51
|
Pu N, Chen Q, Gao S, Liu G, Zhu Y, Yin L, Hu H, Wei L, Wu Y, Maeda S, Lou W, Yu J, Wu W. Genetic landscape of prognostic value in pancreatic ductal adenocarcinoma microenvironment. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:645. [PMID: 31930046 DOI: 10.21037/atm.2019.10.91] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background The prognosis of pancreatic ductal adenocarcinoma (PDAC) remains dismally poor and is widely considered as an intricate genetic disorder. The mutational landscape of PDAC may directly reflect cancer immunogenicity and dictate the extent and phenotype of immune cell infiltration. In adverse, the microenvironment may also effect the gene expression of cancer cells, which is associated with clinical prognosis. Thus, it is crucial to identify genomic alterations in PDAC microenvironment and its impacts on clinical prognosis. Methods The gene expression profiles, mutation data and clinical information of 179 pancreatic cancer patients with an initial pathologic diagnosis ranging from 2001 to 2013 were retrieved from The Cancer Genome Atlas (TCGA) database. The MAlignant Tumor tissues using Expression data (ESTIMATE) algorithm for calculating immune scores and stromal scores and Tumor IMmune Estimation Resource (TIMER) resource for cell infiltrations were applied in this study. Results The average immune score or stromal score of PDAC subtype was significantly higher than that of other specific subtypes. KRAS mutant cases had significantly lower immune scores (P=0.001) and stromal scores (P=0.007), in concert with lower immune scores in TP53 mutant cases (P=0.030). However, no significant difference was found in SMAD4 and CDKN2A mutations. In the cohort OS/RFS, the infiltration levels of CD8+ T cells, B cells, Macrophages, Neutrophils and DCs in high stromal score group were higher than those in the low score group (all P<0.001), as well as in immune score groups except for Macrophages in the cohort RFS. In the cohort OS/RFS, 317/379 upregulated genes and 9/6 downregulated genes were observed in the high immune score group, while 227/205 upregulated genes and 17/6 downregulated genes in the high stromal score group. With the analysis for prognostic value of DEGs, 82 and 58 DEGs respectively in the high immune and stromal score group were verified to be significantly associated with better OS (P<0.05), while 53 and 17 DEGs respectively with longer RFS (P<0.05). Functional enrichment analysis showed genes of prognostic values were significantly related to immune response. Conclusions A list of genes with prognostic value in PDAC microenvironment were obtained from functional enrichment analysis based on immune and stromal scores, which indicates a series of potential auxiliary prognostic biomarkers for PDAC are available. Further research on these genes may be valuable and helpful to understand the crosstalk between tumor and microenvironment, new immune evasion mechanisms and underlying novel therapeutic targets in an integrated manner.
Collapse
Affiliation(s)
- Ning Pu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Department of Surgery and The Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qiangda Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shanshan Gao
- Department of Surgery and The Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Gao Liu
- Department of Liver Surgery and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yayun Zhu
- Department of Surgery and The Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Liver Surgery and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lingdi Yin
- Department of Surgery and The Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, and Pancreas Institute of Nanjing Medical University, Nanjing 210029, China
| | - Haijie Hu
- Department of Surgery and The Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Li Wei
- Department of Liver Surgery and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yong Wu
- Department of Surgery and The Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Shimpei Maeda
- Department of Surgery and The Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Wenhui Lou
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jun Yu
- Department of Surgery and The Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wenchuan Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
52
|
Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol 2019; 12:76. [PMID: 31300030 PMCID: PMC6626377 DOI: 10.1186/s13045-019-0760-3] [Citation(s) in RCA: 937] [Impact Index Per Article: 156.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Tumor metastasis is a major contributor to the death of cancer patients. It is driven not only by the intrinsic alterations in tumor cells, but also by the implicated cross-talk between cancer cells and their altered microenvironment components. Tumor-associated macrophages (TAMs) are the key cells that create an immunosuppressive tumor microenvironment (TME) by producing cytokines, chemokines, growth factors, and triggering the inhibitory immune checkpoint proteins release in T cells. In doing so, TAMs exhibit important functions in facilitating a metastatic cascade of cancer cells and, meanwhile, provide multiple targets of certain checkpoint blockade immunotherapies for opposing tumor progression. In this article, we summarize the regulating networks of TAM polarization and the mechanisms underlying TAM-facilitated metastasis. Based on the overview of current experimental evidence dissecting the critical roles of TAMs in tumor metastasis, we discuss and prospect the potential applications of TAM-focused therapeutic strategies in clinical cancer treatment at present and in the future.
