51
|
García-Martínez MM, Campayo A, Moratalla-López N, de la Hoz KS, Alonso GL, Salinas MR. Ozonated water applied in grapevines is a new agronomic practice that affects the chemical quality of wines. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03753-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
52
|
Škrab D, Sivilotti P, Comuzzo P, Voce S, Degano F, Carlin S, Arapitsas P, Masuero D, Vrhovšek U. Cluster Thinning and Vineyard Site Modulate the Metabolomic Profile of Ribolla Gialla Base and Sparkling Wines. Metabolites 2021; 11:metabo11050331. [PMID: 34065397 PMCID: PMC8160841 DOI: 10.3390/metabo11050331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 01/02/2023] Open
Abstract
Depending on the vineyard location, cluster thinning (CT) may represent an effective tool to obtain the desired grape composition and wine quality. The effect of 20% cluster thinning on Ribolla Gialla (Vitis vinifera L.) sparkling wine aroma, lipid compounds, and aromatic amino acid (AAA) metabolites composition was studied for three consecutive seasons in two vineyards located in the Friuli Venezia Giulia region, Italy. In the examined sparkling wines, the vintage meteorological conditions exhibited significant influences on the metabolic profile of the samples. Data were normalized by season, and the impact of the CT treatment was evaluated for each vineyard site separately. Crop removal showed a limited positive impact on aroma compounds in sparkling wines from vineyards located in the valley. Concerning the AAA compounds, their concentration was higher in the vineyard at the foot of the hills. Cluster thinning resulted in a drop in concentration, reducing the risk of atypical aging. Despite minor differences according to targeted metabolome profiling, the sensory analysis confirmed the effects of the CT treatment in the valley floor vineyard. Reducing crop in this site, where the yield was higher, promoted a moderate improvement of Ribolla Gialla sparkling wine. In contrast, for wine produced in the vineyard at the foot of the hills, the sensory analysis indicated a preference for wines from the unthinned control samples. Overall, the study indicates that cluster thinning is a viticultural technique that could potentially improve the quality of Ribolla Gialla sparkling wines, but only in situations of excessive grape production.
Collapse
Affiliation(s)
- Domen Škrab
- Department of Food Quality and Nutrition, Edmund Mach Foundation, Research and Innovation Centre, Via Edmund Mach 1, 38010 San Michele all’Adige, TN, Italy; (D.Š.); (S.C.); (P.A.); (D.M.); (U.V.)
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, UD, Italy; (P.C.); (S.V.)
| | - Paolo Sivilotti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, UD, Italy; (P.C.); (S.V.)
- Correspondence: ; Tel.: +39-0432-558628
| | - Piergiorgio Comuzzo
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, UD, Italy; (P.C.); (S.V.)
| | - Sabrina Voce
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, UD, Italy; (P.C.); (S.V.)
| | - Francesco Degano
- Consorzio “Friuli Colli Orientali e Ramandolo”, Piazza 27 Maggio 11, 33040 Corno di Rosazzo, UD, Italy;
| | - Silvia Carlin
- Department of Food Quality and Nutrition, Edmund Mach Foundation, Research and Innovation Centre, Via Edmund Mach 1, 38010 San Michele all’Adige, TN, Italy; (D.Š.); (S.C.); (P.A.); (D.M.); (U.V.)
| | - Panagiotis Arapitsas
- Department of Food Quality and Nutrition, Edmund Mach Foundation, Research and Innovation Centre, Via Edmund Mach 1, 38010 San Michele all’Adige, TN, Italy; (D.Š.); (S.C.); (P.A.); (D.M.); (U.V.)
| | - Domenico Masuero
- Department of Food Quality and Nutrition, Edmund Mach Foundation, Research and Innovation Centre, Via Edmund Mach 1, 38010 San Michele all’Adige, TN, Italy; (D.Š.); (S.C.); (P.A.); (D.M.); (U.V.)
| | - Urška Vrhovšek
- Department of Food Quality and Nutrition, Edmund Mach Foundation, Research and Innovation Centre, Via Edmund Mach 1, 38010 San Michele all’Adige, TN, Italy; (D.Š.); (S.C.); (P.A.); (D.M.); (U.V.)
| |
Collapse
|
53
|
Yue X, Liu S, Wei S, Fang Y, Zhang Z, Ju Y. Transcriptomic and Metabolic Analyses Provide New Insights into the Effects of Exogenous Sucrose on Monoterpene Synthesis in "Muscat Hamburg" Grapes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4164-4176. [PMID: 33787258 DOI: 10.1021/acs.jafc.1c00420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Monoterpenes provide strong floral and fruit aromas to grapes and wines. In the present study, the effects of exogenous sucrose on the monoterpenes metabolites were studied at the metabolomic and transcriptomic levels in "Muscat Hamburg" grape berries. 6% sucrose aqueous solution was used as treatment, applied at the berry color change stage and 8 days after the first application. Transcriptomics analysis was carried out on berries collected at three phenological stages (berries with intermediate Brix values, E-L 36; berries not quite ripe, E-L 37; and berries harvest-ripe, E-L 38). Our results showed that the sucrose application induced the accumulation of monoterpenes at harvest, especially geraniol and geranic acid. The summary of the number of differentially expressed genes between the control and treatment was 3465, 977, and 2843 at E-L 36, E-L 37, and E-L 38, respectively. Weighted gene correlation network analysis was constructed based on the RNA-seq data, and the MElightyellow module was probably correlated with monoterpene metabolism, comprising 131 unigenes. Quantitative real-time polymerase chain expression analysis of five key differentially expressed genes in terpenoid pathways validated the RNA-seq-derived expression profiles (R2 = 0.8143). Our findings provided new insights into the regulation of monoterpene biosynthesis in grape berries under exogenous sucrose.
