol-induced liver injury in mice via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms: Role of gut-liver-adipose tissue axis. J Nutr Biochem 2017; 55:12-25. [PMID: 29331880 DOI: 10.1016/j.jnutbio.2017.11.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/01/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022]
Abstract
Indole-3-carbinol (I3C), found in Brassica family vegetables, exhibits antioxidant, anti-inflammatory, and anti-cancerous properties. Here, we aimed to evaluate the preventive effects of I3C against ethanol (EtOH)-induced liver injury and study the protective mechanism(s) by using the well-established chronic-plus-binge alcohol exposure model. The preventive effects of I3C were evaluated by conducting various histological, biochemical, and real-time PCR analyses in mouse liver, adipose tissue, and colon, since functional alterations of adipose tissue and intestine can also participate in promoting EtOH-induced liver damage. Daily treatment with I3C alleviated EtOH-induced liver injury and hepatocyte apoptosis, but not steatosis, by attenuating elevated oxidative stress, as evidenced by the decreased levels of hepatic lipid peroxidation, hydrogen peroxide, CYP2E1, NADPH-oxidase, and protein acetylation with maintenance of mitochondrial complex I, II, and III protein levels and activities. I3C also restored the hepatic antioxidant capacity by preventing EtOH-induced suppression of glutathione contents and mitochondrial aldehyde dehydrogenase-2 activity. I3C preventive effects were also achieved by attenuating the increased levels of hepatic proinflammatory cytokines, including IL1β, and neutrophil infiltration. I3C also attenuated EtOH-induced gut leakiness with decreased serum endotoxin levels through preventing EtOH-induced oxidative stress, apoptosis of enterocytes, and alteration of tight junction protein claudin-1. Furthermore, I3C alleviated adipose tissue inflammation and decreased free fatty acid release. Collectively, I3C prevented EtOH-induced liver injury via attenuating the damaging effect of ethanol on the gut-liver-adipose tissue axis. Therefore, I3C may also have a high potential for translational research in treating or preventing other types of hepatic injury associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
- Youngshim Choi
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| | - Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| |
Collapse
|
55
|
Rajamoorthi A, Arias N, Basta J, Lee RG, Baldán Á. Amelioration of diet-induced steatohepatitis in mice following combined therapy with ASO-Fsp27 and fenofibrate. J Lipid Res 2017; 58:2127-2138. [PMID: 28874443 PMCID: PMC5665668 DOI: 10.1194/jlr.m077941] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/18/2017] [Indexed: 12/16/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease. NAFLD progresses from benign steatosis to steatohepatitis (NASH) to cirrhosis and is linked to hepatocellular carcinoma. No targeted treatment is currently approved for NAFLD/NASH. We previously showed that fat-specific protein 27 (FSP27), a lipid droplet-associated protein that controls triglyceride turnover in the hepatocyte, is required for fasting- and diet-induced triglyceride accumulation in the liver. However, silencing Fsp27 with antisense oligonucleotides (ASOs) did not improve hepatosteatosis in genetic nor nutritional mouse models of obesity. Herein, we tested the therapeutic potential of ASO-Fsp27 when used in combination with the PPARα agonist fenofibrate. C57BL/6 mice were fed a high-trans-fat, high-cholesterol, high-fructose diet for eight weeks to establish NASH, then kept on diet for six additional weeks while dosed with ASOs and fenofibrate, alone or in combination. Data show that ASO-Fsp27 and fenofibrate synergize to promote resistance to diet-induced obesity and hypertriglyceridemia and to reverse hepatic steatosis, inflammation, oxidative stress, and fibrosis. This multifactorial improvement of liver disease noted when combining both drugs suggests that a course of treatment that includes both reduced FSP27 activity and activation of PPARα could provide therapeutic benefit to patients with NAFLD/NASH.
Collapse
Affiliation(s)
- Ananthi Rajamoorthi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, Saint Louis, MO
| | - Noemí Arias
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, Saint Louis, MO
| | - Jeannine Basta
- Department of Internal Medicine, Saint Louis University, Saint Louis, MO
| | - Richard G Lee
- Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, CA
| | - Ángel Baldán
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, Saint Louis, MO .,Center for Cardiovascular Research, Saint Louis University, Saint Louis, MO.,Liver Center, Saint Louis University, Saint Louis, MO
| |
Collapse
|
56
|
Gao B, Xu MJ, Bertola A, Wang H, Zhou Z, Liangpunsakul S. Animal Models of Alcoholic Liver Disease: Pathogenesis and Clinical Relevance. Gene Expr 2017; 17:173-186. [PMID: 28411363 PMCID: PMC5500917 DOI: 10.3727/105221617x695519] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alcoholic liver disease (ALD), a leading cause of chronic liver injury worldwide, comprises a range of disorders including simple steatosis, steatohepatitis, cirrhosis, and hepatocellular carcinoma. Over the last five decades, many animal models for the study of ALD pathogenesis have been developed. Recently, a chronic-plus-binge ethanol feeding model was reported. This model induces significant steatosis, hepatic neutrophil infiltration, and liver injury. A clinically relevant model of high-fat diet feeding plus binge ethanol was also developed, which highlights the risk of excessive binge drinking in obese/overweight individuals. All of these models recapitulate some features of the different stages of ALD and have been widely used by many investigators to study the pathogenesis of ALD and to test for therapeutic drugs/components. However, these models are somewhat variable, depending on mouse genetic background, ethanol dose, and animal facility environment. This review focuses on these models and discusses these variations and some methods to improve the feeding protocol. The pathogenesis, clinical relevance, and translational studies of these models are also discussed.
Collapse
Affiliation(s)
- Bin Gao
- *Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Ming-Jiang Xu
- *Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Adeline Bertola
- *Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- †Université Côte d’Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Hua Wang
- *Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- ‡Department of Oncology, The First Affiliated Hospital, Institute for Liver Diseases of Anhui Medical University, Hefei, P.R. China
| | - Zhou Zhou
- *Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Suthat Liangpunsakul
- §Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- ¶Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| |
Collapse
|
57
|
Abstract
Alcoholic liver disease (ALD) is a leading cause of chronic liver disease with a wide spectrum of manifestations including simple steatosis to steatohepatitis, cirrhosis, and hepatocellular carcinoma. Liver injury in ALD is caused by chronic inflammation, which has been actively investigated as a therapeutic target for the treatment of ALD for over the last four decades. In this review, we summarize a wide variety of inflammatory mediators that have been shown to contribute to the pathogenesis of ALD, and discuss the therapeutic potential of these mediators for the treatment of ALD.
Collapse
|