51
|
Pferschy-Wenzig EM, Koskinen K, Moissl-Eichinger C, Bauer R. A Combined LC-MS Metabolomics- and 16S rRNA Sequencing Platform to Assess Interactions between Herbal Medicinal Products and Human Gut Bacteria in Vitro: a Pilot Study on Willow Bark Extract. Front Pharmacol 2017; 8:893. [PMID: 29326584 PMCID: PMC5733343 DOI: 10.3389/fphar.2017.00893] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/22/2017] [Indexed: 12/24/2022] Open
Abstract
Herbal preparations are complex mixtures of natural products, many of which are able to reach the distal gut due to low oral bioavailability. There, they can influence the microbial communities, and can be metabolized into potentially absorbable bioactive compounds by the intestinal bacteria. This aspect has often been disregarded when searching for the active principles of medicinal plants and herbal medicinal products. The aim of this study was to establish an interdisciplinary platform to unravel interactions of herbal medicine and intestinal microbiota, using a combined LC-MS metabolomics and 16S rRNA microbiome sequencing approach. Willow bark extract (WBE), a herbal medicinal product with a long history of traditional use and a well-established anti-inflammatory activity, was incubated with human fecal suspension under anoxic conditions. Samples were taken after 0.5, 4, and 24 h of incubation. Microbiome analyses revealed that incubation with WBE had a marked effect on microbial community composition and functions. For example, the proportion of Bacteroides sp. was clearly enhanced when the fecal sample used in this study was incubated with WBE. LC-MS analysis showed that WBE constituents were readily metabolized by fecal bacteria. Numerous microbial metabolites could be annotated, allowing the construction of putative microbial degradation pathways for the main groups of WBE constituents. We suggest that studies of this type help to increase the knowledge on bioactive principles of medicinal plants, since gut microbial metabolites might have been underestimated as a source of bioactive compounds in the past.
Collapse
Affiliation(s)
- Eva-Maria Pferschy-Wenzig
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, Universtity of Graz, Graz, Austria
| | - Kaisa Koskinen
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Christine Moissl-Eichinger
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Rudolf Bauer
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, Universtity of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
52
|
Quan W, Tao Y, Lu M, Yuan B, Chen J, Zeng M, Qin F, Guo F, He Z. Stability of the phenolic compounds and antioxidant capacity of five fruit (apple, orange, grape, pomelo and kiwi) juices during in vitro
-simulated gastrointestinal digestion. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13682] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wei Quan
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi Jiangsu 214122 China
- International Joint Laboratory on Food Safety; Jiangnan University; Wuxi Jiangsu 214122 China
| | - Yadan Tao
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi Jiangsu 214122 China
| | - Mei Lu
- Department of Food Science and Technology; University of Nebraska-Lincoln; Lincoln NE 68588-6205 USA
| | - Bo Yuan
- Department of Food Science and Technology; University of Nebraska-Lincoln; Lincoln NE 68588-6205 USA
| | - Jie Chen
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi Jiangsu 214122 China
- Synergetic Innovation Center of Food Safety and Nutrition; Jiangnan University; Wuxi Jiangsu 214122 China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi Jiangsu 214122 China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi Jiangsu 214122 China
| | - Fengxian Guo
- College of Oceanology and Food Science; Quanzhou Normal University; Quanzhou Fujian 362000 China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi Jiangsu 214122 China
- International Joint Laboratory on Food Safety; Jiangnan University; Wuxi Jiangsu 214122 China
| |
Collapse
|
53
|
Alba C MA, Daya M, Franck C. Tart Cherries and health: Current knowledge and need for a better understanding of the fate of phytochemicals in the human gastrointestinal tract. Crit Rev Food Sci Nutr 2017; 59:626-638. [PMID: 28956621 DOI: 10.1080/10408398.2017.1384918] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tart cherries are increasingly popular due to purported health benefits. This Prunus cesarus species is cultivated worldwide, and its market has increased significantly in the last two decades due to improvements in agricultural practices and food processing technology. Tart cherries are rich in polyphenols, with a very specific profile combining anthocyanins and flavonols (berries-like) and chlorogenic acid (coffee-like). Tart cherries have been suggested to exert several potentially beneficial health effects including: lowering blood pressure, modulating blood glucose, enhancing cognitive function, protecting against oxidative stress and reducing inflammation. Studies focusing on tart cherry consumption have demonstrated particular benefits in recovery from exercise-induced muscle damage and diabetes associated parameters. However, the bioconversion of tart cherry polyphenols by resident colonic microbiota has never been considered, considerably reducing the impact of in vitro studies that have relied on fruit polyphenol extracts. In vitro and in vivo gut microbiota and metabolome studies are necessary to reinforce health claims linked to tart cherries consumption.