Collapse
Affiliation(s)
- Xiaofeng Yue
- College of Enology, Northwest A&F University, Yangling 712100, P. R. China
| | - Shiqiu Liu
- Moet Hennessy Chandon (Ningxia) Vineyards Co., Limited, Yinchuan 750000, Ningxia, China
| | - Shichao Wei
- College of Enology, Northwest A&F University, Yangling 712100, P. R. China
| | - Yulin Fang
- College of Enology, Northwest A&F University, Yangling 712100, P. R. China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, P. R.China
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, Yangling 712100, P. R. China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, P. R.China
| | - Yanlun Ju
- College of Enology, Northwest A&F University, Yangling 712100, P. R. China
| |
Collapse
|
54
|
The Potential Effect of β-Ionone and β-Damascenone on Sensory Perception of Pinot Noir Wine Aroma. Molecules 2021; 26:molecules26051288. [PMID: 33673491 PMCID: PMC7956508 DOI: 10.3390/molecules26051288] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 11/22/2022] Open
Abstract
Volatile compounds are responsible for driving the aroma of wine. Because of their low perception thresholds, norisoprenoids may play an important role in wine aroma. Studies have shown that β-damascenone may act as an aroma enhancing compound. However, the direct impact on wine aroma is unclear. Our study examined the direct impact of β-ionone and β-damascenone on the aroma sensory perception of Pinot noir wines. Triangle tests were used to determine if assessors could distinguish between wines with varying concentrations of β-ionone and β-damascenone in three different Pinot noir wine matrixes. Descriptive analysis was performed on these treatments, perceived as different in triangle tests. Results show that β-ionone acts as a significant contributor to aromas in Pinot noir wine, as individuals could differentiate both the low and high concentration wines from the control. How β-ionone impacted wine aroma depends on the wine matrix, as different aroma descriptors were affected based on the model wine used, resulting in floral, red berry or dark berry aromas. The effect of β-damascenone on Pinot noir aroma was less clear, as perception seems to be heavily influenced by wine matrix composition. This study contributes to our understanding of the complex chemical causation of fruity aromas in Pinot noir wine.
Collapse
|
55
|
Effect of Soil Management and Training System on Negroamaro Wine Aroma. Foods 2021; 10:foods10020454. [PMID: 33669737 PMCID: PMC7922071 DOI: 10.3390/foods10020454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 02/05/2023] Open
Abstract
This study aimed to assess the impact of two soil managements and training systems on yield and wine aroma compounds of Negroamaro variety grown in a warm climate region (southern Italy). Cover crop (CC) and soil tillage (ST) as soil management, whilst bilateral Guyot (BG) and monolateral Guyot (MG) as training systems were compared. Free and bound volatile fractions were evaluated by GC-MS. ST and CC as well as BG and MG significantly affected yield parameters. In particular, yield was higher in ST and BG than in CC and MG, respectively; moreover, it was found to be positively influenced by interaction between BG and ST. Regarding aroma compounds, significant interactions between soil management and training system factors were observed. In case of free volatiles, the most positive interaction was found between BG and ST, whereas, for bound volatiles, the best interaction was represented by MG with both soil tillage and cover crop. Vine leaf area and development over vine growth stages along with water stress levels played an important role in determining the aroma profile as well as yield parameters. In conclusion, the training system significantly interacted with soil management and affected most of important aroma compounds in Negroamaro wine.
Collapse
|
56
|
Gutiérrez-Gamboa G, Garde-Cerdán T, Rubio-Bretón P, Pérez-Álvarez EP. Effects on must and wine volatile composition after biostimulation with a brown alga to Tempranillo grapevines in two seasons. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:525-535. [PMID: 32657431 DOI: 10.1002/jsfa.10661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/03/2020] [Accepted: 07/13/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Seaweed application has been defined as a novel technique capable of improving the content of secondary metabolites in berries. There is limited available information about its effects on must and wine volatile composition. This field trial aimed to study the effects of biostimulation to Tempranillo grapevines through an Ascophyllum nodosum fertilizer applied at a low dosage (Ld) and high dosage (Hd) on must and wine volatile compounds over two seasons. RESULTS Ld treatment scarcely affected must and wine volatile compounds in both seasons. Hd foliar application increased the content in musts of several individual terpenoids, C13 norisoprenoids, esters, benzenoids, alcohols, carbonyl compounds and C6 compounds in 2018. Must yeast assimilable nitrogen conditioned the production of wine volatile compounds. CONCLUSION These results suggest that seaweeds applications can act as elicitors in Tempranillo, triggering the synthesis of several compounds by the plant in musts during a season with a high rainfall and relative humidity. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gastón Gutiérrez-Gamboa
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Logroño, Spain
| | - Teresa Garde-Cerdán
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Logroño, Spain
| | - Pilar Rubio-Bretón
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Logroño, Spain
| | - Eva P Pérez-Álvarez
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Logroño, Spain
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| |
Collapse
|
57
|
Petretto GL, Mercenaro L, Urgeghe PP, Fadda C, Valentoni A, Del Caro A. Grape and Wine Composition in Vitis vinifera L. cv. Cannonau Explored by GC-MS and Sensory Analysis. Foods 2021; 10:foods10010101. [PMID: 33418947 PMCID: PMC7825112 DOI: 10.3390/foods10010101] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 11/16/2022] Open
Abstract
GC-FID/MS is a powerful technique used to analyze food and beverage aromas. Volatile organic compounds (VOCs) in grape berries play an important role in determining wine quality and are affected by many factors, such as climate and soil that mainly influence their relative concentrations. Wine aroma is generated by a complex mixture of compounds, and the sensory relevance of individual VOCs is far from elucidated. Herein, the VOC content (free and glycosylated) of Cannonau grape skin and juice and of Cannonau wine collected in different areas of Sardinia is explored. Wine sensory analysis was also carried out and the relationship between sensory attributes and VOCs was investigated. Although Cannonau grapes showed the same VOC fingerprint, great variability was identified between samples, although only the differences in 2-phenylethanol and benzyl alcohol concentration in the grape skins and benzyl alcohol and a terpenoid in grape juice were significantly different according to ANOVA. The correlation between VOC content and the sensory profile highlights the role played by 2-methyl-1-butanol and 2-phenylethanol in increasing wine sensory complexity.
