51
|
Mayer J, Blaszczyk E, Cipriani A, Ferrazzi G, Schulz-Menger J, Schaeffter T, Kolbitsch C. Cardio-respiratory motion-corrected 3D cardiac water-fat MRI using model-based image reconstruction. Magn Reson Med 2022; 88:1561-1574. [PMID: 35775790 DOI: 10.1002/mrm.29284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/04/2022] [Accepted: 04/13/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE Myocardial fat infiltrations are associated with a range of cardiomyopathies. The purpose of this study was to perform cardio-respiratory motion-correction for model-based water-fat separation to image fatty infiltrations of the heart in a free-breathing, non-cardiac-triggered high-resolution 3D MRI acquisition. METHODS Data were acquired in nine patients using a free-breathing, non-cardiac-triggered high-resolution 3D Dixon gradient-echo sequence and radial phase encoding trajectory. Motion correction was combined with a model-based water-fat reconstruction approach. Respiratory and cardiac motion models were estimated using a dual-mode registration algorithm incorporating both motion-resolved water and fat information. Qualitative comparisons of fat structures were made between 2D clinical routine reference scans and reformatted 3D motion-corrected images. To evaluate the effect of motion correction the local sharpness of epicardial fat structures was analyzed for motion-averaged and motion-corrected fat images. RESULTS The reformatted 3D motion-corrected reconstructions yielded qualitatively comparable fat structures and fat structure sharpness in the heart as the standard 2D breath-hold. Respiratory motion correction improved the local sharpness on average by 32% ± 24% with maximum improvements of 81% and cardiac motion correction increased the sharpness further by another 15% ± 11% with maximum increases of 31%. One patient showed a fat infiltration in the myocardium and cardio-respiratory motion correction was able to improve its visualization in 3D. CONCLUSION The 3D water-fat separated cardiac images were acquired during free-breathing and in a clinically feasible and predictable scan time. Compared to a motion-averaged reconstruction an increase in sharpness of fat structures by 51% ± 27% using the presented motion correction approach was observed for nine patients.
Collapse
Affiliation(s)
- Johannes Mayer
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Berlin, Germany
| | - Edyta Blaszczyk
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany. HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Alberto Cipriani
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany. HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | | | - Jeanette Schulz-Menger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany. HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Berlin, Germany
- Department of Medical Engineering, Technical University of Berlin, Berlin, Germany
| | - Christoph Kolbitsch
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Berlin, Germany
| |
Collapse
|
52
|
Perraton Z, Lawrenson P, Mosler AB, Elliott JM, Weber KA, Flack NA, Cornwall J, Crawford RJ, Stewart C, Semciw AI. Towards defining muscular regions of interest from axial magnetic resonance imaging with anatomical cross-reference: a scoping review of lateral hip musculature. BMC Musculoskelet Disord 2022; 23:533. [PMID: 35658932 PMCID: PMC9166386 DOI: 10.1186/s12891-022-05439-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/09/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Measures of hip muscle morphology and composition (e.g., muscle size and fatty infiltration) are possible with magnetic resonance imaging (MRI). Standardised protocols or guidelines do not exist for evaluation of hip muscle characteristics, hindering reliable and valid inter-study analysis. This scoping review aimed to collate and synthesise MRI methods for measuring lateral hip muscle size and fatty infiltration to inform the future development of standardised protocols. METHODS Five electronic databases (Medline, CINAHL, Embase, SportsDISCUS and AMED) were searched. Healthy or musculoskeletal pain populations that used MRI to assess lateral hip muscle size and fatty infiltration were included. Lateral hip muscles of interest included tensor fascia late (TFL), gluteus maximus, gluteus medius, and gluteus minimus. Data on MRI parameters, axial slice location, muscle size and fatty infiltrate measures were collected and analysed. Cross referencing for anatomical locations were made between MRI axial slice and E-12 anatomical plastinate sections. RESULTS From 2684 identified publications, 78 studies contributed data on volume (n = 31), cross sectional area (CSA) (n = 24), and fatty infiltration (n = 40). Heterogeneity was observed for MRI parameters and anatomical boundaries scrutinizing hip muscle size and fatty infiltration. Seven single level axial slices were identified that provided consistent CSA measurement, including three for both gluteus maximus and TFL, and four for both gluteus medius and minimus. For assessment of fatty infiltration, six axial slice locations were identified including two for TFL, and four for each of the gluteal muscles. CONCLUSIONS Several consistent anatomical levels were identified for single axial MR slice to facilitate muscle size and fatty infiltration muscle measures at the hip, providing the basis for reliable and accurate data synthesis and improvements in the validity of future between studies analyses. This work establishes the platform for standardised methods for the MRI assessment of lateral hip musculature and will aid in the examination of musculoskeletal conditions around the hip joint. Further studies into whole muscle measures are required to further optimise methodological parameters for hip muscle assessment.
Collapse
Affiliation(s)
- Zuzana Perraton
- School of Allied Health, La Trobe University, Melbourne, Australia
| | - Peter Lawrenson
- School of Allied Health, La Trobe University, Melbourne, Australia
- School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, Australia
- Department of Anatomy, School of Biomedical Sciences, The University of Otago, Dunedin, New Zealand
| | - Andrea B Mosler
- School of Allied Health, La Trobe University, Melbourne, Australia
| | - James M Elliott
- School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, Australia
- Faculty of Medicine and Health and Northern Sydney Local Health District, The University of Sydney, The Kolling Institute, Sydney, Australia
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Kenneth A Weber
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA, USA
| | - Natasha Ams Flack
- Department of Anatomy, School of Biomedical Sciences, The University of Otago, Dunedin, New Zealand
| | - Jon Cornwall
- University of Otago, Centre for Early Learning in Medicine, Otago Medical School, Dunedin, New Zealand
| | | | | | - Adam I Semciw
- School of Allied Health, La Trobe University, Melbourne, Australia.
- Allied Health Research, Northern Health, Epping, VIC, Australia.
| |
Collapse
|
53
|
Qu B, Cao J, Qian C, Wu J, Lin J, Wang L, Ou-Yang L, Chen Y, Yan L, Hong Q, Zheng G, Qu X. Current development and prospects of deep learning in spine image analysis: a literature review. Quant Imaging Med Surg 2022; 12:3454-3479. [PMID: 35655825 PMCID: PMC9131328 DOI: 10.21037/qims-21-939] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/04/2022] [Indexed: 10/07/2023]
Abstract
BACKGROUND AND OBJECTIVE As the spine is pivotal in the support and protection of human bodies, much attention is given to the understanding of spinal diseases. Quick, accurate, and automatic analysis of a spine image greatly enhances the efficiency with which spine conditions can be diagnosed. Deep learning (DL) is a representative artificial intelligence technology that has made encouraging progress in the last 6 years. However, it is still difficult for clinicians and technicians to fully understand this rapidly evolving field due to the diversity of applications, network structures, and evaluation criteria. This study aimed to provide clinicians and technicians with a comprehensive understanding of the development and prospects of DL spine image analysis by reviewing published literature. METHODS A systematic literature search was conducted in the PubMed and Web of Science databases using the keywords "deep learning" and "spine". Date ranges used to conduct the search were from 1 January, 2015 to 20 March, 2021. A total of 79 English articles were reviewed. KEY CONTENT AND FINDINGS The DL technology has been applied extensively to the segmentation, detection, diagnosis, and quantitative evaluation of spine images. It uses static or dynamic image information, as well as local or non-local information. The high accuracy of analysis is comparable to that achieved manually by doctors. However, further exploration is needed in terms of data sharing, functional information, and network interpretability. CONCLUSIONS The DL technique is a powerful method for spine image analysis. We believe that, with the joint efforts of researchers and clinicians, intelligent, interpretable, and reliable DL spine analysis methods will be widely applied in clinical practice in the future.
Collapse
Affiliation(s)
- Biao Qu
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen, China
| | - Jianpeng Cao
- Department of Electronic Science, Biomedical Intelligent Cloud R&D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Chen Qian
- Department of Electronic Science, Biomedical Intelligent Cloud R&D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Jinyu Wu
- Department of Electronic Science, Biomedical Intelligent Cloud R&D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Jianzhong Lin
- Department of Radiology, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Liansheng Wang
- Department of Computer Science, School of Informatics, Xiamen University, Xiamen, China
| | - Lin Ou-Yang
- Department of Medical Imaging of Southeast Hospital, Medical College of Xiamen University, Zhangzhou, China
| | - Yongfa Chen
- Department of Pediatric Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Liyue Yan
- Department of Information & Computational Mathematics, Xiamen University, Xiamen, China
| | - Qing Hong
- Biomedical Intelligent Cloud R&D Center, China Mobile Group, Xiamen, China
| | - Gaofeng Zheng
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen, China
| | - Xiaobo Qu
- Department of Electronic Science, Biomedical Intelligent Cloud R&D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
54
|
Stabinska J, Müller-Lutz A, Wittsack HJ, Tell C, Rump LC, Ertas N, Antoch G, Ljimani A. Two point Dixon-based chemical exchange saturation transfer (CEST) MRI in renal transplant patients on 3 T. Magn Reson Imaging 2022; 90:61-69. [PMID: 35476934 DOI: 10.1016/j.mri.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE To assess the performance of two point (2-pt) Dixon-based chemical exchange saturation transfer (CEST) imaging for fat suppression in renal transplant patients. METHODS The 2-pt Dixon-based CEST MRI was validated in an egg-phantom and in fourteen renal transplant recipients (5 females and 9 males; age range: 23-78 years; mean age: 51 ± 16.8). All CEST experiments were performed on a 3 T clinical MRI scanner using a dual-echo CEST sequence. The 2-pt Dixon technique was applied to generate water-only CEST images at different frequency offsets, which were further used to calculate the z-spectra. The magnetization transfer ratio asymmetry (MTRasym) values in the frequency ranges of hydroxyl, amine and amide protons were estimated in the renal cortex and medulla. RESULTS Results of the in vitro experiments suggest that the 2-pt Dixon technique enables effective fat peak removal and does not introduce additional asymmetries to the z-spectrum. Accordingly, our results in vivo show that the fat-corrected amide proton transfer (APT) effect in the kidney is significantly higher compared to that obtained from the CEST data acquired close to the in-phase condition both in the renal cortex (-0.1 [0.7] vs. -0.7 [1.2], P = 0.029) and medulla (0.3 [0.8] vs. 0.01 [1.3], P = 0.049), indicating that the 2-pt Dixon-based CEST method increases the specificity of the APT contrast by correcting the fat-induced artifacts. CONCLUSION Combination of the dual-echo CEST acquisition with Dixon post-processing provides effective water-fat separation, allowing more accurate quantification of the APT CEST effect in the transplanted kidney.
Collapse
Affiliation(s)
- Julia Stabinska
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Anja Müller-Lutz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Christian Tell
- Department of Nephrology, Medical Faculty, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Lars Christian Rump
- Department of Nephrology, Medical Faculty, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Neslihan Ertas
- Department of Vascular and Endovascular Surgery, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
55
|
Pappas EP, Seimenis I, Kouris P, Theocharis S, Lampropoulos KI, Kollias G, Karaiskos P. Target localization accuracy in frame‐based stereotactic radiosurgery: Comparison between MR‐only and MR/CT co‐registration approaches. J Appl Clin Med Phys 2022; 23:e13580. [PMID: 35285583 PMCID: PMC9121047 DOI: 10.1002/acm2.13580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022] Open
Abstract
Purpose In frame‐based Gamma Knife (GK) stereotactic radiosurgery two treatment planning workflows are commonly employed; one based solely on magnetic resonance (MR) images and the other based on magnetic resonance/computed tomography (MR/CT) co‐registered images. In both workflows, target localization accuracy (TLA) can be deteriorated due to MR‐related geometric distortions and/or MR/CT co‐registration uncertainties. In this study, the overall TLA following both clinical workflows is evaluated for cases of multiple brain metastases. Methods A polymer gel‐filled head phantom, having the Leksell stereotactic headframe attached, was CT‐imaged and irradiated by a GK Perfexion unit. A total of 26 4‐mm shots were delivered at 26 locations directly defined in the Leksell stereotactic space (LSS), inducing adequate contrast in corresponding T2‐weighted (T2w) MR images. Prescribed shot coordinates served as reference locations. An additional MR scan was acquired to implement the “mean image” distortion correction technique. The TLA for each workflow was assessed by comparing the radiation‐induced target locations, identified in MR images, with corresponding reference locations. Using T1w MR and CT images of 15 patients (totaling 81 lesions), TLA in clinical cases was similarly assessed, considering MR‐corrected data as reference. For the MR/CT workflow, both global and region of interest (ROI)‐based MR/CT registration approaches were studied. Results In phantom measurements, the MR‐corrected workflow demonstrated unsurpassed TLA (median offset of 0.2 mm) which deteriorated for MR‐only and MR/CT workflows (median offsets of 0.8 and 0.6 mm, respectively). In real‐patient cases, the MR‐only workflow resulted in offsets that exhibit a significant positive correlation with the distance from the MR isocenter, reaching 1.1 mm (median 0.6 mm). Comparable results were obtained for the MR/CT‐global workflow, although a maximum offset of 1.4 mm was detected. TLA was improved with the MR/CT‐ROI workflow resulting in median/maximum offsets of 0.4 mm/1.1 mm. Conclusions Subpixel TLA is achievable in all workflows. For the MR/CT workflow, a ROI‐based MR/CT co‐registration approach could considerably increase TLA and should be preferred instead of a global registration.