Collapse
|
53
|
Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol 2019. [PMID: 31300030 DOI: 10.1186/s13045-019-0760-3.pmid:31300030;pmcid:pmc6626377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Tumor metastasis is a major contributor to the death of cancer patients. It is driven not only by the intrinsic alterations in tumor cells, but also by the implicated cross-talk between cancer cells and their altered microenvironment components. Tumor-associated macrophages (TAMs) are the key cells that create an immunosuppressive tumor microenvironment (TME) by producing cytokines, chemokines, growth factors, and triggering the inhibitory immune checkpoint proteins release in T cells. In doing so, TAMs exhibit important functions in facilitating a metastatic cascade of cancer cells and, meanwhile, provide multiple targets of certain checkpoint blockade immunotherapies for opposing tumor progression. In this article, we summarize the regulating networks of TAM polarization and the mechanisms underlying TAM-facilitated metastasis. Based on the overview of current experimental evidence dissecting the critical roles of TAMs in tumor metastasis, we discuss and prospect the potential applications of TAM-focused therapeutic strategies in clinical cancer treatment at present and in the future.
Collapse
Affiliation(s)
- Yuxin Lin
- Department of Oncology, Hospital of Chinese Medicine of Changxing County, Huzhou, 313100, China
| | - Jianxin Xu
- Department of Oncology, Hospital of Chinese Medicine of Changxing County, Huzhou, 313100, China.
| | - Huiyin Lan
- Department of Radiation Oncology, Zhejiang Key Lab of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China.
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, MS-1, 1301 Catherine Street, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
54
|
Schuller HM. Inhibitory role of G i-coupled receptors on cAMP-driven cancers with focus on opioid receptors in lung adenocarcinoma and its stem cells. VITAMINS AND HORMONES 2019; 111:299-311. [PMID: 31421705 DOI: 10.1016/bs.vh.2019.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development, progression, metastasis and drug resistance of the most common human cancers are driven by cyclic adenosine monophosphate (cAMP)-signaling downstream of beta-adrenergic receptors (β-Ars) coupled to the stimulatory G-protein Gs. Receptors coupled to the inhibitory G-protein Gi inhibit this signaling cascade by blocking the activation of the enzyme adenylyl cyclase that catalyzes the formation of cAMP and function as the physiological inhibitors of this signaling cascade. Members of the Gi-coupled receptor family widely expressed in the mammalian organism are GABA B receptors (GABAB-Rs) for the inhibitory neurotransmitter γ-aminobutyric acid (GABA), opioid receptors for endogenous opioid peptides and cannabinoid receptors for endogenous cannabinoids. This review summarizes current evidence for the concept that the activation of Gi-receptor signaling by pharmacological and psychological means is a promising tool for the long-term management of cAMP-driven cancers with special emphasis on the inhibitory effects of opioids on lung adenocarcinoma and its stem cells.
Collapse
Affiliation(s)
- Hildegard M Schuller
- Department of Biomedical & Diagnostic Science, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, United States.
| |
Collapse
|
55
|
Xu S, Ma H, Bo Y, Shao M. The oncogenic role of CB2 in the progression of non-small-cell lung cancer. Biomed Pharmacother 2019; 117:109080. [PMID: 31176172 DOI: 10.1016/j.biopha.2019.109080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Several studies have verified the important role of cannabinoid and cannabinoid receptor agonists in tumor progression. However, little is known about the precise role of CB2 expression level in the progression of non-small-cell lung cancer (NSCLC). METHODS The expression of CB2 in NSCLC tissues and corresponding paracancerous tissues was examined using immunohistochemical staining assay. The expression of CB2 was silenced by siRNA interference and loss-of-function assays were performed to investigate the biological function of CB2 in the proliferation, migration, invasion, and apoptosis of NSCLC cells. The expression of related proteins was detected using western blot analysis. RESULTS In this study, we observed that CB2 was up-regulated in NSCLC tissues and the up-regulation was correlated with tumor size and advanced NSCLC pathological grading. Moreover, compared with the control group, silencing of CB2 decreased the proliferation, migration and invasion abilities of A549 and H1299 cells, and induced apoptosis by regulation of Bcl-2/Bax axis and active Caspase3. Furthermore, CB2 knockdown inactivated the Akt/mTOR/P70S6K pathway by decreasing the level of p-Akt, p-mTOR and expression of P70S6K in A549 and H1299 cells. CONCLUSION Our data suggested that targeting CB2 may inhibit the growth and survival of NSCLC cells, which the Akt/mTOR/P70S6K pathway may be involved in. These results confer the pro-oncogenic role of CB2 in the progression of NSCLC, thus improving our understanding of CB2 in tumor progression.
