51
|
Cui S, Tang T, Su Q, Wang Y, Shu Z, Yang W, Gong X. Radiomic nomogram based on MRI to predict grade of branching type intraductal papillary mucinous neoplasms of the pancreas: a multicenter study. Cancer Imaging 2021; 21:26. [PMID: 33750453 PMCID: PMC7942000 DOI: 10.1186/s40644-021-00395-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background Accurate diagnosis of high-grade branching type intraductal papillary mucinous neoplasms (BD-IPMNs) is challenging in clinical setting. We aimed to construct and validate a nomogram combining clinical characteristics and radiomic features for the preoperative prediction of low and high-grade in BD-IPMNs. Methods Two hundred and two patients from three medical centers were enrolled. The high-grade BD-IPMN group comprised patients with high-grade dysplasia and invasive carcinoma in BD-IPMN (n = 50). The training cohort comprised patients from the first medical center (n = 103), and the external independent validation cohorts comprised patients from the second and third medical centers (n = 48 and 51). Within 3 months prior to surgery, all patients were subjected to magnetic resonance examination. The volume of interest was delineated on T1-weighted (T1-w) imaging, T2-weighted (T2-w) imaging, and contrast-enhanced T1-weighted (CET1-w) imaging, respectively, on each tumor slice. Quantitative image features were extracted using MITK software (G.E.). The Mann-Whitney U test or independent-sample t-test, and LASSO regression, were applied for data dimension reduction, after which a radiomic signature was constructed for grade assessment. Based on the training cohort, we developed a combined nomogram model incorporating clinical variables and the radiomic signature. Decision curve analysis (DCA), a receiver operating characteristic curve (ROC), a calibration curve, and the area under the ROC curve (AUC) were used to evaluate the utility of the constructed model based on the external independent validation cohorts. Results To predict tumor grade, we developed a nine-feature-combined radiomic signature. For the radiomic signature, the AUC values of high-grade disease were 0.836 in the training cohort, 0.811 in external validation cohort 1, and 0.822 in external validation cohort 2. The CA19–9 level and main pancreatic duct size were identified as independent parameters of high-grade of BD-IPMNs using multivariate logistic regression analysis. The CA19–9 level and main pancreatic duct size were then used to construct the radiomic nomogram. Using the radiomic nomogram, the high-grade disease-associated AUC values were 0.903 (training cohort), 0.884 (external validation cohort 1), and 0.876 (external validation cohort 2). The clinical utility of the developed nomogram was verified using the calibration curve and DCA. Conclusions The developed radiomic nomogram model could effectively distinguish high-grade patients with BD-IPMNs preoperatively. This preoperative identification might improve treatment methods and promote personalized therapy in patients with BD-IPMNs. Supplementary Information The online version contains supplementary material available at 10.1186/s40644-021-00395-6.
Collapse
Affiliation(s)
- Sijia Cui
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310000, China.,The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Tianyu Tang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Qiuming Su
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yajie Wang
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310000, China
| | - Zhenyu Shu
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310000, China
| | - Wei Yang
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310000, China.,Bengbu Medical College, Bengbu, 233000, China
| | - Xiangyang Gong
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310000, China. .,Institute of Artificial Intelligence and Remote Imaging, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
52
|
Chen PT, Chang D, Wu T, Wu MS, Wang W, Liao WC. Applications of artificial intelligence in pancreatic and biliary diseases. J Gastroenterol Hepatol 2021; 36:286-294. [PMID: 33624891 DOI: 10.1111/jgh.15380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 12/11/2022]
Abstract
The application of artificial intelligence (AI) in medicine has increased rapidly with respect to tasks including disease detection/diagnosis, risk stratification, and prognosis prediction. With recent advances in computing power and algorithms, AI has shown promise in taking advantage of vast electronic health data and imaging studies to supplement clinicians. Machine learning and deep learning are the most widely used AI methodologies for medical research and have been applied in pancreatobiliary diseases for which diagnosis and treatment selection are often complicated and require joint consideration of data from multiple sources. The aim of this review is to provide a concise introduction of the major AI methodologies and the current landscape of AI research in pancreatobiliary diseases.
Collapse
Affiliation(s)
- Po-Ting Chen
- Department of Medical Imaging, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Dawei Chang
- Institute of Applied Mathematical Sciences, National Taiwan University, Taipei, Taiwan
| | - Tinghui Wu
- Institute of Applied Mathematical Sciences, National Taiwan University, Taipei, Taiwan
| | - Ming-Shiang Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.,Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Weichung Wang
- Institute of Applied Mathematical Sciences, National Taiwan University, Taipei, Taiwan
| | - Wei-Chih Liao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.,Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
53
|
Si K, Xue Y, Yu X, Zhu X, Li Q, Gong W, Liang T, Duan S. Fully end-to-end deep-learning-based diagnosis of pancreatic tumors. Am J Cancer Res 2021; 11:1982-1990. [PMID: 33408793 PMCID: PMC7778580 DOI: 10.7150/thno.52508] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Artificial intelligence can facilitate clinical decision making by considering massive amounts of medical imaging data. Various algorithms have been implemented for different clinical applications. Accurate diagnosis and treatment require reliable and interpretable data. For pancreatic tumor diagnosis, only 58.5% of images from the First Affiliated Hospital and the Second Affiliated Hospital, Zhejiang University School of Medicine are used, increasing labor and time costs to manually filter out images not directly used by the diagnostic model. Methods: This study used a training dataset of 143,945 dynamic contrast-enhanced CT images of the abdomen from 319 patients. The proposed model contained four stages: image screening, pancreas location, pancreas segmentation, and pancreatic tumor diagnosis. Results: We established a fully end-to-end deep-learning model for diagnosing pancreatic tumors and proposing treatment. The model considers original abdominal CT images without any manual preprocessing. Our artificial-intelligence-based system achieved an area under the curve of 0.871 and a F1 score of 88.5% using an independent testing dataset containing 107,036 clinical CT images from 347 patients. The average accuracy for all tumor types was 82.7%, and the independent accuracies of identifying intraductal papillary mucinous neoplasm and pancreatic ductal adenocarcinoma were 100% and 87.6%, respectively. The average test time per patient was 18.6 s, compared with at least 8 min for manual reviewing. Furthermore, the model provided a transparent and interpretable diagnosis by producing saliency maps highlighting the regions relevant to its decision. Conclusions: The proposed model can potentially deliver efficient and accurate preoperative diagnoses that could aid the surgical management of pancreatic tumor.
Collapse
|
54
|
Gorris M, Hoogenboom SA, Wallace MB, van Hooft JE. Artificial intelligence for the management of pancreatic diseases. Dig Endosc 2021; 33:231-241. [PMID: 33065754 PMCID: PMC7898901 DOI: 10.1111/den.13875] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/29/2020] [Accepted: 10/11/2020] [Indexed: 12/16/2022]
Abstract
Novel artificial intelligence techniques are emerging in all fields of healthcare, including gastroenterology. The aim of this review is to give an overview of artificial intelligence applications in the management of pancreatic diseases. We performed a systematic literature search in PubMed and Medline up to May 2020 to identify relevant articles. Our results showed that the development of machine-learning based applications is rapidly evolving in the management of pancreatic diseases, guiding precision medicine in clinical, endoscopic and radiologic settings. Before implementation into clinical practice, further research should focus on the external validation of novel techniques, clarifying the accuracy and robustness of these models.