Collapse
|
58
|
Rienth M, Vigneron N, Darriet P, Sweetman C, Burbidge C, Bonghi C, Walker RP, Famiani F, Castellarin SD. Grape Berry Secondary Metabolites and Their Modulation by Abiotic Factors in a Climate Change Scenario-A Review. FRONTIERS IN PLANT SCIENCE 2021; 12:643258. [PMID: 33828576 PMCID: PMC8020818 DOI: 10.3389/fpls.2021.643258] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/02/2021] [Indexed: 05/20/2023]
Abstract
Temperature, water, solar radiation, and atmospheric CO2 concentration are the main abiotic factors that are changing in the course of global warming. These abiotic factors govern the synthesis and degradation of primary (sugars, amino acids, organic acids, etc.) and secondary (phenolic and volatile flavor compounds and their precursors) metabolites directly, via the regulation of their biosynthetic pathways, or indirectly, via their effects on vine physiology and phenology. Several hundred secondary metabolites have been identified in the grape berry. Their biosynthesis and degradation have been characterized and have been shown to occur during different developmental stages of the berry. The understanding of how the different abiotic factors modulate secondary metabolism and thus berry quality is of crucial importance for breeders and growers to develop plant material and viticultural practices to maintain high-quality fruit and wine production in the context of global warming. Here, we review the main secondary metabolites of the grape berry, their biosynthesis, and how their accumulation and degradation is influenced by abiotic factors. The first part of the review provides an update on structure, biosynthesis, and degradation of phenolic compounds (flavonoids and non-flavonoids) and major aroma compounds (terpenes, thiols, methoxypyrazines, and C13 norisoprenoids). The second part gives an update on the influence of abiotic factors, such as water availability, temperature, radiation, and CO2 concentration, on berry secondary metabolism. At the end of the paper, we raise some critical questions regarding intracluster berry heterogeneity and dilution effects and how the sampling strategy can impact the outcome of studies on the grapevine berry response to abiotic factors.
Collapse
Affiliation(s)
- Markus Rienth
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, Nyon, Switzerland
- *Correspondence: Markus Rienth
| | - Nicolas Vigneron
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, Nyon, Switzerland
| | - Philippe Darriet
- Unité de recherche Œnologie EA 4577, USC 1366 INRAE, Bordeaux, France
- Institut des Sciences de la Vigne et du Vin CS 50008, Villenave d'Ornon, France
| | - Crystal Sweetman
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | - Crista Burbidge
- Agriculture and Food (Commonwealth Scientific and Industrial Research Organisation), Glen Osmond, SA, Australia
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, Legnaro, Italy
| | - Robert Peter Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Simone Diego Castellarin
- Faculty of Land and Food Systems, Wine Research Centre, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
59
|
Pre-fermentative maceration with SO 2 enhanced the must aromatic composition. Food Chem 2020; 345:128870. [PMID: 33341557 DOI: 10.1016/j.foodchem.2020.128870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 11/20/2022]
Abstract
SO2 is the additive most used in winemaking, due to its antioxidant and antiseptic activities. There have been several studies focused on these activities; however, there are hardly any studies that address its role as extractant. Therefore, the objective of this work was to study the effect of SO2 on the must volatile composition after a pre-fermentation maceration. The results showed that the influence of SO2 on the extraction of the two most important families of varietal compounds, terpenoids and C13 norisoprenoids, was different: the content of total terpenoids increased by 95%, while for the total of C13 norisoprenoids no significant differences were observed. The other three families of volatile compounds studied, benzenoid compounds, esters, and C6 compounds, were found in greater quantity in the samples with SO2, increasing by 51%, 164%, and 45%, respectively. Consequently, SO2 can enhance the must aromatic composition of neutral varieties, such as Tempranillo.
