51
|
Li H, Zu T, Chen R, Ba R, Hsu YC, Sun Y, Zhang Y, Wu D. 3D diffusion MRI with twin navigator-based GRASE and comparison with 2D EPI for tractography in the human brain. Magn Reson Med 2023; 90:1969-1978. [PMID: 37345706 DOI: 10.1002/mrm.29769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/13/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023]
Abstract
PURPOSE 3D pulse sequences enable high-resolution acquisition with a high SNR and ideal slice profiles, which, however, is particularly difficult for diffusion MRI (dMRI) due to the additional phase errors from diffusion encoding. METHODS We proposed a twin navigator-based 3D diffusion-weighted gradient spin-echo (GRASE) sequence to correct the phase errors between shots and between odd and even spin echoes for human whole-brain acquisition. We then compared the SNR of 3D GRASE and 2D simultaneous multi-slice EPI within the same acquisition time. We further tested the performance of 2D versus 3D acquisition at equivalent SNR on fiber tracking and microstructural mapping, using the diffusion tensor and high-order fiber orientation density-based metrics. RESULTS The proposed twin navigator approach removed multi-shot phase errors to some extent in the whole brain dMRI, and the 2D navigator performed better than the 1D navigator. Comparisons of SNR between the 2D simultaneous multi-slice EPI and 3D GRASE sequences demonstrated that the SNR of the GRASE sequence was 1.4-1.5-fold higher than the EPI sequence at an equivalent scan time. More importantly, we found a significantly higher fiber cross-section in the cerebrospinal tract, as well as richer subcortical fibers (U-fibers) using the 3D GRASE sequence compared to 2D EPI. CONCLUSION The twin navigator-based 3D diffusion-weighted-GRASE sequence minimized the multishot phase error and effectively improved the SNR for whole-brain dMRI acquisition. We found differences in fiber tracking and microstructural mapping between 2D and 3D acquisitions, possibly due to the different slice profiles.
Collapse
Affiliation(s)
- Haotian Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Tao Zu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ruike Chen
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ruicheng Ba
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yi-Cheng Hsu
- MR Collaboration, Siemens Healthcare China, Shanghai, People's Republic of China
| | - Yi Sun
- MR Collaboration, Siemens Healthcare China, Shanghai, People's Republic of China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
52
|
Ling C, Zhang J, Shao X, Bai L, Li Z, Sun Y, Li F, Wang Z, Xue R, Zhuo Y, Yang Q, Zhang Z, Wang DJJ, Yuan Y. Diffusion prepared pseudo-continuous arterial spin labeling reveals blood-brain barrier dysfunction in patients with CADASIL. Eur Radiol 2023; 33:6959-6969. [PMID: 37099178 PMCID: PMC10567537 DOI: 10.1007/s00330-023-09652-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 04/27/2023]
Abstract
OBJECTIVES Diffusion prepared pseudo-continuous arterial spin labeling (DP-pCASL) is a newly proposed MRI method to noninvasively measure the function of the blood-brain barrier (BBB). We aim to investigate whether the water exchange rate across the BBB, estimated with DP-pCASL, is changed in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and to analyze the association between the BBB water exchange rate and MRI/clinical features of these patients. METHODS Forty-one patients with CADASIL and thirty-six age- and sex-matched controls were scanned with DP-pCASL MRI to estimate the BBB water exchange rate (kw). The MRI lesion burden, the modified Rankin scale (mRS), and the neuropsychological scales were also examined. The association between kw and MRI/clinical features was analyzed. RESULTS Compared with that in the controls, kw in patients with CADASIL was decreased at normal-appearing white matter (NAWM) (t = - 4.742, p < 0.001), cortical gray matter (t = - 5.137, p < 0.001), and deep gray matter (t = - 3.552, p = 0.001). After adjustment for age, gender, and arterial transit time, kw at NAWM was negatively associated with the volume of white matter hyperintensities (β = - 0.754, p = 0.001), whereas decreased kw at NAWM was independently associated with an increased risk of abnormal mRS scale (OR = 1.058, 95% CI: 1.013-1.106, p = 0.011) in these patients. CONCLUSIONS This study found that the BBB water exchange rate was decreased in patients with CADASIL. The decreased BBB water exchange rate was associated with an increased MRI lesion burden and functional dependence of the patients, suggesting the involvement of BBB dysfunction in the pathogenesis of CADASIL. CLINICAL RELEVANCE STATEMENT DP-pCASL reveals BBB dysfunction in patients with CADASIL. The decreased BBB water exchange rate is associated with MRI lesion burden and functional dependence, indicating the potential of DP-pCASL as an evaluation method for disease severity. KEY POINTS • DP-pCASL reveals blood-brain barrier dysfunction in patients with CADASIL. • Decreased BBB water exchange rate, an indicator of BBB dysfunction detected by DP-pCASL, was associated with MRI/clinical features of patients with CADASIL. • DP-pCASL can be used as an evaluation method to assess the severity of disease in patients with CADASIL.
Collapse
Affiliation(s)
- Chen Ling
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Jinyuan Zhang
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine University of Southern California, CA, Los Angeles, USA
| | - Li Bai
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Zhixin Li
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunchuang Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Fan Li
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Rong Xue
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhuo
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
- Key Lab of Medical Engineering for Cardiovascular Disease, Ministry of Education, Beijing, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing, China.
| | - Zihao Zhang
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine University of Southern California, CA, Los Angeles, USA
- Department of Neurology, Keck School of Medicine University of Southern California, CA, Los Angeles, USA
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China.
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China.
| |
Collapse
|
53
|
Plummer AM, Matos YL, Lin HC, Ryman SG, Birg A, Quinn DK, Parada AN, Vakhtin AA. Gut-brain pathogenesis of post-acute COVID-19 neurocognitive symptoms. Front Neurosci 2023; 17:1232480. [PMID: 37841680 PMCID: PMC10568482 DOI: 10.3389/fnins.2023.1232480] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
Approximately one third of non-hospitalized coronavirus disease of 2019 (COVID-19) patients report chronic symptoms after recovering from the acute stage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Some of the most persistent and common complaints of this post-acute COVID-19 syndrome (PACS) are cognitive in nature, described subjectively as "brain fog" and also objectively measured as deficits in executive function, working memory, attention, and processing speed. The mechanisms of these chronic cognitive sequelae are currently not understood. SARS-CoV-2 inflicts damage to cerebral blood vessels and the intestinal wall by binding to angiotensin-converting enzyme 2 (ACE2) receptors and also by evoking production of high levels of systemic cytokines, compromising the brain's neurovascular unit, degrading the intestinal barrier, and potentially increasing the permeability of both to harmful substances. Such substances are hypothesized to be produced in the gut by pathogenic microbiota that, given the profound effects COVID-19 has on the gastrointestinal system, may fourish as a result of intestinal post-COVID-19 dysbiosis. COVID-19 may therefore create a scenario in which neurotoxic and neuroinflammatory substances readily proliferate from the gut lumen and encounter a weakened neurovascular unit, gaining access to the brain and subsequently producing cognitive deficits. Here, we review this proposed PACS pathogenesis along the gut-brain axis, while also identifying specific methodologies that are currently available to experimentally measure each individual component of the model.
Collapse
Affiliation(s)
- Allison M. Plummer
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Yvette L. Matos
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States
| | - Henry C. Lin
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM, United States
- Section of Gastroenterology, New Mexico Veterans Affairs Health Care System, Albuquerque, NM, United States
| | - Sephira G. Ryman
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, United States
| | - Aleksandr Birg
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM, United States
- Section of Gastroenterology, New Mexico Veterans Affairs Health Care System, Albuquerque, NM, United States
| | - Davin K. Quinn
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Alisha N. Parada
- Division of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Andrei A. Vakhtin
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States
| |
Collapse
|
54
|
Goldwaser EL, Wang DJJ, Adhikari BM, Chiappelli J, Shao X, Yu J, Lu T, Chen S, Marshall W, Yuen A, Kvarta M, Ma Y, Du X, Gao S, Saeedi O, Bruce H, Donnelly P, O’Neill H, Shuldiner AR, Mitchell BD, Kochunov P, Hong LE. Evidence of Neurovascular Water Exchange and Endothelial Vascular Dysfunction in Schizophrenia: An Exploratory Study. Schizophr Bull 2023; 49:1325-1335. [PMID: 37078962 PMCID: PMC10483475 DOI: 10.1093/schbul/sbad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
BACKGROUND AND HYPOTHESIS Mounting evidence supports cerebrovascular contributions to schizophrenia spectrum disorder (SSD) but with unknown mechanisms. The blood-brain barrier (BBB) is at the nexus of neural-vascular exchanges, tasked with regulating cerebral homeostasis. BBB abnormalities in SSD, if any, are likely more subtle compared to typical neurological insults and imaging measures that assess large molecule BBB leakage in major neurological events may not be sensitive enough to directly examine BBB abnormalities in SSD. STUDY DESIGN We tested the hypothesis that neurovascular water exchange (Kw) measured by non-invasive diffusion-prepared arterial spin label MRI (n = 27 healthy controls [HC], n = 32 SSD) is impaired in SSD and associated with clinical symptoms. Peripheral vascular endothelial health was examined by brachial artery flow-mediated dilation (n = 44 HC, n = 37 SSD) to examine whether centrally measured Kw is related to endothelial functions. STUDY RESULTS Whole-brain average Kw was significantly reduced in SSD (P = .007). Exploratory analyses demonstrated neurovascular water exchange reductions in the right parietal lobe, including the supramarginal gyrus (P = .002) and postcentral gyrus (P = .008). Reduced right superior corona radiata (P = .001) and right angular gyrus Kw (P = .006) was associated with negative symptoms. Peripheral endothelial function was also significantly reduced in SSD (P = .0001). Kw in 94% of brain regions in HC positively associated with peripheral endothelial function, which was not observed in SSD, where the correlation was inversed in 52% of brain regions. CONCLUSIONS This study provides initial evidence of neurovascular water exchange abnormalities, which appeared clinically associated, especially with negative symptoms, in schizophrenia.