Collapse
Affiliation(s)
- Eleftherios P. Pappas
- Medical Physics Laboratory Medical School National and Kapodistrian University of Athens Athens Greece
| | - Ioannis Seimenis
- Medical Physics Laboratory Medical School National and Kapodistrian University of Athens Athens Greece
| | - Panagiotis Kouris
- Medical Physics Laboratory Medical School National and Kapodistrian University of Athens Athens Greece
| | - Stefanos Theocharis
- Medical Physics Laboratory Medical School National and Kapodistrian University of Athens Athens Greece
| | | | - Georgios Kollias
- Medical Physics and Gamma Knife Department Hygeia Hospital Marousi Greece
| | - Pantelis Karaiskos
- Medical Physics Laboratory Medical School National and Kapodistrian University of Athens Athens Greece
| |
Collapse
|
56
|
Belzunce MA, Henckel J, Di Laura A, Hart AJ. Reference values for volume, fat content and shape of the hip abductor muscles in healthy individuals from Dixon MRI. NMR IN BIOMEDICINE 2022; 35:e4636. [PMID: 34704291 DOI: 10.1002/nbm.4636] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 09/07/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Healthy hip abductor muscles are a good indicator of a healthy hip and an active lifestyle, as they are greatly involved in human daily activities. Fatty infiltration and muscle atrophy are associated with loss of strength, loss of mobility and hip disease. However, these variables have not been widely studied in this muscle group. We aimed to characterize the hip abductor muscles in a group of healthy individuals to establish reference values for volume, intramuscular fat content and shape of this muscle group. To achieve this, we executed a cross-sectional study using Dixon MRI scans of 51 healthy subjects. We used an automated segmentation method to label GMAX, GMED, GMIN and TFL muscles, measured normalized volume (NV) using lean body mass, fat fraction (FF) and lean muscle volume for each subject and computed non-parametric statistics for each variable grouped by sex and age. We measured these variables for each axial slice and created cross-sectional area and FF axial profiles for each muscle. Finally, we generated sex-specific atlases with FF statistical images. We measured median (IQR) NV values of 12.6 (10.8-13.8), 6.3 (5.6-6.7), 1.6 (1.4-1.7) and 0.8 (0.6-1.0) cm3 /kg for GMAX, GMED, GMIN and TFL, and median (IQR) FF values of 12.3 (10.1-15.9)%, 9.8 (8.6-11.2)%, 10.0 (9.0-12.0)% and 10.2 (7.8-13.5)% respectively. FF values were significantly higher for females for the four muscles (p < 0.01), but there were no significant differences between the two age groups. When comparing individual muscles, we observed a significantly higher FF in GMAX than in the other muscles. The reported novel reference values and axial profiles for volume and FF of the hip abductors, together with male and female atlases, are tools that could potentially help to quantify and detect early the deteriorating effects of hip disease or sarcopenia.
Collapse
Affiliation(s)
| | | | | | - Alister J Hart
- Royal National Orthopaedic Hospital, Stanmore, UK
- Institute of Orthopaedics and Musculoskeletal Science, University College London, Stanmore, UK
| |
Collapse
|
57
|
Dietrich S, Aigner CS, Mayer J, Kolbitsch C, Schulz-Menger J, Schaeffter T, Schmitter S. Motion-compensated fat-water imaging for 3D cardiac MRI at ultra-high fields. Magn Reson Med 2022; 87:2621-2636. [PMID: 35092090 DOI: 10.1002/mrm.29144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE Respiratory motion-compensated (MC) 3D cardiac fat-water imaging at 7T. METHODS Free-breathing bipolar 3D triple-echo gradient-recalled-echo (GRE) data with radial phase-encoding (RPE) trajectory were acquired in 11 healthy volunteers (7M\4F, 21-35 years, mean: 30 years) with a wide range of body mass index (BMI; 19.9-34.0 kg/m2 ) and volunteer tailored B 1 + shimming. The bipolar-corrected triple-echo GRE-RPE data were binned into different respiratory phases (self-navigation) and were used for the estimation of non-rigid motion vector fields (MF) and respiratory resolved (RR) maps of the main magnetic field deviations (ΔB0 ). RR ΔB0 maps and MC ΔB0 maps were compared to a reference respiratory phase to assess respiration-induced changes. Subsequently, cardiac binned fat-water images were obtained using a model-based, respiratory motion-corrected image reconstruction. RESULTS The 3D cardiac fat-water imaging at 7T was successfully demonstrated. Local respiration-induced frequency shifts in MC ΔB0 maps are small compared to the chemical shifts used in the multi-peak model. Compared to the reference exhale ΔB0 map these changes are in the order of 10 Hz on average. Cardiac binned MC fat-water reconstruction reduced respiration induced blurring in the fat-water images, and flow artifacts are reduced in the end-diastolic fat-water separated images. CONCLUSION This work demonstrates the feasibility of 3D fat-water imaging at UHF for the entire human heart despite spatial and temporal B 1 + and B0 variations, as well as respiratory and cardiac motion.
Collapse
Affiliation(s)
- Sebastian Dietrich
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | | | - Johannes Mayer
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Christoph Kolbitsch
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jeanette Schulz-Menger
- Experimental and Clinical Research Center, A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine and HELIOS Hospital Berlin Buch, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Helios Clinics Berlin-Buch Department of Cardiology and Nephrology, Berlin, Germany
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.,Department of Medical Engineering, Technische Universität Berlin, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
58
|
MRI of Hands with Early Rheumatoid Arthritis: Usefulness of Three-Point Dixon Sequences to Quantitatively Assess Disease Activity. J Belg Soc Radiol 2022; 106:1. [PMID: 35088027 PMCID: PMC8757386 DOI: 10.5334/jbsr.2692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/14/2021] [Indexed: 11/23/2022] Open
Abstract
The use of efficient treatment with a treat-to-target strategy combined with early detection of the disease completely changed the imaging presentation and outcome of newly diagnosed rheumatoid arthritis (RA) patients. Magnetic Resonance Imaging (MRI) has become the reference technique in clinical research to detect and quantify inflammatory involvement of the soft tissues (synovitis and tenosynovitis) and bone marrow (osteitis) along with structural damages of the bone (erosions) in hands of patients with RA. Three-point Dixon MRI may be a valuable alternative to the currently recommended sequences as it yields effective fat signal suppression, high imaging quality and reproducible assessment of disease activity.
Collapse
|
59
|
Comparison of T2 Weighted, Fat-Suppressed T2 Weighted, and Three-Dimensional (3D) Fast Imaging Employing Steady-State Acquisition (FIESTA-C) Sequences in the Temporomandibular Joint (TMJ) Evaluation. BIOMED RESEARCH INTERNATIONAL 2022; 2021:6032559. [PMID: 34977244 PMCID: PMC8716192 DOI: 10.1155/2021/6032559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/20/2021] [Accepted: 11/29/2021] [Indexed: 12/03/2022]
Abstract
Aim Osteonecrosis can affect the mandibular condyle, and bone marrow edema may be a precursor in osteonecrosis development in temporomandibular disorder (TMD) patients. Early detection of bone marrow changes is crucial for occurring osteonecrosis. The purpose of this study was to compare the diagnostic value of fast spin-echo T2 weighted (FSE-T2W), fat-suppressed T2W (FS-T2W), and three-dimensional (3D) fast imaging employing steady-state acquisition (FIESTA-C) MR sequences for early detection of bone marrow changes as well as TMJ soft tissue alterations. Methods A total of 60 joints with TMD were included in this study using a 1.5T MR machine (Signa HDxt, GE, Milwaukee, USA) using a dual surface TMJ coil. Qualitatively, the images were interpreted by two observers for disk configuration, disk position, joint fluid, and bone marrow changes. Quantitatively, signal intensity ratios (SIR) in the TMJ condyle, retrodiscal tissue, disk, and muscle were also measured using all tested sequences. Kappa coefficients were calculated to assess both intra- and interobserver agreements for each image set. The SIR of each sequence was compared using a one-way ANOVA Bonferroni-Dunn test. Results Overall intraobserver kappa coefficients ranged between 0.35 and 0.88 for joint fluid and between 0.22 and 0.82 for bone marrow changes diagnosis, suggesting high intraobserver agreement for FS-T2W and 3D FIESTA-C sequences than FSE T2W sequence (p < 0.05). 3D FIESTA-C showed higher agreement values for disk configuration and position detection than other sequences. Conclusions 3D FIESTA-C sequences can be used and incorporated into routine MRI protocols for obtaining high-resolution TMJ MR images due to the short acquisition time and 3D nature of the sequence. Additional studies should be done for dynamic TMJ imaging with this sequence.
Collapse
|
60
|
Cardobi N, De Robertis R, D’Onofrio M. Advanced Imaging of Pancreatic Neoplasms. IMAGING AND PATHOLOGY OF PANCREATIC NEOPLASMS 2022:481-493. [DOI: 10.1007/978-3-031-09831-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
61
|
Farinha P, Coelho JMP, Reis CP, Gaspar MM. A Comprehensive Updated Review on Magnetic Nanoparticles in Diagnostics. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3432. [PMID: 34947781 PMCID: PMC8706278 DOI: 10.3390/nano11123432] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
Magnetic nanoparticles (MNPs) have been studied for diagnostic purposes for decades. Their high surface-to-volume ratio, dispersibility, ability to interact with various molecules and superparamagnetic properties are at the core of what makes MNPs so promising. They have been applied in a multitude of areas in medicine, particularly Magnetic Resonance Imaging (MRI). Iron oxide nanoparticles (IONPs) are the most well-accepted based on their excellent superparamagnetic properties and low toxicity. Nevertheless, IONPs are facing many challenges that make their entry into the market difficult. To overcome these challenges, research has focused on developing MNPs with better safety profiles and enhanced magnetic properties. One particularly important strategy includes doping MNPs (particularly IONPs) with other metallic elements, such as cobalt (Co) and manganese (Mn), to reduce the iron (Fe) content released into the body resulting in the creation of multimodal nanoparticles with unique properties. Another approach includes the development of MNPs using other metals besides Fe, that possess great magnetic or other imaging properties. The future of this field seems to be the production of MNPs which can be used as multipurpose platforms that can combine different uses of MRI or different imaging techniques to design more effective and complete diagnostic tests.
Collapse
Affiliation(s)
- Pedro Farinha
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - João M. P. Coelho
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| |
Collapse
|
62
|
Shortened total spine MRI protocol in the detection of spinal cord compression and pathology for emergent settings: a noninferiority study. Emerg Radiol 2021; 29:329-337. [PMID: 34855001 DOI: 10.1007/s10140-021-01956-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND PURPOSE Spinal cord compression (SCC) requires rapid diagnosis in the emergent setting; however, current MRI protocols may be cumbersome for patients and clinicians. We sought to validate an abbreviated total spine MRI (TS-MRI) protocol using standard non-contrast sequences in the detection of SCC and other clinically significant findings (OCSF). METHODS Two hundred six TS-MRI scans obtained over a 30-month period for SCC were included. Sagittal T2 (T2sag), sagittal T1 (T1sag), and sagittal STIR (IRsag), as well as axial T2 (T2ax) images, were individually assessed independently by 2 reviewers for SCC, cauda equina compression (CEC), and OCSF. A protocol consisting of all the sequences was considered the gold standard. Sensitivity and specificity of single and combined MRI sequences for SCC/CEC and OCSF were determined and were tested for noninferiority relative to standard non-contrast sequences using a 5% noninferiority margin. RESULTS An abbreviated protocol of IRsag + T2ax provided the best performance with sensitivity and specificity of 100% (95%CI, 96.0-100.0) and 98.6% (95%CI, 95.6-99.7) for SCC/CEC and 100.0% (95%CI, 96.7-100.0), and 99.3% (95%CI, 96.6-99.9) for OCSF. The mean difference of sensitivity and specificity between IRsag + T2ax and standard protocol was 0.0% (95%CI, 0.0-4.0) and - 2.1% (95%CI, - 5.4 to - 0.6) for SCC/CEC and 0.0% (95%CI, 0.0-3.3) and - 1.5% (95%CI, - 4.8 to - 0.3) for OCSF, all within the noninferiority margin of 5%. CONCLUSIONS An abbreviated TS-MRI protocol of IRsag + T2ax is noninferior to the standard non-contrast protocol, potentially allowing for faster emergent imaging diagnosis and triage.
Collapse
|
63
|
Tamada D, Field AS, Reeder SB. Simultaneous T 1 -weighted and T 2 -weighted 3D MRI using RF phase-modulated gradient echo imaging. Magn Reson Med 2021; 87:1758-1770. [PMID: 34752639 DOI: 10.1002/mrm.29077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/07/2022]
Abstract
PURPOSE T1 -weighted and T2 -weighted (T1w and T2w) imaging are essential sequences in routine clinical practice to detect and characterize a wide variety of pathologies. Many approaches have been proposed to obtain T1w and T2w contrast, although many challenges still remain, including long acquisition time and limitations that favor 2D imaging. In this study, we propose a novel method for simultaneous T1w and T2w imaging using RF phase-modulated 3D gradient-echo imaging. THEORY Configuration theory is used to derive closed-form equations for the steady state of RF phase-modulated gradient-echo signal. These equations suggest the use of small RF phase increments to provide orthogonal signal contrast with T2w and T1w in the real and imaginary components, respectively. Background phase can be removed using a two-pass acquisition with opposite RF phase increments. METHODS Simulation and phantom experiments were performed to validate our proposed method. Volunteer images of the brain and knee were acquired to demonstrate the clinical feasibility. The proposed method was compared with T1w and T2w fast spin-echo imaging. RESULTS The relative signal intensity of images acquired using the proposed method agreed closely with simulations and fast spin-echo imaging in phantoms. Images from volunteer imaging showed very similar contrast compared to conventional fast spin-echo imaging. CONCLUSION Radiofrequency phase-modulated gradient-echo with small RF phase increments is an alternative method that provides simultaneous T1w and T2w contrast in short scan times with 3D volumetric coverage.