Collapse
|
60
|
The reduction of plant sink/source does not systematically improve the metabolic composition of Vitis vinifera white fruit. Food Chem 2020; 345:128825. [PMID: 33601656 DOI: 10.1016/j.foodchem.2020.128825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022]
Abstract
The quality of wine grapes depends on the balance between primary and secondary metabolites. Unlike many perennial crops that accumulate starch in the fruits before ripening, the non-climacteric grapes ripe with no previous carbon reserves. Based on the assumption that fruit carbon sink is limiting metabolite accumulation in grapes, bunch thinning is performed to limit plant Sink/Source (S/S). We studied the effects of severe bunch thinning on the accumulation of primary metabolites and on four families of glycosylated aroma precursors (GAPs) at the arrest of fruit phloem unloading of two white grape Vitis vinifera cvs. At plant level, crop reduction resulted in significant losses of metabolites to be accumulated in the fruits: i.e. up to 72% for sugars, 75% for organic acids and GAPs. Nevertheless, S/S manipulation could not modify the balance between GAPs and primary metabolites or increase the concentration in GAPs in the physiologically ripe grape.
Collapse
|
61
|
Wang Y, Li HQ, Gao XT, Lu HC, Peng WT, Chen W, Li SD, Li SP, Duan CQ, Wang J. Influence of attenuated reflected solar radiation from the vineyard floor on volatile compounds in Cabernet Sauvignon grapes and wines of the north foot of Mt. Tianshan. Food Res Int 2020; 137:109688. [PMID: 33233263 DOI: 10.1016/j.foodres.2020.109688] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/24/2020] [Accepted: 09/06/2020] [Indexed: 12/20/2022]
Abstract
In this study, fruit-zone microclimate was modified by three treatments, including inter-row mulch (M), the combination of leaf removal applied at the onset of veraison and inter-row mulch (MLR-BV), and the combination of leaf removal applied at complete veraison and inter-row mulch (MLR-EV), in a semi-arid climate in three consecutive years (2015-2017). M decreased fruit-zone reflected solar radiation from vineyard floor and low temperature (10-20 °C) duration, whereas it increased soil temperature and high temperature (> 30 °C) duration. MLR-BV and MLR-EV increased fruit-zone incident photosynthetically active radiation while decreased the duration of 20-25 °C compared to M. Notably, M significantly decreased grape total norisoprenoid concentrations in 2015-2017, and total terpenoid concentrations in 2015-2016. Applying leaf removal applied at the onset of veraison could compensate the decreases of total norisoprenoids and terpenoids caused by M when two treatments were applied together. Besides, M significantly increased grape total C6/C9 compound concentrations, besides, (Z)-3-hexen-1-ol concentrations were significantly higher in grapes of M than those of MLR-BV in 2015-2017. Light exposure and high temperature duration after veraison had strong positive correlations with total norisoprenoids and terpenoids, besides, low temperature duration was positively correlated with total norisoprenoids. In addition, light exposure after veraison had strong negative correlations with total C6/C9 compounds. With respect to the volatile compounds in wines, M significantly decreased the concentrations of isopentanol and ethyl acetate, and the concentrations of ethyl cinnamate, phenylacetaldehyde, phenylethyl alcohol and 3-methylthio-1-propanol were significantly lower in MLR-BV and MLR-EV than in M. The outcome of this study can assist winegrowers to properly adjust vineyard managements to optimize the concentrations of desired volatile compounds in grapes and wines.
Collapse
Affiliation(s)
- Yu Wang
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Hui-Qing Li
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiao-Tong Gao
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Hao-Cheng Lu
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Wen-Ting Peng
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Wu Chen
- CITIC Guoan Wine Co. Ltd., Manas 832200, Xinjiang, China
| | - Shu-De Li
- CITIC Guoan Wine Co. Ltd., Manas 832200, Xinjiang, China
| | - Sui-Ping Li
- CITIC Guoan Wine Co. Ltd., Manas 832200, Xinjiang, China
| | - Chang-Qing Duan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Jun Wang
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
62
|
Lecourieux D, Kappel C, Claverol S, Pieri P, Feil R, Lunn JE, Bonneu M, Wang L, Gomès E, Delrot S, Lecourieux F. Proteomic and metabolomic profiling underlines the stage- and time-dependent effects of high temperature on grape berry metabolism. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1132-1158. [PMID: 31829525 DOI: 10.1111/jipb.12894] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/05/2019] [Indexed: 05/19/2023]
Abstract
Climate change scenarios predict an increase in mean air temperatures and in the frequency, intensity, and length of extreme temperature events in many wine-growing regions worldwide. Because elevated temperature has detrimental effects on berry growth and composition, it threatens the economic and environmental sustainability of wine production. Using Cabernet Sauvignon fruit-bearing cuttings, we investigated the effects of high temperature (HT) on grapevine berries through a label-free shotgun proteomic analysis coupled to a complementary metabolomic study. Among the 2,279 proteins identified, 592 differentially abundant proteins were found in berries exposed to HT. The gene ontology categories "stress," "protein," "secondary metabolism," and "cell wall" were predominantly altered under HT. High temperatures strongly impaired carbohydrate and energy metabolism, and the effects depended on the stage of development and duration of treatment. Transcript amounts correlated poorly with protein expression levels in HT berries, highlighting the value of proteomic studies in the context of heat stress. Furthermore, this work reveals that HT alters key proteins driving berry development and ripening. Finally, we provide a list of differentially abundant proteins that can be considered as potential markers for developing or selecting grape varieties that are better adapted to warmer climates or extreme heat waves.