Collapse
Affiliation(s)
- Mayta-Apaza Alba C
- a Department of Food Science and Center for Human Nutrition , University of Arkansas , Fayetteville , AR , United States
| | - Marasini Daya
- a Department of Food Science and Center for Human Nutrition , University of Arkansas , Fayetteville , AR , United States
| | - Carbonero Franck
- a Department of Food Science and Center for Human Nutrition , University of Arkansas , Fayetteville , AR , United States
| |
Collapse
|
54
|
Pereira-Caro G, Polyviou T, Ludwig IA, Nastase AM, Moreno-Rojas JM, Garcia AL, Malkova D, Crozier A. Bioavailability of orange juice (poly)phenols: the impact of short-term cessation of training by male endurance athletes. Am J Clin Nutr 2017; 106:791-800. [PMID: 28747329 DOI: 10.3945/ajcn.116.149898] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 06/21/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Physical exercise has been reported to increase the bioavailability of citrus flavanones.Objective: We investigated the bioavailability of orange juice (OJ) (poly)phenols in endurance-trained males before and after cessation of training for 7 d.Design: Ten fit, endurance-trained males, with a mean ± SD maximal oxygen consumption of 58.2 ± 5.3 mL · kg-1 · min-1, followed a low (poly)phenol diet for 2 d before drinking 500 mL of OJ containing 398 μmol of (poly)phenols, of which 330 μmol was flavanones. After the volunteers stopped training for 7 d the feeding study was repeated. Urine samples were collected 12 h pre- and 24 h post-OJ consumption. Bioavailability was assessed by the quantitative analysis of urinary flavanone metabolites and (poly)phenol catabolites with the use of high-pressure liquid chromatography-high resolution mass spectrometry.Results: During training, 0-24-h urinary excretion of flavanone metabolites, mainly hesperetin-3'-O-glucuronide, hesperetin-3'-sulfate, naringenin-4'-O-glucuronide, naringenin-7-O-glucuronide, was equivalent to 4.2% of OJ flavanone intake. This increased significantly to 5.2% when OJ was consumed after the volunteers stopped training for 7 d. Overall, this trend, although not significant, was also observed with OJ-derived colonic catabolites, which, after supplementation in the trained state, were excreted in amounts equivalent to 51% of intake compared with 59% after cessation of training. However, urinary excretion of 3 colonic catabolites of bacterial origin, most notably, 3-(3'-hydroxy-4'-methoxyphenyl)hydracrylic acid, did increase significantly when OJ was consumed postcessation compared with precessation of training. Data were also obtained on interindividual variations in flavanone bioavailability.Conclusions: A 7-d cessation of endurance training enhanced, rather than reduced, the bioavailability of OJ flavanones. The biological significance of these differences and whether they extend to the bioavailability of other dietary (poly)phenols remain to be determined. Hesperetin-3'-O-glucuronide and the colonic microbiota-derived catabolite 3-(3'-hydroxy-4'-methoxyphenyl)hydracrylic acid are key biomarkers of the consumption of hesperetin-O-glycoside-containing OJ and other citrus products. This trial was registered at clinicaltrials.gov as NCT02627547.
Collapse
Affiliation(s)
- Gema Pereira-Caro
- Department of Food and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA)-Alameda del Obispo, Cordoba, Spain
| | - Thelma Polyviou
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Iziar A Ludwig
- Department of Food Technology, University of Lleida, Lleida, Spain; and
| | - Ana-Maria Nastase
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - José Manuel Moreno-Rojas
- Department of Food and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA)-Alameda del Obispo, Cordoba, Spain
| | - Ada L Garcia
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Dalia Malkova
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom;
| | - Alan Crozier
- Department of Nutrition, University of California, Davis, Davis, CA
| |
Collapse
|
55
|
Barreca D, Gattuso G, Bellocco E, Calderaro A, Trombetta D, Smeriglio A, Laganà G, Daglia M, Meneghini S, Nabavi SM. Flavanones: Citrus phytochemical with health-promoting properties. Biofactors 2017; 43:495-506. [PMID: 28497905 DOI: 10.1002/biof.1363] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/27/2017] [Accepted: 03/31/2017] [Indexed: 12/26/2022]
Abstract
Citrus fruit and juices represent one of the main sources of compounds with a high potential for health promoting properties. Among these compounds, flavanones (such as hesperetin, naringenin, eriodictyol, isosakuranetin, and their respective glycosides), which occur in quantities ranging from ∼180 to 740 mg/L (depending on the Citrus species and cultivar) are responsible for many biological activities. These compounds support and enhance the body's defenses against oxidative stress and help the organism in the prevention of cardiovascular diseases, atherosclerosis, and cancer. Moreover, among other properties, they also show anti-inflammatory, antiviral, and antimicrobial activities. This review analyzes the biochemistry, pharmacology, and biology of Citrus flavanones, emphasizing the occurrence in Citrus fruits and juices and their bioavailability, structure-function correlations and ability to modulate signal cascades both in vitro and in vivo. © 2017 BioFactors, 43(4):495-506, 2017.