Collapse
Affiliation(s)
- Myrte Gorris
- Department of Gastroenterology and HepatologyAmsterdam Gastroenterology Endocrinology MetabolismAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Sanne A. Hoogenboom
- Department of Gastroenterology and HepatologyAmsterdam Gastroenterology Endocrinology MetabolismAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Michael B. Wallace
- Department of Gastroenterology and HepatologyMayo Clinic JacksonvilleJacksonvilleUSA
| | - Jeanin E. van Hooft
- Department of Gastroenterology and HepatologyAmsterdam Gastroenterology Endocrinology MetabolismAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Gastroenterology and HepatologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
55
|
Bartoli M, Barat M, Dohan A, Gaujoux S, Coriat R, Hoeffel C, Cassinotto C, Chassagnon G, Soyer P. CT and MRI of pancreatic tumors: an update in the era of radiomics. Jpn J Radiol 2020; 38:1111-1124. [PMID: 33085029 DOI: 10.1007/s11604-020-01057-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
Radiomics is a relatively new approach for image analysis. As a part of radiomics, texture analysis, which consists in extracting a great amount of quantitative data from original images, can be used to identify specific features that can help determining the actual nature of a pancreatic lesion and providing other information such as resectability, tumor grade, tumor response to neoadjuvant therapy or survival after surgery. In this review, the basic of radiomics, recent developments and the results of texture analysis using computed tomography and magnetic resonance imaging in the field of pancreatic tumors are presented. Future applications of radiomics, such as artificial intelligence, are discussed.
Collapse
Affiliation(s)
- Marion Bartoli
- Department of Radiology, Cochin Hospital, AP-HP, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Maxime Barat
- Department of Radiology, Cochin Hospital, AP-HP, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
- Université de Paris, Descartes-Paris 5, F-75006, Paris, France
| | - Anthony Dohan
- Department of Radiology, Cochin Hospital, AP-HP, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
- Université de Paris, Descartes-Paris 5, F-75006, Paris, France
| | - Sébastien Gaujoux
- Université de Paris, Descartes-Paris 5, F-75006, Paris, France
- Department of Abdominal Surgery, Cochin Hospital, AP-HP, 75014, Paris, France
| | - Romain Coriat
- Université de Paris, Descartes-Paris 5, F-75006, Paris, France
- Department of Gastroenterology, Cochin Hospital, AP-HP, 75014, Paris, France
| | - Christine Hoeffel
- Department of Radiology, Robert Debré Hospital, 51092, Reims, France
| | - Christophe Cassinotto
- Department of Radiology, CHU Montpellier, University of Montpellier, Saint-Éloi Hospital, 34000, Montpellier, France
| | - Guillaume Chassagnon
- Department of Radiology, Cochin Hospital, AP-HP, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
- Université de Paris, Descartes-Paris 5, F-75006, Paris, France
| | - Philippe Soyer
- Department of Radiology, Cochin Hospital, AP-HP, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France.
- Université de Paris, Descartes-Paris 5, F-75006, Paris, France.
| |
Collapse
|
56
|
Tobaly D, Santinha J, Sartoris R, Dioguardi Burgio M, Matos C, Cros J, Couvelard A, Rebours V, Sauvanet A, Ronot M, Papanikolaou N, Vilgrain V. CT-Based Radiomics Analysis to Predict Malignancy in Patients with Intraductal Papillary Mucinous Neoplasm (IPMN) of the Pancreas. Cancers (Basel) 2020; 12:cancers12113089. [PMID: 33114028 PMCID: PMC7690711 DOI: 10.3390/cancers12113089] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/17/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
To assess the performance of CT-based radiomics analysis in differentiating benign from malignant intraductal papillary mucinous neoplasms of the pancreas (IPMN), preoperative scans of 408 resected patients with IPMN were retrospectively analyzed. IPMNs were classified as benign (low-grade dysplasia, n = 181), or malignant (high grade, n = 128, and invasive, n = 99). Clinicobiological data were reported. Patients were divided into a training cohort (TC) of 296 patients and an external validation cohort (EVC) of 112 patients. After semi-automatic tumor segmentation, PyRadiomics was used to extract radiomics features. A multivariate model was developed using a logistic regression approach. In the training cohort, 85/107 radiomics features were significantly different between patients with benign and malignant IPMNs. Unsupervised clustering analysis revealed four distinct clusters of patients with similar radiomics features patterns with malignancy as the most significant association. The multivariate model differentiated benign from malignant tumors in TC with an area under the ROC curve (AUC) of 0.84, sensitivity (Se) of 0.82, specificity (Spe) of 0.74, and in EVC with an AUC of 0.71, Se of 0.69, Spe of 0.57. This large study confirms the high diagnostic performance of preoperative CT-based radiomics analysis to differentiate between benign from malignant IPMNs.
Collapse
Affiliation(s)
- David Tobaly
- Service De Radiologie, Assistance Publique-Hôpitaux De Paris, APHP. Nord, Hôpital Beaujon, 92110 Clichy, France; (R.S.); (M.D.B.); (M.R.)
- Correspondence: (D.T.); (V.V.)
| | - Joao Santinha
- Computational Clinical Imaging Group, Champalimaud Research, Champalimaud Foundation, Avenida Brasília, 1400-038 Lisbon, Portugal;
- Instituto de Telecomunicações, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Riccardo Sartoris
- Service De Radiologie, Assistance Publique-Hôpitaux De Paris, APHP. Nord, Hôpital Beaujon, 92110 Clichy, France; (R.S.); (M.D.B.); (M.R.)
- Centre De Recherche De L’inflammation (Cri), Inserm U1149, Université De Paris, 75018 Paris, France
| | - Marco Dioguardi Burgio
- Service De Radiologie, Assistance Publique-Hôpitaux De Paris, APHP. Nord, Hôpital Beaujon, 92110 Clichy, France; (R.S.); (M.D.B.); (M.R.)
- Centre De Recherche De L’inflammation (Cri), Inserm U1149, Université De Paris, 75018 Paris, France
| | - Celso Matos
- Radiology Department, Champalimaud Foundation, Avenida Brasília, 1400-038 Lisbon, Portugal;
- Champalimaud Research, Champalimaud Foundation, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Jérôme Cros
- Service D’Anatomopathologie, Assistance Publique-Hôpitaux De Paris, APHP.Nord, Hôpital Beaujon, 92110 Clichy, France;
| | - Anne Couvelard
- Service D’Anatomopathologie, Assistance Publique-Hôpitaux De Paris, APHP.Nord, Hôpital Bichat, 75018 Paris, France;
| | - Vinciane Rebours
- Service De Pancréatologie, Assistance Publique-Hôpitaux De Paris, APHP.Nord, Hôpital Beaujon, 92110 Clichy, France;
| | - Alain Sauvanet
- Service De Chirurgie HPB, Assistance Publique-Hôpitaux De Paris, APHP.Nord, Hôpital Beaujon, 92110 Clichy, France;
| | - Maxime Ronot
- Service De Radiologie, Assistance Publique-Hôpitaux De Paris, APHP. Nord, Hôpital Beaujon, 92110 Clichy, France; (R.S.); (M.D.B.); (M.R.)