Collapse
Affiliation(s)
- Daiki Tamada
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
- Department of Radiology, Yamanashi University, Kofu, Japan
| | - Aaron S Field
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | - Scott B Reeder
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Department of Emergency Medicine, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
64
|
Belzunce MA, Henckel J, Di Laura A, Hart A. Intramuscular fat in gluteus maximus for different levels of physical activity. Sci Rep 2021; 11:21401. [PMID: 34725385 PMCID: PMC8560940 DOI: 10.1038/s41598-021-00790-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022] Open
Abstract
We aimed to determine if gluteus maximus (GMAX) fat infiltration is associated with different levels of physical activity. Identifying and quantifying differences in the intramuscular fat content of GMAX in subjects with different levels of physical activity can provide a new tool to evaluate hip muscles health. This was a cross-sectional study involving seventy subjects that underwent Dixon MRI of the pelvis. The individuals were divided into four groups by levels of physical activity, from low to high: inactive patients due to hip pain; and low, medium and high physical activity groups of healthy subjects (HS) based on hours of exercise per week. We estimated the GMAX intramuscular fat content for each subject using automated measurements of fat fraction (FF) from Dixon images. The GMAX volume and lean volume were also measured and normalized by lean body mass. The effects of body mass index (BMI) and age were included in the statistical analysis. The patient group had a significantly higher FF than the three groups of HS (median values of 26.2%, 17.8%, 16.7% and 13.7% respectively, p < 0.001). The normalized lean volume was significantly larger in the high activity group compared to all the other groups (p < 0.001, p = 0.002 and p = 0.02). Employing a hierarchical linear regression analysis, we found that hip pain, low physical activity, female gender and high BMI were statistically significant predictors of increased GMAX fat infiltration.
Collapse
Affiliation(s)
| | - Johann Henckel
- Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | - Anna Di Laura
- Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | - Alister Hart
- Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK.
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), University College London, Brockley Hill, Stanmore, Middlesex, HA7 4LP, UK.
| |
Collapse
|
65
|
El Sabbagh N, Chassain C, Ratiney H, Pagés G, Bonny JM. Spurious phase correction in rapid metabolic imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 332:107065. [PMID: 34560390 DOI: 10.1016/j.jmr.2021.107065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
IDEAL-type magnetic resonance spectroscopic imaging (MRSI) sequences require the acquisition of several datasets using optimized sampling in the time domain to reconstruct metabolite maps. Each unitary scan consists of a selective slice (2D) or slab (3D) excitation followed by an evolution time and then the acquisition of the spatially encoded signal. It is critical that the phase variation during the evolution time for each scan is only dependent on chemical shifts. In this paper, we described the apparition of spurious phase due to either the transmit or the receive frequency. The presence of this unwanted phase depends on (i) where the commutation between these two frequencies is performed and (ii) how it is done, as there are two phase commutation modes: continuous and coherent. We present the correction needed in function of the different cases. It appears that some solutions are universal. However, it is critical to know which case is implemented on the MRI scanner, which is not always easy information to have. We illustrated several cases with our preclinical MRI by using the IDEAL spiral method on a 13C phantom.
Collapse
Affiliation(s)
- Nour El Sabbagh
- INRAE, UR QuaPA, F-63122 Saint-Gènes-Champanelle, France; INRAE, AgroResonance Facility, F-63122 Saint-Genès-Champanelle, France; Université Clermont Auvergne, CHU, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France.
| | - Carine Chassain
- INRAE, UR QuaPA, F-63122 Saint-Gènes-Champanelle, France; INRAE, AgroResonance Facility, F-63122 Saint-Genès-Champanelle, France; Université Clermont Auvergne, CHU, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Hélène Ratiney
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM Saint Etienne, CNRS, Inserm, CREATIS UMR5220, U1294, F-69621, LYON, France
| | - Guilhem Pagés
- INRAE, UR QuaPA, F-63122 Saint-Gènes-Champanelle, France; INRAE, AgroResonance Facility, F-63122 Saint-Genès-Champanelle, France
| | - Jean-Marie Bonny
- INRAE, UR QuaPA, F-63122 Saint-Gènes-Champanelle, France; INRAE, AgroResonance Facility, F-63122 Saint-Genès-Champanelle, France
| |
Collapse
|
66
|
Lena B, Bartels LW, Ferrer CJ, Moonen CTW, Viergever MA, Bos C. Interleaved water and fat MR thermometry for monitoring high intensity focused ultrasound ablation of bone lesions. Magn Reson Med 2021; 86:2647-2655. [PMID: 34061390 PMCID: PMC8596687 DOI: 10.1002/mrm.28877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/11/2022]
Abstract
PURPOSE To demonstrate that interleaved MR thermometry can monitor temperature in water and fat with adequate temporal resolution. This is relevant for high intensity focused uUltrasounds (HIFU) treatment of bone lesions, which are often found near aqueous tissues, as muscle, or embedded in adipose tissues, as subcutaneous fat and bone marrow. METHODS Proton resonance frequency shift (PRFS)-based thermometry scans and T1 -based 2D variable flip angle (2D-VFA) thermometry scans were acquired alternatingly over time. Temperature in water was monitored using PRFS thermometry, and in fat by 2D-VFA thermometry with slice profile effect correction. The feasibility of interleaved water/fat temperature monitoring was studied ex vivo in porcine bone during MR-HIFU sonication. Precision and stability of measurements in vivo were evaluated in a healthy volunteer under non-heating conditions. RESULTS The method allowed observing temperature change over time in muscle and fat, including bone marrow, during MR-HIFU sonication, with a temporal resolution of 6.1 s. In vivo, the apparent temperature change was stable on the time scale of the experiment: In 7 min the systematic drift was <0.042°C/min in muscle (PRFS after drift correction) and <0.096°C/min in bone marrow (2D-VFA). The SD of the temperature change averaged over time was 0.98°C (PRFS) and 2.7°C (2D-VFA). CONCLUSIONS Interleaved MR thermometry allows temperature measurements in water and fat with a temporal resolution high enough for monitoring HIFU ablation. Specifically, combined fat and water thermometry provides uninterrupted information on temperature changes in tissue close to the bone cortex.
Collapse
Affiliation(s)
- Beatrice Lena
- Image Sciences InstituteUniversity Medical Center UtrechtUtrechtthe Netherlands
| | | | - Cyril J. Ferrer
- Imaging DivisionUniversity Medical Center UtrechtUtrechtthe Netherlands
| | | | - Max A. Viergever
- Image Sciences InstituteUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Clemens Bos
- Imaging DivisionUniversity Medical Center UtrechtUtrechtthe Netherlands
| |
Collapse
|
67
|
Evaluation of liver T1 using MOLLI gradient echo readout under the influence of fat. Magn Reson Imaging 2021; 85:57-63. [PMID: 34678435 DOI: 10.1016/j.mri.2021.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The effect of hepatic steatosis on the gradient-echo (GRE) based Modified Look-Locker Inversion Recovery (MOLLI) technique for T1 mapping has not been evaluated. The purpose of this study was to evaluate a GRE based MOLLI technique for hepatic T1 mapping and determine the relationship of T1 differences (ΔT1) on in-phase (IP) and out-of-phase (OP) to fat fraction (FF) measurement. MATERIALS AND METHODS 3 T MRI included MOLLI T1 mapping with TE = 1.3 (OP), 2.4 (IP), and 1.8 ms, and chemical-shift-encoded sequence with spectral modeling of fat to generate FF map as a reference. Bloch simulations and oil/water phantoms were used to characterize the response of the MOLLI T1 in various FF < 30% since MOLLI T1 estimation was erratic beyond this limit. Curve fit between ΔT1 and FF from simulation was applied to validate the phantom and the in-vivo results. Thirty-eight normal volunteers were included (16 women, Age 44 ± 12 years, BMI 27 ± 5.3 kg/m2). MOLLI water images were reconstructed by the average of OP and IP images, and the T1 values on water images served as the reference for T1 bias calculation defined as the percent difference between OP, IP, TE = 1.8 ms and the referenced water T1. Linear regression was performed to correlate the FF quantified by the reference and MOLLI methods. RESULTS Phantom results were consistent with the Bloch simulations. The simulated relationship between FF (0-30%) and ΔT1 could be modeled precisely by a cubic equation with R2 = 1. In-vivo MOLLI ΔT1 and estimated FF were correlated to the reference FF (both R2 ≥ 0.96 and P < 0.001). TE = 1.8 ms demonstrated less T1 bias (-1.34%) compared to TE = OP (5.32%) or IP (-3.8%, both P < 0.001). CONCLUSION At 3 T, TE of 1.8 ms can be used to reduce the T1 bias and deliver consistent T1 values when FF is <30%.
Collapse
|
68
|
Pasoglou V, Van Nieuwenhove S, Peeters F, Duchêne G, Kirchgesner T, Lecouvet FE. 3D Whole-Body MRI of the Musculoskeletal System. Semin Musculoskelet Radiol 2021; 25:441-454. [PMID: 34547810 DOI: 10.1055/s-0041-1730401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With its outstanding soft tissue contrast, spatial resolution, and multiplanar capacities, magnetic resonance imaging (MRI) has become a widely used technique. Whole-body MRI (WB-MRI) has been introduced among diagnostic methods for the staging and follow-up assessment in oncologic patients, and international guidelines recommend its use. In nononcologic applications, WB-MRI is as a promising imaging tool in inflammatory diseases, such as seronegative arthritis and inflammatory myopathies. Technological advances have facilitated the introduction of three-dimensional (3D) almost isotropic sequences in MRI examinations covering the whole body. The possibility to reformat 3D images in any plane with equal or almost equal resolution offers comprehensive understanding of the anatomy, easier disease detection and characterization, and finally contributes to correct treatment planning. This article illustrates the basic principles, advantages, and limitations of the 3D approach in WB-MRI examinations and provides a short review of the literature.
Collapse
Affiliation(s)
- Vassiliki Pasoglou
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Sandy Van Nieuwenhove
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Frank Peeters
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Gaetan Duchêne
- MR applications, General Electric Healthcare, Diegem, Belgium
| | - Thomas Kirchgesner
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Frederic E Lecouvet
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
69
|
Cakmak P, Herek D, Yagci AB, Sagtas E, Ufuk F, Çakmak V. Efficiency of Fat Suppression in T1-Weighted Inner Ear Magnetic Resonance Imaging: Multipoint Dixon Method Versus Hybrid Techniques. Curr Med Imaging 2021; 17:884-888. [PMID: 33459240 PMCID: PMC8811618 DOI: 10.2174/1573405617666210114141300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/30/2020] [Accepted: 11/09/2020] [Indexed: 12/02/2022]
Abstract
Background Temporal bone is a region where fat suppression is difficult due to the inhomogeneity of various structures with different molecular properties. Introduction: We aimed to determine the most effective fat suppression sequence in order to increase the visibility of the inner ear region. Materials and Methods The hybrid techniques and T1-Weighted mDIXON images of 40 patients with Magnetic Resonance (MR) imaging of the inner ear were prospectively compared by two experienced radiologists in terms of fat suppression efficacy. In all fat-suppressed sequences, the Signal to Noise Ratio (SNR), the spinal cord signal intensity / mean fat signal intensity ratio and spinal cord signal to noise ratio were calculated. The suppression efficacy of MR techniques for fat areas in the inner ear was visually graded. Results Qualitative assessment of image quality due to fat suppression in the inner ear was made; the Dixon technique performed significantly better than SPAIR and SPIR techniques (p<0.0001). The mean signal intensity of the inner ear fat and SNR for the Dixon technique were significantly lower than that for SPIR and SPAIR techniques (p<0.0001). Inter-observer agreement regarding the assessment of the inner ear fat, mean signal intensity values and mean SNR values for fat suppression techniques was significant. Conclusion The Dixon technique exhibited higher image quality and fat suppression efficiency than the hybrid techniques in the MR imaging of the inner ear.