Collapse
Affiliation(s)
- Shaohua Xu
- Department of Respiratory, The Second Hospital of Shandong University, Jinan 250033, Shandong Province, China
| | - Hanchen Ma
- Department of Respiratory, The Second Hospital of Shandong University, Jinan 250033, Shandong Province, China
| | - Yuhong Bo
- Weihai Municipal Hospital, Weihai 264200, Shandong Province, China
| | - Mingju Shao
- Department of Emergency Medicine, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Jinan 250033, Shandong Province, China.
| |
Collapse
|
56
|
Morales P, Jagerovic N. Antitumor Cannabinoid Chemotypes: Structural Insights. Front Pharmacol 2019; 10:621. [PMID: 31214034 PMCID: PMC6555086 DOI: 10.3389/fphar.2019.00621] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/15/2019] [Indexed: 12/19/2022] Open
Abstract
Cannabis has long been known to limit or prevent nausea and vomiting, lack of appetite, and pain. For this reason, cannabinoids have been successfully used in the treatment of some of the unwanted side effects caused by cancer chemotherapy. Besides their palliative effects, research from the past two decades has demonstrated their promising potential as antitumor agents in a wide variety of tumors. Cannabinoids of endogenous, phytogenic, and synthetic nature have been shown to impact the proliferation of cancer through the modulation of different proteins involved in the endocannabinoid system such as the G protein-coupled receptors CB1, CB2, and GRP55, the ionotropic receptor TRPV1, or the fatty acid amide hydrolase (FAAH). In this article, we aim to structurally classify the antitumor cannabinoid chemotypes described so far according to their targets and types of cancer. In a drug discovery approach, their in silico pharmacokinetic profile has been evaluated in order to identify appropriate drug-like profiles, which should be taken into account for further progress toward the clinic. This analysis may provide structural insights into the selection of specific cannabinoid scaffolds for the development of antitumor drugs for the treatment of particular types of cancer.
Collapse
Affiliation(s)
- Paula Morales
- Instituto de Quimica Medica, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Nadine Jagerovic
- Instituto de Quimica Medica, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| |
Collapse
|
57
|
The Vicious Cross-Talk between Tumor Cells with an EMT Phenotype and Cells of the Immune System. Cells 2019; 8:cells8050460. [PMID: 31096701 PMCID: PMC6562673 DOI: 10.3390/cells8050460] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/02/2019] [Accepted: 05/14/2019] [Indexed: 02/08/2023] Open
Abstract
Carcinoma cells that undergo an epithelial-mesenchymal transition (EMT) and display a predominantly mesenchymal phenotype (hereafter EMT tumor cells) are associated with immune exclusion and immune deviation in the tumor microenvironment (TME). A large body of evidence has shown that EMT tumor cells and immune cells can reciprocally influence each other, with EMT cells promoting immune exclusion and deviation and immune cells promoting, under certain circumstances, the induction of EMT in tumor cells. This cross-talk between EMT tumor cells and immune cells can occur both between EMT tumor cells and cells of either the native or adaptive immune system. In this article, we review this evidence and the functional consequences of it. We also discuss some recent evidence showing that tumor cells and cells of the immune system respond to similar stimuli, activate the expression of partially overlapping gene sets, and acquire, at least in part, identical functionalities such as migration and invasion. The possible significance of these symmetrical changes in the cross-talk between EMT tumor cells and immune cells is addressed. Eventually, we also discuss possible therapeutic opportunities that may derive from disrupting this cross-talk.