Collapse
Affiliation(s)
- Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Giuseppe Gattuso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Ersilia Bellocco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Antonella Calderaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Giuseppina Laganà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Silvia Meneghini
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
56
|
Pereira-Caro G, Moreno-Rojas JM, Brindani N, Del Rio D, Lean MEJ, Hara Y, Crozier A. Bioavailability of Black Tea Theaflavins: Absorption, Metabolism, and Colonic Catabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5365-5374. [PMID: 28595385 DOI: 10.1021/acs.jafc.7b01707] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Data obtained with in vitro fecal incubations and a feeding study indicate black tea theaflavin and its galloyl derivatives are not absorbed in detectable amounts in either the upper or lower gastrointestinal tract. The theaflavin skeleton is comparatively resistant to degradation by colonic bacteria with a 67% recovery being obtained after a 24 h incubation, which yielded 21 phenolic and aromatic catabolites. The theaflavin galloyl moiety was removed by the microbiota, and the released gallic acid further transformed to 3-O- and 4-O-methyl gallic acids, pyrogallol-1-sulfate and pyrogallol-2-sulfate, which were excreted in urine in amounts equivalent to 94% of intake. The main urinary product potentially derived from breakdown of the theaflavin skeleton was 3-(4'-hydroxyphenyl)propionic acid. A number of the colonic catabolites originating from gallic acid and theaflavins has been reported to be bioactive in ex vivo and in vitro models with a variety of potential modes of action.
Collapse
Affiliation(s)
- Gema Pereira-Caro
- Department of Food and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA) , Avenida Menendez-Pidal, SN 14004, Córdoba, Spain
| | - José Manuel Moreno-Rojas
- Department of Food and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA) , Avenida Menendez-Pidal, SN 14004, Córdoba, Spain
| | | | - Daniele Del Rio
- Department of Food and Drug, University of Parma , 43124 Parma, Italy
| | - Michael E J Lean
- College of Medical, Veterinary and Life Sciences, University of Glasgow , New Lister Building, Glasgow G31 2ER, U.K
| | | | - Alan Crozier
- Department of Nutrition, University of California , Davis, California 95616-5270, United States
| |
Collapse
|
57
|
Williamson G, Clifford MN. Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols. Biochem Pharmacol 2017; 139:24-39. [PMID: 28322745 DOI: 10.1016/j.bcp.2017.03.012] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/14/2017] [Indexed: 02/06/2023]
Abstract
(Poly)phenols are a large group of compounds, found in food, beverages, dietary supplements and herbal medicines. Owing to interest in their biological activities, absorption and metabolism of the most abundant compounds in humans are well understood. Both the chemical structure of the phenolic moiety and any attached chemical groups define whether the polyphenol is absorbed in the small intestine, or reaches the colon and is subject to extensive catabolism by colonic microbiota. Untransformed substrates may be absorbed, appearing in plasma primarily as methylated, sulfated and glucuronidated derivatives, with in some cases the unchanged substrate. Many of the catabolites are well absorbed from the colon and appear in the plasma either similarly conjugated, or as glycine conjugates, or in some cases unchanged. Although many (poly)phenol catabolites have been identified in human plasma and/or urine, the exact pathways from substrate to final microbial catabolite, and the species of bacteria and enzymes involved, are still scarcely reported. While it is clear that the composition of the human gut microbiota can be modulated in vivo by supplementation with some (poly)phenol-rich commodities, such modulation is definitely not an inevitable consequence of supplementation; it depends on the treatment, length of time and on the individual metabotype, and it is not clear whether the modulation is sustained when supplementation ceases. Some catabolites have been recorded in plasma of volunteers at concentrations similar to those shown to be effective in in vitro studies suggesting that some benefit may be achieved in vivo by diets yielding such catabolites.