Collapse
Affiliation(s)
- Pinar Cakmak
- Department of Radiology, Pamukkale University Medical Center, Denizli, Turkey
| | - Duygu Herek
- Department of Radiology, Pamukkale University Medical Center, Denizli, Turkey
| | - Ahmet Baki Yagci
- Department of Radiology, Pamukkale University Medical Center, Denizli, Turkey
| | - Ergin Sagtas
- Department of Radiology, Pamukkale University Medical Center, Denizli, Turkey
| | - Furkan Ufuk
- Department of Radiology, Pamukkale University Medical Center, Denizli, Turkey
| | - Vefa Çakmak
- Department of Radiology, Pamukkale University Medical Center, Denizli, Turkey
| |
Collapse
|
70
|
Zijlstra F, Seevinck PR. Multiple-echo steady-state (MESS): Extending DESS for joint T 2 mapping and chemical-shift corrected water-fat separation. Magn Reson Med 2021; 86:3156-3165. [PMID: 34270127 PMCID: PMC8596862 DOI: 10.1002/mrm.28921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022]
Abstract
Purpose To extend the double echo steady‐state (DESS) sequence to enable chemical‐shift corrected water‐fat separation. Methods This study proposes multiple‐echo steady‐state (MESS), a sequence that modifies the readouts of the DESS sequence to acquire two echoes each with bipolar readout gradients with higher readout bandwidth. This enables water‐fat separation and eliminates the need for water‐selective excitation that is often used in combination with DESS, without increasing scan time. An iterative fitting approach was used to perform joint chemical‐shift corrected water‐fat separation and T2 estimation on all four MESS echoes simultaneously. MESS and water‐selective DESS images were acquired for five volunteers, and were compared qualitatively as well as quantitatively on cartilage T2 and thickness measurements. Signal‐to‐noise ratio (SNR) and T2 quantification were evaluated numerically using pseudo‐replications of the acquisition. Results The water‐fat separation provided by MESS was robust and with quality comparable to water‐selective DESS. MESS T2 estimation was similar to DESS, albeit with slightly higher variability. Noise analysis showed that SNR in MESS was comparable to DESS on average, but did exhibit local variations caused by uncertainty in the water‐fat separation. Conclusion In the same acquisition time as DESS, MESS provides water‐fat separation with comparable SNR in the reconstructed water and fat images. By providing additional image contrasts in addition to the water‐selective DESS images, MESS provides a promising alternative to DESS.
Collapse
Affiliation(s)
- Frank Zijlstra
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Radiology and Nuclear Medicine, St Olav's University Hospital, Trondheim, Norway
| | - Peter R Seevinck
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.,MRIGuidance BV, Utrecht, The Netherlands
| |
Collapse
|
71
|
Jahanvi V, Kelkar A. Chemical shift imaging: An indispensable tool in diagnosing musculoskeletal pathologies. SA J Radiol 2021; 25:2061. [PMID: 34007477 PMCID: PMC8111635 DOI: 10.4102/sajr.v25i1.2061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/01/2021] [Indexed: 12/01/2022] Open
Abstract
Chemical shift imaging (CSI) is an important fat-suppression technique in magnetic resonance imaging (MRI); it is used routinely in abdominal imaging to detect the presence of intralesional fat. Its utility in musculoskeletal imaging has recently gained interest as a technique that is complementary to routine imaging. It is believed to aid in diagnosing and differentiating various osseous pathologies. This review describes the role of CSI as an imaging technique for diagnosing various osseous and periarticular pathologies in different clinical scenarios.
Collapse
Affiliation(s)
- Vandana Jahanvi
- Department of Radiodiagnosis, Bharati Vidyapeeth Medical College, Pune, India
| | - Abhimanyu Kelkar
- Department of Radiodiagnosis, Bharati Vidyapeeth Medical College, Pune, India
| |
Collapse
|
72
|
Haliot K, Dubes V, Constantin M, Pernot M, Labrousse L, Busuttil O, Walton RD, Bernus O, Rogier J, Nubret K, Dos Santos P, Benoist D, Haïssaguerre M, Magat J, Quesson B. A 3D high resolution MRI method for the visualization of cardiac fibro-fatty infiltrations. Sci Rep 2021; 11:9266. [PMID: 33927217 PMCID: PMC8084928 DOI: 10.1038/s41598-021-85774-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/22/2021] [Indexed: 11/29/2022] Open
Abstract
Modifications of the myocardial architecture can cause abnormal electrical activity of the heart. Fibro-fatty infiltrations have been implicated in various cardiac pathologies associated with arrhythmias and sudden cardiac death, such as arrhythmogenic right ventricular cardiomyopathy (ARVC). Here, we report the development of an MRI protocol to observe these modifications at 9.4 T. Two fixed ex vivo human hearts, one healthy and one ARVC, were imaged with an Iterative decomposition with echo asymmetry and least-square estimations (IDEAL) and a magnetization transfer (MT) 3D sequences. The resulting fat fraction and MT ratio (MTR) were analyzed and compared to histological analysis of the three regions (“ARVC triangle”) primarily involved in ARVC structural remodeling. In the ARVC heart, high fat content was observed in the “ARVC triangle” and the superimposition of the MTR and fat fraction allowed the identification of fibrotic regions in areas without the presence of fat. The healthy heart exhibited twice less fat than the ARVC heart (31.9%, 28.7% and 1.3% of fat in the same regions, respectively). Localization of fat and fibrosis were confirmed by means of histology. This non-destructive approach allows the investigation of structural remodeling in human pathologies where fibrosis and/or fatty tissue infiltrations are expected to occur.
Collapse
Affiliation(s)
- K Haliot
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France. .,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France. .,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.
| | - V Dubes
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France
| | - M Constantin
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France
| | - M Pernot
- Bordeaux University Hospital (CHU), 33600, Pessac, France
| | - L Labrousse
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Bordeaux University Hospital (CHU), 33600, Pessac, France
| | - O Busuttil
- Bordeaux University Hospital (CHU), 33600, Pessac, France
| | - R D Walton
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France
| | - O Bernus
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France
| | - J Rogier
- Bordeaux University Hospital (CHU), 33600, Pessac, France
| | - K Nubret
- Bordeaux University Hospital (CHU), 33600, Pessac, France
| | - P Dos Santos
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,Bordeaux University Hospital (CHU), 33600, Pessac, France
| | - D Benoist
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France
| | - M Haïssaguerre
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,Bordeaux University Hospital (CHU), 33600, Pessac, France
| | - J Magat
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France
| | - B Quesson
- IHU L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600, Pessac-Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université de Bordeaux, 33000, Bordeaux, France
| |
Collapse
|
73
|
Tay D, Das JP, Yeh R. Preoperative Localization for Primary Hyperparathyroidism: A Clinical Review. Biomedicines 2021; 9:biomedicines9040390. [PMID: 33917470 PMCID: PMC8067482 DOI: 10.3390/biomedicines9040390] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 01/02/2023] Open
Abstract
With increasing use of minimally invasive parathyroidectomy (PTx) over traditional bilateral neck exploration in patients with primary hyperparathyroidism (PHPT), accurate preoperative localization has become more important to enable a successful surgical outcome. Traditional imaging techniques such as ultrasound (US) and sestamibi scintigraphy (MIBI) and newer techniques such as parathyroid four-dimension computed tomography (4D-CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) are available for the clinician to detect the diseased gland(s) in the preoperative workup. Invasive parathyroid venous sampling may be useful in certain circumstances such as persistent or recurrent PHPT. We review the diagnostic performance of these imaging modalities in preoperative localization and discuss the advantages and weaknesses of these techniques. US and MIBI are established techniques commonly utilized as first-line modalities. 4D-CT has excellent diagnostic performance and is increasingly performed in first-line setting and as an adjunct to US and MIBI. PET and MRI are emerging adjunct modalities when localization has been equivocal or failed. Since no evidence-based guidelines are yet available for the optimal imaging strategy, clinicians should be familiar with the range and advancement of these techniques. Choice of imaging modality should be individualized to the patient with consideration for efficacy, expertise, and availability of such techniques in clinical practice.
Collapse
Affiliation(s)
- Donovan Tay
- Department of Medicine, Sengkang General Hospital, 110 Sengkang E Way, Singapore 544886, Singapore;
| | - Jeeban P. Das
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA;
| | - Randy Yeh
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA;
- Correspondence:
| |
Collapse
|
74
|
Hopp AC, Fahrenholtz SJ, Bashford JV, Long JR, Panda A, Katz DS, Flug JA. The Magnet Is Sometimes "Off"-Practical Strategies for Optimizing Challenging Musculoskeletal MR Imaging. Curr Probl Diagn Radiol 2021; 51:392-402. [PMID: 33836928 DOI: 10.1067/j.cpradiol.2021.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/05/2021] [Accepted: 03/04/2021] [Indexed: 11/22/2022]
Abstract
To describe practical solutions to the unique technical challenges of musculoskeletal magnetic resonance imaging, including off-isocenter imaging, artifacts from motion and metal prostheses, small field-of-view imaging, and non-conventional scan angles and slice positioning. Unique challenges of musculoskeletal magnetic resonance imaging require a collaborative approach involving radiologists, physicists, and technologists utilizing optimized magnetic resonance protocols, specialized coils, and unique patient positioning, in order to reliably diagnose critical musculoskeletal MR image findings.
Collapse
Affiliation(s)
- Alix C Hopp
- Mayo Clinic Arizona, Department of Radiology, Phoenix, AZ.
| | | | | | | | - Anshuman Panda
- Mayo Clinic Arizona, Department of Radiology, Phoenix, AZ
| | - Douglas S Katz
- NYU Langone Hospital-Long Island, Department of Radiology, Mineola, NY
| | | |
Collapse
|
75
|
Di Bella G, Gentile G, Irsuti F, Giuseppe R, Clemenza F, Mamone G, Donato R, De Luca A, Bogaert J, Aquaro GD. Prognostic Role of Left Ventricular Intramyocardial Fatty Metaplasia in Patients With Previous Myocarditis (MYOFAT Study). Am J Cardiol 2021; 143:135-144. [PMID: 33352209 DOI: 10.1016/j.amjcard.2020.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022]
Abstract
Left ventricular intramyocardial fat (LV-IMF) is often found in patients with previous irreversible myocardial damage and may be detected by cardiac magnetic resonance (CMR). No data are currently available about the prevalence of LV-IMF in patients with previous myocarditis. Our aim was to assess the prevalence of LV-IMF in patients with previous myocarditis by repeating after >3 years a follow-up CMR examination and to evaluate its clinical and prognostic role. Patients with clinical suspected myocarditis who underwent CMR within the first week from the onset of their symptoms and underwent repeated CMR were enrolled. LV-IMF was detected as areas of left ventricular intramyocardial "India ink" black boundary with or without a hyperintense core. Overall, in 235 patients with a definitive diagnosis of acute myocarditis, CMR was repeated after a median of 4 (3 to 6) years from symptom onset. LV-IMF positive patients (n = 35, 15%) presented greater ventricular volumes and more frequently a mid-wall late gadolinium enhancement than those without LV-IMF (both p < 0.05). Patients presenting major cardiac events (sudden cardiac deaths, resuscitated cardiac arrest, and appropriate implantable cardioverter-defibrillator-firing) at follow-up had a greater prevalence of LV-IMF than those without (55% vs 11%, p < 0.001). Patients with LV-IMF had a higher incidence myocarditis relapse (27% vs 9%, p = 0.003) and a greater risk of major cardiac events (p < 0.0001) than those without. At logistic regression analysis, LV-IMF was an independent predictor of major cardiac events. In conclusion, LV-IMF is not an uncommon finding in patients with previous myocarditis and is associated with worse ventricular remodeling and prognosis.
Collapse
|
76
|
Kusama M, Sato N, Kimura Y, Miyagi K. Quick MR Neuromelanin Imaging Using a Chemical Shift Selective Pulse. Magn Reson Med Sci 2021; 20:106-111. [PMID: 32074593 PMCID: PMC7952205 DOI: 10.2463/mrms.tn.2019-0167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Not only magnetization transfer contrast (MTC) pulse, but also chemical shift selective (CHESS) pulse would be a useful additional one for shortening the scan time of neuromelanin imaging. We compared three sequences among turbo-spin echo (TSE) images with CHESS, MTC, and without an additional pulse in the same short time, 3 min 20 s. The TSE with CHESS image was the most useful for the diagnosis of neuromelanin within the limited time.
Collapse
Affiliation(s)
- Midori Kusama
- Department of Radiology, National Center of Neurology and Psychiatry
| | - Noriko Sato
- Department of Radiology, National Center of Neurology and Psychiatry
| | - Yukio Kimura
- Department of Radiology, National Center of Neurology and Psychiatry
| | - Kenji Miyagi
- Department of Radiology, National Center of Neurology and Psychiatry
| |
Collapse
|
77
|
Rausch I, Valladares A, Sundar LKS, Beyer T, Hacker M, Meyerspeer M, Unger E. Standard MRI-based attenuation correction for PET/MRI phantoms: a novel concept using MRI-visible polymer. EJNMMI Phys 2021; 8:18. [PMID: 33599876 PMCID: PMC7892652 DOI: 10.1186/s40658-021-00364-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND PET/MRI phantom studies are challenged by the need of phantom-specific attenuation templates to account for attenuation properties of the phantom material. We present a PET/MRI phantom built from MRI-visible material for which attenuation correction (AC) can be performed using the standard MRI-based AC. METHODS A water-fillable phantom was 3D-printed with a commercially available MRI-visible polymer. The phantom had a cylindrical shape and the fillable compartment consisted of a homogeneous region and a region containing solid rods of different diameters. The phantom was filled with a solution of water and [18F]FDG. A 30 min PET/MRI acquisition including the standard Dixon-based MR-AC method was performed. In addition, a CT scan of the phantom was acquired on a PET/CT system. From the Dixon in-phase, opposed-phase and fat images, a phantom-specific AC map (Phantom MR-AC) was produced by separating the phantom material from the water compartment using a thresholding-based method and assigning fixed attenuation coefficients to the individual compartments. The PET data was reconstructed using the Phantom MR-AC, the original Dixon MR-AC, and an MR-AC just containing the water compartment (NoWall-AC) to estimate the error of ignoring the phantom walls. CT-based AC was employed as the reference standard. Average %-differences in measured activity between the CT corrected PET and the PET corrected with the other AC methods were calculated. RESULTS The phantom housing and the liquid compartment were both visible and distinguishable from each other in the Dixon images and allowed the segmentation of a phantom-specific MR-based AC. Compared to the CT-AC PET, average differences in measured activity in the whole water compartment in the phantom of -0.3%, 9.4%, and -24.1% were found for Dixon phantom MR-AC, MR-AC, and NoWall-AC based PET, respectively. Average differences near the phantom wall in the homogeneous region were -0.3%, 6.6%, and -34.3%, respectively. Around the rods, activity differed from the CT-AC PET by 0.7%, 8.9%, and -45.5%, respectively. CONCLUSION The presented phantom material is visible using standard MR sequences, and thus, supports the use of standard, phantom-independent MR measurements for MR-AC in PET/MRI phantom studies.