- Centre De Recherche De L’inflammation (Cri), Inserm U1149, Université De Paris, 75018 Paris, France
| | - Nikolaos Papanikolaou
- Computational Clinical Imaging Group, Champalimaud Research, Champalimaud Foundation, 1400-038 Lisbon, Portugal;
| | - Valérie Vilgrain
- Service De Radiologie, Assistance Publique-Hôpitaux De Paris, APHP. Nord, Hôpital Beaujon, 92110 Clichy, France; (R.S.); (M.D.B.); (M.R.)
- Centre De Recherche De L’inflammation (Cri), Inserm U1149, Université De Paris, 75018 Paris, France
- Correspondence: (D.T.); (V.V.)
| |
Collapse
|
57
|
Zhang Y, Lobo-Mueller EM, Karanicolas P, Gallinger S, Haider MA, Khalvati F. Prognostic Value of Transfer Learning Based Features in Resectable Pancreatic Ductal Adenocarcinoma. Front Artif Intell 2020; 3:550890. [PMID: 33733206 PMCID: PMC7861273 DOI: 10.3389/frai.2020.550890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/24/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most aggressive cancers with an extremely poor prognosis. Radiomics has shown prognostic ability in multiple types of cancer including PDAC. However, the prognostic value of traditional radiomics pipelines, which are based on hand-crafted radiomic features alone is limited. Methods: Convolutional neural networks (CNNs) have been shown to outperform radiomics models in computer vision tasks. However, training a CNN from scratch requires a large sample size which is not feasible in most medical imaging studies. As an alternative solution, CNN-based transfer learning models have shown the potential for achieving reasonable performance using small datasets. In this work, we developed and validated a CNN-based transfer learning model for prognostication of overall survival in PDAC patients using two independent resectable PDAC cohorts. Results: The proposed transfer learning-based prognostication model for overall survival achieved the area under the receiver operating characteristic curve of 0.81 on the test cohort, which was significantly higher than that of the traditional radiomics model (0.54). To further assess the prognostic value of the models, the predicted probabilities of death generated from the two models were used as risk scores in a univariate Cox Proportional Hazard model and while the risk score from the traditional radiomics model was not associated with overall survival, the proposed transfer learning-based risk score had significant prognostic value with hazard ratio of 1.86 (95% Confidence Interval: 1.15-3.53, p-value: 0.04). Conclusions: This result suggests that transfer learning-based models may significantly improve prognostic performance in typical small sample size medical imaging studies.
Collapse
Affiliation(s)
- Yucheng Zhang
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Edrise M. Lobo-Mueller
- Department of Diagnostic Imaging and Department of Oncology, Faculty of Medicine and Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Paul Karanicolas
- Department of Surgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Masoom A. Haider
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Joint Department of Medical Imaging, Sinai Health System, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Farzad Khalvati
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
58
|
Chu LC, Park S, Kawamoto S, Yuille AL, Hruban RH, Fishman EK. Pancreatic Cancer Imaging: A New Look at an Old Problem. Curr Probl Diagn Radiol 2020; 50:540-550. [PMID: 32988674 DOI: 10.1067/j.cpradiol.2020.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022]
Abstract
Computed tomography is the most commonly used imaging modality to detect and stage pancreatic cancer. Previous advances in pancreatic cancer imaging have focused on optimizing image acquisition parameters and reporting standards. However, current state-of-the-art imaging approaches still misdiagnose some potentially curable pancreatic cancers and do not provide prognostic information or inform optimal management strategies beyond stage. Several recent developments in pancreatic cancer imaging, including artificial intelligence and advanced visualization techniques, are rapidly changing the field. The purpose of this article is to review how these recent advances have the potential to revolutionize pancreatic cancer imaging.
Collapse
Affiliation(s)
- Linda C Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD.
| | - Seyoun Park
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Satomi Kawamoto
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alan L Yuille
- Department of Computer Science, Johns Hopkins University, Baltimore, MD
| | - Ralph H Hruban
- Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elliot K Fishman
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
59
|
Jacobsen MC, Thrower SL. Multi-energy computed tomography and material quantification: Current barriers and opportunities for advancement. Med Phys 2020; 47:3752-3771. [PMID: 32453879 PMCID: PMC8495770 DOI: 10.1002/mp.14241] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
Computed tomography (CT) technology has rapidly evolved since its introduction in the 1970s. It is a highly important diagnostic tool for clinicians as demonstrated by the significant increase in utilization over several decades. However, much of the effort to develop and advance CT applications has been focused on improving visual sensitivity and reducing radiation dose. In comparison to these areas, improvements in quantitative CT have lagged behind. While this could be a consequence of the technological limitations of conventional CT, advanced dual-energy CT (DECT) and photon-counting detector CT (PCD-CT) offer new opportunities for quantitation. Routine use of DECT is becoming more widely available and PCD-CT is rapidly developing. This review covers efforts to address an unmet need for improved quantitative imaging to better characterize disease, identify biomarkers, and evaluate therapeutic response, with an emphasis on multi-energy CT applications. The review will primarily discuss applications that have utilized quantitative metrics using both conventional and DECT, such as bone mineral density measurement, evaluation of renal lesions, and diagnosis of fatty liver disease. Other topics that will be discussed include efforts to improve quantitative CT volumetry and radiomics. Finally, we will address the use of quantitative CT to enhance image-guided techniques for surgery, radiotherapy and interventions and provide unique opportunities for development of new contrast agents.
Collapse
Affiliation(s)
- Megan C. Jacobsen
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sara L. Thrower
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
60
|
Machicado JD, Koay EJ, Krishna SG. Radiomics for the Diagnosis and Differentiation of Pancreatic Cystic Lesions. Diagnostics (Basel) 2020; 10:505. [PMID: 32708348 PMCID: PMC7399814 DOI: 10.3390/diagnostics10070505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Radiomics, also known as quantitative imaging or texture analysis, involves extracting a large number of features traditionally unmeasured in conventional radiological cross-sectional images and converting them into mathematical models. This review describes this approach and its use in the evaluation of pancreatic cystic lesions (PCLs). This discipline has the potential of more accurately assessing, classifying, risk stratifying, and guiding the management of PCLs. Existing studies have provided important insight into the role of radiomics in managing PCLs. Although these studies are limited by the use of retrospective design, single center data, and small sample sizes, radiomic features in combination with clinical data appear to be superior to the current standard of care in differentiating cyst type and in identifying mucinous PCLs with high-grade dysplasia. Combining radiomic features with other novel endoscopic diagnostics, including cyst fluid molecular analysis and confocal endomicroscopy, can potentially optimize the predictive accuracy of these models. There is a need for multicenter prospective studies to elucidate the role of radiomics in the management of PCLs.