Collapse
|
58
|
Fechtner S, Singh AK, Srivastava I, Szlenk CT, Muench TR, Natesan S, Ahmed S. Cannabinoid Receptor 2 Agonist JWH-015 Inhibits Interleukin-1β-Induced Inflammation in Rheumatoid Arthritis Synovial Fibroblasts and in Adjuvant Induced Arthritis Rat via Glucocorticoid Receptor. Front Immunol 2019; 10:1027. [PMID: 31139184 PMCID: PMC6519139 DOI: 10.3389/fimmu.2019.01027] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
Management of pain in the treatment of rheumatoid arthritis (RA) is a priority that is not fully addressed by the conventional therapies. In the present study, we evaluated the efficacy of cannabinoid receptor 2 (CB2) agonist JWH-015 using RA synovial fibroblasts (RASFs) obtained from patients diagnosed with RA and in a rat adjuvant-induced arthritis (AIA) model of RA. Pretreatment of human RASFs with JWH-015 (10–20 μM) markedly inhibited the ability of pro-inflammatory cytokine interleukin-1β (IL-1β) to induce production of IL-6 and IL-8 and cellular expression of inflammatory cyclooxygenase-2 (COX-2). JWH-015 was effective in reducing IL-1β-induced phosphorylation of TAK1 (Thr184/187) and JNK/SAPK in human RASFs. While the knockdown of CB2 in RASFs using siRNA method reduced IL-1β-induced inflammation, JWH-015 was still effective in eliciting its anti-inflammatory effects despite the absence of CB2, suggesting the role of non-canonical or an off-target receptor. Computational studies using molecular docking and molecular dynamics simulations showed that JWH-105 favorably binds to glucocorticoid receptor (GR) with the binding pose and interactions similar to its well-known ligand dexamethasone. Furthermore, knockdown of GR using siRNA abrogated JWH-015's ability to reduce IL-1β-induced IL-6 and IL-8 production. In vivo, administration of JWH-015 (5 mg/kg, daily i.p. for 7 days at the onset of arthritis) significantly ameliorated AIA in rats. Pain assessment studies using von Frey method showed a marked antinociception in AIA rats treated with JWH-015. In addition, JWH-015 treatment inhibited bone destruction as evident from micro-CT scanning and bone analysis on the harvested joints and modulated serum RANKL and OPG levels. Overall, our findings suggest that CB2 agonist JWH-015 elicits anti-inflammatory effects partly through GR. This compound could further be tested as an adjunct therapy for the management of pain and tissue destruction as a non-opioid for RA.
Collapse
Affiliation(s)
- Sabrina Fechtner
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, WA, United States
| | - Anil K Singh
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, WA, United States
| | - Ila Srivastava
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, WA, United States
| | - Christopher T Szlenk
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, WA, United States
| | - Tim R Muench
- Preclinical COE, ETHICON, Medical Device Business Services, Inc., DePuy Synthes, Somerville, NJ, United States
| | - Senthil Natesan
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, WA, United States
| | - Salahuddin Ahmed
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, WA, United States.,Division of Rheumatology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
59
|
Abstract
The family of chemical structures that interact with a cannabinoid receptor are broadly termed cannabinoids. Traditionally known for their psychotropic effects and their use as palliative medicine in cancer, cannabinoids are very versatile and are known to interact with several orphan receptors besides cannabinoid receptors (CBR) in the body. Recent studies have shown that several key pathways involved in cell growth, differentiation and, even metabolism and apoptosis crosstalk with cannabinoid signaling. Several of these pathways including AKT, EGFR, and mTOR are known to contribute to tumor development and metastasis, and cannabinoids may reverse their effects, thereby by inducing apoptosis, autophagy and modulating the immune system. In this book chapter, we explore how cannabinoids regulate diverse signaling mechanisms in cancer and immune cells within the tumor microenvironment and whether they impart a therapeutic effect. We also provide some important insight into the role of cannabinoids in cellular and whole body metabolism in the context of tumor inhibition. Finally, we highlight recent and ongoing clinical trials that include cannabinoids as a therapeutic strategy and several combinational approaches towards novel therapeutic opportunities in several invasive cancer conditions.