Collapse
Affiliation(s)
- Gary Williamson
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Michael N Clifford
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
58
|
Kay CD, Pereira-Caro G, Ludwig IA, Clifford MN, Crozier A. Anthocyanins and Flavanones Are More Bioavailable than Previously Perceived: A Review of Recent Evidence. Annu Rev Food Sci Technol 2017; 8:155-180. [PMID: 28125348 DOI: 10.1146/annurev-food-030216-025636] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review considers recent investigations on the bioavailability of anthocyanins and flavanones. Both flavonoids are significant dietary components and are considered to be poorly bioavailable, as only low levels of phase II metabolites appear in the circulatory system and are excreted in urine. However, when lower molecular weight phenolic and aromatic ring-fission catabolites, produced primarily by the action of the colonic microbiota, are taken into account, it is evident that anthocyanins and flavanones are much more bioavailable than previously envisaged. The metabolic events to which these flavonoids are subjected as they pass along the gastrointestinal tract and are absorbed into the circulatory system prior to their rapid elimination by renal excretion are highlighted. Studies on the impact of other food components and the probiotic intake on flavonoid bioavailability are summarized, as is the bioactivity of metabolites and catabolites assayed using a variety of in vitro model systems.
Collapse
Affiliation(s)
- Colin D Kay
- Food Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina 28081
| | - Gema Pereira-Caro
- Andalusian Institute of Agricultural and Fishery Research and Training, IFAPA, Alameda del Obispo, 14004 Córdoba, Spain
| | - Iziar A Ludwig
- Department of Food Technology, Universitat de Lleida, 25198 Lleida, Spain
| | - Michael N Clifford
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 5XH, Surrey, United Kingdom
| | - Alan Crozier
- Department of Nutrition, University of California, Davis, California 95616-5270;
| |
Collapse
|
59
|
Van Rymenant E, Grootaert C, Beerens K, Needs PW, Kroon PA, Kerimi A, Williamson G, García-Villalba R, González-Sarrías A, Tomas-Barberan F, Van Camp J, Van de Voorde J. Vasorelaxant activity of twenty-one physiologically relevant (poly)phenolic metabolites on isolated mouse arteries. Food Funct 2017; 8:4331-4335. [DOI: 10.1039/c7fo01273j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polyphenols are beneficial for health, but are metabolised after consumption.
Collapse
Affiliation(s)
- E. Van Rymenant
- Department of Food safety and Food Quality
- Faculty of Bioscience Engineering
- Ghent University
- 9000 Gent
- Belgium
| | - C. Grootaert
- Department of Food safety and Food Quality
- Faculty of Bioscience Engineering
- Ghent University
- 9000 Gent
- Belgium
| | - K. Beerens
- Department of Food safety and Food Quality
- Faculty of Bioscience Engineering
- Ghent University
- 9000 Gent
- Belgium
| | - P. W. Needs
- Quadram Institute Bioscience
- Norwich Research Park
- Colney
- UK
| | - P. A. Kroon
- Quadram Institute Bioscience
- Norwich Research Park
- Colney
- UK
| | - A. Kerimi
- School of Food Science and Nutrition
- University of Leeds
- Leeds
- UK
| | - G. Williamson
- School of Food Science and Nutrition
- University of Leeds
- Leeds
- UK
| | | | | | | | - J. Van Camp
- Department of Food safety and Food Quality
- Faculty of Bioscience Engineering
- Ghent University
- 9000 Gent
- Belgium
| | - J. Van de Voorde
- Department of Pharmacology
- Faculty of Medicine and Health Sciences
- Ghent University
- 9000 Gent
- Belgium
| |
Collapse
|
60
|
Liu XY, Fan ML, Wang HY, Yu BY, Liu JH. Metabolic profile and underlying improved bio-activity of Fructus aurantii immaturus by human intestinal bacteria. Food Funct 2017; 8:2193-2201. [DOI: 10.1039/c6fo01851c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fructus aurantii immaturus (FAI) is the dried young fruit of Citrus aurantium L. or Citrus sinensis L. Osbeck.
Collapse
Affiliation(s)
- Xing Yan Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Meng Lin Fan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Huai You Wang
- Division of Life Science and Center for Chinese Medicine
- The Hong Kong University of Science and Technology
- China
| | - Bo yang Yu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Ji Hua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- China Pharmaceutical University
- Nanjing 211198
- China
| |
Collapse
|
61
|
Perez-Ternero C, Macià A, de Sotomayor MA, Parrado J, Motilva MJ, Herrera MD. Bioavailability of the ferulic acid-derived phenolic compounds of a rice bran enzymatic extract and their activity against superoxide production. Food Funct 2017; 8:2165-2174. [DOI: 10.1039/c7fo00243b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rice bran is an exceptional source of such antioxidant molecules as γ-oryzanol and ferulic acid, but their bioavailability and metabolism within this matrix remain unknown.