Collapse
Affiliation(s)
- Ivo Rausch
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20/4L, 1090, Vienna, Austria.
| | - Alejandra Valladares
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20/4L, 1090, Vienna, Austria
| | - Lalith Kumar Shiyam Sundar
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20/4L, 1090, Vienna, Austria
| | - Thomas Beyer
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20/4L, 1090, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Martin Meyerspeer
- High-Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Ewald Unger
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20/4L, 1090, Vienna, Austria
| |
Collapse
|
78
|
Petnehazy O, Donko T, Ellis R, Csoka A, Czeibert K, Baksa G, Zucker E, Repa K, Takacs A, Repa I, Moizs M. Creating a cross-sectional, CT and MR atlas of the Pannon minipig. Anat Histol Embryol 2021; 50:562-571. [PMID: 33529429 DOI: 10.1111/ahe.12657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/20/2020] [Accepted: 12/19/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE The purpose of this study was to create a detailed cross-sectional anatomical reference atlas of the Pannon minipig by correlating good resolution CT and MR images with high quality cross-sectional anatomical images. According to the authors knowledge, no detailed anatomical atlas is available for the minipig. MATERIAL AND METHOD An adult female minipig was utilized for this purpose. The animal was placed in a PVC half tube, and CT generated images of 0.6 mm slice thickness and MR images of 1.41 mm slice thickness were obtained. The images covered the whole body from the most rostral portion of the snout to the tip of the tail. The CT and MR scans were aligned with frozen anatomical sections prepared with an anatomical band saw from the same animal and significant structures were identified and labelled. The terminology employed has been referenced from the Nomina Anatomica Veterinaria 6th edition-2017. FINDINGS AND CONCLUSIONS The resulting atlas consists of 109 anatomical slices and the corresponding 109 CT and 109 MR scans (altogether 327 images) and the nomenclature list for each image. Although this publication contains limited images of the resulted atlas, it is a reference source for anatomy education and clinical sciences. We are of the opinion that more comprehensive and especially online available interactive atlases should be prepared using similar methodology.
Collapse
Affiliation(s)
- Ors Petnehazy
- Medicopus Nonprofit Ltd, Kaposvar, Hungary.,Kaposvar Campus, Szent Istvan University, Kaposvar, Hungary
| | - Tamas Donko
- Medicopus Nonprofit Ltd, Kaposvar, Hungary.,Kaposvar Campus, Szent Istvan University, Kaposvar, Hungary
| | - Rosie Ellis
- The Veterinary Referral & Emergency Centre, Godstone, England
| | - Adam Csoka
- Medicopus Nonprofit Ltd, Kaposvar, Hungary.,Kaposvar Campus, Szent Istvan University, Kaposvar, Hungary
| | - Kalman Czeibert
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gabor Baksa
- Department of Anatomy, Histology and Embryology, Semmelweis University of Medical Sciences, Budapest, Hungary
| | - Eric Zucker
- Veterinary Medicine Program, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Krisztina Repa
- Radiation Oncology, Research and Teaching Center, Moritz Kaposi General Hospital Dr. József Baka Diagnostic, Kaposvar, Hungary.,Moritz Kaposi General Hospital, Kaposvar, Hungary
| | | | - Imre Repa
- Medicopus Nonprofit Ltd, Kaposvar, Hungary.,Radiation Oncology, Research and Teaching Center, Moritz Kaposi General Hospital Dr. József Baka Diagnostic, Kaposvar, Hungary
| | | |
Collapse
|
79
|
Carotid wall imaging with 3D_T2_FFE: sequence parameter optimization and comparison with 3D_T2_SPACE. Sci Rep 2021; 11:2255. [PMID: 33500428 PMCID: PMC7838159 DOI: 10.1038/s41598-021-81309-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/04/2021] [Indexed: 12/03/2022] Open
Abstract
Similar to sampling perfection with application-optimized contrast using different flip angle evolutions (SPACE), T2-weighted fast field echo (FFE) also has a black blood effect and a high imaging efficiency. The purpose of this study was to optimize 3D_T2_FFE and compare it with 3D_T2_SPACE for carotid imaging. The scanning parameter of 3D_T2_FFE was optimized for the imaging of the carotid wall. Twenty healthy volunteers and 10 patients with carotid plaque underwent cervical 3D_T2_FFE and 3D_T2_SPACE examinations. The signal-to-noise ratios of the carotid wall (SNRwall) and lumen (SNRlumen), and the contrast-to-noise ratios between the wall and lumen (CNRwall_lumen) were compared. The incidence of the residual flow signal at the carotid bifurcation and the grades of flow voids in the cerebellopontine angle region in the two sequences were also compared. The reproducibility of the two sequences was tested. No significant difference was observed between the two sequences in terms of the SNRwall of healthy individuals and patients (P = 0.132 and 0.102, respectively). The SNRlumen in the 3D_T2_FFE images was lower than that in the 3D_T2_SPACE images. No significant difference was observed between the two sequences in terms of the CNRwall-lumen. The incidence of the residual flow signal at the carotid bifurcation in 3D_T2_FFE was significantly lower than that in 3D_T2_SPACE. The grades of flow suppression in the cerebellopontine angle region in 3D_T2_SPACE was lower than that in 3D_T2_FFE. Both sequences showed excellent inter-and intra-observer reproducibility. Compared to 3D_T2_SPACE, 3D_T2_FFE showed stronger flow suppression while maintaining good imaging quality, which can be used as an alternative tool for carotid imaging.
Collapse
|
80
|
Liu K, Li X, Li Z, Chen Y, Xiong H, Chen F, Bao Q, Liu C. Robust water-fat separation based on deep learning model exploring multi-echo nature of mGRE. Magn Reson Med 2020; 85:2828-2841. [PMID: 33231896 DOI: 10.1002/mrm.28586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE To design a new deep learning network for fast and accurate water-fat separation by exploring the correlations between multiple echoes in multi-echo gradient-recalled echo (mGRE) sequence and evaluate the generalization capabilities of the network for different echo times, field inhomogeneities, and imaging regions. METHODS A new multi-echo bidirectional convolutional residual network (MEBCRN) was designed to separate water and fat images in a fast and accurate manner for the mGRE data. This new MEBCRN network contains 2 main modules, the first 1 is the feature extraction module, which learns the correlations between consecutive echoes, and the other one is the water-fat separation module that processes the feature information extracted from the feature extraction module. The multi-layer feature fusion (MLFF) mechanism and residual structure were adopted in the water-fat separation module to increase separation accuracy and robustness. Moreover, we trained the network using in vivo abdomen images and tested it on the abdomen, knee, and wrist images. RESULTS The results showed that the proposed network could separate water and fat images accurately. The comparison of the proposed network and other deep learning methods shows the advantage in both quantitative metrics and robustness for different TEs, field inhomogeneities, and images acquired for various imaging regions. CONCLUSION The proposed network could learn the correlations between consecutive echoes and separate water and fat images effectively. The deep learning method has certain generalization capabilities for TEs and field inhomogeneity. Although the network was trained only in vivo abdomen images, it could be applied for different imaging regions.
Collapse
Affiliation(s)
- Kewen Liu
- School of Information Engineering, Wuhan University of Technology, Wuhan, China.,Hubei Key Laboratory of Broadband Wireless Communication and Sensor Networks, Wuhan University of Technology, Wuhan, China
| | - Xiaojun Li
- School of Information Engineering, Wuhan University of Technology, Wuhan, China.,Hubei Key Laboratory of Broadband Wireless Communication and Sensor Networks, Wuhan University of Technology, Wuhan, China
| | - Zhao Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yalei Chen
- School of Information Engineering, Wuhan University of Technology, Wuhan, China.,Hubei Key Laboratory of Broadband Wireless Communication and Sensor Networks, Wuhan University of Technology, Wuhan, China
| | - Hongxia Xiong
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, China
| | - Fang Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Wuhan, China
| | - Qinjia Bao
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.,Wuhan United Imaging Life Science Instruments Co., Ltd, Wuhan, China
| | - Chaoyang Liu
- Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
81
|
Wu Y, Li F, Wang Y, Hu T, Xiao L. High-Resolution Vessel Wall Magnetic Resonance Imaging of the Middle Cerebral Artery: Comparison of 3D CUBE T1-Weighted Sequence with and without Fat Suppression. Med Sci Monit 2020; 26:e928931. [PMID: 33159730 PMCID: PMC7657061 DOI: 10.12659/msm.928931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Fat suppression is an important technique in magnetic resonance imaging (MRI). Comprehensive and quantitative assessment of the influence of fat suppression (FS) on T1-weighted imaging of intracranial vessel wall imaging is needed. In this study, we compared the three-dimensional (3D) variable-flip-angle turbo-spin-echo (CUBE) T1-weighted sequence with and without FS to investigate the differences between the 2 sequences in imaging of the middle cerebral artery (MCA) vessel walls. Material/Methods A 3D CUBE T1-weighted sequence with and without FS by 3.0T MRI was used to obtain intracranial vessel wall images of 105 MCA stenosis patients. The image signal intensity, signal-to-noise ratio, and contrast-to-noise ratio were calculated and compared. Two observers evaluated the image quality of the 2 sequences twice, and interobserver and intraobserver consistency were determined. Differences between the 2 sequences in the area of lumen and plaque were compared. Results The signal intensity, signal-to-noise ratio, and contrast-to-noise ratio of the 3D CUBE T1-weighted sequence without FS were higher, whereas the noise level was lower. In terms of subjective scores, the 3D CUBE T1-weighted sequence without FS performed better. No significant difference was observed in the measurement of the vascular lumen area between the 2 sequences, although there were statistically significant differences in the measurement of plaque area (i.e., the measurement obtained with 3D CUBE T1-weighted sequence without FS was larger). Conclusions 3D CUBE T1-weighted sequence without FS performed better for MCA vessel walls imaging than 3D CUBE T1-weighted sequence with FS.
Collapse
Affiliation(s)
- Yejun Wu
- The Fourth Affiliated Hospital of China Medical University, China Medical University, Shengyang, Liaoning, China (mainland)
| | - Fangbing Li
- The Fourth Affiliated Hospital of China Medical University, China Medical University, Shengyang, Liaoning, China (mainland)
| | - Yilin Wang
- The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Tianxiang Hu
- The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Liang Xiao
- The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
82
|
Thaiss WM, Gatidis S, Sartorius T, Machann J, Peter A, Eigentler TK, Nikolaou K, Pichler BJ, Kneilling M. Noninvasive, longitudinal imaging-based analysis of body adipose tissue and water composition in a melanoma mouse model and in immune checkpoint inhibitor-treated metastatic melanoma patients. Cancer Immunol Immunother 2020; 70:1263-1275. [PMID: 33130917 PMCID: PMC8053172 DOI: 10.1007/s00262-020-02765-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022]
Abstract
Background As cancer cachexia (CC) is associated with cancer progression, early identification would be beneficial. The aim of this study was to establish a workflow for automated MRI-based segmentation of visceral (VAT) and subcutaneous adipose tissue (SCAT) and lean tissue water (LTW) in a B16 melanoma animal model, monitor diseases progression and transfer the protocol to human melanoma patients for therapy assessment. Methods For in vivo monitoring of CC B16 melanoma-bearing and healthy mice underwent longitudinal three-point DIXON MRI (days 3, 12, 17 after subcutaneous tumor inoculation). In a prospective clinical study, 18 metastatic melanoma patients underwent MRI before, 2 and 12 weeks after onset of checkpoint inhibitor therapy (CIT; n = 16). We employed an in-house MATLAB script for automated whole-body segmentation for detection of VAT, SCAT and LTW. Results B16 mice exhibited a CC phenotype and developed a reduced VAT volume compared to baseline (B16 − 249.8 µl, − 25%; controls + 85.3 µl, + 10%, p = 0.003) and to healthy controls. LTW was increased in controls compared to melanoma mice. Five melanoma patients responded to CIT, 7 progressed, and 6 displayed a mixed response. Responding patients exhibited a very limited variability in VAT and SCAT in contrast to others. Interestingly, the LTW was decreased in CIT responding patients (− 3.02% ± 2.67%; p = 0.0034) but increased in patients with progressive disease (+ 1.97% ± 2.19%) and mixed response (+ 4.59% ± 3.71%). Conclusion MRI-based segmentation of fat and water contents adds essential additional information for monitoring the development of CC in mice and metastatic melanoma patients during CIT or other treatment approaches.