Collapse
Affiliation(s)
- David Lecourieux
- UMR1287 EGFV, INRAE, Bordeaux Sciences Agro, Bordeaux University, ISVV, 33140, Villenave d'Ornon, France
| | - Christian Kappel
- Institut of Biochemistry and Biology, Potsdam University, D-14476, Potsdam, Germany
| | - Stéphane Claverol
- Proteome Platform, Bordeaux Functional Genomic Center, Bordeaux University, 33076, Bordeaux, France
| | - Philippe Pieri
- UMR1287 EGFV, INRAE, Bordeaux Sciences Agro, Bordeaux University, ISVV, 33140, Villenave d'Ornon, France
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Marc Bonneu
- Proteome Platform, Bordeaux Functional Genomic Center, Bordeaux University, 33076, Bordeaux, France
| | - Lijun Wang
- Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Eric Gomès
- UMR1287 EGFV, INRAE, Bordeaux Sciences Agro, Bordeaux University, ISVV, 33140, Villenave d'Ornon, France
| | - Serge Delrot
- UMR1287 EGFV, INRAE, Bordeaux Sciences Agro, Bordeaux University, ISVV, 33140, Villenave d'Ornon, France
| | - Fatma Lecourieux
- UMR1287 EGFV, CNRS, INRAE, Bordeaux Sciences Agro, Bordeaux University, ISVV, 33140, Villenave d'Ornon, France
| |
Collapse
|
63
|
Gao XT, Wu MH, Sun D, Li HQ, Chen WK, Yang HY, Liu FQ, Wang QC, Wang YY, Wang J, He F. Effects of gibberellic acid (GA 3 ) application before anthesis on rachis elongation and berry quality and aroma and flavour compounds in Vitis vinifera L. 'Cabernet Franc' and 'Cabernet Sauvignon' grapes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3729-3740. [PMID: 32266978 DOI: 10.1002/jsfa.10412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/11/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Gibberellic acid (GA3 ), a plant-growth regulator, is often used to obtain enlarged table grape berries and induce seedlessness in them. However, the effects of GA3 on rachis elongation and bunch compactness have seldom been reported in wine-grape production. We assessed the effects of GA3 spraying on wine-grape inflorescences and bunches and their practical implications for viticulture in the Jiaodong Peninsula, China. RESULTS Various GA3 concentrations were sprayed on field-grown Vitis vinifera L. 'Cabernet Franc' (CF) and 'Cabernet Sauvignon' (CS) grapevines before anthesis in the Jiaodong Peninsula, China, in 2015 and 2016. Inflorescence length during berry development was measured, and flavonoids and aroma compounds in the fruit were detected by high-performance liquid chromatography - mass spectrometry (HPLC-MS) and gas chromatography - mass spectrometry (GC-MS), respectively. For both cultivars, 50 and 100 mg L-1 GA3 caused significant elongation of the rachis, whereas there was no significant effect on inflorescence growth and berry seed number. Anthocyanin, flavonol, and flavan-3-ol levels in mature berries were not significantly influenced by GA3 spraying, whereas C13 -norisoprenoids were modified. CONCLUSION The application of 50-100 mg L-1 GA3 prior to grapevine anthesis caused elongation of inflorescences and bunches, and eased cluster compactness in CF and CS, and no negative effects were observed on the yield and seed numbers. The concentration and composition of flavonoids and most aroma compounds were not influenced, except that the norisoprenoids were increased by 50 mg L-1 GA3 applications. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao-Tong Gao
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ming-Hui Wu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Dan Sun
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Hui-Qing Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wei-Kai Chen
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hang-Yu Yang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | | | - Qiu-Chen Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yu-Ya Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jun Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Fei He
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
64
|
Verdenal T, Spangenberg JE, Zufferey V, Dienes-Nagy Á, Viret O, van Leeuwen C, Spring JL. Impact of crop load on nitrogen uptake and reserve mobilisation in Vitis vinifera. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:744-756. [PMID: 32527367 DOI: 10.1071/fp20010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Nitrogen deficit affects both crop production and composition, particularly in crops requiring an optimal fruit N content for aroma development. The adaptation of cultural practices to improve N use efficiency (NUE) (i.e. N uptake, assimilation and partitioning) is a priority for the sustainable production of high-quality crops. A trial was set on potted grapevines (Vitis vinifera L. cv. Chasselas) to investigate the potential of crop limitation (via bunch thinning) to control plant NUE and ultimately fruit N composition at harvest. A large crop load gradient was imposed by bunch thinning (0.5-2.5 kg m-2) and N traceability in the plant was realised with an isotope-labelling method (10 atom % 15N foliar urea). The results indicate that the mobilisation of root reserves plays a major role in the balance of fruit N content. Fertiliser N uptake and assimilation appeared to be strongly stimulated by high-yielding conditions. Fertilisation largely contributed to fulfilling the high fruit N demand while limiting the mobilisation of root reserves under high yield conditions. Plants were able to modulate root N reserve mobilisation and fertiliser N uptake in function of the crop load, thus maintaining a uniform N concentration in fruits. However, the fruit free amino N profile was modified, which potentially altered the fruit aromas. These findings highlight the great capacity of plants to adapt their N metabolism to constraints, crop thinning in this case. This confirms the possibility of monitoring NUE by adapting cultural practices.