Collapse
Affiliation(s)
| | - Alba Macià
- Food Technology Department
- XaRTA-TPV
- Agrotecnio Center
- Escola Tècnica Superior d'Enginyeria Agrària
- University of Lleida
| | | | - Juan Parrado
- Department of Biochemistry
- School of Pharmacy
- University of Seville
- 41012 Seville
- Spain
| | - Maria-Jose Motilva
- Food Technology Department
- XaRTA-TPV
- Agrotecnio Center
- Escola Tècnica Superior d'Enginyeria Agrària
- University of Lleida
| | | |
Collapse
|
62
|
Sheflin AM, Melby CL, Carbonero F, Weir TL. Linking dietary patterns with gut microbial composition and function. Gut Microbes 2016; 8:113-129. [PMID: 27960648 PMCID: PMC5390824 DOI: 10.1080/19490976.2016.1270809] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Emerging insights have implicated the gut microbiota as an important factor in the maintenance of human health. Although nutrition research has focused on how direct interactions between dietary components and host systems influence human health, it is becoming increasingly important to consider nutrient effects on the gut microbiome for a more complete picture. Understanding nutrient-host-microbiome interactions promises to reveal novel mechanisms of disease etiology and progression, offers new disease prevention strategies and therapeutic possibilities, and may mandate alternative criteria to evaluate the safety of food ingredients. Here we review the current literature on diet effects on the microbiome and the generation of microbial metabolites of dietary constituents that may influence human health. We conclude with a discussion of the relevance of these studies to nutrition and public health and summarize further research needs required to realize the potential of exploiting diet-microbiota interactions for improved health.
Collapse
Affiliation(s)
- Amy M. Sheflin
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, USA
| | - Christopher L. Melby
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Franck Carbonero
- Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| | - Tiffany L. Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA,CONTACT Tiffany L. Weir 210 Gifford Building, 1571 Campus Delivery, Colorado State University, Fort Collins, CO 80521-1571, USA
| |
Collapse
|
63
|
Catabolism of citrus flavanones by the probiotics Bifidobacterium longum and Lactobacillus rhamnosus. Eur J Nutr 2016; 57:231-242. [PMID: 27722779 DOI: 10.1007/s00394-016-1312-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/22/2015] [Indexed: 12/17/2022]
Abstract
PURPOSE Orange juice (OJ) flavanones undergo limited absorption in the upper gastrointestinal tract and reach the colon where they are transformed by the microbiota prior to absorption. This study investigated the ability of two probiotic bacteria, Bifidobacterium longum R0175 and Lactobacillus rhamnosus subsp. Rhamnosus NCTC 10302 to catabolise OJ flavanones. METHODS The bacteria were incubated with hesperetin-7-O-rutinoside, naringenin-7-O-rutinoside, hesperetin and naringenin, and the culture medium and intracellular cell extracts were collected at intervals over a 48 h of incubation period. The flavanones and their phenolic acid catabolites were identified and quantified by HPLC-HR-MS. RESULTS Both probiotics were able to subject hesperetin to ring fission yielding 3-(3'-hydroxy-4'-methoxyphenyl)propionic acid which was subsequently demethylated producing 3-(3',4'-dihydroxyphenyl)propionic acid and then via successive dehydroxylations converted to 3-(3'-hydroxyphenyl)propionic acid and 3-(phenyl)propionic acid. Incubation of both bacteria with naringenin resulted in its conversion to 3-(4'-hydroxyphenyl)propionic acid which underwent dehydroxylation yielding 3-(phenyl)propionic acid. In addition, only L. rhamnosus exhibited rhamnosidase and glucosidase activity and unlike B. longum, which was able to convert hesperetin-7-O-rutinoside and naringenin-7-O-rutinoside to their respective aglycones. The aglycones were then subjected to ring fission and further catabolised in a similar manner to that described above. The flavanones and their catabolites were found in the culture medium but not accumulated in the bacterial cells. CONCLUSIONS These findings demonstrate the enzymatic potential of single strains of bifidobacterium and lactobacillus which may be involved in the colonic catabolism of OJ flavanones in vivo.