Collapse
Affiliation(s)
- Jorge D. Machicado
- Division of Gastroenterology and Hepatology, Mayo Clinic Heath System, Eau Claire, WI 54703, USA;
| | - Eugene J. Koay
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Somashekar G. Krishna
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
61
|
Polk SL, Choi JW, McGettigan MJ, Rose T, Ahmed A, Kim J, Jiang K, Balagurunathan Y, Qi J, Farah PT, Rathi A, Permuth JB, Jeong D. Multiphase computed tomography radiomics of pancreatic intraductal papillary mucinous neoplasms to predict malignancy. World J Gastroenterol 2020; 26:3458-3471. [PMID: 32655269 PMCID: PMC7327792 DOI: 10.3748/wjg.v26.i24.3458] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/09/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intraductal papillary mucinous neoplasms (IPMNs) are non-invasive pancreatic precursor lesions that can potentially develop into invasive pancreatic ductal adenocarcinoma. Currently, the International Consensus Guidelines (ICG) for IPMNs provides the basis for evaluating suspected IPMNs on computed tomography (CT) imaging. Despite using the ICG, it remains challenging to accurately predict whether IPMNs harbor high grade or invasive disease which would warrant surgical resection. A supplementary quantitative radiological tool, radiomics, may improve diagnostic accuracy of radiological evaluation of IPMNs. We hypothesized that using CT whole lesion radiomics features in conjunction with the ICG could improve the diagnostic accuracy of predicting IPMN histology.
AIM To evaluate whole lesion CT radiomic analysis of IPMNs for predicting malignant histology compared to International Consensus Guidelines.
METHODS Fifty-one subjects who had pancreatic surgical resection at our institution with histology demonstrating IPMN and available preoperative CT imaging were included in this retrospective cohort. Whole lesion semi-automated segmentation was performed on each preoperative CT using Healthmyne software (Healthmyne, Madison, WI). Thirty-nine relevant radiomic features were extracted from each lesion on each available contrast phase. Univariate analysis of the 39 radiomics features was performed for each contrast phase and values were compared between malignant and benign IPMN groups using logistic regression. Conventional quantitative and qualitative CT measurements were also compared between groups, via χ2 (categorical) and Mann Whitney U (continuous) variables.
RESULTS Twenty-nine subjects (15 males, age 71 ± 9 years) with high grade or invasive tumor histology comprised the "malignant" cohort, while 22 subjects (11 males, age 70 ± 7 years) with low grade tumor histology were included in the "benign" cohort. Radiomic analysis showed 18/39 precontrast, 19/39 arterial phase, and 21/39 venous phase features differentiated malignant from benign IPMNs (P < 0.05). Multivariate analysis including only ICG criteria yielded two significant variables: thickened and enhancing cyst wall and enhancing mural nodule < 5 mm with an AUC (95%CI) of 0.817 (0.709-0.926). Multivariable post contrast radiomics achieved an AUC (95%CI) of 0.87 (0.767-0.974) for a model including arterial phase radiomics features and 0.834 (0.716-0.953) for a model including venous phase radiomics features. Combined multivariable model including conventional variables and arterial phase radiomics features achieved an AUC (95%CI) of 0.93 (0.85-1.0) with a 5-fold cross validation AUC of 0.90.
CONCLUSION Multi-phase CT radiomics evaluation could play a role in improving predictive capability in diagnosing malignancy in IPMNs. Future larger studies may help determine the clinical significance of our findings.
Collapse
Affiliation(s)
- Stuart L Polk
- University of South Florida College of Medicine, Tampa, FL 33612, United States
| | - Jung W Choi
- Department of Diagnostic and Interventional Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - Melissa J McGettigan
- Department of Diagnostic and Interventional Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - Trevor Rose
- Department of Diagnostic and Interventional Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - Abraham Ahmed
- Department of Diagnostic and Interventional Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - Jongphil Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - Kun Jiang
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - Yoganand Balagurunathan
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - Jin Qi
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - Paola T Farah
- Department of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - Alisha Rathi
- Department of Radiology, University of Florida, Gainesville, FL 32610, United States
| | - Jennifer B Permuth
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - Daniel Jeong
- Department of Diagnostic and Interventional Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| |
Collapse
|
62
|
Chen BB. Artificial intelligence in pancreatic disease. Artif Intell Med Imaging 2020; 1:19-30. [DOI: 10.35711/aimi.v1.i1.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Bang-Bin Chen
- Department of Medical Imaging, National Taiwan University Hospital, Taipei 10016, Taiwan
- Department of Radiology, College of Medicine, National Taiwan University, Taipei 10016, Taiwan
| |
Collapse
|
63
|
Wang Z, Chen X, Wang J, Cui W, Ren S, Wang Z. Differentiating hypovascular pancreatic neuroendocrine tumors from pancreatic ductal adenocarcinoma based on CT texture analysis. Acta Radiol 2020; 61:595-604. [PMID: 31522519 DOI: 10.1177/0284185119875023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Hypovascular pancreatic neuroendocrine tumor is usually misdiagnosed as pancreatic ductal adenocarcinoma. Purpose To investigate the value of texture analysis in differentiating hypovascular pancreatic neuroendocrine tumors from pancreatic ductal adenocarcinoma on contrast-enhanced computed tomography (CT) images. Material and Methods Twenty-one patients with hypovascular pancreatic neuroendocrine tumors and 63 patients with pancreatic ductal adenocarcinomas were included in this study. All patients underwent preoperative unenhanced and dynamic contrast-enhanced CT examinations. Two radiologists independently and manually contoured the region of interest of each lesion using texture analysis software on pancreatic parenchymal and portal phase CT images. Multivariate logistic regression analysis was performed to identify significant features to differentiate hypovascular pancreatic neuroendocrine tumors from pancreatic ductal adenocarcinomas. Receiver operating characteristic curve analysis was performed to ascertain diagnostic ability. Results The following CT texture features were obtained to differentiate hypovascular pancreatic neuroendocrine tumors from pancreatic ductal adenocarcinomas: RMS (root mean square) (odds ratio [OR] = 0.50, P<0.001), Quantile50 (OR = 1.83, P<0.001), and sumAverage (OR = 0.92, P=0.007) in parenchymal images and “contrast” in portal phase images (OR = 6.08, P<0.001). The areas under the curves were 0.76 for RMS (sensitivity = 0.75, specificity = 0.67), 0.73 for Quantile50 (sensitivity = 0.60, specificity = 0.77), 0.70 for sumAverage (sensitivity = 0.65, specificity = 0.82), 0.85 for the combined texture features (sensitivity = 0.77, specificity = 0.85). Conclusion CT texture analysis may be helpful to differentiate hypovascular pancreatic neuroendocrine tumors from pancreatic ductal adenocarcinomas. The three combined texture features showed acceptable diagnostic performance.