Collapse
|
60
|
Redirecting tumor-associated macrophages to become tumoricidal effectors as a novel strategy for cancer therapy. Oncotarget 2018; 8:48436-48452. [PMID: 28467800 PMCID: PMC5564660 DOI: 10.18632/oncotarget.17061] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 03/22/2017] [Indexed: 12/25/2022] Open
Abstract
Cancer research in recent decades has highlighted the potential influence of the tumor microenvironment on the progression and metastasis of most known cancer types. Within the established microenvironment, tumor-associated macrophages (TAMs) are one of the most abundant and crucial non-neoplastic cell types. The polarization of macrophages into tumor-suppressive M1 or tumor-promoting M2 types is a fundamental event in the establishment of the tumor microenvironment. Although ample evidence indicates that TAMs are primarily M2 polarized, the mechanisms responsible for the regulation and maintenance of M1 and M2 polarization imbalance remain unclear. The manipulation of this critical axis through three main approaches may provide new strategies for cancer therapy - (I) specific interference with M2-like TAM survival or inhibiting their signaling cascades, (II) repression of macrophage recruitment to tumors, and (III) repolarization of tumor-promoting M2-like TAMs to a tumoricidal M1-like phenotype. This review summarizes current strategies for cancer intervention via manipulation of macrophage polarization, with particular focus on composition of the tumor microenvironment and its influence on cancer progression and metastasis. It is clear that additional fundamental and preclinical research is required to confirm the efficacy and practicality of this novel and promising strategy for treating cancer.
Collapse
|
61
|
Wang C, Li Y, Chen H, Huang K, Liu X, Qiu M, Liu Y, Yang Y, Yang J. CYP4X1 Inhibition by Flavonoid CH625 Normalizes Glioma Vasculature through Reprogramming TAMs via CB2 and EGFR-STAT3 Axis. J Pharmacol Exp Ther 2018; 365:72-83. [PMID: 29437915 DOI: 10.1124/jpet.117.247130] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/29/2018] [Indexed: 01/03/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are pivotal effector cells in angiogenesis. Here, we tested whether CYP4X1 inhibition in TAMs by flavonoid CH625 prolongs survival and normalizes glioma vasculature. CH625 was selected against the CYP4X1 3D model by virtual screening and showed inhibitory activity on the CYP4X1 catalytic production of 14,15-EET-EA in the M2-polarized human peripheral blood mononuclear cells (IC50 = 16.5 μM). CH625 improved survival and reduced tumor burden in the C6 and GL261 glioma intracranial and subcutaneous model. In addition, CH625 normalized vasculature (evidenced by a decrease in microvessel density and HIF-1α expression and an increase in tumor perfusion, pericyte coverage, and efficacy of temozolomide therapy) accompanied with the decreased secretion of 14,15-EET-EA, VEGF, and TGF-β in the TAMs. Furthermore, CH625 attenuated vascular abnormalization and immunosuppression induced by coimplantation of GL261 cells with CYP4X1high macrophages. In vitro TAM polarization away from the M2 phenotype by CH625 inhibited proliferation and migration of endothelial cells, enhanced pericyte migration and T cell proliferation, and decreased VEGF and TGF-β production accompanied with the downregulation of CB2 and EGFR-dependent downstream STAT3 expression. These effects were reversed by overexpression of CYP4X1 and STAT3 or exogenous addition of 14,15-EET-EA, VEGF, TGF-β, EGF, and CB2 inhibitor AM630. These results suggest that CYP4X1 inhibition in TAMs by CH625 prolongs survival and normalizes tumor vasculature in glioma via CB2 and EGFR-STAT3 axis and may serve as a novel therapeutic strategy for human glioma.
Collapse
Affiliation(s)
- Chenlong Wang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Ying Li
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Honglei Chen
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Keqing Huang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Xiaoxiao Liu
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Miao Qiu
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Yanzhuo Liu
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Yuqing Yang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Jing Yang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| |
Collapse
|
62
|
Wang J, Zhang Z, Li R, Mao F, Sun W, Chen J, Zhang H, Bartsch JW, Shu K, Lei T. ADAM12 induces EMT and promotes cell migration, invasion and proliferation in pituitary adenomas via EGFR/ERK signaling pathway. Biomed Pharmacother 2017; 97:1066-1077. [PMID: 29136943 DOI: 10.1016/j.biopha.2017.11.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/20/2017] [Accepted: 11/03/2017] [Indexed: 12/11/2022] Open
Abstract
Pituitary adenomas are the second most common primary brain tumor with invasive properties. We have previously identified that ADAM12 (a disintegrin and metalloprotease 12) overexpression is associated with the tumor invasion of pituitary adenomas, however, the underlying mechanism remains unknown. This study aims to elucidate the mechanistic role of ADAM12 in regulating the tumor invasion of pituitary adenomas. In this study, we first showed that ADAM12 expression was concomitant with epithelial to mesenchymal transition (EMT) process in clinical specimens of human pituitary adenomas. Further functional studies showed that ADAM12 silencing in pituitary adenoma cells significantly inhibited the EMT process and suppressed cell migration, invasion and proliferation without influencing cell apoptosis. Mechanistically, ADAM12 silencing significantly reduced ectodomain shedding of epidermal growth factor receptor (EGFR) ligands and attenuated the EGFR/ERK signaling pathway. Blocking of EGFR signaling resulted in EMT suppression similar to silencing of ADAM12 and reduced cell migration, invasion and proliferation, while EGFR activation abolished the suppression on EMT, proliferation, migration and invasion induced by ADAM12 silencing. Moreover, ADAM12 silencing significantly impaired tumorigenesis and EMT of pituitary adenoma cells in vivo. Taken together, our study provide crucial evidence that ADAM12 induces EMT and promotes cell migration, invasion and proliferation in pituitary adenomas via EGFR/ERK signaling pathway. These finds strongly suggest that ADAM12 might serve as a novel valuable therapeutic target for pituitary adenomas.