Collapse
|
64
|
Aschoff JK, Riedl KM, Cooperstone JL, Högel J, Bosy-Westphal A, Schwartz SJ, Carle R, Schweiggert RM. Urinary excretion of Citrus flavanones and their major catabolites after consumption of fresh oranges and pasteurized orange juice: A randomized cross-over study. Mol Nutr Food Res 2016; 60:2602-2610. [PMID: 27488098 DOI: 10.1002/mnfr.201600315] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/24/2016] [Accepted: 07/29/2016] [Indexed: 01/16/2023]
Abstract
SCOPE Orange juice contains flavanones including hesperidin and narirutin, albeit at lower concentrations as compared to orange fruit. Therefore, we compared bioavailability and colonic catabolism of flavanones from orange juice to a 2.4-fold higher dose from fresh oranges. METHODS AND RESULTS Following a randomized two-way cross-over design, 12 healthy subjects consumed a test meal comprising either fresh oranges or pasteurized orange juice, delivering 1774 and 751 μmol of total Citrus flavanones, respectively. Deglucuronidated and desulfated hesperetin, naringenin, and the flavanone catabolites 3-(3'-hydroxy-4'-methoxyphenyl)propionic acid, 3-(3'-hydroxyphenyl)hydracrylic acid, 4-hydroxyhippuric acid, and hippuric acid were quantitated in 24-h urine by UHPLC-MS/MS. Differences in urinary hesperetin excretion were found to be nonsignificant (p = 0.5209) both after consumption of orange fruit (21.6 ± 8.0 μmol) and juice (18.3 ± 7.2 μmol). By analogy, postprandial flavanone catabolite excretions were highly similar between treatments. Excretion of 3-(3'-hydroxy-4'-methoxyphenyl)propionic acid was inversely related to that of hesperetin, illustrating the catabolite/precursor relationship. CONCLUSION Despite 2.4-fold higher doses, excretion of flavanones from ingested fresh orange fruit did not differ from that following orange juice consumption, possibly due to a saturation of absorption or their entrapment in the fiber-rich matrix of the fruit.
Collapse
Affiliation(s)
- Julian K Aschoff
- Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Ken M Riedl
- Department of Food Science & Technology, The Ohio State University, Columbus, OH, USA
| | - Jessica L Cooperstone
- Department of Food Science & Technology, The Ohio State University, Columbus, OH, USA
| | - Josef Högel
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Anja Bosy-Westphal
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Steven J Schwartz
- Department of Food Science & Technology, The Ohio State University, Columbus, OH, USA
| | - Reinhold Carle
- Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany.,Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ralf M Schweiggert
- Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
65
|
Pereira-Caro G, Ludwig IA, Polyviou T, Malkova D, García A, Moreno-Rojas JM, Crozier A. Identification of Plasma and Urinary Metabolites and Catabolites Derived from Orange Juice (Poly)phenols: Analysis by High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5724-5735. [PMID: 27339035 DOI: 10.1021/acs.jafc.6b02088] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Orange juice is a rich source of (poly)phenols, in particular, the flavanones hesperetin-7-O-rutinoside and naringenin-7-O-rutinoside. Following the acute consumption of 500 mL of orange juice containing 398 μmol of (poly)phenols by 12 volunteers, 0-24 h plasma and urine samples were analyzed by targeted high-performance liquid chromatography-high-resolution mass spectrometry in order to identify flavanone metabolites and phenolic acid and aromatic catabolites. A total of 19 flavanone metabolites-comprising di-O-glucuronide, O-glucuronide, O-glucuronyl-sulfate, and sulfate derivatives of hesperetin, naringenin, and eriodictyol-and 65 microbial-derived phenolic catabolites, such as phenylpropanoid, phenylpropionic, phenylacetic, benzoic, and hydroxycarboxylic acids and benzenetriol and benzoylglycine derivatives, including free phenolics and phase II sulfate, glucuronide, and methyl metabolites, were identified or partially identified in plasma and/or urine samples. The data obtained provide a detailed evaluation of the fate of orange juice (poly)phenols as they pass through the gastrointestinal tract and are absorbed into the circulatory system prior to renal excretion. Potential pathways for these conversions are proposed.
Collapse
Affiliation(s)
- Gema Pereira-Caro
- Postharvest Technology and Agrifood Industry Area, Andalusian Institute of Agricultural and Fishery Research and Training (IFAPA) Alameda del Obispo, 14004 Córdoba, Spain
| | - Iziar A Ludwig
- Department of Food Technology, Universitat de Lleida , 25198 Lleida, Spain
| | - Thelma Polyviou
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Science, and School of Medicine, University of Glasgow , Glasgow G12 8QQ, U.K