Collapse
Affiliation(s)
- Zhonglan Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, PR China
- Department of Radiology, Nanjing Hospital of Chinese Medicine, Nanjing, Jiangsu Province, PR China
| | - Xiao Chen
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, PR China
| | - Jianhua Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, PR China
| | - Wenjing Cui
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, PR China
| | - Shuai Ren
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, PR China
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, PR China
| |
Collapse
|
64
|
Harrington KA, Williams TL, Lawrence SA, Chakraborty J, Al Efishat MA, Attiyeh MA, Askan G, Chou Y, Pulvirenti A, McIntyre CA, Gonen M, Basturk O, Balachandran VP, Kingham TP, D’Angelica MI, Jarnagin WR, Drebin JA, Do RK, Allen PJ, Simpson AL. Multimodal radiomics and cyst fluid inflammatory markers model to predict preoperative risk in intraductal papillary mucinous neoplasms. J Med Imaging (Bellingham) 2020; 7:031507. [PMID: 32613028 PMCID: PMC7315109 DOI: 10.1117/1.jmi.7.3.031507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose: Our paper contributes to the burgeoning field of surgical data science. Specifically, multimodal integration of relevant patient data is used to determine who should undergo a complex pancreatic resection. Intraductal papillary mucinous neoplasms (IPMNs) represent cystic precursor lesions of pancreatic cancer with varying risk for malignancy. We combine previously defined individual models of radiomic analysis of diagnostic computed tomography (CT) with protein markers extracted from the cyst fluid to create a unified prediction model to identify high-risk IPMNs. Patients with high-risk IPMN would be sent for resection, whereas patients with low-risk cystic lesions would be spared an invasive procedure. Approach: Retrospective analysis of prospectively acquired cyst fluid and CT scans was undertaken for this study. A predictive model combining clinical features with a cyst fluid inflammatory marker (CFIM) was applied to patient data. Quantitative imaging (QI) features describing radiomic patterns predictive of risk were extracted from scans. The CFIM model and QI model were combined into a single predictive model. An additional model was created with tumor-associated neutrophils (TANs) assessed by a pathologist at the time of resection. Results: Thirty-three patients were analyzed (7 high risk and 26 low risk). The CFIM model yielded an area under the curve (AUC) of 0.74. Adding the QI model improved performance with an AUC of 0.88. Combining the CFIM, QI, and TAN models further increased performance to an AUC of 0.98. Conclusions: Quantitative analysis of routinely acquired CT scans combined with CFIMs provides accurate prediction of risk of pancreatic cancer progression. Although a larger cohort is needed for validation, this model represents a promising tool for preoperative assessment of IPMN.
Collapse
Affiliation(s)
- Kate A. Harrington
- Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, United States
| | - Travis L. Williams
- Memorial Sloan Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, United States
| | - Sharon A. Lawrence
- Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, United States
| | - Jayasree Chakraborty
- Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, United States
| | | | - Marc A. Attiyeh
- Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, United States
| | - Gokce Askan
- Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, United States
| | - Yuting Chou
- Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, United States
| | - Alessandra Pulvirenti
- Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, United States
| | - Caitlin A. McIntyre
- Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, United States
| | - Mithat Gonen
- Memorial Sloan Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, United States
| | - Olca Basturk
- Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, United States
| | - Vinod P. Balachandran
- Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, United States
| | - T. Peter Kingham
- Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, United States
| | - Michael I. D’Angelica
- Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, United States
| | - William R. Jarnagin
- Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, United States
| | - Jeffrey A. Drebin
- Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, United States
| | - Richard K. Do
- Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, United States
| | - Peter J. Allen
- Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, United States
| | - Amber L. Simpson
- Queen’s University, School of Computing, Kingston, Ontario, Canada
| |
Collapse
|
65
|
Differentiating autoimmune pancreatitis from pancreatic ductal adenocarcinoma with CT radiomics features. Diagn Interv Imaging 2020; 101:555-564. [PMID: 32278586 DOI: 10.1016/j.diii.2020.03.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE The purpose of this study was to determine whether computed tomography (CT)-based machine learning of radiomics features could help distinguish autoimmune pancreatitis (AIP) from pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS Eighty-nine patients with AIP (65 men, 24 women; mean age, 59.7±13.9 [SD] years; range: 21-83 years) and 93 patients with PDAC (68 men, 25 women; mean age, 60.1±12.3 [SD] years; range: 36-86 years) were retrospectively included. All patients had dedicated dual-phase pancreatic protocol CT between 2004 and 2018. Thin-slice images (0.75/0.5mm thickness/increment) were compared with thick-slices images (3 or 5mm thickness/increment). Pancreatic regions involved by PDAC or AIP (areas of enlargement, altered enhancement, effacement of pancreatic duct) as well as uninvolved parenchyma were segmented as three-dimensional volumes. Four hundred and thirty-one radiomics features were extracted and a random forest was used to distinguish AIP from PDAC. CT data of 60 AIP and 60 PDAC patients were used for training and those of 29 AIP and 33 PDAC independent patients were used for testing. RESULTS The pancreas was diffusely involved in 37 (37/89; 41.6%) patients with AIP and not diffusely in 52 (52/89; 58.4%) patients. Using machine learning, 95.2% (59/62; 95% confidence interval [CI]: 89.8-100%), 83.9% (52:67; 95% CI: 74.7-93.0%) and 77.4% (48/62; 95% CI: 67.0-87.8%) of the 62 test patients were correctly classified as either having PDAC or AIP with thin-slice venous phase, thin-slice arterial phase, and thick-slice venous phase CT, respectively. Three of the 29 patients with AIP (3/29; 10.3%) were incorrectly classified as having PDAC but all 33 patients with PDAC (33/33; 100%) were correctly classified with thin-slice venous phase with 89.7% sensitivity (26/29; 95% CI: 78.6-100%) and 100% specificity (33/33; 95% CI: 93-100%) for the diagnosis of AIP, 95.2% accuracy (59/62; 95% CI: 89.8-100%) and area under the curve of 0.975 (95% CI: 0.936-1.0). CONCLUSIONS Radiomic features help differentiate AIP from PDAC with an overall accuracy of 95.2%.
Collapse
|
66
|
Geady C, Keller H, Siddiqui I, Bilkey J, Dhani NC, Jaffray DA. Bridging the gap between micro- and macro-scales in medical imaging with textural analysis - A biological basis for CT radiomics classifiers? Phys Med 2020; 72:142-151. [PMID: 32276133 DOI: 10.1016/j.ejmp.2020.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Studies suggest there is utility in computed tomography (CT) radiomics for pancreatic disease; however, the precise biological interpretation of its features is unclear. In this manuscript, we present a novel approach towards this interpretation by investigating sub-micron tissue structure using digital pathology. METHODS A classification-to attenuation (CAT) function was developed and applied to digital pathology images to create sub-micron linear attenuation maps. From these maps, grey level co-occurrence matrix (GLCM) features were extracted and compared to pathology features. To simulate the spatial frequency loss in a CT scanner, the attenuation maps were convolved with a point spread function (PSF) and subsequently down-sampled. GLCM features were extracted from these down-sampled maps to assess feature stability as a function of spatial frequency loss. RESULTS Two GLCM features were shown to be strongly and positively correlated (r = 0.8) with underlying characteristics of the tumor microenvironment, namely percent pimonidazole staining in the tumor. All features underwent marked change as a function of spatial frequency loss; progressively larger spatial frequency losses resulted in progressively larger inter-tumor standard deviations; two GLCM features exhibited stability up to a 100 µm pixel size. CONCLUSION This work represents a necessary step towards understanding the biological significance of radiomics. Our preliminary results suggest that cellular metrics of pimonidazole-detectable hypoxia correlate with sub-micron attenuation coefficient texture; however, the consistency of these textures in face of spatial frequency loss is detrimental for robust radiomics. Further study in larger data sets may elucidate additional, potentially more robust features of biologic and clinical relevance.