Collapse
Affiliation(s)
- Eric L Goldwaser
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Nueroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bhim M Adhikari
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joshua Chiappelli
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Nueroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jiaao Yu
- Department of Mathematics, University of Maryland, College Park, MD, USA
| | - Tong Lu
- Department of Mathematics, University of Maryland, College Park, MD, USA
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Mathematics, University of Maryland, College Park, MD, USA
| | - Wyatt Marshall
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alexa Yuen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark Kvarta
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yizhou Ma
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiaoming Du
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Si Gao
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Osamah Saeedi
- Department of Ophthalmology and Visual Sciences, University of Maryland Medical Center, Baltimore, MD, USA
| | - Heather Bruce
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick Donnelly
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hugh O’Neill
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alan R Shuldiner
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
55
|
Uchida Y, Kan H, Furukawa G, Onda K, Sakurai K, Takada K, Matsukawa N, Oishi K. Relationship between brain iron dynamics and blood-brain barrier function during childhood: a quantitative magnetic resonance imaging study. Fluids Barriers CNS 2023; 20:60. [PMID: 37592310 PMCID: PMC10433620 DOI: 10.1186/s12987-023-00464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Mounting evidence suggests that the blood-brain barrier (BBB) plays an important role in the regulation of brain iron homeostasis in normal brain development, but these imaging profiles remain to be elucidated. We aimed to establish a relationship between brain iron dynamics and BBB function during childhood using a combined quantitative magnetic resonance imaging (MRI) to depict both physiological systems along developmental trajectories. METHODS In this single-center prospective study, consecutive outpatients, 2-180 months of age, who underwent brain MRI (3.0-T scanner; Ingenia; Philips) between January 2020 and January 2021, were included. Children with histories of preterm birth or birth defects, abnormalities on MRI, and diagnoses that included neurological diseases during follow-up examinations through December 2022 were excluded. In addition to clinical MRI, quantitative susceptibility mapping (QSM; iron deposition measure) and diffusion-prepared pseudo-continuous arterial spin labeling (DP-pCASL; BBB function measure) were acquired. Atlas-based analyses for QSM and DP-pCASL were performed to investigate developmental trajectories of regional brain iron deposition and BBB function and their relationships. RESULTS A total of 78 children (mean age, 73.8 months ± 61.5 [SD]; 43 boys) were evaluated. Rapid magnetic susceptibility progression in the brain (Δsusceptibility value) was observed during the first two years (globus pallidus, 1.26 ± 0.18 [× 10- 3 ppm/month]; substantia nigra, 0.68 ± 0.16; thalamus, 0.15 ± 0.04). The scattergram between the Δsusceptibility value and the water exchange rate across the BBB (kw) divided by the cerebral blood flow was well fitted to the sigmoidal curve model, whose inflection point differed among each deep gray-matter nucleus (globus pallidus, 2.96-3.03 [mL/100 g]-1; substantia nigra, 3.12-3.15; thalamus, 3.64-3.67) in accordance with the regional heterogeneity of brain iron accumulation. CONCLUSIONS The combined quantitative MRI study of QSM and DP-pCASL for pediatric brains demonstrated the relationship between brain iron dynamics and BBB function during childhood. TRIAL REGISTRATION UMIN Clinical Trials Registry identifier: UMIN000039047, registered January 6, 2020.
Collapse
Affiliation(s)
- Yuto Uchida
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 208 Traylor Building, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Aichi, Japan.
| | - Hirohito Kan
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1- 1-20, Daiko-Minami, Higashi-ku, Nagoya, 461-8673, Aichi, Japan
| | - Gen Furukawa
- Department of Pediatrics, Fujita Health University School of Medicine, 1-98, Kutsukake-cho, Dengakugakubo, Toyoake, 470-1192, Aichi, Japan
| | - Kengo Onda
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 208 Traylor Building, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Morioka-cho, Obu, 474-8511, Aichi, Japan
| | - Koji Takada
- Department of Neurology, Toyokawa City Hospital, 23, Noji, Yawata-cho, Toyokawa, 442-0857, Aichi, Japan
| | - Noriyuki Matsukawa
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Aichi, Japan
| | - Kenichi Oishi
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 208 Traylor Building, 720 Rutland Avenue, Baltimore, MD, 21205, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Baltimore, MD, 21224, USA
| |
Collapse
|
56
|
Mahmud SZ, Denney TS, Bashir A. Non-contrast estimate of blood-brain barrier permeability in humans using arterial spin labeling and magnetization transfer at 7 T. NMR IN BIOMEDICINE 2023; 36:e4908. [PMID: 36650646 DOI: 10.1002/nbm.4908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 12/17/2022] [Accepted: 01/16/2023] [Indexed: 06/15/2023]
Abstract
Blood-brain barrier (BBB) dysfunction is associated with a number of central nervous system diseases. This study demonstrates the application of a novel noninvasive technique to measure the BBB permeability in the human brain at 7 T. The technique exploits the fact that, when tissue macromolecules are saturated by off-resonance RF pulse, the intravascular and the extravascular (tissue) water experience different magnetization transfer effects. This principle was combined with arterial spin labeling to distinguish between the intravascular and the tissue water, and was used to calculate perfusion, water extraction fraction (E), and BBB permeability surface area product for water (PS). Simultaneous coregistered magnetization transfer ratio maps were also generated that can provide valuable additional information. Eighteen healthy volunteers (seven females), age = 27 ± 11 years and weight = 65 ± 9 kg, participated in the study. Average perfusion was 67 ± 5 and 29 ± 4 ml/100 g/min (p < 0.05); and E was 0.921 ± 0.025 and 0.962 ± 0.015 (p < 0.05) in the gray matter (GM) and the white matter (WM), respectively. PS was higher in the GM (171 ± 20 ml/100 g/min) compared with the WM (95 ± 18 ml/100 g/min) (p < 0.05). The parameters exhibited good reliability with test re-test experiments. The sensitivity of this technique was demonstrated by 200 mg caffeine intake, which resulted in a decrease in the resting PS by ~31%.
Collapse
Affiliation(s)
- Sultan Z Mahmud
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama, USA
- Auburn University MRI Research Center, Auburn University, Auburn, Alabama, USA
| | - Thomas S Denney
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama, USA
- Auburn University MRI Research Center, Auburn University, Auburn, Alabama, USA
| | - Adil Bashir
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama, USA
- Auburn University MRI Research Center, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
57
|
Powell E, Ohene Y, Battiston M, Dickie BR, Parkes LM, Parker GJM. Blood-brain barrier water exchange measurements using FEXI: Impact of modeling paradigm and relaxation time effects. Magn Reson Med 2023; 90:34-50. [PMID: 36892973 PMCID: PMC10962589 DOI: 10.1002/mrm.29616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 03/10/2023]
Abstract
PURPOSE To evaluate potential modeling paradigms and the impact of relaxation time effects on human blood-brain barrier (BBB) water exchange measurements using FEXI (BBB-FEXI), and to quantify the accuracy, precision, and repeatability of BBB-FEXI exchange rate estimates at 3 T $$ \mathrm{T} $$ . METHODS Three modeling paradigms were evaluated: (i) the apparent exchange rate (AXR) model; (ii) a two-compartment model (2 CM $$ 2\mathrm{CM} $$ ) explicitly representing intra- and extravascular signal components, and (iii) a two-compartment model additionally accounting for finite compartmentalT 1 $$ {\mathrm{T}}_1 $$ andT 2 $$ {\mathrm{T}}_2 $$ relaxation times (2 CM r $$ 2{\mathrm{CM}}_r $$ ). Each model had three free parameters. Simulations quantified biases introduced by the assumption of infinite relaxation times in the AXR and2 CM $$ 2\mathrm{CM} $$ models, as well as the accuracy and precision of all three models. The scan-rescan repeatability of all paradigms was quantified for the first time in vivo in 10 healthy volunteers (age range 23-52 years; five female). RESULTS The assumption of infinite relaxation times yielded exchange rate errors in simulations up to 42%/14% in the AXR/2 CM $$ 2\mathrm{CM} $$ models, respectively. Accuracy was highest in the compartmental models; precision was best in the AXR model. Scan-rescan repeatability in vivo was good for all models, with negligible bias and repeatability coefficients in grey matter ofRC AXR = 0 . 43 $$ {\mathrm{RC}}_{\mathrm{AXR}}=0.43 $$ s - 1 $$ {\mathrm{s}}^{-1} $$ ,RC 2 CM = 0 . 51 $$ {\mathrm{RC}}_{2\mathrm{CM}}=0.51 $$ s - 1 $$ {\mathrm{s}}^{-1} $$ , andRC 2 CM r = 0 . 61 $$ {\mathrm{RC}}_{2{\mathrm{CM}}_r}=0.61 $$ s - 1 $$ {\mathrm{s}}^{-1} $$ . CONCLUSION Compartmental modelling of BBB-FEXI signals can provide accurate and repeatable measurements of BBB water exchange; however, relaxation time and partial volume effects may cause model-dependent biases.
Collapse
Affiliation(s)
- Elizabeth Powell
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Yolanda Ohene
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Marco Battiston
- Queen Square MS CentreUCL Institute of Neurology, University College LondonLondonUK
| | - Ben R. Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Informatics, Imaging and Data SciencesSchool of Health Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUK
| | - Laura M. Parkes
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Geoff J. M. Parker
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
- Queen Square MS CentreUCL Institute of Neurology, University College LondonLondonUK
- Bioxydyn LimitedManchesterUK
| |
Collapse
|
58
|
Shao X, Zhao C, Shou Q, St Lawrence KS, Wang DJJ. Quantification of blood-brain barrier water exchange and permeability with multidelay diffusion-weighted pseudo-continuous arterial spin labeling. Magn Reson Med 2023; 89:1990-2004. [PMID: 36622951 PMCID: PMC10079266 DOI: 10.1002/mrm.29581] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/22/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE To present a pulse sequence and mathematical models for quantification of blood-brain barrier water exchange and permeability. METHODS Motion-compensated diffusion-weighted (MCDW) gradient-and-spin echo (GRASE) pseudo-continuous arterial spin labeling (pCASL) sequence was proposed to acquire intravascular/extravascular perfusion signals from five postlabeling delays (PLDs, 1590-2790 ms). Experiments were performed on 11 healthy subjects at 3 T. A comprehensive set of perfusion and permeability parameters including cerebral blood flow (CBF), capillary transit time (τc ), and water exchange rate (kw ) were quantified, and permeability surface area product (PSw ), total extraction fraction (Ew ), and capillary volume (Vc ) were derived simultaneously by a three-compartment single-pass approximation (SPA) model on group-averaged data. With information (i.e., Vc and τc ) obtained from three-compartment SPA modeling, a simplified linear regression of logarithm (LRL) approach was proposed for individual kw quantification, and Ew and PSw can be estimated from long PLD (2490/2790 ms) signals. MCDW-pCASL was compared with a previously developed diffusion-prepared (DP) pCASL sequence, which calculates kw by a two-compartment SPA model from PLD = 1800 ms signals, to evaluate the improvements. RESULTS Using three-compartment SPA modeling, group-averaged CBF = 51.5/36.8 ml/100 g/min, kw = 126.3/106.7 min-1 , PSw = 151.6/93.8 ml/100 g/min, Ew = 94.7/92.2%, τc = 1409.2/1431.8 ms, and Vc = 1.2/0.9 ml/100 g in gray/white matter, respectively. Temporal SNR of MCDW-pCASL perfusion signals increased 3-fold, and individual kw maps calculated by the LRL method achieved higher spatial resolution (3.5 mm3 isotropic) as compared with DP pCASL (3.5 × 3.5 × 8 mm3 ). CONCLUSION MCDW-pCASL allows visualization of intravascular/extravascular ASL signals across multiple PLDs. The three-compartment SPA model provides a comprehensive measurement of blood-brain barrier water dynamics from group-averaged data, and a simplified LRL method was proposed for individual kw quantification.