Collapse
Affiliation(s)
- Junwen Wang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuo Zhang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ran Li
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feng Mao
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Sun
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Juan Chen
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huaqiu Zhang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jörg-W Bartsch
- Philipps University Marburg, Department of Neurosurgery, UKGM Marburg, Baldingerstrasse, 35039, Marburg, Germany
| | - Kai Shu
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Ting Lei
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
63
|
Xie K, Ye Y, Zeng Y, Gu J, Yang H, Wu X. Polymorphisms in genes related to epithelial-mesenchymal transition and risk of non-small cell lung cancer. Carcinogenesis 2017; 38:1029-1035. [PMID: 28968839 DOI: 10.1093/carcin/bgx079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/28/2017] [Indexed: 02/05/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) process is a crucial step for tumor invasion and metastasis. Previous research investigating EMT has mostly focused on its role in cancer progression. Recent studies showed that EMT and EMT-driving transcription factor (EMT-TF) expression are early events in lung cancer pathogenesis, implying a potential association between EMT and lung cancer risk. In this study, we examined whether genetic variants in EMT-related genes are associated with risk of non-small cell lung cancer (NSCLC). We used data from a genome-wide association study of 1482 NSCLC cases and 1544 healthy controls as the discovery phase, in which we analyzed 1602 single-nucleotide polymorphisms (SNPs) within 159 EMT-related genes. We then validated the significant SNPs in another 5699 cases and 5815 controls from the National Cancer Institute lung cancer genome-wide association study. Cumulative effects were evaluated for validated SNPs, and a gene-based test was performed to explore gene-level association with disease risk. In the discovery phase, 174 SNPs demonstrated significant associations with NSCLC risk. In the validation phase, seven SNPs mapped to EGFR, NOTCH3, ADGRF1 and SMAD3 were confirmed. Cumulative effect analysis of the significant SNPs demonstrated increasing risk with the number of unfavorable genotypes in the discovery and validation datasets. Gene-based analysis implicated ADGRF1, NOTCH3 and CDH1 as significant for NSCLC risk. Functional prediction revealed several potential mechanisms underlying these associations. Our results suggest that EMT-related gene variants may be involved in susceptibility to NSCLC; if confirmed, they might help identify higher-risk individuals.