| | - Dalia Malkova
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Science, and School of Medicine, University of Glasgow , Glasgow G12 8QQ, U.K
| | - Ada García
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Science, and School of Medicine, University of Glasgow , Glasgow G12 8QQ, U.K
| | - José Manuel Moreno-Rojas
- Postharvest Technology and Agrifood Industry Area, Andalusian Institute of Agricultural and Fishery Research and Training (IFAPA) Alameda del Obispo, 14004 Córdoba, Spain
| | - Alan Crozier
- Department of Nutrition, University of California-Davis , Davis, California 95616-5270, United States
| |
Collapse
|
66
|
Duque ALRF, Monteiro M, Adorno MAT, Sakamoto IK, Sivieri K. An exploratory study on the influence of orange juice on gut microbiota using a dynamic colonic model. Food Res Int 2016. [DOI: 10.1016/j.foodres.2016.03.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
67
|
Martínez-Huélamo M, Tulipani S, Jáuregui O, Valderas-Martinez P, Vallverdú-Queralt A, Estruch R, Torrado X, Lamuela-Raventós RM. Sensitive and Rapid UHPLC-MS/MS for the Analysis of Tomato Phenolics in Human Biological Samples. Molecules 2015; 20:20409-25. [PMID: 26580589 PMCID: PMC6332008 DOI: 10.3390/molecules201119702] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/19/2015] [Accepted: 11/04/2015] [Indexed: 11/21/2022] Open
Abstract
An UHPLC-MS/MS method for the quantification of tomato phenolic metabolites in human fluids was optimized and validated, and then applied in a pilot dietary intervention study with healthy volunteers. A 5-fold gain in speed (3.5 min of total run); 7-fold increase in MS sensitivity and 2-fold greater efficiency (50% peak width reduction) were observed when comparing the proposed method with the reference-quality HPLC-MS/MS system, whose assay performance has been previously documented. The UHPLC-MS/MS method led to an overall improvement in the limits of detection (LOD) and quantification (LOQ) for all the phenolic compounds studied. The recoveries ranged between 68% and 100% in urine and 61% and 100% in plasma. The accuracy; intra- and interday precision; and stability met with the acceptance criteria of the AOAC International norms. Due to the improvements in the analytical method; the total phenolic metabolites detected in plasma and urine in the pilot intervention study were 3 times higher than those detected by HPLC-MS/MS. Comparing with traditional methods; which require longer time of analysis; the methodology described is suitable for the analysis of phenolic compounds in a large number of plasma and urine samples in a reduced time frame.
Collapse
Affiliation(s)
- Miriam Martínez-Huélamo
- Department of Nutrition and Food Science-XARTA-INSA, School of Pharmacy, University of Barcelona, Barcelona 08028, Spain.
- Centre for Biomedical Network Research on the Pathophysiology of Obesity and Nutrition (CIBEROBN). Carlos III Health Institute, Madrid 28029, Spain.
| | - Sara Tulipani
- Biomedical Research Institute (IBIMA), Service of Endocrinology and Nutrition, Hospital Virgen de la Victoria, Teatinos Campus, University of Malaga, Malaga 29010, Spain.
| | - Olga Jáuregui
- Scientific and Technological Centers of the University of Barcelona (CCiTUB), Barcelona 08028, Spain.
| | - Palmira Valderas-Martinez
- Centre for Biomedical Network Research on the Pathophysiology of Obesity and Nutrition (CIBEROBN). Carlos III Health Institute, Madrid 28029, Spain.
- Department of Internal Medicine, Hospital Clinic, Institute of Biomedical Investigation August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona 08036, Spain.
| | - Anna Vallverdú-Queralt
- Centre for Biomedical Network Research on the Pathophysiology of Obesity and Nutrition (CIBEROBN). Carlos III Health Institute, Madrid 28029, Spain.
- INRA, UMR1083 Sciences for Oenology, 2 place Pierre Viala, Montpellier Cedex 34060, France.
| | - Ramón Estruch
- Centre for Biomedical Network Research on the Pathophysiology of Obesity and Nutrition (CIBEROBN). Carlos III Health Institute, Madrid 28029, Spain.
- Department of Internal Medicine, Hospital Clinic, Institute of Biomedical Investigation August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona 08036, Spain.
| | - Xavier Torrado
- Department of Nutrition and Food Science-XARTA-INSA, School of Pharmacy, University of Barcelona, Barcelona 08028, Spain.
| | - Rosa M Lamuela-Raventós
- Department of Nutrition and Food Science-XARTA-INSA, School of Pharmacy, University of Barcelona, Barcelona 08028, Spain.
- Centre for Biomedical Network Research on the Pathophysiology of Obesity and Nutrition (CIBEROBN). Carlos III Health Institute, Madrid 28029, Spain.