Collapse
Affiliation(s)
- C Geady
- Department of Medical Biophysics, University of Toronto, Canada; Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.
| | - H Keller
- Department of Radiation Oncology, University of Toronto, Canada; Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
| | - I Siddiqui
- Department of Pathology, Hospital for Sick Children, Toronto, Canada
| | - J Bilkey
- STTARR, University Health Network, Toronto, Canada
| | - N C Dhani
- Department of Medicine, University of Toronto, Toronto, Canada; Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - D A Jaffray
- Department of Medical Biophysics, University of Toronto, Canada; Department of Radiation Oncology, University of Toronto, Canada; STTARR, University Health Network, Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada; The TECHNA Institute for the Advancement of Technology for Health, Toronto, Canada; Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
| |
Collapse
|
67
|
Abstract
Radiologic characterization of pancreatic lesions is currently limited. Computed tomography is insensitive in detecting and characterizing small pancreatic lesions. Moreover, heterogeneity of many pancreatic lesions makes determination of malignancy challenging. As a result, invasive diagnostic testing is frequently used to characterize pancreatic lesions but often yields indeterminate results. Computed tomography texture analysis (CTTA) is an emerging noninvasive computational tool that quantifies gray-scale pixels/voxels and their spatial relationships within a region of interest. In nonpancreatic lesions, CTTA has shown promise in diagnosis, lesion characterization, and risk stratification, and more recently, pancreatic applications of CTTA have been explored. This review outlines the emerging role of CTTA in identifying, characterizing, and risk stratifying pancreatic lesions. Although recent studies show the clinical potential of CTTA of the pancreas, a clear understanding of which specific texture features correlate with high-grade dysplasia and predict survival has not yet been achieved. Further multidisciplinary investigations using strong radiologic-pathologic correlation are needed to establish a role for this noninvasive diagnostic tool.
Collapse
|
68
|
Shen X, Yang F, Yang P, Yang M, Xu L, Zhuo J, Wang J, Lu D, Liu Z, Zheng SS, Niu T, Xu X. A Contrast-Enhanced Computed Tomography Based Radiomics Approach for Preoperative Differentiation of Pancreatic Cystic Neoplasm Subtypes: A Feasibility Study. Front Oncol 2020; 10:248. [PMID: 32185129 PMCID: PMC7058789 DOI: 10.3389/fonc.2020.00248] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/13/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Serous cystadenoma (SCA), mucinous cystadenoma (MCN), and intraductal papillary mucinous neoplasm (IPMN) are three subtypes of pancreatic cystic neoplasm (PCN). Due to the potential of malignant-transforming, patients with MCN and IPMN require radical surgery while patients with SCA need periodic surveillance. However, accurate pre-surgery diagnosis between SCA, MCN, and IPMN remains challenging in the clinic. Methods: This study enrolled 164 patients including 76 with SCA, 40 with MCN and 48 with IPMN. Patients were randomly split into a training cohort (n = 115) and validation cohort (n = 41). We performed statistical analysis and Boruta method to screen significantly distinct clinical factors and radiomics features extracted on pre-surgery contrast-enhanced computed tomography (CECT) images among three subtypes. Three reliable machine-learning algorithms, support vector machine (SVM), random forest (RF) and artificial neural network (ANN), were utilized to construct classifiers based on important radiomics features and clinical parameters. Precision, recall, and F1-score were calculated to assess the performance of the constructed classifiers. Results: Nine of 547 radiomics features and eight clinical factors showed a significant difference among SCA, MCN, and IPMN. Five radiomics features (Histogram_Entropy, Histogram_Skeweness, LLL_GLSZM_GLV, Histogram_Uniformity, HHL_Histogram_Kurtosis), and four clinical factors, including serum carbohydrate antigen 19-9, sex, age, and serum carcinoembryonic antigen, were identified important by Boruta method. The SVM classifier achieved an overall accuracy of 73.04% in training cohort and 71.43% in validation cohort, respectively. The RF classifier achieved overall accuracy of 84.35 and 79.59%, respectively. The constructed ANN model showed an overall accuracy of 77.39% in the training dataset and 71.43% in the validation dataset. All the three classifiers showed high F1 score for differentiation among the three subtypes. Conclusion: Our study proved the feasibility and translational value of CECT-based radiomics classifiers for differentiation among SCA, MCN, and IPMN.
Collapse
Affiliation(s)
- Xiaoyong Shen
- Department of Radiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Yang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengfei Yang
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Modan Yang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Xu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Jianyong Zhuo
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianguo Wang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Di Lu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhikun Liu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu-sen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianye Niu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
- Nuclear & Radiological Engineering and Medical Physics Programs, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
69
|
Zhang Y, Lobo-Mueller EM, Karanicolas P, Gallinger S, Haider MA, Khalvati F. CNN-based survival model for pancreatic ductal adenocarcinoma in medical imaging. BMC Med Imaging 2020; 20:11. [PMID: 32013871 PMCID: PMC6998249 DOI: 10.1186/s12880-020-0418-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Background Cox proportional hazard model (CPH) is commonly used in clinical research for survival analysis. In quantitative medical imaging (radiomics) studies, CPH plays an important role in feature reduction and modeling. However, the underlying linear assumption of CPH model limits the prognostic performance. In this work, using transfer learning, a convolutional neural network (CNN) based survival model was built and tested on preoperative CT images of resectable Pancreatic Ductal Adenocarcinoma (PDAC) patients. Results The proposed CNN-based survival model outperformed the traditional CPH-based radiomics approach in terms of concordance index and index of prediction accuracy, providing a better fit for patients’ survival patterns. Conclusions The proposed CNN-based survival model outperforms CPH-based radiomics pipeline in PDAC prognosis. This approach offers a better fit for survival patterns based on CT images and overcomes the limitations of conventional survival models.