Collapse
Affiliation(s)
- Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chenyang Zhao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Qinyang Shou
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Keith S St Lawrence
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Danny JJ Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
59
|
Zhang Y, Wang Y, Li Z, Wang Z, Cheng J, Bai X, Hsu YC, Sun Y, Li S, Shi J, Sui B, Bai R. Vascular-water-exchange MRI (VEXI) enables the detection of subtle AXR alterations in Alzheimer's disease without MRI contrast agent, which may relate to BBB integrity. Neuroimage 2023; 270:119951. [PMID: 36805091 DOI: 10.1016/j.neuroimage.2023.119951] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023] Open
Abstract
Blood-brain barrier (BBB) impairment is an important pathophysiological process in Alzheimer's disease (AD) and a potential biomarker for early diagnosis of AD. However, most current neuroimaging methods assessing BBB function need the injection of exogenous contrast agents (or tracers), which limits the application of these methods in a large population. In this study, we aim to explore the feasibility of vascular water exchange MRI (VEXI), a diffusion-MRI-based method proposed to assess the BBB permeability to water molecules without using a contrast agent, in the detection of the BBB breakdown in AD. We tested VEXI on a 3T MRI scanner on three groups: AD patients (AD group), mild cognitive impairment (MCI) patients due to AD (MCI group), and the age-matched normal cognition subjects (NC group). Interestingly, we find that the apparent water exchange across the BBB (AXRBBB) measured by VEXI shows higher values in MCI compared with NC, and this higher AXRBBB happens specifically in the hippocampus. This increase in AXRBBB value gets larger and extends to more brain regions (medial orbital frontal cortex and thalamus) from MCI group to the AD group. Furthermore, we find that the AXRBBB values of these three regions is correlated significantly with the impairment of respective cognitive domains independent of age, sex and education. These results suggest VEXI is a promising method to assess the BBB breakdown in AD.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Shaw Hospital AND Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Yue Wang
- National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhaoqing Li
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Shaw Hospital AND Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Zejun Wang
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Shaw Hospital AND Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Juange Cheng
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Shaw Hospital AND Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyan Bai
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing Neurosurgical Institute, Beijing, China
| | - Yi-Cheng Hsu
- MR Collaboration, Siemens Healthcare, Shanghai, China
| | - Yi Sun
- MR Collaboration, Siemens Healthcare, Shanghai, China
| | - Shiping Li
- National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jiong Shi
- National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Binbin Sui
- National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Ruiliang Bai
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Shaw Hospital AND Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University.
| |
Collapse
|
60
|
Ohene Y, Harris WJ, Powell E, Wycech NW, Smethers KF, Lasič S, South K, Coutts G, Sharp A, Lawrence CB, Boutin H, Parker GJM, Parkes LM, Dickie BR. Filter exchange imaging with crusher gradient modelling detects increased blood-brain barrier water permeability in response to mild lung infection. Fluids Barriers CNS 2023; 20:25. [PMID: 37013549 PMCID: PMC10071630 DOI: 10.1186/s12987-023-00422-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/08/2023] [Indexed: 04/05/2023] Open
Abstract
Blood-brain barrier (BBB) dysfunction occurs in many brain diseases, and there is increasing evidence to suggest that it is an early process in dementia which may be exacerbated by peripheral infection. Filter-exchange imaging (FEXI) is an MRI technique for measuring trans-membrane water exchange. FEXI data is typically analysed using the apparent exchange rate (AXR) model, yielding estimates of the AXR. Crusher gradients are commonly used to remove unwanted coherence pathways arising from longitudinal storage pulses during the mixing period. We first demonstrate that when using thin slices, as is needed for imaging the rodent brain, crusher gradients result in underestimation of the AXR. To address this, we propose an extended crusher-compensated exchange rate (CCXR) model to account for diffusion-weighting introduced by the crusher gradients, which is able to recover ground truth values of BBB water exchange (kin) in simulated data. When applied to the rat brain, kin estimates obtained using the CCXR model were 3.10 s-1 and 3.49 s-1 compared to AXR estimates of 1.24 s-1 and 0.49 s-1 for slice thicknesses of 4.0 mm and 2.5 mm respectively. We then validated our approach using a clinically relevant Streptococcus pneumoniae lung infection. We observed a significant 70 ± 10% increase in BBB water exchange in rats during active infection (kin = 3.78 ± 0.42 s-1) compared to before infection (kin = 2.72 ± 0.30 s-1; p = 0.02). The BBB water exchange rate during infection was associated with higher levels of plasma von Willebrand factor (VWF), a marker of acute vascular inflammation. We also observed 42% higher expression of perivascular aquaporin-4 (AQP4) in infected animals compared to non-infected controls, while levels of tight junction proteins remain consistent between groups. In summary, we propose a modelling approach for FEXI data which removes the bias in estimated water-exchange rates associated with the use of crusher gradients. Using this approach, we demonstrate the impact of peripheral infection on BBB water exchange, which appears to be mediated by endothelial dysfunction and associated with an increase in perivascular AQP4.
Collapse
Affiliation(s)
- Yolanda Ohene
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Zochonis Building, Oxford Road, Manchester, M13 9PL, UK.
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| | - William J Harris
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Elizabeth Powell
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering and Department of Neuroinflammation, UCL, London, UK
| | - Nina W Wycech
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Katherine F Smethers
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Zochonis Building, Oxford Road, Manchester, M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Samo Lasič
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Random Walk Imaging, Lund, Sweden
| | - Kieron South
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Zochonis Building, Oxford Road, Manchester, M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Graham Coutts
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Zochonis Building, Oxford Road, Manchester, M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Andrew Sharp
- Evotec (UK) Ltd., Alderley Park, Block 23F, Mereside, Cheshire, SK10 4TG, UK
| | - Catherine B Lawrence
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hervé Boutin
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Geoff J M Parker
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering and Department of Neuroinflammation, UCL, London, UK
- Bioxydyn Limited, Manchester, UK
| | - Laura M Parkes
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Zochonis Building, Oxford Road, Manchester, M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Ben R Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
61
|
Eisenmenger LB, Peret A, Famakin BM, Spahic A, Roberts GS, Bockholt JH, Johnson KM, Paulsen JS. Vascular contributions to Alzheimer's disease. Transl Res 2023; 254:41-53. [PMID: 36529160 PMCID: PMC10481451 DOI: 10.1016/j.trsl.2022.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is characterized by progressive neurodegeneration and cognitive decline. Understanding the pathophysiology underlying AD is paramount for the management of individuals at risk of and suffering from AD. The vascular hypothesis stipulates a relationship between cardiovascular disease and AD-related changes although the nature of this relationship remains unknown. In this review, we discuss several potential pathological pathways of vascular involvement in AD that have been described including dysregulation of neurovascular coupling, disruption of the blood brain barrier, and reduced clearance of metabolite waste such as beta-amyloid, a toxic peptide considered the hallmark of AD. We will also discuss the two-hit hypothesis which proposes a 2-step positive feedback loop in which microvascular insults precede the accumulation of Aß and are thought to be at the origin of the disease development. At neuroimaging, signs of vascular dysfunction such as chronic cerebral hypoperfusion have been demonstrated, appearing early in AD, even before cognitive decline and alteration of traditional biomarkers. Cerebral small vessel disease such as cerebral amyloid angiopathy, characterized by the aggregation of Aß in the vessel wall, is highly prevalent in vascular dementia and AD patients. Current data is unclear whether cardiovascular disease causes, precipitates, amplifies, precedes, or simply coincides with AD. Targeted imaging tools to quantitatively evaluate the intracranial vasculature and longitudinal studies in individuals at risk for or in the early stages of the AD continuum could be critical in disentangling this complex relationship between vascular disease and AD.