Collapse
Affiliation(s)
- Thibaut Verdenal
- Agroscope Institute, Avenue Rochettaz 21, 1009 Pully, Switzerland; and Corresponding author.
| | - Jorge E Spangenberg
- Institute of Earth Surface Dynamics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Vivian Zufferey
- Agroscope Institute, Avenue Rochettaz 21, 1009 Pully, Switzerland
| | | | - Olivier Viret
- Direction générale de l'agriculture, de la viticulture et des affaires vétérinaires, 1110 Morges, Switzerland
| | - Cornelis van Leeuwen
- Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), Bordeaux Sciences Agro, Institut national de la recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Univ. Bordeaux, Institut des Sciences de la Vigne et du Vin (ISVV), 33882 Villenave d'Ornon, France
| | | |
Collapse
|
65
|
Li W, Li W, Yang S, Ma Z, Zhou Q, Mao J, Han S, Chen B. Transcriptome and Metabolite Conjoint Analysis Reveals that Exogenous Methyl Jasmonate Regulates Monoterpene Synthesis in Grape Berry Skin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5270-5281. [PMID: 32338508 DOI: 10.1021/acs.jafc.0c00476] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Monoterpene is one of the important sources of varietal aroma, which provides a strong floral and fruity aroma in wines. Methyl jasmonate (MeJA) affects plant secondary metabolism. However, the regulatory mechanisms of monoterpene biosynthesis after MeJA application on grapes are not illuminated. In the present study, 10 mM MeJA was used as treatments in Italian Riesling grape at the preveraison stage in different ways, including grape cluster soaking, foliar spraying, and whole vine spraying, designated as T1, T2, and T3, respectively, while a blank group was used as the control (CK). HS-SPME/GC-MS and transcriptome sequencing analysis were performed to investigate the effect of exogenous MeJA on monoterpene synthesis in grape berry skin. The results of GC-MS showed that the application of MeJA induced the accumulation of volatile monoterpenes in grape berry skin, especially linalool, α-terpineol, and oxides. In addition, transcriptome analysis showed that differentially expressed genes were increased from T2 to T3 to T1 compared with CK, and significantly enriched in JA and monoterpene synthesis pathways. T1 application significantly upregulated the mRNA expression levels of LOX2S, AOS, OPR, and JMT involved in the JA biosynthesis pathway, as well as DXS, HMGCR, TPS14, and α-terpineol synthesis genes involved in the monoterpene synthesis pathway compared with T2, T3, and CK. Thus, grape cluster soaking treatment with MeJA could greatly activate volatile monoterpene synthesis. The results will deeply increase our understanding of the monoterpene biosynthesis of grape berry skin in response to MeJA.
Collapse
Affiliation(s)
- Wei Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, Gansu Province, China
| | - Wenfang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, Gansu Province, China
| | - Shijin Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, Gansu Province, China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, Gansu Province, China
| | - Qi Zhou
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, Gansu Province, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, Gansu Province, China
| | - Shunyu Han
- Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, Gansu Province, China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, Gansu Province, China
| |
Collapse
|
66
|
Nicolini G, Roman T, Flamini R, Tonidandel L, Gardiman M, Larcher R. Thiol precursors in Vitis mould-tolerant hybrid varieties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3262-3268. [PMID: 32086798 DOI: 10.1002/jsfa.10344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/04/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Over recent years, a new wave of disease-tolerant to mildew varieties has flooded the viticulture sector, for reasons of human safety and economic expediency. These hybrid grape cultivars are selected mainly on the basis of their intrinsic capability to counter the attack of the main fungal diseases that affect grape production, such as downy mildew and powdery mildew. However, their organoleptic and oenological characteristics have not yet been studied in depth for purposes of both juice and wine production, due to the high number of newly proposed germplasms and the lack of information about their adaptability to different environments. This work examines the thiol aroma precursors concentration in 64 red and white disease-tolerant hybrid varieties in the vine germplasm collections of Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria-Viticulture and Enology Research Center and Fondazione Edmund Mach, both from the north-east of Italy. RESULTS All cultivars showed the presence of 3-mercaptohexan-1-ol (3MH) precursors, ranging from 4.4 to 1141 μg kg-1 for 3-S-glutathionyl hexan-1-ol (GSH-3MH), and from 0.3 to 136 μg kg-1 for 3-S-cysteinyl 3-hexan-1-ol. The concentration of GSH-3MH exceeded 600 μg kg-1 in eight varieties, with values comparable to those of the richest Vitis vinifera reported so far. On average, red grapes showed higher concentrations of 3MH precursors than white ones did. Only two hybrids had 4-mercapto-4-methylpentan-2-one (4MMP) precursors over the limit of quantification, albeit with a much higher concentration than those normally reported in Sauvignon Blanc. CONCLUSION This is the first detailed survey of 3MH and 4MMP precursors carried out taking into account a considerable number of hybrid grape varieties. The results show that some of these varieties could be interesting for the production of tropical juices or tropical-aromatic wines and soft drinks, through the enzymatic liberation of thiol aromas, as well as for the production of aromatizing tannins to be used in the food industry. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Giorgio Nicolini
- Fondazione Edmund Mach (FEM), Technology Transfer Center, San Michele all'Adige, Italy
| | - Tomas Roman
- Fondazione Edmund Mach (FEM), Technology Transfer Center, San Michele all'Adige, Italy
| | - Riccardo Flamini
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria-Viticulture and Enology Research Center (CREA-VE), Conegliano, Italy
| | - Loris Tonidandel
- Fondazione Edmund Mach (FEM), Technology Transfer Center, San Michele all'Adige, Italy
| | - Massimo Gardiman
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria-Viticulture and Enology Research Center (CREA-VE), Conegliano, Italy
| | - Roberto Larcher
- Fondazione Edmund Mach (FEM), Technology Transfer Center, San Michele all'Adige, Italy
| |
Collapse
|
67
|
Xi X, Zha Q, He Y, Tian Y, Jiang A. Influence of cluster thinning and girdling on aroma composition in 'Jumeigui' table grape. Sci Rep 2020; 10:6877. [PMID: 32327696 PMCID: PMC7181712 DOI: 10.1038/s41598-020-63826-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022] Open
Abstract
Cluster thinning and girdling are common and simple practices applied to improve berry quality in table grape cultivation. However, there is limited information about the accumulation and biosynthesis of the entire aromatic profile under cluster thinning and girdling, notably in table grapes. This research investigated the influences of cluster thinning and girdling (alone or in combination) on aroma profiles, particularly the changes in biosynthesis and accumulation of Muscat-flavored related compounds from véraison to harvest in 'Jumeigui' grape. Cluster thinning and girdling (alone or in combination) significantly increased the concentrations of total soluble solids (TSS) and key aromatic compounds at harvest, with higher concentrations of both under cluster thinning than girdling. Berry weight and titratable acidity (TA) were unaffected by cluster thinning, girdling, or in combination at harvest. Linalool, the most abundant and active odorant related to Muscat flavor, accumulated in 28.6% and 20.2% higher concentrations from cluster thinning than control and girdling at maturity, respectively. Furthermore, higher DXS3 transcript abundance in cluster thinning groups might contribute to the increased accumulation of terpenes and linalool in 'Jumeigui' grape. The results will contribute to further understand the mechanism of source/sink ratio modulation on aroma accumulation and better apply cluster thinning and girdling for grape production.