Collapse
Affiliation(s)
- Kunlin Xie
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yong Zeng
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hushan Yang
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
64
|
Shi Q, Jiang Z, Yang J, Cheng Y, Pang Y, Zheng N, Chen J, Chen W, Jia L. A Flavonoid Glycoside Compound from Murraya paniculata (L.) Interrupts Metastatic Characteristics of A549 Cells by Regulating STAT3/NF-κB/COX-2 and EGFR Signaling Pathways. AAPS JOURNAL 2017; 19:1779-1790. [PMID: 28842850 DOI: 10.1208/s12248-017-0134-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 08/14/2017] [Indexed: 12/16/2022]
Abstract
Metastasis remains the leading cause of death from lung carcinoma. It is urgent to find safe and efficient pre-metastasis preventive agents for cancer survivors. We isolated a flavonoid glycoside, hexamethoxy flavanone-o-[rhamnopyranosyl-(1 → 4)-rhamnopyranoside (HMFRR), from the traditional Chinese medicine (TCM) Murraya paniculata (L.) that can effectively inhibit the adhesion, migration, and invasion of lung adenocarcinoma A549 cells in vitro. Molecular and cellular studies demonstrated that HMFRR significantly downregulated the expressions of cell adhesion-related and invasion-related molecules such as integrin β1, EGFR, COX-2, MMP-2, and MMP-9 proteins. Additionally, HMFRR effectively downregulated the expressions of epithelial-mesenchymal transition (EMT) markers (N-cadherin and vimentin) and upregulated that of E-cadherin. Moreover, these inhibitions were mediated by interrupting STAT3/NF-κB/COX-2 and EGFR/PI3K/AKT signaling pathways. Furthermore, HMFRR counteracted the expressions of cell adhesion molecules (ICAM-1, VCAM-1, and E-selectin) stimulated by interleukin-1β in human pulmonary microvascular endothelial cells (HPMECs). As a result, HMFRR interrupted the adhesion of A549 cells to HPMECs. Collectively, these results indicate that HMFRR may become a good candidate for cancer metastatic chemopreventive agents by interrupting the STAT3/NF-κB/COX-2 and EGFR signaling pathways.
Collapse
Affiliation(s)
- Qing Shi
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Zhou Jiang
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China.,Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China
| | - Jingyi Yang
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Yunlong Cheng
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Yaqiong Pang
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Ning Zheng
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Jiahang Chen
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Wenge Chen
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China. .,Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China. .,Cancer Metastasis Alert and Prevention Center, Fuzhou University, Sunlight Building, 6FL; Science Park, Xueyuan Road, University Town, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
65
|
Guo J, Yan Y, Yan Y, Guo Q, Zhang M, Zhang J, Goltzman D. Tumor-associated macrophages induce the expression of FOXQ1 to promote epithelial-mesenchymal transition and metastasis in gastric cancer cells. Oncol Rep 2017; 38:2003-2010. [PMID: 28791370 PMCID: PMC5652949 DOI: 10.3892/or.2017.5877] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/27/2017] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies, and is the second leading cause of cancer-related deaths worldwide. Macrophages infiltrated in the tumor microenvironment (TME) called tumor-associated macrophages (TAMs) are key orchestrators in TME. In GC, it has been reported that infiltration of TAMs is associated with epithelial-mesenchymal transition (EMT)-related proteins in human GC tissues, but the exactly mechanism has not been clarified. In the present study, we aimed to elucidate the underlying mechanism of TAMs on GC cells. THP-1 cells were used to investigate the effects of TAMs on GC cells. The effects of invasion and migration induced by coculture with TAMs were investigated by Transwell invasion and wound healing assays. The expression of EMT-related genes and forkhead box Q1 (FOXQ1) were examined in MKN45 and MKN74 cells after being co-cultured with TAMs. The density of TAMs and the expression of FOXQ1 were analyzed by immunohistochemistry in GC tissues. Our results revealed that, co-culture with TAMs promoted the invasion and migration of GC cells. Co-culture with TAMs induced EMT in GC cells. FOXQ1 is essential for TAM-induced EMT and metastasis in GC cells. Furthermore, silencing of FOXQ1 blocked the effect of TAM-enhanced EMT and metastasis of GC cells. High expression of CD68 was correlated with positive FOXQ1 expression (r=0.613; P<0.001) in clinical GC samples. Our data provided evidence that TAMs promote EMT, invasion and migration of GC cells via FOXQ1. Therefore, the TAM/FOXQ1 axis may represent a novel target for GC cells.