Collapse
Affiliation(s)
- Laura B Eisenmenger
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Anthony Peret
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Bolanle M Famakin
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Alma Spahic
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Grant S Roberts
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jeremy H Bockholt
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jane S Paulsen
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
62
|
Sarabi MS, Ma SJ, Jann K, Ringman JM, Wang DJJ, Shi Y. Vessel Density Mapping of Cerebral Small Vessels on 3D High Resolution Black Blood MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.533300. [PMID: 36993509 PMCID: PMC10055197 DOI: 10.1101/2023.03.18.533300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cerebral small vessels are largely inaccessible to existing clinical in vivo imaging technologies. This study aims to present a novel analysis pipeline for vessel density mapping of cerebral small vessels from high-resolution 3D black-blood MRI at 3T. Twenty-eight subjects (10 under 35 years old, 18 over 60 years old) were imaged with the T1-weighted turbo spin-echo with variable flip angles (T1w TSE-VFA) sequence optimized for black-blood small vessel imaging with iso-0.5mm spatial resolution at 3T. Hessian-based vessel segmentation methods (Jerman, Frangi and Sato filter) were evaluated by vessel landmarks and manual annotation of lenticulostriate arteries (LSAs). Using optimized vessel segmentation, large vessel pruning and non-linear registration, a semiautomatic pipeline was proposed for quantification of small vessel density across brain regions and further for localized detection of small vessel changes across populations. Voxel-level statistics was performed to compare vessel density between two age groups. Additionally, local vessel density of aged subjects was correlated with their corresponding gross cognitive and executive function (EF) scores using Montreal Cognitive Assessment (MoCA) and EF composite scores compiled with Item Response Theory (IRT). Jerman filter showed better performance for vessel segmentation than Frangi and Sato filter which was employed in our pipeline. Cerebral small vessels on the order of a few hundred microns can be delineated using the proposed analysis pipeline on 3D black-blood MRI at 3T. The mean vessel density across brain regions was significantly higher in young subjects compared to aged subjects. In the aged subjects, localized vessel density was positively correlated with MoCA and IRT EF scores. The proposed pipeline is able to segment, quantify, and detect localized differences in vessel density of cerebral small vessels based on 3D high-resolution black-blood MRI. This framework may serve as a tool for localized detection of small vessel density changes in normal aging and cerebral small vessel disease.
Collapse
|
63
|
Lee RL, Funk KE. Imaging blood–brain barrier disruption in neuroinflammation and Alzheimer’s disease. Front Aging Neurosci 2023; 15:1144036. [PMID: 37009464 PMCID: PMC10063921 DOI: 10.3389/fnagi.2023.1144036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
The blood–brain barrier (BBB) is the neurovascular structure that regulates the passage of cells and molecules to and from the central nervous system (CNS). Alzheimer’s disease (AD) is a neurodegenerative disorder that is associated with gradual breakdown of the BBB, permitting entry of plasma-derived neurotoxins, inflammatory cells, and microbial pathogens into the CNS. BBB permeability can be visualized directly in AD patients using imaging technologies including dynamic contrast-enhanced and arterial spin labeling magnetic resonance imaging, and recent studies employing these techniques have shown that subtle changes in BBB stability occur prior to deposition of the pathological hallmarks of AD, senile plaques, and neurofibrillary tangles. These studies suggest that BBB disruption may be useful as an early diagnostic marker; however, AD is also accompanied by neuroinflammation, which can complicate these analyses. This review will outline the structural and functional changes to the BBB that occur during AD pathogenesis and highlight current imaging technologies that can detect these subtle changes. Advancing these technologies will improve both the diagnosis and treatment of AD and other neurodegenerative diseases.
Collapse
|
64
|
Wei Z, Liu H, Lin Z, Yao M, Li R, Liu C, Li Y, Xu J, Duan W, Lu H. Non-contrast assessment of blood-brain barrier permeability to water in mice: An arterial spin labeling study at cerebral veins. Neuroimage 2023; 268:119870. [PMID: 36640948 PMCID: PMC9908858 DOI: 10.1016/j.neuroimage.2023.119870] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/15/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Blood-brain barrier (BBB) plays a critical role in protecting the brain from toxins and pathogens. However, in vivo tools to assess BBB permeability are scarce and often require the use of exogenous contrast agents. In this study, we aimed to develop a non-contrast arterial-spin-labeling (ASL) based MRI technique to estimate BBB permeability to water in mice. By determining the relative fraction of labeled water spins that were exchanged into the brain tissue as opposed to those that remained in the cerebral veins, we estimated indices of global BBB permeability to water including water extraction fraction (E) and permeability surface-area product (PS). First, using multiple post-labeling delay ASL experiments, we estimated the bolus arrival time (BAT) of the labeled spins to reach the great vein of Galen (VG) to be 691.2 ± 14.5 ms (N = 5). Next, we investigated the dependence of the VG ASL signal on labeling duration and identified an optimal imaging protocol with a labeling duration of 1200 ms and a PLD of 100 ms. Quantitative E and PS values in wild-type mice were found to be 59.9 ± 3.2% and 260.9 ± 18.9 ml/100 g/min, respectively. In contrast, mice with Huntington's disease (HD) revealed a significantly higher E (69.7 ± 2.4%, P = 0.026) and PS (318.1 ± 17.1 ml/100 g/min, P = 0.040), suggesting BBB breakdown in this mouse model. Reproducibility studies revealed a coefficient-of-variation (CoV) of 4.9 ± 1.7% and 6.1 ± 1.2% for E and PS, respectively. The proposed method may open new avenues for preclinical research on pathophysiological mechanisms of brain diseases and therapeutic trials in animal models.
Collapse
Affiliation(s)
- Zhiliang Wei
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600N. Wolfe Street, Park 326, Baltimore, MD 21287, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA.
| | - Hongshuai Liu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, MD 21287, USA
| | - Zixuan Lin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600N. Wolfe Street, Park 326, Baltimore, MD 21287, USA
| | - Minmin Yao
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, MD 21287, USA
| | - Ruoxuan Li
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, MD 21287, USA
| | - Chang Liu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, MD 21287, USA
| | - Yuguo Li
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600N. Wolfe Street, Park 326, Baltimore, MD 21287, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Jiadi Xu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600N. Wolfe Street, Park 326, Baltimore, MD 21287, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, MD 21287, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600N. Wolfe Street, Park 326, Baltimore, MD 21287, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
65
|
Harris WJ, Asselin MC, Hinz R, Parkes LM, Allan S, Schiessl I, Boutin H, Dickie BR. In vivo methods for imaging blood-brain barrier function and dysfunction. Eur J Nucl Med Mol Imaging 2023; 50:1051-1083. [PMID: 36437425 PMCID: PMC9931809 DOI: 10.1007/s00259-022-05997-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/09/2022] [Indexed: 11/29/2022]
Abstract
The blood-brain barrier (BBB) is the interface between the central nervous system and systemic circulation. It tightly regulates what enters and is removed from the brain parenchyma and is fundamental in maintaining brain homeostasis. Increasingly, the BBB is recognised as having a significant role in numerous neurological disorders, ranging from acute disorders (traumatic brain injury, stroke, seizures) to chronic neurodegeneration (Alzheimer's disease, vascular dementia, small vessel disease). Numerous approaches have been developed to study the BBB in vitro, in vivo, and ex vivo. The complex multicellular structure and effects of disease are difficult to recreate accurately in vitro, and functional aspects of the BBB cannot be easily studied ex vivo. As such, the value of in vivo methods to study the intact BBB cannot be overstated. This review discusses the structure and function of the BBB and how these are affected in diseases. It then discusses in depth several established and novel methods for imaging the BBB in vivo, with a focus on MRI, nuclear imaging, and high-resolution intravital fluorescence microscopy.
Collapse
Affiliation(s)
- William James Harris
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Marie-Claude Asselin
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Laura Michelle Parkes
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Stuart Allan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Ingo Schiessl
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Herve Boutin
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK.
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.
| | - Ben Robert Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
66
|
Uchida Y, Kan H, Sakurai K, Oishi K, Matsukawa N. Contributions of blood-brain barrier imaging to neurovascular unit pathophysiology of Alzheimer's disease and related dementias. Front Aging Neurosci 2023; 15:1111448. [PMID: 36861122 PMCID: PMC9969807 DOI: 10.3389/fnagi.2023.1111448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
The blood-brain barrier (BBB) plays important roles in the maintenance of brain homeostasis. Its main role includes three kinds of functions: (1) to protect the central nervous system from blood-borne toxins and pathogens; (2) to regulate the exchange of substances between the brain parenchyma and capillaries; and (3) to clear metabolic waste and other neurotoxic compounds from the central nervous system into meningeal lymphatics and systemic circulation. Physiologically, the BBB belongs to the glymphatic system and the intramural periarterial drainage pathway, both of which are involved in clearing interstitial solutes such as β-amyloid proteins. Thus, the BBB is believed to contribute to preventing the onset and progression for Alzheimer's disease. Measurements of BBB function are essential toward a better understanding of Alzheimer's pathophysiology to establish novel imaging biomarkers and open new avenues of interventions for Alzheimer's disease and related dementias. The visualization techniques for capillary, cerebrospinal, and interstitial fluid dynamics around the neurovascular unit in living human brains have been enthusiastically developed. The purpose of this review is to summarize recent BBB imaging developments using advanced magnetic resonance imaging technologies in relation to Alzheimer's disease and related dementias. First, we give an overview of the relationship between Alzheimer's pathophysiology and BBB dysfunction. Second, we provide a brief description about the principles of non-contrast agent-based and contrast agent-based BBB imaging methodologies. Third, we summarize previous studies that have reported the findings of each BBB imaging method in individuals with the Alzheimer's disease continuum. Fourth, we introduce a wide range of Alzheimer's pathophysiology in relation to BBB imaging technologies to advance our understanding of the fluid dynamics around the BBB in both clinical and preclinical settings. Finally, we discuss the challenges of BBB imaging techniques and suggest future directions toward clinically useful imaging biomarkers for Alzheimer's disease and related dementias.
Collapse
Affiliation(s)
- Yuto Uchida
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: Yuto Uchida, ; Noriyuki Matsukawa,
| | - Hirohito Kan
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Ōbu, Aichi, Japan
| | - Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Noriyuki Matsukawa
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan,*Correspondence: Yuto Uchida, ; Noriyuki Matsukawa,
| |
Collapse
|
67
|
van der Thiel MM, Backes WH, Ramakers IHGB, Jansen JFA. Novel developments in non-contrast enhanced MRI of the perivascular clearance system: What are the possibilities for Alzheimer's disease research? Neurosci Biobehav Rev 2023; 144:104999. [PMID: 36529311 DOI: 10.1016/j.neubiorev.2022.104999] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/21/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
The cerebral waste clearance system (i.e, glymphatic or intramural periarterial drainage) works through a network of perivascular spaces (PVS). Dysfunction of this system likely contributes to aggregation of Amyloid-β and subsequent toxic plaques in Alzheimer's disease (AD). A promising, non-invasive technique to study this system is MRI, though applications in dementia are still scarce. This review focusses on recent non-contrast enhanced (non-CE) MRI techniques which determine and visualise physiological aspects of the clearance system at multiple levels, i.e., cerebrospinal fluid flow, PVS-flow and interstitial fluid movement. Furthermore, various MRI studies focussing on aspects of the clearance system which are relevant to AD are discussed, such as studies on ageing, sleep alterations, and cognitive decline. Additionally, the complementary function of non-CE to CE methods is elaborated upon. We conclude that non-CE studies have great potential to determine which parts of the waste clearance system are affected by AD and in which stages of cognitive impairment dysfunction of this system occurs, which could allow future clinical trials to target these specific mechanisms.