Collapse
Affiliation(s)
- Xiaojun Xi
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| | - Qian Zha
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Yani He
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Yihua Tian
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Aili Jiang
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| |
Collapse
|
68
|
Martins V, Lopez R, Garcia A, Teixeira A, Gerós H. Vineyard calcium sprays shift the volatile profile of young red wine produced by induced and spontaneous fermentation. Food Res Int 2020; 131:108983. [PMID: 32247465 DOI: 10.1016/j.foodres.2020.108983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/04/2020] [Accepted: 01/05/2020] [Indexed: 01/06/2023]
Abstract
Calcium supplements have increasingly been used at pre-harvest stages for improving fruit firmness, aiming at mitigating environmental stress. However, as recent studies demonstrated that calcium modifies the polyphenolic profile of grape berries, we hypothesize in this study that it also affects wine volatile profile. In a two-year study, grapevines cv. "Vinhão" were sprayed with 2% CaCl2 throughout the fruiting season, and musts were prepared at a laboratory scale. Musts from calcium-treated fruits contained higher calcium levels and less anthocyanins. Increased calcium content did not affect the course of fermentation induced with a S. cerevisiae starter inoculum, but impacted the course of spontaneous fermentations carried out by endogenous berry microflora. Several compounds associated to varietal and fermentative aromas were largely influenced by the calcium treatment. For instance, volatile phenols decreased, together with β-damascenone, benzaldehyde and γ-nonalactone, while several acetates and alcohols increased. Principal component analysis showed that the volatile profile of control wines produced by spontaneous fermentation substantially differed between replicates, but calcium treatment lowered replicate variability. Volatile profiles were also influenced by the vintage and fermentation type. The shift in wine volatile profile upon calcium treatment may be relevant from an oenological perspective.
Collapse
Affiliation(s)
- Viviana Martins
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Ricardo Lopez
- Laboratory for Flavor Analysis and Enology, Instituto Agroalimentario de Aragón (IA2), Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, E-50009 Zaragoza, Spain.
| | - Ana Garcia
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - António Teixeira
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal; Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
69
|
Gutiérrez-Gamboa G, Garde-Cerdán T, Rubio-Bretón P, Pérez-Álvarez EP. Seaweed foliar applications at two dosages to Tempranillo blanco (Vitis vinifera L.) grapevines in two seasons: Effects on grape and wine volatile composition. Food Res Int 2020; 130:108918. [PMID: 32156366 DOI: 10.1016/j.foodres.2019.108918] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/10/2019] [Accepted: 12/15/2019] [Indexed: 11/15/2022]
Abstract
The effects of seaweed applications to grapevines on grape and wine volatile composition are currently unknown. The aim of this work was to study the influence of seaweed foliar applications (Ascophyllum nodosum) to a Tempranillo blanco vineyard on grape and wine volatile composition. A low (Ld) and a high dosage (Hd) of the seaweed fertilizer was applied in two consecutive seasons (2017-2018). The most abundant family of varietal volatile compounds in Tempranillo blanco grapes was C13 norisoprenoid. Hd treatment tended to increase the concentration of certain C6 compounds in grapes in both seasons, whereas Ld application tended to decrease 2-phenylethanol and 2-phenylethanal content in grapes with a season dependence. Season factor affected to the concentration of most of the volatile compounds in grapes due to the differences on rainfall, which affected to the weight of 100 berries and physico-chemical parameters. Yeast assimilable nitrogen (YAN) in musts could have affected the concentration of most of the wine volatile compounds. According to odor activity values (OAV), Tempranillo blanco wines were characterized as floral, fruity, banana, pear, among others aroma compounds.