Collapse
Affiliation(s)
- Jian Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yan Yan
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yu Yan
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qinyue Guo
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Mingxin Zhang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jia Zhang
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - David Goltzman
- Departments of Medicine and Physiology, McGill University, Montreal, Quebec H3A 1A1, Canada
| |
Collapse
|
66
|
Suarez‐Carmona M, Lesage J, Cataldo D, Gilles C. EMT and inflammation: inseparable actors of cancer progression. Mol Oncol 2017; 11:805-823. [PMID: 28599100 PMCID: PMC5496491 DOI: 10.1002/1878-0261.12095] [Citation(s) in RCA: 404] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/14/2022] Open
Abstract
Tumors can be depicted as wounds that never heal, and are infiltrated by a large array of inflammatory and immune cells. Tumor-associated chronic inflammation is a hallmark of cancer that fosters progression to a metastatic stage, as has been extensively reviewed lately. Indeed, inflammatory cells persisting in the tumor establish a cross-talk with tumor cells that may result in a phenotype switch into tumor-supporting cells. This has been particularly well described for macrophages and is referred to as tumor-associated 'M2' polarization. Epithelial-to-mesenchymal transition (EMT), the embryonic program that loosens cell-cell adherence complexes and endows cells with enhanced migratory and invasive properties, can be co-opted by cancer cells during metastatic progression. Cancer cells that have undergone EMT are more aggressive, displaying increased invasiveness, stem-like features, and resistance to apoptosis. EMT programs can also stimulate the production of proinflammatory factors by cancer cells. Conversely, inflammation is a potent inducer of EMT in tumors. Therefore, the two phenomena may sustain each other, in an alliance for metastasis. This is the focus of this review, where the interconnections between EMT programs and cellular and molecular actors of inflammation are described. We also recapitulate data linking the EMT/inflammation axis to metastasis.
Collapse
Affiliation(s)
- Meggy Suarez‐Carmona
- National Center for Tumor Diseases (NCT) – University Hospital HeidelbergGermany
| | - Julien Lesage
- Laboratory of Tumor and Development BiologyGIGA‐Cancer University of LiègeBelgium
| | - Didier Cataldo
- Inserm UMR‐S 903SFR CAP‐SantéUniversity of Reims Champagne‐Ardenne (URCA)France
| | - Christine Gilles
- Inserm UMR‐S 903SFR CAP‐SantéUniversity of Reims Champagne‐Ardenne (URCA)France
| |
Collapse
|
67
|
Guo Q, Jin Z, Yuan Y, Liu R, Xu T, Wei H, Xu X, He S, Chen S, Shi Z, Hou W, Hua B. New Mechanisms of Tumor-Associated Macrophages on Promoting Tumor Progression: Recent Research Advances and Potential Targets for Tumor Immunotherapy. J Immunol Res 2016; 2016:9720912. [PMID: 27975071 PMCID: PMC5128713 DOI: 10.1155/2016/9720912] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/26/2016] [Indexed: 12/14/2022] Open
Abstract
The majority of basic and clinical studies have shown a protumor function of tumor-associated macrophages (TAMs), which represent a large proportion of matrix cells. TAMs promote tumorigenesis, and their number is related to the malignancy degree and poor prognosis of many kinds of tumors. Macrophage plasticity makes it possible to change the tumor microenvironment and remodel antitumor immunity during cancer immunotherapy. Increasing numbers of studies have revealed the effects of TAMs on the tumor microenvironment, for example, via promotion of tumor growth and tumorigenesis and through an increase in the number of cancer stem cells or via facilitation of angiogenesis, lymphangiogenesis, and metastasis. Investigators also proposed tumor-immunological treatments targeting TAMs by inhibiting TAM recruitment and differentiation, by regulating TAM polarization, and by blocking factors and pathways associated with the protumor function of TAMs. This comprehensive review presents recent research on TAMs in relation to prediction of poor outcomes, remodeling of the tumor immune microenvironment, and immunological targeted therapies.
Collapse
Affiliation(s)
- Qiujun Guo
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
- Beijing University of Chinese Medicine, No. 11 North Third Ring Road East, Chaoyang District, Beijing 100029, China
| | - Zhichao Jin
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Yuan Yuan
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
- Beijing University of Chinese Medicine, No. 11 North Third Ring Road East, Chaoyang District, Beijing 100029, China
| | - Rui Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Tao Xu
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, No. 1 Playground Road, Haidian District, Beijing 100091, China
| | - Huamin Wei
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Xinyao Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
- Beijing University of Chinese Medicine, No. 11 North Third Ring Road East, Chaoyang District, Beijing 100029, China
| | - Shulin He
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
- Beijing University of Chinese Medicine, No. 11 North Third Ring Road East, Chaoyang District, Beijing 100029, China
| | - Shuntai Chen
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
- Beijing University of Chinese Medicine, No. 11 North Third Ring Road East, Chaoyang District, Beijing 100029, China
| | - Zhan Shi
- Institute of Basic Research in Clinical Medicine (IBRCM), China Academy of Chinese Medicine Sciences, No. 16 Dongzhimen Nanxiaojie, Dongcheng District, Beijing 100700, China
| | - Wei Hou
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
| |
Collapse
|