Collapse
Affiliation(s)
- Merel M van der Thiel
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Psychiatry &Neuropsychology, Maastricht University, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Walter H Backes
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands; School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
| | - Inez H G B Ramakers
- Department of Psychiatry &Neuropsychology, Maastricht University, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
68
|
Moyaert P, Padrela BE, Morgan CA, Petr J, Versijpt J, Barkhof F, Jurkiewicz MT, Shao X, Oyeniran O, Manson T, Wang DJJ, Günther M, Achten E, Mutsaerts HJMM, Anazodo UC. Imaging blood-brain barrier dysfunction: A state-of-the-art review from a clinical perspective. Front Aging Neurosci 2023; 15:1132077. [PMID: 37139088 PMCID: PMC10150073 DOI: 10.3389/fnagi.2023.1132077] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/15/2023] [Indexed: 05/05/2023] Open
Abstract
The blood-brain barrier (BBB) consists of specialized cells that tightly regulate the in- and outflow of molecules from the blood to brain parenchyma, protecting the brain's microenvironment. If one of the BBB components starts to fail, its dysfunction can lead to a cascade of neuroinflammatory events leading to neuronal dysfunction and degeneration. Preliminary imaging findings suggest that BBB dysfunction could serve as an early diagnostic and prognostic biomarker for a number of neurological diseases. This review aims to provide clinicians with an overview of the emerging field of BBB imaging in humans by answering three key questions: (1. Disease) In which diseases could BBB imaging be useful? (2. Device) What are currently available imaging methods for evaluating BBB integrity? And (3. Distribution) what is the potential of BBB imaging in different environments, particularly in resource limited settings? We conclude that further advances are needed, such as the validation, standardization and implementation of readily available, low-cost and non-contrast BBB imaging techniques, for BBB imaging to be a useful clinical biomarker in both resource-limited and well-resourced settings.
Collapse
Affiliation(s)
- Paulien Moyaert
- Department of Medical Imaging, Ghent University Hospital, Ghent, Belgium
- Lawson Health Research Institute, London, ON, Canada
- Department of Neurology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- *Correspondence: Paulien Moyaert,
| | - Beatriz E. Padrela
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
| | - Catherine A. Morgan
- School of Psychology and Centre for Brain Research, The University of Auckland, Auckland, New Zealand
- Centre for Advanced MRI, Auckland UniServices Limited, Auckland, New Zealand
| | - Jan Petr
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Jan Versijpt
- Department of Neurology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, United Kingdom
| | | | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Olujide Oyeniran
- Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Tabitha Manson
- Centre for Advanced MRI, Auckland UniServices Limited, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Danny J. J. Wang
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Matthias Günther
- Fraunhofer Institute for Digital Medicine, University of Bremen, Bremen, Germany
| | - Eric Achten
- Department of Medical Imaging, Ghent University Hospital, Ghent, Belgium
| | - Henk J. M. M. Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
| | - Udunna C. Anazodo
- Lawson Health Research Institute, London, ON, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
69
|
Li Y, Sadiq A, Wang Z. Arterial Spin Labelling-Based Blood-Brain Barrier Assessment and Its Applications. INVESTIGATIVE MAGNETIC RESONANCE IMAGING 2022; 26:229-236. [PMID: 36687769 PMCID: PMC9851084 DOI: 10.13104/imri.2022.26.4.229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 01/12/2023]
Abstract
The brain relies on the blood-brain barrier (BBB) for the selective absorption of nutrients and the exclusion of other big molecules from the circulating blood. Therefore, the integrity of BBB is critical to brain health, and assessing BBB condition is of great clinical importance. BBB is often examined using exogenous tracers that can travel across the BBB, but the tracers might cause severe side effects. To avoid the use of external tracers, researchers have used magnetically labeled arterial blood as the endogenous tracer to assess the water permeability of BBB as a surrogate index of BBB. This paper reviews the three major types of Arterial Spin Labelling (ASL) based BBB water permeability assessment techniques and their applications in brain diseases such as Alzheimer's Disease.
Collapse
Affiliation(s)
- Yiran Li
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alishba Sadiq
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ze Wang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
70
|
Lin Z, Jiang D, Liu P, Ge Y, Moghekar A, Lu H. Blood-brain barrier permeability in response to caffeine challenge. Magn Reson Med 2022; 88:2259-2266. [PMID: 35754146 PMCID: PMC9420773 DOI: 10.1002/mrm.29355] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 01/22/2023]
Abstract
PURPOSE Caffeine is known to alter brain perfusion by acting as an adenosine antagonist, but its effect on blood-brain barrier (BBB) permeability is not fully elucidated. This study aimed to dynamically monitor BBB permeability to water after a single dose of caffeine tablet using a non-contrast MRI technique. METHODS Ten young healthy volunteers who were not regular coffee drinkers were studied. The experiment began with a pre-caffeine measurement, followed by four measurements at the post-caffeine stage. Water-extraction-with-phase-contrast-arterial-spin-tagging (WEPCAST) MRI was used to assess the time dependence of BBB permeability to water following the ingestion of 200 mg caffeine. Other cerebral physiological parameters including cerebral blood flow (CBF), venous oxygenation (Yv ), and cerebral metabolic rate of oxygen (CMRO2 ) were also examined. The relationships between cerebral physiological parameters and time were studied with mixed-effect models. RESULTS It was found that, after caffeine ingestion, CBF and Yv showed a time-dependent decrease (p < 0.001), while CMRO2 did not change significantly. The fraction of arterial water crossing the BBB (E) showed a significant increase (p < 0.001). In contrast, the permeability-surface-area product (PS), i.e., BBB permeability to water, remained constant (p = 0.94). Additionally, it was observed that changes in physiological parameters were non-linear with regard to time and occurred at as early as 9 min after caffeine tablet ingestion. CONCLUSION These results suggest an unchanged BBB permeability despite alterations in perfusion during a vasoconstrictive caffeine challenge.
Collapse
Affiliation(s)
- Zixuan Lin
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peiying Liu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yulin Ge
- Department of Radiology, New York University, NY, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
71
|
Paschoal AM, Secchinatto KF, da Silva PHR, Zotin MCZ, Dos Santos AC, Viswanathan A, Pontes-Neto OM, Leoni RF. Contrast-agent-free state-of-the-art MRI on cerebral small vessel disease-part 1. ASL, IVIM, and CVR. NMR IN BIOMEDICINE 2022; 35:e4742. [PMID: 35429194 DOI: 10.1002/nbm.4742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Cerebral small vessel disease (cSVD), a common cause of stroke and dementia, is traditionally considered the small vessel equivalent of large artery occlusion or rupture that leads to cortical and subcortical brain damage. Microvessel endothelial dysfunction can also contribute to it. Brain imaging, including MRI, is useful to show the presence of lesions of several types, although the association between conventional MRI measures and clinical features of cSVD is not always concordant. We assessed the additional contribution of contrast-agent-free, state-of-the-art MRI techniques such as arterial spin labeling (ASL), diffusion tensor imaging, functional MRI, and intravoxel incoherent motion (IVIM) applied to cSVD in the existing literature. We performed a review following the PICO Worksheet and Search Strategy, including original papers in English, published between 2000 and 2022. For each MRI method, we extracted information about their contributions, in addition to those established with traditional MRI methods and related information about the origins, pathology, markers, and clinical outcomes in cSVD. This paper presents the first part of the review, which includes 37 studies focusing on ASL, IVIM, and cerebrovascular reactivity (CVR) measures. In general, they have shown that, in addition to white matter hyperintensities, alterations in other neuroimaging parameters such as blood flow and CVR also indicate the presence of cSVD. Such quantitative parameters were also related to cSVD risk factors. Therefore, they are promising, noninvasive tools to explore questions that have not yet been clarified about this clinical condition. However, protocol standardization is essential to increase their clinical use.
Collapse
Affiliation(s)
- André Monteiro Paschoal
- Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | - Maria Clara Zanon Zotin
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Antônio Carlos Dos Santos
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Anand Viswanathan
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Octavio M Pontes-Neto
- Department of Neurosciences and Behavioral Science, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Renata Ferranti Leoni
- Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
72
|
Ahn HS, Jung Y, Park SH. Measuring glomerular blood transfer rate in kidney using diffusion-weighted arterial spin labeling. Magn Reson Med 2022; 88:2408-2418. [PMID: 35877788 DOI: 10.1002/mrm.29401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE To propose a two-compartment renal perfusion model for calculating glomerular blood transfer rate ( k G $$ {k}_G $$ ) as a new measure of renal function. THEORY The renal perfusion signal was divided into preglomerular and postglomerular flows according to flow velocity. By analyzing perfusion signals acquired with and without diffusion gradients, we estimated k G $$ {k}_G $$ , the blood transfer rate from the afferent arterioles into the glomerulus. METHODS A multislice multidelay diffusion-weighted arterial spin labeling sequence was applied to subjects with no history of renal dysfunctions. In the multiple b-value experiment, images were acquired with seven b-values to validate the bi-exponential decays of the renal perfusion signal and to determine the appropriate b-value for suppressing preglomerular flow. In the caffeine challenge, six subjects were scanned twice on the caffeine day and the control day. The k G $$ {k}_G $$ values of the two dates were compared. RESULTS The perfusion signal showed a bi-exponential decay with b-values. There was no significant difference in renal blood flow and arterial transit time between caffeine and control days. In contrast, cortical k G $$ {k}_G $$ was significantly higher on the caffeine day (caffeine day: 106 . 0 ± 20 . 3 $$ 106.0\pm 20.3 $$ min - 1 $$ {}^{-1} $$ control day: 78 . 8 ± 22 . 9 $$ 78.8\pm 22.9 $$ min - 1 $$ {}^{-1} $$ ). These results were consistent with those from the literature. CONCLUSION We showed that the perfusion signal consists of two compartments of preglomerular flow and postglomerular flow. The proposed diffusion-weighted arterial spin labeling could measure the glomerular blood transfer rate ( k G $$ {k}_G $$ ), which was sensitive enough to noninvasively monitor the caffeine-induced vasodilation of afferent arterioles.