Collapse
Affiliation(s)
- Wolfgang M Thaiss
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University, 72076, Tübingen, Germany.,Department of Diagnostic and Interventional Radiology, Eberhard Karls University, 72076, Tübingen, Germany.,Department of Nuclear Medicine, University of Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Sergios Gatidis
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University, 72076, Tübingen, Germany.,iFIT-Cluster of Excellence, Eberhard Karls University, 72076, Tübingen, Germany
| | - Tina Sartorius
- German Center for Diabetes Research (DZD E.V.), Neuherberg, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
| | - Jürgen Machann
- German Center for Diabetes Research (DZD E.V.), Neuherberg, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany.,Section of Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Peter
- German Center for Diabetes Research (DZD E.V.), Neuherberg, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany.,Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
| | - Thomas K Eigentler
- Department of Dermatology, University Hospital Tübingen, Liebermeisterstreet 20, 72076, Tübingen, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University, 72076, Tübingen, Germany
| | - Bernd J Pichler
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University, 72076, Tübingen, Germany.,iFIT-Cluster of Excellence, Eberhard Karls University, 72076, Tübingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tübingen, 72076, Tübingen, Germany
| | - Manfred Kneilling
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University, 72076, Tübingen, Germany. .,iFIT-Cluster of Excellence, Eberhard Karls University, 72076, Tübingen, Germany. .,Department of Dermatology, University Hospital Tübingen, Liebermeisterstreet 20, 72076, Tübingen, Germany.
| |
Collapse
|
83
|
Xu F, Li W, Liu D, Zhu D, Schär M, Myers K, Qin Q. A novel spectrally selective fat saturation pulse design with robustness to B 0 and B 1 inhomogeneities: A demonstration on 3D T 1-weighted breast MRI at 3 T. Magn Reson Imaging 2020; 75:156-161. [PMID: 33130057 DOI: 10.1016/j.mri.2020.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/01/2022]
Abstract
PURPOSE Spectrally selective fat saturation (FatSat) sequence is commonly used to suppress signal from adipose tissue. Conventional SINC-shaped pulses are sensitive to B0 off-resonance and B1+ offset. Uniform fat saturation with large spatial coverage is especially challenging for the body and breast MRI. The aim of this study is to develop spectrally selective FatSat pulses that offer more immunity to B0/B1+ field inhomogeneities than SINC pulses and evaluate them in bilateral breast imaging at 3 T. MATERIALS AND METHODS Optimized composite pulses (OCP) were designed based on the optimal control theory with robustness to a targeted B0/ B1+ conditions. OCP pulses also allows flexible flip angles to meet different requirements. Comparisons with the vendor-provided SINC pulses were conducted by numerical simulation and in vivo scans using a 3D T1-weighted (T1w) gradient-echo (GRE) sequence with coverage of the whole-breast. RESULTS Simulation revealed that OCP pulses yielded almost half of the transition band and much less sensitivity to B1+ inhomogeneity compared to SINC pulses with B0 off-resonance within ±200 Hz and B1+ scale error within ±0.3 (P < 0.001). Across five normal subjects, OCP FatSat pulses produced 25-41% lower residual fat signals (P < 0.05) with 27-36% less spatial variation (P < 0.05) than SINC. CONCLUSION In contrast to conventional SINC-shaped pulses, the newly designed OCP FatSat pulses mitigated challenges of wide range of B0/ B1+ field inhomogeneities and achieved more uniform fat suppression in bilateral breast T1w imaging at 3 T.
Collapse
Affiliation(s)
- Feng Xu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Wenbo Li
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Dapeng Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Dan Zhu
- Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michael Schär
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kelly Myers
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
84
|
Mattern H, Knoll M, Lüsebrink F, Speck O. Chemical shift-based prospective k-space anonymization. Magn Reson Med 2020; 85:962-969. [PMID: 32761655 DOI: 10.1002/mrm.28460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/16/2020] [Accepted: 07/10/2020] [Indexed: 01/07/2023]
Abstract
PURPOSE Publicly available data provision is an essential part of open science. However, open data can conflict with data privacy and data protection regulations. Head scans are particularly vulnerable because the subject's face can be reconstructed from the acquired images. Although defacing can impede subject identification in reconstructed images, this approach is not applicable to k-space raw data. To address this challenge and allow defacing of raw data for publication, we present chemical shift-based prospective k-space anonymization (CHARISMA). METHODS In spin-warp imaging, fat shift occurs along the frequency-encoding direction. By placing an oil-filled mask onto the subject's face, the shifted fat signal can overlap with the face to deface k-space during the acquisition. The CHARISMA approach was tested for gradient-echo sequences in a single subject wearing the oil-filled mask at 7 T. Different fat shifts were compared by varying the readout bandwidth. Furthermore, intensity-based segmentation was used to test whether the images could be unmasked retrospectively. RESULTS To impede subject identification after retrospective unmasking, the signal of face and shifted oil should overlap. In this single-subject study, a shift of 3.3 mm to 4.9 mm resulted in the most efficient masking. Independent of CHARISMA, long TEs induce signal decay and dephasing, which impeded unmasking. CONCLUSION To our best knowledge, CHARISMA is the first prospective k-space defacing approach. With proper fat-shift direction and amplitude, this easy-to-build, low-cost solution impaired subject identification in gradient-echo data considerably. Further sequences will be tested with CHARISMA in the future.
Collapse
Affiliation(s)
- Hendrik Mattern
- Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Martin Knoll
- Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Falk Lüsebrink
- Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Medicine and Digitalization, Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Oliver Speck
- Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,German Center for Neurodegenerative Disease, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
85
|
Lee S, Lee GY, Kim S, Park YB, Lee HJ. Clinical utility of fat-suppressed 3-dimensional controlled aliasing in parallel imaging results in higher acceleration sampling perfection with application optimized contrast using different flip angle evolutions MRI of the knee in adults. Br J Radiol 2020; 93:20190725. [PMID: 32516546 PMCID: PMC7446023 DOI: 10.1259/bjr.20190725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To compare htree-dimensional CAIPIRINHA SPACE and two-dimensional turbo spin echo (2D TSE) MRI in the diagnosis of knee pathology in symptomatic adult patients. METHODS From February to September in 2018, 120 patients who underwent a knee MRI using both 3D CAIPIRINHA SPACE and 2D TSE MRI were enrolled. The signal-to-noise ratios (SNRs) and contrast-to-noise ratio (CNR) of the 2D and 3D MRI were compared using a paired t-test. Two radiologists independently evaluated both 2D and 3D MRI images using scoring systems for the menisci, ligaments, and cartilage. Intermethod, inter- and intrareader agreements were determined using an intraclass correlation coefficient (ICC). The diagnostic performance of both methods was measured in 44 patients with arthroscopy. RESULTS The mean scan time of 3D CAIPIRINHA SPACE MRI (4' 43") was shorter than that of 2D TSE MRI (17' 27"). The mean SNR and CNR of 3D CAIPIRINHA SPACE was higher than those of 2D TSE MRI (mean difference, 3.97 of SNR and 1.58 of CNR; p < 0.001 and p = .038, respectively). Intermethod (ICC, 0.84-1.0) and inter-reader (ICC, 0.75-0.97), and intra-reader agreements (ICC, 0.87-1.0) were good or excellent. The diagnostic accuracy of 3D CAIPIRINHA SPACE sequence was equal for ligament (95.5%) and better for meniscal and cartilage evaluation (84.1% each), compared to 2D TSE MRI (79.5% each). CONCLUSION The fat-suppressed 3D CAIPIRINHA SPACE MRI maybe useful in clinical practice for the evaluation of the knee in place of the 2D conventional MRI protocol. ADVANCES IN KNOWLEDGE 1. The 3D CAIPIRINHA SPACE MRI of the knee joint may be acceptable to be used in clinical practice showing comparable imaging quality compared to conventional 2D TSE MRI.2. Compared with arthroscopic findings as the gold-standard, the diagnostic performance of 3D CAIPIRINHA SPACE MRI was equal or better for knee joint evaluation than that of 2D TSE MRI, as well as with shorter scan time.
Collapse
Affiliation(s)
- Seungho Lee
- Department of the Radiology, Chung-Ang University Hospital, Seoul, Korea
| | - Guen Young Lee
- Department of the Radiology, Chung-Ang University Hospital, Seoul, Korea
| | - Sujin Kim
- Department of the Radiology, Chung-Ang University Hospital, Seoul, Korea
| | - Yong-Beom Park
- Department of the orthopedic Surgery, Chung-Ang University Hospital, Seoul, Korea
| | - Han-Jun Lee
- Department of the orthopedic Surgery, Chung-Ang University Hospital, Seoul, Korea
| |
Collapse
|
86
|
Huber FA, Del Grande F, Rizzo S, Guglielmi G, Guggenberger R. MRI in the assessment of adipose tissues and muscle composition: how to use it. Quant Imaging Med Surg 2020; 10:1636-1649. [PMID: 32742957 DOI: 10.21037/qims.2020.02.06] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Body composition analysis based on the characterization of different tissue compartments is currently experiencing increasing attention by a broad range of medical disciplines for both clinical and research questions. However, body composition profiling (BCP) can be performed utilizing different modalities, which all come along with several technical and diagnostic strengths and limitations, respectively. Magnetic resonance imaging (MRI) demonstrates good soft tissue resolution, high contrast between fat and water, and is free from ionizing radiation. This review article represents an overview of imaging techniques for body composition assessment, focussing on qualitative and quantitative methods of assessing adipose tissue and muscles in MRI.
Collapse
Affiliation(s)
- Florian Alexander Huber
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Filippo Del Grande
- Istituto di imaging della Svizzera Italiana, Regional Hospital of Lugano, Lugano, Switzerland
| | - Stefania Rizzo
- Istituto di imaging della Svizzera Italiana, Regional Hospital of Lugano, Lugano, Switzerland
| | | | - Roman Guggenberger
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
87
|
Paul J. Recent advances in non-invasive diagnosis and medical management of non-alcoholic fatty liver disease in adult. EGYPTIAN LIVER JOURNAL 2020. [DOI: 10.1186/s43066-020-00043-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abstract
Background
Number of non-alcoholic fatty liver disease (NAFLD) cases is increasing over time due to alteration of food habit, increase incidence of metabolic syndrome, and lack of exercise. Liver biopsy is the test for diagnosis and staging of NAFLD, but nowadays several biochemical markers, scoring systems, and imaging studies are available to diagnose and stage NAFLD which is linked to end-stage liver disease, hepatocellular cancer, and elevated cardiovascular- and cancer-related morbidity and mortality. Therefore urgent diagnosis and management are required to avoid complications related to NAFLD. This review summarizes recent advances in diagnosis and medical management of non-alcoholic fatty liver disease.
Main text
Recently published studies from PubMed, Red Cross, Copernicus, and also various previous studies were reviewed. We have discussed various non-invasive methods for detection of non-alcoholic fatty liver disease, non-alcoholic steatohepatitis (NASH), and hepatic fibrosis. Non pharmacological therapies for NAFLD, indications, and approved medications for NAFLD and other commonly used non-approved medications have been discussed in this review article.
Conclusions
Multiple non-invasive tests are available for diagnosis of NAFLD, and its different stages however gold standard test is liver biopsy. NALFD without NASH and significant fibrosis is treated by lifestyle modifications which include moderate to vigorous exercise and diet modification. To improve hepatic steatosis, minimum of 3–5% of body weight loss is necessary, but > 7–10% weight reductions is required for histological improvement in NASH and fibrosis. Pharmacotherapy is indicated when patient is having NASH with significant fibrosis.
Collapse
|
88
|
Liu Y, Hamilton J, Eck B, Griswold M, Seiberlich N. Myocardial T 1 and T 2 quantification and water-fat separation using cardiac MR fingerprinting with rosette trajectories at 3T and 1.5T. Magn Reson Med 2020; 85:103-119. [PMID: 32720408 PMCID: PMC10212526 DOI: 10.1002/mrm.28404] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/14/2020] [Accepted: 06/08/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE This work aims to develop an approach for simultaneous water-fat separation and myocardial T1 and T2 quantification based on the cardiac MR fingerprinting (cMRF) framework with rosette trajectories at 3T and 1.5T. METHODS Two 15-heartbeat cMRF sequences with different rosette trajectories designed for water-fat separation at 3T and 1.5T were implemented. Water T1 and T2 maps, water image, and fat image were generated with B0 inhomogeneity correction using a B0 map derived from the cMRF data themselves. The proposed water-fat separation rosette cMRF approach was validated in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology MRI system phantom and water/oil phantoms. It was also applied for myocardial tissue mapping of healthy subjects at both 3T and 1.5T. RESULTS Water T1 and T2 values measured using rosette cMRF in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom agreed well with the reference values. In the water/oil phantom, oil was well suppressed in the water images and vice versa. Rosette cMRF yielded comparable T1 but 2~3 ms higher T2 values in the myocardium of healthy subjects than the original spiral cMRF method. Epicardial fat deposition was also clearly shown in the fat images. CONCLUSION Rosette cMRF provides fat images along with myocardial T1 and T2 maps with significant fat suppression. This technique may improve visualization of the anatomical structure of the heart by separating water and fat and could provide value in diagnosing cardiac diseases associated with fibrofatty infiltration or epicardial fat accumulation. It also paves the way toward comprehensive myocardial tissue characterization in a single scan.