Collapse
Affiliation(s)
- Yucheng Zhang
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Edrise M Lobo-Mueller
- Department of Radiology, McMaster University and Hamilton Health Sciences, Juravinski Hospital and Cancer Centre, Hamilton, Ontario, Canada
| | - Paul Karanicolas
- Department of Surgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Masoom A Haider
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Farzad Khalvati
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada. .,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada. .,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
70
|
Xie T, Wang X, Li M, Tong T, Yu X, Zhou Z. Pancreatic ductal adenocarcinoma: a radiomics nomogram outperforms clinical model and TNM staging for survival estimation after curative resection. Eur Radiol 2020; 30:2513-2524. [PMID: 32006171 DOI: 10.1007/s00330-019-06600-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To identify a CT-based radiomics nomogram for survival prediction in patients with resected pancreatic ductal adenocarcinoma (PDAC). METHODS A total of 220 patients (training cohort n = 147; validation cohort n = 73) with PDAC were enrolled. A total of 300 radiomics features were extracted from CT images. And the least absolute shrinkage and selection operator algorithm were applied to select features and develop a radiomics score (Rad-score). The radiomics nomogram was constructed by multivariate regression analysis. Nomogram discrimination, calibration, and clinical usefulness were evaluated. The association of the Rad-score and recurrence pattern in PDAC was evaluated. RESULTS The Rad-score was significantly associated with PDAC patient's disease-free survival (DFS) and overall survival (OS) (both p < 0.001 in two cohorts). Incorporating the Rad-score into the radiomics nomogram resulted in better performance of the survival prediction than that of the clinical model and TNM staging system. In addition, the radiomics nomogram exhibited good discrimination, calibration, and clinical usefulness in both the training and validation cohorts. There was no association between the Rad-score and recurrence pattern. CONCLUSIONS The radiomics nomogram integrating the Rad-score and clinical data provided better prognostic prediction in resected PDAC patients, which may hold great potential for guiding personalized care for these patients. The Rad-score was not a predictor of the recurrence pattern in resected PDAC patients. KEY POINTS • The Rad-score developed by CT radiomics features was significantly associated with PDAC patients' prognosis. • The radiomics nomogram integrating the Rad-score and clinical data has value to permit non-invasive, low-cost, and personalized evaluation of prognosis in PDAC patients. • The radiomics nomogram outperformed clinical model and the TNM staging system in terms of survival estimation.
Collapse
Affiliation(s)
- Tiansong Xie
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, No.270, Dongan Rd, Shanghai, 200032, People's Republic of China
| | - Xuanyi Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Menglei Li
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, No.270, Dongan Rd, Shanghai, 200032, People's Republic of China
| | - Tong Tong
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, No.270, Dongan Rd, Shanghai, 200032, People's Republic of China
| | - Xiaoli Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Zhengrong Zhou
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, No.270, Dongan Rd, Shanghai, 200032, People's Republic of China. .,Department of Radiology, Minhang Branch of Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.
| |
Collapse
|
71
|
Kriger AG, Karmazanovsky GG, Berelavichus SV, Gorin DS, Kaldarov AR, Panteleev VI, Dvukhzhilov MV, Kalinin DV, Glotov AV, Zektser VY. [Duodenopancreatectomy for pancreatic tumors - pros and cons]. Khirurgiia (Mosk) 2019:28-36. [PMID: 31825340 DOI: 10.17116/hirurgia201912128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIM To optimize surgical treatment of multiple and advanced pancreatic tumors. MATERIAL AND METHODS There were 852 patients with various pancreatic tumors for the period 2011 - September 2019. Duodenopancreatectomy (DPE) was performed in 18 patients. Locally advanced ductal adenocarcinoma was diagnosed in 10 patients, acinar cell carcinoma - in 1 patient, multiple neuroendocrine tumors - in 4 cases, intraductal papillary mucinous tumor - in 2 patients, multiple metastases of renal cell carcinoma - in 1 patient. This procedure was avoided in 9 patients who underwent alternative operations: pancreatoduodenectomy (PDE) with pancreatic body resection for intraductal papillary mucinous tumor - 5 cases, two-stage (2) and one-stage (1) distal pancreatectomy and PDE for multiple neuroendocrine tumors - 2 patients, simultaneous pancreatic head resection and distal pancreatectomy for multiple metastases of renal cell carcinoma - 1 patient. RESULTS Postoperative complications occurred in 14 patients after DPE (77.8%) and in 5 patients after alternative operations (55.5%). Alternative procedures in patients with neuroendocrine tumors, intraductal papillary mucinous tumors and metastases of renal cell carcinoma ensured radical surgical treatment. These patients did not need for insulin replacement therapy and enzyme drugs. CONCLUSION Strict adherence to oncological canons and differentiated approach in patients with multiple neuroendocrine tumors, metastases of renal cell carcinoma and intraductal papillary mucinous tumors are essential to avoid DPE in some cases in favor of alternative operations.
Collapse
Affiliation(s)
- A G Kriger
- Vishnevsky National Medical Research Center of Surgery of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - G G Karmazanovsky
- Vishnevsky National Medical Research Center of Surgery of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - S V Berelavichus
- Vishnevsky National Medical Research Center of Surgery of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - D S Gorin
- Vishnevsky National Medical Research Center of Surgery of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - A R Kaldarov
- Vishnevsky National Medical Research Center of Surgery of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - V I Panteleev
- Vishnevsky National Medical Research Center of Surgery of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - M V Dvukhzhilov
- Vishnevsky National Medical Research Center of Surgery of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - D V Kalinin
- Vishnevsky National Medical Research Center of Surgery of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Glotov
- Vishnevsky National Medical Research Center of Surgery of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - V Yu Zektser
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
72
|
Sollini M, Antunovic L, Chiti A, Kirienko M. Towards clinical application of image mining: a systematic review on artificial intelligence and radiomics. Eur J Nucl Med Mol Imaging 2019; 46:2656-2672. [PMID: 31214791 PMCID: PMC6879445 DOI: 10.1007/s00259-019-04372-x] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE The aim of this systematic review was to analyse literature on artificial intelligence (AI) and radiomics, including all medical imaging modalities, for oncological and non-oncological applications, in order to assess how far the image mining research stands from routine medical application. To do this, we applied a trial phases classification inspired from the drug development process. METHODS Among the articles we considered for inclusion from PubMed were multimodality AI and radiomics investigations, with a validation analysis aimed at relevant clinical objectives. Quality assessment of selected papers was performed according to the QUADAS-2 criteria. We developed the phases classification criteria for image mining studies. RESULTS Overall 34,626 articles were retrieved, 300 were selected applying the inclusion/exclusion criteria, and 171 high-quality papers (QUADAS-2 ≥ 7) were identified and analysed. In 27/171 (16%), 141/171 (82%), and 3/171 (2%) studies the development of an AI-based algorithm, radiomics model, and a combined radiomics/AI approach, respectively, was described. A total of 26/27(96%) and 1/27 (4%) AI studies were classified as phase II and III, respectively. Consequently, 13/141 (9%), 10/141 (7%), 111/141 (79%), and 7/141 (5%) radiomics studies were classified as phase 0, I, II, and III, respectively. All three radiomics/AI studies were categorised as phase II trials. CONCLUSIONS The results of the studies are promising but still not mature enough for image mining tools to be implemented in the clinical setting and be widely used. The transfer learning from the well-known drug development process, with some specific adaptations to the image mining discipline could represent the most effective way for radiomics and AI algorithms to become the standard of care tools.