Collapse
Affiliation(s)
- Hyun-Seo Ahn
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Yujin Jung
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Sung-Hong Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
73
|
Clement P, Petr J, Dijsselhof MBJ, Padrela B, Pasternak M, Dolui S, Jarutyte L, Pinter N, Hernandez-Garcia L, Jahn A, Kuijer JPA, Barkhof F, Mutsaerts HJMM, Keil VC. A Beginner's Guide to Arterial Spin Labeling (ASL) Image Processing. FRONTIERS IN RADIOLOGY 2022; 2:929533. [PMID: 37492666 PMCID: PMC10365107 DOI: 10.3389/fradi.2022.929533] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/23/2022] [Indexed: 07/27/2023]
Abstract
Arterial spin labeling (ASL) is a non-invasive and cost-effective MRI technique for brain perfusion measurements. While it has developed into a robust technique for scientific and clinical use, its image processing can still be daunting. The 2019 Ann Arbor ISMRM ASL working group established that education is one of the main areas that can accelerate the use of ASL in research and clinical practice. Specifically, the post-acquisition processing of ASL images and their preparation for region-of-interest or voxel-wise statistical analyses is a topic that has not yet received much educational attention. This educational review is aimed at those with an interest in ASL image processing and analysis. We provide summaries of all typical ASL processing steps on both single-subject and group levels. The readers are assumed to have a basic understanding of cerebral perfusion (patho) physiology; a basic level of programming or image analysis is not required. Starting with an introduction of the physiology and MRI technique behind ASL, and how they interact with the image processing, we present an overview of processing pipelines and explain the specific ASL processing steps. Example video and image illustrations of ASL studies of different cases, as well as model calculations, help the reader develop an understanding of which processing steps to check for their own analyses. Some of the educational content can be extrapolated to the processing of other MRI data. We anticipate that this educational review will help accelerate the application of ASL MRI for clinical brain research.
Collapse
Affiliation(s)
- Patricia Clement
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Jan Petr
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUmc, Amsterdam, Netherlands
| | - Mathijs B. J. Dijsselhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
| | - Beatriz Padrela
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
| | - Maurice Pasternak
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, OT, Canada
| | - Sudipto Dolui
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Lina Jarutyte
- School of Psychological Science, University of Bristol, England, United Kingdom
| | - Nandor Pinter
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUmc, Amsterdam, Netherlands
- Dent Neurologic Institute, Buffalo, Amherst, NY, United States
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, United States
| | - Luis Hernandez-Garcia
- fMRI Laboratory, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Andrew Jahn
- fMRI Laboratory, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Joost P. A. Kuijer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUmc, Amsterdam, Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
- Queen Square Institute of Neurology and Center for Medical Image Computing, University College London, London, United Kingdom
| | - Henk J. M. M. Mutsaerts
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
- Queen Square Institute of Neurology and Center for Medical Image Computing, University College London, London, United Kingdom
| | - Vera C. Keil
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| |
Collapse
|
74
|
Uchida Y, Kan H, Sakurai K, Horimoto Y, Hayashi E, Iida A, Okamura N, Oishi K, Matsukawa N. APOE ɛ4 dose associates with increased brain iron and β-amyloid via blood-brain barrier dysfunction. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2021-328519. [PMID: 35483916 DOI: 10.1136/jnnp-2021-328519] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/23/2022] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To examine the effect of apolipoprotein E (APOE) ɛ4 dose on blood-brain barrier (BBB) clearance function, evaluated using an advanced MRI technique and analyse its correlation with brain iron and β-amyloid accumulation in the early stages of the Alzheimer's continuum. METHODS In this single-centre observational prospective cohort study, 24 APOE ɛ4 non-carriers, 22 heterozygotes and 20 homozygotes in the early stages of the Alzheimer's continuum were scanned with diffusion-prepared arterial spin labelling, which estimates the water exchange rate across the BBB (kw). Participants also underwent quantitative susceptibility mapping, [11C]Pittsburgh compound B-positron emission tomography and neuropsychological testing. Using an atlas-based approach, we compared the regional kw of the whole brain among the groups and analysed its correlation with the neuroradiological and neuropsychological findings. RESULTS The BBB kw values in the neocortices differed significantly among the groups (APOE ɛ4 non-carriers>heterozygotes>homozygotes). These values correlated with brain iron levels (frontal lobe: r=-0.476, 95% CI=-0.644 to -0.264, p=0.011; medial temporal lobe: r=-0.455, 95% CI=-0.628 to -0.239, p=0.017), β-amyloid loads (frontal lobe: r=-0.504, 95% CI=-0.731 to -0.176, p=0.015; medial temporal lobe: r=-0.452, 95% CI=-0.699 to -0.110, p=0.036) and neuropsychological scores, after adjusting for age, sex and APOE ɛ4 dose. INTERPRETATION Our results suggest that an increased APOE ɛ4 dose is associated with decreased effective brain-waste clearance, such as iron and β-amyloid, through the BBB.
Collapse
Affiliation(s)
- Yuto Uchida
- Department of Neurology, Nagoya City University, Nagoya, Japan
- Department of Neurology, Toyokawa City Hospital, Toyokawa, Japan
| | - Hirohito Kan
- Department of Integrated Health Sciences, Nagoya University, Nagoya, Japan
| | - Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yoshihiko Horimoto
- Department of Neurology, Nagoya City Rehabilitation Center Group, Nagoya, Japan
| | - Emi Hayashi
- Department of Radiology, Nagoya City Rehabilitation Center Group, Nagoya, Japan
| | - Akihiko Iida
- Department of Radiology, Nagoya City Rehabilitation Center Group, Nagoya, Japan
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kenichi Oishi
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
75
|
Ford JN, Zhang Q, Sweeney EM, Merkler AE, de Leon MJ, Gupta A, Nguyen TD, Ivanidze J. Quantitative Water Permeability Mapping of Blood-Brain-Barrier Dysfunction in Aging. Front Aging Neurosci 2022; 14:867452. [PMID: 35462701 PMCID: PMC9024318 DOI: 10.3389/fnagi.2022.867452] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Blood-brain-barrier (BBB) dysfunction is a hallmark of aging and aging-related disorders, including cerebral small vessel disease and Alzheimer's disease. An emerging biomarker of BBB dysfunction is BBB water exchange rate (kW) as measured by diffusion-weighted arterial spin labeling (DW-ASL) MRI. We developed an improved DW-ASL sequence for Quantitative Permeability Mapping and evaluated whole brain and region-specific kW in a cohort of 30 adults without dementia across the age spectrum. In this cross-sectional study, we found higher kW values in the cerebral cortex (mean = 81.51 min-1, SD = 15.54) compared to cerebral white matter (mean = 75.19 min-1, SD = 13.85) (p < 0.0001). We found a similar relationship for cerebral blood flow (CBF), concordant with previously published studies. Multiple linear regression analysis with kW as an outcome showed that age was statistically significant in the cerebral cortex (p = 0.013), cerebral white matter (p = 0.033), hippocampi (p = 0.043), orbitofrontal cortices (p = 0.042), and precunei cortices (p = 0.009), after adjusting for sex and number of vascular risk factors. With CBF as an outcome, age was statistically significant only in the cerebral cortex (p = 0.026) and precunei cortices (p = 0.020). We further found moderate negative correlations between white matter hyperintensity (WMH) kW and WMH volume (r = -0.51, p = 0.02), and normal-appearing white matter (NAWM) and WMH volume (r = -0.44, p = 0.05). This work illuminates the relationship between BBB water exchange and aging and may serve as the basis for BBB-targeted therapies for aging-related brain disorders.
Collapse
Affiliation(s)
- Jeremy N. Ford
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States,Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Qihao Zhang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Elizabeth M. Sweeney
- Department of Biostatistics, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Mony J. de Leon
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Jana Ivanidze
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States,*Correspondence: Jana Ivanidze,
| |
Collapse
|
76
|
Wu M, Zhai Y, Liang X, Chen W, Lin R, Ma L, Huang Y, Zhao D, Liang Y, Zhao W, Fang J, Fang S, Chen Y, Wang Q, Li W. Connecting the Dots Between Hypercholesterolemia and Alzheimer’s Disease: A Potential Mechanism Based on 27-Hydroxycholesterol. Front Neurosci 2022; 16:842814. [PMID: 35464321 PMCID: PMC9021879 DOI: 10.3389/fnins.2022.842814] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/01/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD), the most common cause of dementia, is a complex and multifactorial disease involving genetic and environmental factors, with hypercholesterolemia considered as one of the risk factors. Numerous epidemiological studies have reported a positive association between AD and serum cholesterol levels, and experimental studies also provide evidence that elevated cholesterol levels accelerate AD pathology. However, the underlying mechanism of hypercholesterolemia accelerating AD pathogenesis is not clear. Here, we review the metabolism of cholesterol in the brain and focus on the role of oxysterols, aiming to reveal the link between hypercholesterolemia and AD. 27-hydroxycholesterol (27-OHC) is the major peripheral oxysterol that flows into the brain, and it affects β-amyloid (Aβ) production and elimination as well as influencing other pathogenic mechanisms of AD. Although the potential link between hypercholesterolemia and AD is well established, cholesterol-lowering drugs show mixed results in improving cognitive function. Nevertheless, drugs that target cholesterol exocytosis and conversion show benefits in improving AD pathology. Herbs and natural compounds with cholesterol-lowering properties also have a potential role in ameliorating cognition. Collectively, hypercholesterolemia is a causative risk factor for AD, and 27-OHC is likely a potential mechanism for hypercholesterolemia to promote AD pathology. Drugs that regulate cholesterol metabolism are probably beneficial for AD, but more research is needed to unravel the mechanisms involved in 27-OHC, which may lead to new therapeutic strategies for AD.