Collapse
Affiliation(s)
- Yuchi Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.,Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Jesse Hamilton
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.,Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Brendan Eck
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.,Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Mark Griswold
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.,Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Nicole Seiberlich
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.,Department of Radiology, University of Michigan, Ann Arbor, MI, USA.,Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|
89
|
Belzunce MA, Henckel J, Fotiadou A, Di Laura A, Hart A. Automated measurement of fat infiltration in the hip abductors from Dixon magnetic resonance imaging. Magn Reson Imaging 2020; 72:61-70. [PMID: 32615150 DOI: 10.1016/j.mri.2020.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE Intramuscular fat infiltration is a dynamic process, in response to exercise and muscle health, which can be quantified by estimating fat fraction (FF) from Dixon MRI. Healthy hip abductor muscles are a good indicator of a healthy hip and an active lifestyle as they have a fundamental role in walking. The automated measurement of the abductors' FF requires the challenging task of segmenting them. We aimed to design, develop and evaluate a multi-atlas based method for automated measurement of fat fraction in the main hip abductor muscles: gluteus maximus (GMAX), gluteus medius (GMED), gluteus minimus (GMIN) and tensor fasciae latae (TFL). METHOD We collected and manually segmented Dixon MR images of 10 healthy individuals and 7 patients who underwent MRI for hip problems. Twelve of them were selected to build an atlas library used to implement the automated multi-atlas segmentation method. We compared the FF in the hip abductor muscles for the automated and manual segmentations for both healthy and patients groups. Measures of average and spread were reported for FF for both methods. We used the root mean square error (RMSE) to quantify the method accuracy. A linear regression model was used to explain the relationship between FF for automated and manual segmentations. RESULTS The automated median (IQR) FF was 20.0(16.0-26.4) %, 14.3(10.9-16.5) %, 15.5(13.9-18.6) % and 16.2(13.5-25.6) % for GMAX, GMED, GMIN and TFL respectively, with a FF RMSE of 1.6%, 0.8%, 2.1%, 2.7%. A strong linear correlation (R2 = 0.93, p < .001, m = 0.99) was found between the FF from automated and manual segmentations. The mean FF was higher in patients than in healthy subjects. CONCLUSION The automated measurement of FF of hip abductor muscles from Dixon MRI had good agreement with FF measurements from manually segmented images. The method was accurate for both healthy and patients groups.
Collapse
Affiliation(s)
| | - Johann Henckel
- Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | | | - Anna Di Laura
- Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Alister Hart
- Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK; Institute of Orthopaedics and Musculoskeletal Science, University College London, Stanmore HA7 4LP, UK
| |
Collapse
|
90
|
Ma YJ, Fan S, Shao H, Du J, Szeverenyi NM, Young IR, Bydder GM. Use of Multiplied, Added, Subtracted and/or FiTted Inversion Recovery (MASTIR) pulse sequences. Quant Imaging Med Surg 2020; 10:1334-1369. [PMID: 32550142 DOI: 10.21037/qims-20-568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The group of Multiplied, Added, Subtracted and/or fiTted Inversion Recovery (MASTIR) pulse sequences in which usually two or more inversion recovery (IR) images of different types are combined is described, and uses for this type of sequence are outlined. IR sequences of different types can be multiplied, added, subtracted, and/or fitted together to produce variants of the MASTIR sequence. The sequences provide a range of options for increasing image contrast, demonstrating specific tissues and fluids of interest, and suppressing unwanted signals. A formalism using the concept of pulse sequences as tissue property filters is used to explain the signal, contrast and weighting of the pulse sequences with both univariate and multivariate filter models. Subtraction of one magnitude reconstructed IR image from another with a shorter TI can produce very high T1 dependent positive contrast from small increases in T1. The reverse subtracted IR sequence can provide high positive contrast enhancement with gadolinium chelates and iron deposition which decrease T1. Additional contrast to that arising from increases in T1 can be produced by supplementing this with contrast arising from concurrent increases in ρm and T2, as well as increases or decreases in diffusion using subtraction IR with echo subtraction and/or diffusion subtraction. Phase images may show 180º differences as a result of rotating into the transverse plane both positive and negative longitudinal magnetization. Phase images with contrast arising in this way, or other ways, can be multiplied by magnitude IR images to increase the contrast of the latter. Magnetization Transfer (MT) and susceptibility can be used with IR sequences to improve contrast. Selective images of white and brown adipose tissue lipid and water components can be produced using different TIs and in and out-of-phase TEs. Selective images of ultrashort and short T2 tissue components can be produced by nulling long T2 tissue components with an inversion pulse and subtraction of images with longer TEs from images with ultrashort TEs. The Double Echo Sliding IR (DESIRE) sequence provides images with a wide range of TIs from which it is possible to choose values of TI to achieve particular types of tissue and/or fluid contrast (e.g., for subtraction with different TIs, as described above, and for long T2 tissue signal nulling with UTE sequences). Unwanted tissue and fluid signals can be suppressed by addition and subtraction of phase-sensitive (ps) and magnitude reconstructed images. The sequence also offers options for synergistic use of the changes in blood and tissue ρm, T1, T2/T2*, D* and perfusion that can be seen with fMRI of the brain. In-vivo and ex-vivo illustrative examples of normal brain, cartilage, multiple sclerosis, Alzheimer's disease, and peripheral nerve imaged with different forms of the MASTIR sequence are included.
Collapse
Affiliation(s)
- Ya-Jun Ma
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Shujuan Fan
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Hongda Shao
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | | | - Ian R Young
- Formerly Department of Electrical Engineering, Imperial College, London, UK
| | - Graeme M Bydder
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
91
|
Huang J, Chen L, Chan KWY, Cai C, Cai S, Chen Z. Super-resolved water/fat image reconstruction based on single-shot spatiotemporally encoded MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 314:106736. [PMID: 32361511 DOI: 10.1016/j.jmr.2020.106736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/11/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Single-shot spatiotemporally encoded (SPEN) MRI has been validated to possess considerable performance in both spatial and temporal resolution. Water/fat separation is essential for MRI applications in which only water signal is needed. In this article, a super-resolved water/fat image reconstruction method (dubbed SWAF) combined prior knowledge was developed based on single-shot SPEN MRI. The point spread function of spatiotemporal encoding under multiple chemical shifts situation was derived and used for constructing an equation for SWAF image reconstruction. By processing the prior chemical shift information with filtering operation, an initial spin density profile of water/fat and a weighting matrix for water/fat residual artifacts suppression were obtained to guide the reconstruction process. A l1 norm minimization problem with regularization was exploited to reconstruct separated water/fat images with high spatial resolution and less residual/aliasing artifacts. Numeric simulation and experiments on water-oil phantom and rat abdomen/neck imaging demonstrated the effectiveness and robustness of this new method. The SWAF method proposed herein would promote the application of SPEN MRI in the cases where water/fat separation is required.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China; Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Lin Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Congbo Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China.
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China.
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| |
Collapse
|
92
|
Yoon SJ, Park J, Shin Y, Choi Y, Park SW, Kang SG, Son HY, Huh YM. Deconvolution of diffuse gastric cancer and the suppression of CD34 on the BALB/c nude mice model. BMC Cancer 2020; 20:314. [PMID: 32293340 PMCID: PMC7160933 DOI: 10.1186/s12885-020-06814-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Background Gastric cancer is a considerable burden for worldwide patients. And diffuse gastric cancer is the most insidious subgroup with poor survival. The phenotypic characterization of the diffuse gastric cancer cell line can be useful for gastric cancer researchers. In this article, we aimed to characterize the diffuse gastric cancer cells with MRI and transcriptomic data. We hypothesized that gene expression pattern is associated with the phenotype of the cells and that the heterogeneous enhancement pattern and the high tumorigenicity of SNU484 can be modulated by the perturbation of the highly expressed gene. Methods We evaluated the 9.4 T magnetic resonance imaging and transcriptomic data of the orthotopic mice models from diffuse gastric cancer cells such as SNU484, Hs746T, SNU668, and KATO III. We included MKN74 as an intestinal cancer control cell. After comprehensive analysis integrating MRI and transcriptomic data, we selected CD34 and validated the effect by shRNA in the BALB/c nude mice models. Results SNU484, SNU668, Hs746T, and MKN74 formed orthotopic tumors by the 5 weeks after cell injection. The diffuse phenotype was found in the SNU484 and Hs746T. SNU484 was the only tumor showing the heterogeneous enhancement pattern on T2 images with a high level of CD34 expression. Knockdown of CD34 decreased the round-void shape in the H&E staining (P = 0.028), the heterogeneous T2 enhancement, and orthotopic tumorigenicity (100% vs 66.7%). The RNAseq showed that the suppressed CD34 is associated with the downregulated gene-sets of the extracellular matrix remodeling. Conclusion Suppression of CD34 in the human-originated gastric cancer cell suggests that it is important for the round-void histologic shape, heterogeneous enhancement pattern on MRI, and the growth of gastric cancer cell line.
Collapse
Affiliation(s)
- Seon-Jin Yoon
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Jungmin Park
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youngmin Shin
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yuna Choi
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sahng Wook Park
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Seok-Gu Kang
- Departments of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Department of Medical Science, Yonsei University Graduate School, Seoul, South Korea
| | - Hye Young Son
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul, South Korea.
| | - Yong-Min Huh
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, South Korea. .,Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul, South Korea. .,YUHS-KRIBB Medical Convergence Research Institute, Seoul, South Korea.
| |
Collapse
|
93
|
Magnetic Resonance Spectroscopy as a Non-invasive Method to Quantify Muscle Carnosine in Humans: a Comprehensive Validity Assessment. Sci Rep 2020; 10:4908. [PMID: 32184463 PMCID: PMC7078313 DOI: 10.1038/s41598-020-61587-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/28/2020] [Indexed: 11/08/2022] Open
Abstract
Carnosine is a dipeptide abundantly found in human skeletal muscle, cardiac muscle and neuronal cells having numerous properties that confers performance enhancing effects, as well as a wide-range of potential therapeutic applications. A reliable and valid method for tissue carnosine quantification is crucial for advancing the knowledge on biological processes involved with carnosine metabolism. In this regard, proton magnetic resonance spectroscopy (1H-MRS) has been used as a non-invasive alternative to quantify carnosine in human skeletal muscle. However, carnosine quantification by 1H-MRS has some potential limitations that warrant a thorough experimental examination of its validity. The present investigation examined the reliability, accuracy and sensitivity for the determination of muscle carnosine in humans using in vitro and in vivo experiments and comparing it to reference method for carnosine quantification (high-performance liquid chromatography - HPLC). We used in vitro 1H-MRS to verify signal linearity and possible noise sources. Carnosine was determined in the m. gastrocnemius by 1H-MRS and HPLC to compare signal quality and convergent validity. 1H-MRS showed adequate discriminant validity, but limited reliability and poor agreement with a reference method. Low signal amplitude, low signal-to-noise ratio, and voxel repositioning are major sources of error.
Collapse
|
94
|
Automated multi-atlas segmentation of gluteus maximus from Dixon and T1-weighted magnetic resonance images. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 33:677-688. [PMID: 32152794 DOI: 10.1007/s10334-020-00839-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/02/2020] [Accepted: 02/18/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To design, develop and evaluate an automated multi-atlas method for segmentation and volume quantification of gluteus maximus from Dixon and T1-weighted images. MATERIALS AND METHODS The multi-atlas segmentation method uses an atlas library constructed from 15 Dixon MRI scans of healthy subjects. A non-rigid registration between each atlas and the target, followed by majority voting label fusion, is used in the segmentation. We propose a region of interest (ROI) to standardize the measurement of muscle bulk. The method was evaluated using the dice similarity coefficient (DSC) and the relative volume difference (RVD) as metrics, for Dixon and T1-weighted target images. RESULTS The mean(± SD) DSC was 0.94 ± 0.01 for Dixon images, while 0.93 ± 0.02 for T1-weighted. The RVD between the automated and manual segmentation had a mean(± SD) value of 1.5 ± 4.3% for Dixon and 1.5 ± 4.8% for T1-weighted images. In the muscle bulk ROI, the DSC was 0.95 ± 0.01 and the RVD was 0.6 ± 3.8%. CONCLUSION The method allows an accurate fully automated segmentation of gluteus maximus for Dixon and T1-weighted images and provides a relatively accurate volume measurement in shorter times (~ 20 min) than the current gold-standard manual segmentations (2 h). Visual inspection of the segmentation would be required when higher accuracy is needed.
Collapse
|
95
|
Nikolaeva T, Vergeldt FJ, Serial R, Dijksman JA, Venema P, Voda A, van Duynhoven J, Van As H. High Field MicroMRI Velocimetric Measurement of Quantitative Local Flow Curves. Anal Chem 2020; 92:4193-4200. [PMID: 32052954 PMCID: PMC7081226 DOI: 10.1021/acs.analchem.9b03216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Performing
rheo-microMRI velocimetry at a high magnetic field with
strong pulsed field gradients has clear advantages in terms of (chemical)
sensitivity and resolution in velocities, time, and space. To benefit
from these advantages, some artifacts need to be minimized. Significant
sources of such artifacts are chemical shift dispersion due to the
high magnetic field, eddy currents caused by the pulsed magnetic field
gradients, and possible mechanical instabilities in concentric cylinder
(CC) rheo-cells. These, in particular, hamper quantitative assessment
of spatially resolved velocity profiles needed to construct local
flow curves (LFCs) in CC geometries with millimeter gap sizes. A major
improvement was achieved by chemical shift selective suppression of
signals that are spectroscopically different from the signal of interest.