| |
Collapse
|
68
|
Mosele JI, Macià A, Motilva MJ. Metabolic and Microbial Modulation of the Large Intestine Ecosystem by Non-Absorbed Diet Phenolic Compounds: A Review. Molecules 2015; 20:17429-68. [PMID: 26393570 PMCID: PMC6331829 DOI: 10.3390/molecules200917429] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 08/31/2015] [Accepted: 09/11/2015] [Indexed: 12/11/2022] Open
Abstract
Phenolic compounds represent a diverse group of phytochemicals whose intake is associated with a wide spectrum of health benefits. As consequence of their low bioavailability, most of them reach the large intestine where, mediated by the action of local microbiota, a series of related microbial metabolites are accumulated. In the present review, gut microbial transformations of non-absorbed phenolic compounds are summarized. Several studies have reached a general consensus that unbalanced diets are associated with undesirable changes in gut metabolism that could be detrimental to intestinal health. In terms of explaining the possible effects of non-absorbed phenolic compounds, we have also gathered information regarded their influence on the local metabolism. For this purpose, a number of issues are discussed. Firstly, we consider the possible implications of phenolic compounds in the metabolism of colonic products, such as short chain fatty acids (SCFA), sterols (cholesterol and bile acids), and microbial products of non-absorbed proteins. Due to their being recognized as affective antioxidant and anti-inflammatory agents, the ability of phenolic compounds to counteract or suppress pro-oxidant and/or pro-inflammatory responses, triggered by bowel diseases, is also presented. The modulation of gut microbiota through dietetic maneuvers including phenolic compounds is also commented on. Although the available data seems to assume positive effects in terms of gut health protection, it is still insufficient for solid conclusions to be extracted, basically due to the lack of human trials to confirm the results obtained by the in vitro and animal studies. We consider that more emphasis should be focused on the study of phenolic compounds, particularly in their microbial metabolites, and their power to influence different aspects of gut health.
Collapse
Affiliation(s)
- Juana I Mosele
- Food Technology Department, Agrotecnio Research Center, University of Lleida, Av/Alcalde Rovira Roure 191, 25198-Lleida, Spain.
| | - Alba Macià
- Food Technology Department, Agrotecnio Research Center, University of Lleida, Av/Alcalde Rovira Roure 191, 25198-Lleida, Spain.
| | - Maria-José Motilva
- Food Technology Department, Agrotecnio Research Center, University of Lleida, Av/Alcalde Rovira Roure 191, 25198-Lleida, Spain.
| |
Collapse
|
69
|
Pereira-Caro G, Oliver CM, Weerakkody R, Singh T, Conlon M, Borges G, Sanguansri L, Lockett T, Roberts SA, Crozier A, Augustin MA. Chronic administration of a microencapsulated probiotic enhances the bioavailability of orange juice flavanones in humans. Free Radic Biol Med 2015; 84:206-214. [PMID: 25801290 DOI: 10.1016/j.freeradbiomed.2015.03.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/04/2015] [Accepted: 03/11/2015] [Indexed: 11/18/2022]
Abstract
Orange juice (OJ) flavanones are bioactive polyphenols that are absorbed principally in the large intestine. Ingestion of probiotics has been associated with favorable changes in the colonic microflora. The present study examined the acute and chronic effects of orally administered Bifidobacterium longum R0175 on the colonic microflora and bioavailability of OJ flavanones in healthy volunteers. In an acute study volunteers drank OJ with and without the microencapsulated probiotic, whereas the chronic effects were examined when OJ was consumed after daily supplementation with the probiotic over 4 weeks. Bioavailability, assessed by 0-24h urinary excretion, was similar when OJ was consumed with and without acute probiotic intake. Hesperetin-O-glucuronides, naringenin-O-glucuronides, and hesperetin-3'-O-sulfate were the main urinary flavanone metabolites. The overall urinary excretion of these metabolites after OJ ingestion and acute probiotic intake corresponded to 22% of intake, whereas excretion of key colon-derived phenolic and aromatic acids was equivalent to 21% of the ingested OJ (poly)phenols. Acute OJ consumption after chronic probiotic intake over 4 weeks resulted in the excretion of 27% of flavanone intake, and excretion of selected phenolic acids also increased significantly to 43% of (poly)phenol intake, corresponding to an overall bioavailability of 70%. Neither the probiotic bacterial profiles of stools nor the stool moisture, weight, pH, or levels of short-chain fatty acids and phenols differed significantly between treatments. These findings highlight the positive effect of chronic, but not acute, intake of microencapsulated B. longum R0175 on the bioavailability of OJ flavanones.
Collapse
Affiliation(s)
- Gema Pereira-Caro
- Department of Technology, Postharvest and Food Industry, IFAPA-Alameda del Obispo, Córdoba, Spain
| | | | | | - Tanoj Singh
- CSIRO Food & Nutrition Flagship, Werribee, VIC, Australia
| | - Michael Conlon
- CSIRO Food & Nutrition Flagship, Adelaide, SA, Australia
| | - Gina Borges
- Department of Nutrition, University of California at Davis, Davis, CA 95616, USA
| | - Luz Sanguansri
- CSIRO Food & Nutrition Flagship, Werribee, VIC, Australia
| | - Trevor Lockett
- CSIRO Food & Nutrition Flagship, North Ryde, NSW, Australia
| | - Susan A Roberts
- Global Scientific and Regulatory Affairs, The Coca-Cola Company, Atlanta, GA 30313, USA
| | - Alan Crozier
- Department of Nutrition, University of California at Davis, Davis, CA 95616, USA
| | | |
Collapse
|