Collapse
Affiliation(s)
- Mingan Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingying Zhai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyi Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weichun Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruiyi Lin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linlin Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Di Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunbo Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Qi Wang,
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
- Weirong Li,
| |
Collapse
|
77
|
Li AM, Xu J. Cerebrospinal fluid-tissue exchange revealed by phase alternate labeling with null recovery MRI. Magn Reson Med 2022; 87:1207-1217. [PMID: 34799860 PMCID: PMC8794537 DOI: 10.1002/mrm.29092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/09/2021] [Accepted: 11/01/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE To develop phase alternate labeling with null recovery (PALAN) MRI methods for the quantification of the water exchange between cerebrospinal fluid (CSF) and other surrounding tissues in the brain. METHOD In both T1 -PALAN and apparent diffusion coefficient (ADC)-PALAN MRI methods, the cerebrospinal fluid signal was nulled, whereas the partial recovery of other tissues with shorter T1 (T1 -PALAN) or lower ADC values (ADC-PALAN) was labeled by alternating the phase of pulses. The water exchange was extracted from the difference between the recovery curves of CSF with and without labeling. RESULTS Both T1 -PALAN and ADC-PALAN observed a rapid occurrence of CSF water exchange with the surrounding tissues at 67 ± 56 ms and 13 ± 2 ms transit times, respectively. The T1 and ADC-PALAN signal peaked at 1.5 s. The CSF water exchange was 1153 ± 270 mL/100 mL/min with T1 -PALAN in the third and lateral ventricles, which was higher than 891 ± 60 mL/100 mL/min obtained by ADC-PALAN. T1 -PALAN ∆S values for the rostral and caudal ventricles are 0.015 ± 0.013 and 0.034 ± 0.01 (p = 0.022, n = 5), whereas similar ΔS values in both rostral and caudal lateral ventricles were observed by ADC-PALAN (3.9 ± 1.9 × 10-3 vs 4.4 ± 1.4 × 10-3 ; p = 0.66 and n = 5). CONCLUSION The PALAN methods are suitable tools to study CSF water exchange across different compartments in the brain.
Collapse
Affiliation(s)
- Anna M. Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA,Corresponding Author: Jiadi Xu, Ph.D., Kennedy Krieger Institute, The Johns Hopkins University School of Medicine, 707 N. Broadway, Baltimore, MD, 21205, , Tel: 443-923-9572, Fax: 443-923-9505
| |
Collapse
|
78
|
Vemuri P, Decarli CS, Duering M. Imaging Markers of Vascular Brain Health: Quantification, Clinical Implications, and Future Directions. Stroke 2022; 53:416-426. [PMID: 35000423 PMCID: PMC8830603 DOI: 10.1161/strokeaha.120.032611] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cerebrovascular disease (CVD) manifests through a broad spectrum of mechanisms that negatively impact brain and cognitive health. Oftentimes, CVD changes (excluding acute stroke) are insufficiently considered in aging and dementia studies which can lead to an incomplete picture of the etiologies contributing to the burden of cognitive impairment. Our goal with this focused review is 3-fold. First, we provide a research update on the current magnetic resonance imaging methods that can measure CVD lesions as well as early CVD-related brain injury specifically related to small vessel disease. Second, we discuss the clinical implications and relevance of these CVD imaging markers for cognitive decline, incident dementia, and disease progression in Alzheimer disease, and Alzheimer-related dementias. Finally, we present our perspective on the outlook and challenges that remain in the field. With the increased research interest in this area, we believe that reliable CVD imaging biomarkers for aging and dementia studies are on the horizon.
Collapse
Affiliation(s)
| | - Charles S. Decarli
- Departments of Neurology and Center for Neuroscience, University of California at Davis, Sacramento, California, USA
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany
- Medical Image Analysis Center (MIAC AG) and qbig, Department of Biomedical Engineering, University of Basel, Switzerland
| |
Collapse
|
79
|
van Veluw SJ, Arfanakis K, Schneider JA. Neuropathology of Vascular Brain Health: Insights From Ex Vivo Magnetic Resonance Imaging-Histopathology Studies in Cerebral Small Vessel Disease. Stroke 2022; 53:404-415. [PMID: 35000425 PMCID: PMC8830602 DOI: 10.1161/strokeaha.121.032608] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sporadic cerebral small vessel disease (SVD) is a major contributor to vascular cognitive impairment and dementia in the aging human brain. On neuropathology, sporadic SVD is characterized by abnormalities to the small vessels of the brain predominantly in the form of cerebral amyloid angiopathy and arteriolosclerosis. These pathologies frequently coexist with Alzheimer disease changes, such as plaques and tangles, in a single brain. Conversely, during life, magnetic resonance imaging (MRI) only captures the larger manifestations of SVD in the form of parenchymal brain abnormalities. There appears to be a major knowledge gap regarding the underlying neuropathology of individual MRI-detectable SVD abnormalities. Ex vivo MRI in postmortem human brain tissue is a powerful tool to bridge this gap. This review summarizes current insights into the histopathologic correlations of MRI manifestations of SVD, their underlying cause, presumed pathophysiology, and associated secondary tissue injury. Moreover, we discuss the advantages and limitations of ex vivo MRI-guided histopathologic investigations and make recommendations for future studies.
Collapse
Affiliation(s)
- Susanne J. van Veluw
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA,Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Konstantinos Arfanakis
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA,Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA,Departments of Pathology and Neurological Sciences, Rush University Medical Center, Chicago IL, USA
| |
Collapse
|
80
|
Zhang X, Huang P, Zhang R. Evaluation and Prediction of Post-stroke Cerebral Edema Based on Neuroimaging. Front Neurol 2022; 12:763018. [PMID: 35087464 PMCID: PMC8786707 DOI: 10.3389/fneur.2021.763018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Cerebral edema is a common complication of acute ischemic stroke that leads to poorer functional outcomes and substantially increases the mortality rate. Given that its negative effects can be reduced by more intensive monitoring and evidence-based interventions, the early identification of patients with a high risk of severe edema is crucial. Neuroimaging is essential for the assessment and prediction of edema. Simple markers, such as midline shift and hypodensity volume on computed tomography, have been used to evaluate edema in clinical trials; however, advanced techniques can be applied to examine the underlying mechanisms. In this study, we aimed to review current imaging tools in the assessment and prediction of cerebral edema to provide guidance for using these methods in clinical practice.
Collapse
Affiliation(s)
| | | | - Ruiting Zhang
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| |
Collapse
|
81
|
Wang K, Ma SJ, Shao X, Zhao C, Shou Q, Yan L, Wang DJJ. Optimization of pseudo-continuous arterial spin labeling at 7T with parallel transmission B1 shimming. Magn Reson Med 2022; 87:249-262. [PMID: 34427341 PMCID: PMC8616784 DOI: 10.1002/mrm.28988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE To optimize pseudo-continuous arterial spin labeling (pCASL) for 7 T, and to further improve the labeling efficiency with parallel RF transmission transmit B1 ( B 1 + ) shimming. METHODS pCASL parameters were optimized based on B 1 + / B 0 field distributions at 7 T with simulation. To increase labeling efficiency, the B 1 + amplitude at inflowing arteries was increased with parallel RF transmission B 1 + shimming. The "indv-shim" with shimming weights calculated for each individual subject, and the "univ-shim" with universal weights calculated on a group of 12 subjects, were compared with circular polarized (CP) shim. The optimized pCASL sequences with three B 1 + shimming modes (indv-shim, univ-shim, and CP-shim) were evaluated in 6 subjects who underwent two repeated scans 24 hours apart, along with a pulsed ASL sequence. Quantitative metrics including mean B 1 + amplitude, perfusion, and intraclass correlation coefficient were calculated. The optimized 7T pCASL was compared with standard 3T pCASL on 5 subjects, using spatial SNR and temporal SNR. RESULTS The optimal pCASL parameter set (RF duration/gap = 300/250 us, G ave = 0.6 mT / m , g R a t i o = 10 ) achieved robust perfusion measurement in the presence of B 1 + / B 0 inhomogeneities. Both indv-shim and univ-shim significantly increased B 1 + amplitude compared with CP-shim in simulation and in vivo experiment (P < .01). Compared with CP-shim, perfusion signal was increased by 9.5% with indv-shim (P < .05) and by 5.3% with univ-shim (P = .35). All three pCASL sequences achieved fair to good repeatability (intraclass correlation coefficient ≥ 0.5). Compared with 3T pCASL, the optimized 7T pCASL achieved 78.3% higher spatial SNR and 200% higher temporal SNR. CONCLUSION The optimized pCASL achieved robust perfusion imaging at 7 T, while both indv-shim and univ-shim further increased labeling efficiency.