Collapse
Affiliation(s)
- Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
| | - Lidija Antunovic
- Nuclear Medicine, Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy
| | - Arturo Chiti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
- Nuclear Medicine, Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy
| | - Margarita Kirienko
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy.
| |
Collapse
|
73
|
Carmicheal J, Patel A, Dalal V, Atri P, Dhaliwal AS, Wittel UA, Malafa MP, Talmon G, Swanson BJ, Singh S, Jain M, Kaur S, Batra SK. Elevating pancreatic cystic lesion stratification: Current and future pancreatic cancer biomarker(s). Biochim Biophys Acta Rev Cancer 2019; 1873:188318. [PMID: 31676330 DOI: 10.1016/j.bbcan.2019.188318] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an incredibly deadly disease with a 5-year survival rate of 9%. The presence of pancreatic cystic lesions (PCLs) confers an increased likelihood of future pancreatic cancer in patients placing them in a high-risk category. Discerning concurrent malignancy and risk of future PCL progression to cancer must be carefully and accurately determined to improve survival outcomes and avoid unnecessary morbidity of pancreatic resection. Unfortunately, current image-based guidelines are inadequate to distinguish benign from malignant lesions. There continues to be a need for accurate molecular and imaging biomarker(s) capable of identifying malignant PCLs and predicting the malignant potential of PCLs to enable risk stratification and effective intervention management. This review provides an update on the current status of biomarkers from pancreatic cystic fluid, pancreatic juice, and seromic molecular analyses and discusses the potential of radiomics for differentiating PCLs harboring cancer from those that do not.
Collapse
Affiliation(s)
- Joseph Carmicheal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Asish Patel
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vipin Dalal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amaninder S Dhaliwal
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Uwe A Wittel
- Department of General- and Visceral Surgery, University of Freiburg Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Mokenge P Malafa
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Geoffrey Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benjamin J Swanson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shailender Singh
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA; Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
74
|
Dalal V, Carmicheal J, Dhaliwal A, Jain M, Kaur S, Batra SK. Radiomics in stratification of pancreatic cystic lesions: Machine learning in action. Cancer Lett 2019; 469:228-237. [PMID: 31629933 DOI: 10.1016/j.canlet.2019.10.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/03/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
Pancreatic cystic lesions (PCLs) are well-known precursors of pancreatic cancer. Their diagnosis can be challenging as their behavior varies from benign to malignant disease. Precise and timely management of malignant pancreatic cysts might prevent transformation to pancreatic cancer. However, the current consensus guidelines, which rely on standard imaging features to predict cyst malignancy potential, are conflicting and unclear. This has led to an increased interest in radiomics, a high-throughput extraction of comprehensible data from standard of care images. Radiomics can be used as a diagnostic and prognostic tool in personalized medicine. It utilizes quantitative image analysis to extract features in conjunction with machine learning and artificial intelligence (AI) methods like support vector machines, random forest, and convolutional neural network for feature selection and classification. Selected features can then serve as imaging biomarkers to predict high-risk PCLs. Radiomics studies conducted heretofore on PCLs have shown promising results. This cost-effective approach would help us to differentiate benign PCLs from malignant ones and potentially guide clinical decision-making leading to better utilization of healthcare resources. In this review, we discuss the process of radiomics, its myriad applications such as diagnosis, prognosis, and prediction of therapy response. We also discuss the outcomes of studies involving radiomic analysis of PCLs and pancreatic cancer, and challenges associated with this novel field along with possible solutions. Although these studies highlight the potential benefit of radiomics in the prevention and optimal treatment of pancreatic cancer, further studies are warranted before incorporating radiomics into the clinical decision support system.
Collapse
Affiliation(s)
- Vipin Dalal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Joseph Carmicheal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amaninder Dhaliwal
- Department of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; The Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; The Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
75
|
Abstract
PURPOSE OF REVIEW To briefly review the radiomics concept, its applications, and challenges in oncology in the era of precision medicine. RECENT FINDINGS Over the last 5 years, more than 500 studies have evaluated the role of radiomics to predict tumor diagnosis, genetic pattern, tumor response to therapy, and survival in multiple cancers. This new post-processing method is aimed at extracting multiple quantitative features from the image and converting them into mineable data. Radiomics models developed have shown promising results and may play a role in the near future in the daily patient management especially to assess tumor heterogeneity acting as a whole tumor virtual biopsy. For now, radiomics is limited by its lack of standardization; future challenges will be to provide robust and reproducible metrics extracted from large multicenter databases.
Collapse
|
76
|
Lim J, Allen PJ. The diagnosis and management of intraductal papillary mucinous neoplasms of the pancreas: has progress been made? Updates Surg 2019; 71:209-216. [PMID: 31175628 DOI: 10.1007/s13304-019-00661-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022]
Abstract
Intraductal papillary mucinous neoplasms (IPMN) of the pancreas are premalignant mucin-producing epithelial tumors that arise from the pancreatic ductal system. These cystic tumors represent 15-30% of cystic lesions of the pancreas [Basturk et al. in Am J Surg Pathol 39(12):1730-1741, 1; Ferrone et al. in Arch Surg (Chicago, Ill: 1960) 144(5):448-454, 2, Kosmahl et al. in Virchows Arch Int J Pathol 445(2):168-178, 3; Spinelli et al. in Ann Surg. 239(5):651-657, 4]. It is believed that IPMN can progress from low-grade dysplasia to high-grade dysplasia to invasive cancer, and this pathway of progression accounts for 20-30% of pancreatic cancer [Adsay et al. in Am J Surg Pathol 28(7):839-848, 5; Tanaka et al. in J Gastroenterol 40(7):669-675, 6; Wu et al. in Sci Transl Med 3(92):92ra66, 7]. Furthermore, it is also widely believed that IPMN represent a field defect of the pancreas in which the entire ductal system is at risk of developing invasive carcinoma, not only in the area of radiographically detectable IPMN, and thus the remaining gland should undergo surveillance after partial pancreatectomy [Salvia et al. in Ann Surg 239(5):678-685, 8; Izawa et al. in Cancer 92(7):1807-1817, 9; Yamaguchi and Tanaka in Jpn J Clin Oncol 41(7):836-840, 10]. Increasingly, surgeons are faced with the dilemma between recommending highly complex resections-that have significant morbidity and mortality-in patients who may have low-risk IPMN (low-grade dysplasia), or alternatively, recommending observation for those who could possibly be harboring a radiographically occult malignancy. Given the complexity of the management decisions for patients with IPMN, the purpose of this paper is to review the current literature and to provide a summary of how accurate we are currently with the identification of high-grade dysplasia or progression to carcinoma in patients who present with IPMN.
Collapse
Affiliation(s)
- Jenny Lim
- Department of Surgical Oncology, Duke University, Durham, NC, 27710, USA.
| | - Peter J Allen
- Department of Surgical Oncology, Duke University, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke Health System, Durham, NC, 27710, USA
| |
Collapse
|