Collapse
Affiliation(s)
- G Gutiérrez-Gamboa
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Carretera de Burgos, Km. 6, 26007 Logroño, Spain
| | - T Garde-Cerdán
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Carretera de Burgos, Km. 6, 26007 Logroño, Spain.
| | - P Rubio-Bretón
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Carretera de Burgos, Km. 6, 26007 Logroño, Spain
| | - E P Pérez-Álvarez
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Carretera de Burgos, Km. 6, 26007 Logroño, Spain; Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Ed. 25, 30100 Murcia, Spain.
| |
Collapse
|
70
|
VanderWeide J, Gottschalk C, Schultze SR, Nasrollahiazar E, Poni S, Sabbatini P. Impacts of Pre-bloom Leaf Removal on Wine Grape Production and Quality Parameters: A Systematic Review and Meta-Analysis. FRONTIERS IN PLANT SCIENCE 2020; 11:621585. [PMID: 33613590 PMCID: PMC7889588 DOI: 10.3389/fpls.2020.621585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/21/2020] [Indexed: 05/14/2023]
Abstract
Wine grape (Vitis vinifera L.) is the most widely cultivated fruit crop in the world. However, the climactic characteristics in some growing regions are suboptimal for grape production, including short season length and excess precipitation. Grape growers can utilize an array of methods to mitigate these issues, including "early leaf removal," a management practice involving the removal of leaves from selected basal nodes along shoots around bloom. This meta-analysis reviews the extensive literature on this practice, with specific regards to application at "pre-bloom" (PB). One hundred seventy-five publications on the topic of "early leaf removal" were identified using key terms and subsequently narrowed via eight data curation steps. The comparison between treated (PB) and control plants in these studies revealed two important results. First, PB lowered bunch rot disease (-61%), partially through reducing the compactness of clusters. Second, PB promoted a significant increase in fruit total soluble solids (°Brix, +5.2%), which was related to the increase in the leaf-to-fruit ratio. Furthermore, cultivar and rootstock were found to have a large influence on the success of PB, while the contribution of climate was smaller. In conclusion, PB significantly lowers yield and bunch rot disease and increases °Brix, both of which improve grape and wine quality.
Collapse
Affiliation(s)
- Joshua VanderWeide
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
- Faculty of Land and Food Systems, Wine Research Center, The University of British Columbia, Vancouver, BC, Canada
| | - Chris Gottschalk
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Steven R. Schultze
- Department of Earth Sciences, University of South Alabama, Mobile, AL, United States
| | - Esmaeil Nasrollahiazar
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
- Michigan State University Extension, East Lansing, MI, United States
| | - Stefano Poni
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Paolo Sabbatini
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
- *Correspondence: Paolo Sabbatini
| |
Collapse
|
71
|
Bubola M, Rusjan D, Lukić I. Crop level vs. leaf removal: Effects on Istrian Malvasia wine aroma and phenolic acids composition. Food Chem 2019; 312:126046. [PMID: 31911354 DOI: 10.1016/j.foodchem.2019.126046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 01/09/2023]
Abstract
The impact of crop level and leaf removal on Istrian Malvasia (Vitis vinifera L.) white wine aroma and phenolic acids composition was studied over two vine-growing seasons. Two crop levels were combined with leaf removal or untreated control in two-factorial design. Crop level showed limited impact on aroma compounds in wine and the concentration of some esters was increased by higher crop level. In contrast, leaf removal increased the concentration of several aroma compounds and especially monoterpenes and esters. The concentration of hydroxycinnamic acids in wine was enhanced only by leaf removal, while no consistent impact of the investigated factors on hydroxybenzoic acids was observed. The obtained results suggest that in cases where environmental conditions are not limiting, increasing the crop level under adequate microclimate in fruit zone has no detrimental effects on white wine aroma and hydroxycinnamic acids composition, potentially leading to economically more sustainable grape production.
Collapse
Affiliation(s)
- Marijan Bubola
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia.
| | - Denis Rusjan
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia.
| | - Igor Lukić
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia.
| |
Collapse
|
72
|
Slaghenaufi D, Guardini S, Tedeschi R, Ugliano M. Volatile terpenoids, norisoprenoids and benzenoids as markers of fine scale vineyard segmentation for Corvina grapes and wines. Food Res Int 2019; 125:108507. [PMID: 31554115 DOI: 10.1016/j.foodres.2019.108507] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/25/2019] [Accepted: 06/21/2019] [Indexed: 01/30/2023]
Abstract
In this study, the diversity existing at the very small scale of single vineyard parcels in volatile composition of grapes and wines from a single estate in the Valpolicella wine region has been studied. Corvina grapes from eight contiguous vineyards were used for the study and vinified with the same protocol. The compounds analyzed by GC-MS were representative of the terpenoid, norisoprenoid and benzenoid chemical families. Free and bound compounds analysis showed that differences between parcels were relatively small on grapes samples, whereas after fermentation larger differences between wine samples were highlighted. Multivariate statistical analysis of wine volatiles highlighted the existence of similarities between wine volatile profiles, which reflected to a good extent the geographical location of the corresponding vineyard parcels. The main drivers of this diversity were the monoterpene alcohols linalool, α-terpineol, linalool oxide; the benzenoids vanillin, ethyl vanillate and methyl vanillate; and the norisoprenoid β-damascenone. Wine from one vineyard parcel was not correctly classified, possibly due to the influence of the peculiar training system applied to this parcel. With aging the vineyard parcel geographical diversity was still reflected by the chemical diversity of wines, even if the separation was less fine. As many reactions occurred, some drivers of the diversity were changed after aging. They were benzenoids: ethyl vanillate, methyl vanillate and vanillin; the norisoprenoid 3-oxo-α-ionol; the terpenes linalool oxide, linalool, p-methane-1,8-diol, α-terpineol, and the precursors of nerol, geraniol, linalool.
Collapse
|