By also accounting for imperfections in pulsed field gradients, LFCs
were obtained that were virtually free of artifacts. The approach
to obtain quantitative LFCs in millimeter gap CC rheo-MRI cells was
validated for Newtonian and simple yield stress fluids, which both
showed quantitative agreement between local and global flow curves.
No systematic effects of gap size and rotational velocity on the viscosity
of a Newtonian fluid and yield stress of a complex fluid could be
observed. The acquisition of LFCs during heterogeneous and transient
flow of fat crystal dispersion demonstrated that local constitutive
laws can be assessed by rheo-microMRI at a high magnetic field in
a noninvasive, quantitative, and real-time manner.
Collapse
Affiliation(s)
- Tatiana Nikolaeva
- Laboratory of Biophysics, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,MAGNEFY, Stippeneng 4, 6708 WE , Wageningen, The Netherlands
| | - Frank J Vergeldt
- Laboratory of Biophysics, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,MAGNEFY, Stippeneng 4, 6708 WE , Wageningen, The Netherlands
| | - Raquel Serial
- Laboratory of Biophysics, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,MAGNEFY, Stippeneng 4, 6708 WE , Wageningen, The Netherlands
| | - Joshua A Dijksman
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Paul Venema
- Physics and Physical Chemistry of Foods, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Adrian Voda
- Unilever Food Innovation Centre, OBronland 14, 6708 WH , Wageningen, The Netherlands
| | - John van Duynhoven
- Laboratory of Biophysics, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,Unilever Food Innovation Centre, OBronland 14, 6708 WH , Wageningen, The Netherlands.,MAGNEFY, Stippeneng 4, 6708 WE , Wageningen, The Netherlands
| | - Henk Van As
- Laboratory of Biophysics, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,MAGNEFY, Stippeneng 4, 6708 WE , Wageningen, The Netherlands
| |
Collapse
|
96
|
Li L, Scotti A, Fang J, Yin L, Xiong T, He W, Qin Y, Liew C, Khayyat N, Zhu W, Cai K. Characterization of brown adipose tissue (BAT) in polycystic ovary syndrome (PCOS) patients by Z-Spectral Imaging (ZSI). Eur J Radiol 2020; 123:108777. [PMID: 31855655 PMCID: PMC11463198 DOI: 10.1016/j.ejrad.2019.108777] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 11/06/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE To characterize brown adipose tissue (BAT) in polycystic ovary syndrome (PCOS) patients in comparison to healthy subjects using Z-spectral imaging (ZSI). METHOD ZSI data were collected on 19 normal control females (NCF), 17 males (NCM), and 13 PCOS patients. By fitting to multiple Lorentzian functions, ZSI provides fat-water fraction (FWF) of tissue in the supraclavicular area that can be used to differentiate between white adipose tissue (WAT), BAT, and muscle. The fraction of BAT over the total fat depot (BATf) and the average FWF in BAT or FWF(BAT) were then computed, reflecting relative BAT mass and BAT metabolism respectively. The parameters were compared among the three groups, and the correlations to Body Mass Index (BMI) were also quantified. RESULTS There was an inverse correlation between BATf and BMI in normal subjects. The BATf of the PCOS group was significantly smaller than the NCF (P < 0.001). On the other hand, FWF(BAT) correlated linearly with BMI in healthy subjects. The PCOS group had higher FWF(BAT) than the NCF group (P < 0.001). CONCLUSIONS Normal subjects with higher BMI show less BATf and have increased FWF(BAT), indicating relatively higher level of metabolic passive WAT depot and relatively reduced metabolism in their BAT depots. PCOS patients have the least BATf and the highest FWF(BAT), suggesting decreased BAT mass and function in PCOS. Novel imaging technique with ZSI for the characterization of BAT mass and function in PCOS may help to monitor treatment responses of PCOS therapies.
Collapse
Affiliation(s)
- Li Li
- Radiology Department, Tongji Hospital, Tongji Medical College, HUST, Wuhan, Hubei, PR China; Radiology Dept., College of Medicine, University of Illinois at Chicago, IL, USA
| | - Alessandro Scotti
- Radiology Dept., College of Medicine, University of Illinois at Chicago, IL, USA; Bioengineering Dept., College of Medicine, University of Illinois at Chicago, IL, USA
| | - Jicheng Fang
- Radiology Department, Tongji Hospital, Tongji Medical College, HUST, Wuhan, Hubei, PR China
| | - Li Yin
- Gynaecology and Obstetrics Dept., Tongji Hospital, Tongji Medical College, HUST, Wuhan, Hubei, PR China
| | - Ting Xiong
- Gynaecology and Obstetrics Dept., Tongji Hospital, Tongji Medical College, HUST, Wuhan, Hubei, PR China
| | - WenTao He
- Endocrinology Dept., Tongji Hospital, Tongji Medical College, HUST, Wuhan, Hubei, PR China
| | - Yuanyuan Qin
- Radiology Department, Tongji Hospital, Tongji Medical College, HUST, Wuhan, Hubei, PR China
| | - ChongWee Liew
- Physiology & Biophysics Dept., College of Medicine, University of Illinois at Chicago, IL, USA
| | - Nael Khayyat
- Radiology Dept., College of Medicine, University of Illinois at Chicago, IL, USA
| | - WenZhen Zhu
- Radiology Department, Tongji Hospital, Tongji Medical College, HUST, Wuhan, Hubei, PR China.
| | - Kejia Cai
- Radiology Dept., College of Medicine, University of Illinois at Chicago, IL, USA; Bioengineering Dept., College of Medicine, University of Illinois at Chicago, IL, USA.
| |
Collapse
|
97
|
Lin CY, Fessler JA. Efficient Regularized Field Map Estimation in 3D MRI. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 2020; 6:1451-1458. [PMID: 33693053 PMCID: PMC7943027 DOI: 10.1109/tci.2020.3031082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Magnetic field inhomogeneity estimation is important in some types of magnetic resonance imaging (MRI), including field-corrected reconstruction for fast MRI with long readout times, and chemical shift based water-fat imaging. Regularized field map estimation methods that account for phase wrapping and noise involve nonconvex cost functions that require iterative algorithms. Most existing minimization techniques were computationally or memory intensive for 3D datasets, and are designed for single-coil MRI. This paper considers 3D MRI with optional consideration of coil sensitivity, and addresses the multi-echo field map estimation and water-fat imaging problem. Our efficient algorithm uses a preconditioned nonlinear conjugate gradient method based on an incomplete Cholesky factorization of the Hessian of the cost function, along with a monotonic line search. Numerical experiments show the computational advantage of the proposed algorithm over state-of-the-art methods with similar memory requirements.
Collapse
Affiliation(s)
- Claire Yilin Lin
- Department of Mathematics, University of Michigan, Ann Arbor, MI, 48109 USA
| | - Jeffrey A Fessler
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
98
|
van Vucht N, Santiago R, Lottmann B, Pressney I, Harder D, Sheikh A, Saifuddin A. The Dixon technique for MRI of the bone marrow. Skeletal Radiol 2019; 48:1861-1874. [PMID: 31309243 DOI: 10.1007/s00256-019-03271-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 02/02/2023]
Abstract
Dixon sequences are established as a reliable MRI technique that can be used for problem-solving in the assessment of bone marrow lesions. Unlike other fat suppression methods, Dixon techniques rely on the difference in resonance frequency between fat and water and in a single acquisition, fat only, water only, in-phase and out-of-phase images are acquired. This gives Dixon techniques the unique ability to quantify the amount of fat within a bone lesion, allowing discrimination between marrow-infiltrating and non-marrow-infiltrating lesions such as focal nodular marrow hyperplasia. Dixon can be used with gradient echo and spin echo techniques, both two-dimensional and three-dimensional imaging. Another advantage is its rapid acquisition time, especially when using traditional two-point Dixon gradient echo sequences. Overall, Dixon is a robust fat suppression method that can also be used with intravenous contrast agents. After reviewing the available literature, we would like to advocate the implementation of additional Dixon sequences as a problem-solving tool during the assessment of bone marrow pathology.
Collapse
Affiliation(s)
- Niels van Vucht
- Department of Medical Imaging, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, HA7 4LP, UK.
| | - Rodney Santiago
- Department of Medical Imaging, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, HA7 4LP, UK
| | - Bianca Lottmann
- Department of Medical Imaging, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, HA7 4LP, UK
| | - Ian Pressney
- Department of Medical Imaging, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, HA7 4LP, UK
| | - Dorothee Harder
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Adnan Sheikh
- Department of Medical Imaging, The Ottawa Hospital, Civic Campus, 1053 Carling Avenue, Ottawa, Ontario, K1Y 4E9, Canada
| | - Asif Saifuddin
- Department of Medical Imaging, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, HA7 4LP, UK
| |
Collapse
|
99
|
Wang X, Colgan TJ, Hinshaw LA, Roberts NT, Bancroft LCH, Hamilton G, Hernando D, Reeder SB. T 1 -corrected quantitative chemical shift-encoded MRI. Magn Reson Med 2019; 83:2051-2063. [PMID: 31724776 DOI: 10.1002/mrm.28062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/27/2019] [Accepted: 10/11/2019] [Indexed: 11/06/2022]
Abstract
PURPOSE To develop and validate a T1 -corrected chemical-shift encoded MRI (CSE-MRI) method to improve noise performance and reduce bias for quantification of tissue proton density fat-fraction (PDFF). METHODS A variable flip angle (VFA)-CSE-MRI method using joint-fit reconstruction was developed and implemented. In computer simulations and phantom experiments, sources of bias measured using VFA-CSE-MRI were investigated. The effect of tissue T1 on bias using low flip angle (LFA)-CSE-MRI was also evaluated. The noise performance of VFA-CSE-MRI was compared to LFA-CSE-MRI for liver fat quantification. Finally, a prospective pilot study in patients undergoing gadoxetic acid-enhanced MRI of the liver to evaluate the ability of the proposed method to quantify liver PDFF before and after contrast. RESULTS VFA-CSE-MRI was accurate and insensitive to transmit B1 inhomogeneities in phantom experiments and computer simulations. With high flip angles, phase errors because of RF spoiling required modification of the CSE signal model. For relaxation parameters commonly observed in liver, the joint-fit reconstruction improved the noise performance marginally, compared to LFA-CSE-MRI, but eliminated T1 -related bias. A total of 25 patients were successfully recruited and analyzed for the pilot study. Strong correlation and good agreement between PDFF measured with VFA-CSE-MRI and LFA-CSE-MRI (pre-contrast) was observed before (R2 = 0.97; slope = 0.88, 0.81-0.94 95% confidence interval [CI]; intercept = 1.34, -0.77-1.92 95% CI) and after (R2 = 0.93; slope = 0.88, 0.78-0.98 95% CI; intercept = 1.90, 1.01-2.79 95% CI) contrast. CONCLUSION Joint-fit VFA-CSE-MRI is feasible for T1 -corrected PDFF quantification in liver, is insensitive to B1 inhomogeneities, and can eliminate T1 bias, but with only marginal SNR advantage for T1 values observed in the liver.
Collapse
Affiliation(s)
- Xiaoke Wang
- Department of Radiology, University of Wisconsin, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin
| | - Timothy J Colgan
- Department of Radiology, University of Wisconsin, Madison, Wisconsin
| | - Louis A Hinshaw
- Department of Radiology, University of Wisconsin, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin
| | - Nathan T Roberts
- Department of Radiology, University of Wisconsin, Madison, Wisconsin.,Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin
| | | | - Gavin Hamilton
- Liver Imaging Group, Department of Radiology, University of California San Diego, La Jolla, California
| | - Diego Hernando
- Department of Radiology, University of Wisconsin, Madison, Wisconsin.,Department of Medical Physics, University of Wisconsin, Madison, Wisconsin
| | - Scott B Reeder
- Department of Radiology, University of Wisconsin, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin.,Department of Medical Physics, University of Wisconsin, Madison, Wisconsin.,Department of Medicine, University of Wisconsin, Madison, Wisconsin.,Department of Emergency Medicine, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
100
|
Wáng YXJ, Wang X, Wu P, Wang Y, Chen W, Chen H, Li J. Topics on quantitative liver magnetic resonance imaging. Quant Imaging Med Surg 2019; 9:1840-1890. [PMID: 31867237 DOI: 10.21037/qims.2019.09.18] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Liver magnetic resonance imaging (MRI) is subject to continuous technical innovations through advances in hardware, sequence and novel contrast agent development. In order to utilize the abilities of liver MR to its full extent and perform high-quality efficient exams, it is mandatory to use the best imaging protocol, to minimize artifacts and to select the most adequate type of contrast agent. In this article, we review the routine clinical MR techniques applied currently and some latest developments of liver imaging techniques to help radiologists and technologists to better understand how to choose and optimize liver MRI protocols that can be used in clinical practice. This article covers topics on (I) fat signal suppression; (II) diffusion weighted imaging (DWI) and intravoxel incoherent motion (IVIM) analysis; (III) dynamic contrast-enhanced (DCE) MR imaging; (IV) liver fat quantification; (V) liver iron quantification; and (VI) scan speed acceleration.
Collapse
Affiliation(s)
- Yì Xiáng J Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | | | - Peng Wu
- Philips Healthcare (Suzhou) Co., Ltd., Suzhou 215024, China
| | - Yajie Wang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Weibo Chen
- Philips Healthcare, Shanghai 200072, China.,Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Huijun Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianqi Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| |
Collapse
|