Collapse
Affiliation(s)
- Kai Wang
- Laboratory of FMRI TechnologyUSC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Samantha J. Ma
- Laboratory of FMRI TechnologyUSC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
- Siemens Medical Solutions USALos AngelesCaliforniaUSA
| | - Xingfeng Shao
- Laboratory of FMRI TechnologyUSC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Chenyang Zhao
- Laboratory of FMRI TechnologyUSC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Qinyang Shou
- Laboratory of FMRI TechnologyUSC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Lirong Yan
- Laboratory of FMRI TechnologyUSC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of NeurologyKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Danny J. J. Wang
- Laboratory of FMRI TechnologyUSC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of NeurologyKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
82
|
Szczygielski J, Kopańska M, Wysocka A, Oertel J. Cerebral Microcirculation, Perivascular Unit, and Glymphatic System: Role of Aquaporin-4 as the Gatekeeper for Water Homeostasis. Front Neurol 2021; 12:767470. [PMID: 34966347 PMCID: PMC8710539 DOI: 10.3389/fneur.2021.767470] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
In the past, water homeostasis of the brain was understood as a certain quantitative equilibrium of water content between intravascular, interstitial, and intracellular spaces governed mostly by hydrostatic effects i.e., strictly by physical laws. The recent achievements in molecular bioscience have led to substantial changes in this regard. Some new concepts elaborate the idea that all compartments involved in cerebral fluid homeostasis create a functional continuum with an active and precise regulation of fluid exchange between them rather than only serving as separate fluid receptacles with mere passive diffusion mechanisms, based on hydrostatic pressure. According to these concepts, aquaporin-4 (AQP4) plays the central role in cerebral fluid homeostasis, acting as a water channel protein. The AQP4 not only enables water permeability through the blood-brain barrier but also regulates water exchange between perivascular spaces and the rest of the glymphatic system, described as pan-cerebral fluid pathway interlacing macroscopic cerebrospinal fluid (CSF) spaces with the interstitial fluid of brain tissue. With regards to this, AQP4 makes water shift strongly dependent on active processes including changes in cerebral microcirculation and autoregulation of brain vessels capacity. In this paper, the role of the AQP4 as the gatekeeper, regulating the water exchange between intracellular space, glymphatic system (including the so-called neurovascular units), and intravascular compartment is reviewed. In addition, the new concepts of brain edema as a misbalance in water homeostasis are critically appraised based on the newly described role of AQP4 for fluid permeation. Finally, the relevance of these hypotheses for clinical conditions (including brain trauma and stroke) and for both new and old therapy concepts are analyzed.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland.,Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Marta Kopańska
- Department of Pathophysiology, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Anna Wysocka
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Joachim Oertel
- Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
83
|
Mahroo A, Buck MA, Huber J, Breutigam NJ, Mutsaerts HJMM, Craig M, Chappell M, Günther M. Robust Multi-TE ASL-Based Blood-Brain Barrier Integrity Measurements. Front Neurosci 2021; 15:719676. [PMID: 34924924 PMCID: PMC8678075 DOI: 10.3389/fnins.2021.719676] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/25/2021] [Indexed: 12/30/2022] Open
Abstract
Multiple echo-time arterial spin labelling (multi-TE ASL) offers estimation of blood–tissue exchange dynamics by probing the T2 relaxation of the labelled spins. In this study, we provide a recipe for robust assessment of exchange time (Texch) as a proxy measure of blood–brain barrier (BBB) integrity based on a test-retest analysis. This includes a novel scan protocol and an extension of the two-compartment model with an “intra-voxel transit time” (ITT) to address tissue transit effects. With the extended model, we intend to separate the underlying two distinct mechanisms of tissue transit and exchange. The performance of the extended model in comparison with the two-compartment model was evaluated in simulations. Multi-TE ASL sequence with two different bolus durations was used to acquire in vivo data (n = 10). Cerebral blood flow (CBF), arterial transit time (ATT) and Texch were fitted with the two models, and mean grey matter values were compared. Additionally, the extended model also extracted ITT parameter. The test-retest reliability of Texch was assessed for intra-session, inter-session and inter-visit pairs of measurements. Intra-class correlation coefficient (ICC) and within-subject coefficient of variance (CoV) for grey matter were computed to assess the precision of the method. Mean grey matter Texch and ITT values were found to be 227.9 ± 37.9 ms and 310.3 ± 52.9 ms, respectively. Texch estimated by the extended model was 32.6 ± 5.9% lower than the two-compartment model. A significant ICC was observed for all three measures of Texch reliability (P < 0.05). Texch intra-session CoV, inter-session CoV and inter-visit CoV were found to be 6.6%, 7.9%, and 8.4%, respectively. With the described improvements addressing intra-voxel transit effects, multi-TE ASL shows good reproducibility as a non-invasive measure of BBB permeability. These findings offer an encouraging step forward to apply this potential BBB permeability biomarker in clinical research.
Collapse
Affiliation(s)
- Amnah Mahroo
- MR Physics, Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Mareike Alicja Buck
- MR Physics, Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany.,MR-Imaging and Spectroscopy, University of Bremen, Bremen, Germany
| | - Jörn Huber
- MR Physics, Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | | | - Henk J M M Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Martin Craig
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Michael Chappell
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Nottingham Biomedical Research Centre, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Matthias Günther
- MR Physics, Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany.,MR-Imaging and Spectroscopy, University of Bremen, Bremen, Germany.,mediri GmbH, Heidelberg, Germany
| |
Collapse
|
84
|
Gold BT, Shao X, Sudduth TL, Jicha GA, Wilcock DM, Seago ER, Wang DJ. Water exchange rate across the blood-brain barrier is associated with CSF amyloid-β 42 in healthy older adults. Alzheimers Dement 2021; 17:2020-2029. [PMID: 33949773 PMCID: PMC8717840 DOI: 10.1002/alz.12357] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/19/2021] [Accepted: 04/07/2021] [Indexed: 01/21/2023]
Abstract
INTRODUCTION We tested if water exchange across the blood-brain barrier (BBB), estimated with a noninvasive magnetic resonance imaging (MRI) technique, is associated with cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD) and neuropsychological function. METHODS Forty cognitively normal older adults (67-86 years old) were scanned with diffusion-prepared, arterial spin labeling (DP-ASL), which estimates water exchange rate across the BBB (kw ). Participants also underwent CSF draw and neuropsychological testing. Multiple linear regression models were run with kw as a predictor of CSF concentrations and neuropsychological scores. RESULTS In multiple brain regions, BBB kw was positively associated with CSF amyloid beta (Aβ)42 concentration levels. BBB kw was only moderately associated with neuropsychological performance. DISCUSSION Our results suggest that low water exchange rate across the BBB is associated with low CSF Aβ42 concentration. These findings suggest that kw may be a promising noninvasive indicator of BBB Aβ clearance functions, a possibility which should be further tested in future research.
Collapse
Affiliation(s)
- Brian T. Gold
- Department of NeuroscienceSanders‐Brown Center on AgingLexingtonKentuckyUSA
- Sanders‐Brown Center on AgingLexingtonKentuckyUSA
- Magnetic Resonance Imaging and Spectroscopy CenterCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT)Mark & Mary Stevens Neuroimaging and Informatics InstituteKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Gregory A. Jicha
- Sanders‐Brown Center on AgingLexingtonKentuckyUSA
- Department of NeurologySanders‐Brown Center on AgingLexingtonKentuckyUSA
| | - Donna M. Wilcock
- Sanders‐Brown Center on AgingLexingtonKentuckyUSA
- Department of PhysiologySanders‐Brown Center on AgingLexingtonKentuckyUSA
| | - Elayna R. Seago
- Department of NeuroscienceSanders‐Brown Center on AgingLexingtonKentuckyUSA
| | - Danny J.J. Wang
- Laboratory of FMRI Technology (LOFT)Mark & Mary Stevens Neuroimaging and Informatics InstituteKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of NeurologyKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
85
|
Wang DJJ, Le Bihan D, Krishnamurthy R, Smith M, Ho ML. Noncontrast Pediatric Brain Perfusion: Arterial Spin Labeling and Intravoxel Incoherent Motion. Magn Reson Imaging Clin N Am 2021; 29:493-513. [PMID: 34717841 DOI: 10.1016/j.mric.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Noncontrast magnetic resonance imaging techniques for measuring brain perfusion include arterial spin labeling (ASL) and intravoxel incoherent motion (IVIM). These techniques provide noninvasive and repeatable assessment of cerebral blood flow or cerebral blood volume without the need for intravenous contrast. This article discusses the technical aspects of ASL and IVIM with a focus on normal physiologic variations, technical parameters, and artifacts. Multiple pediatric clinical applications are presented, including tumors, stroke, vasculopathy, vascular malformations, epilepsy, migraine, trauma, and inflammation.
Collapse
Affiliation(s)
- Danny J J Wang
- USC Institute for Neuroimaging and Informatics, SHN, 2025 Zonal Avenue, Health Sciences Campus, Los Angeles, CA 90033, USA
| | - Denis Le Bihan
- NeuroSpin, Centre d'études de Saclay, Bâtiment 145, Gif-sur-Yvette 91191, France
| | - Ram Krishnamurthy
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA
| | - Mark Smith
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA
| | - Mai-Lan Ho
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA.
| |
Collapse
|
86
|
Lin Z, Lance E, McIntyre T, Li Y, Liu P, Lim C, Fan H, Tekes A, Cannon A, Casella JF, Lu H. Imaging Blood-Brain Barrier Permeability Through MRI in Pediatric Sickle Cell Disease: A Feasibility Study. J Magn Reson Imaging 2021; 55:1551-1558. [PMID: 34676938 PMCID: PMC9018466 DOI: 10.1002/jmri.27965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) disruption may lead to endothelium dysfunction and inflammation in sickle cell disease (SCD). However, abnormalities of BBB in SCD, especially in pediatric patients for whom contrast agent administration less than optimal, have not been fully characterized. PURPOSE To examine BBB permeability to water in a group of pediatric SCD participants using a non-invasive magnetic resonance imaging technique. We hypothesized that SCD participants will have increased BBB permeability. STUDY TYPE Prospective cross-sectional. POPULATION Twenty-six pediatric participants (10 ± 1 years, 15F/11M) were enrolled, including 21 SCD participants and 5 sickle cell trait (SCT) participants, who were siblings of SCD patients. FIELD STRENGTH/SEQUENCE 3 T. Water extraction with phase-contrast arterial spin tagging with echo-planer imaging, phase-contrast and T1 -weighted magnetization-prepared rapid acquisition of gradient echo. ASSESSMENT Water extraction fraction (E), BBB permeability-surface area product (PS), cerebral blood flow, hematological measures (hemoglobin, hematocrit, hemoglobin S), neuropsychological scores (including domains of intellectual ability, attention and executive function, academic achievement and adaptive function, and a composite score). Regions of interest were drawn by Z.L. (6 years of experience). STATISTICAL TESTS Wilcoxon rank sum test and chi-square test for group comparison of demographics. Multiple linear regression analysis of PS with diagnostic category (SCD or SCT), hematological measures, and neuropsychological scores. A two-tailed P value of 0.05 or less was considered statistically significant. RESULTS Compared with SCT participants, SCD participants had a significantly higher BBB permeability to water (SCD: 207.0 ± 33.3 mL/100 g/minute, SCT: 171.2 ± 27.2 mL/100 g/minute). SCD participants with typically more severe phenotypes also had a significantly leakier BBB than those with typically milder phenotypes (severe: 217.3 ± 31.7 mL/100 g/minute, mild: 193.3 ± 31.8 mL/100 g/minute). Furthermore, more severe BBB disruption was associated with worse hematological symptoms, including lower hemoglobin concentrations (β = -8.84, 95% confidence interval [CI] [-14.69, -3.00]), lower hematocrits (β = -2.96, 95% CI [-4.84, -1.08]), and higher hemoglobin S fraction (β = 0.77, 95% CI [0.014, 1.53]). DATA CONCLUSION These findings support a potential role for BBB dysfunction in SCD pathogenesis of ischemic injury. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Zixuan Lin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eboni Lance
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tiffany McIntyre
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Yang Li
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peiying Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chantelle Lim
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hongli Fan
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aylin Tekes
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alicia Cannon
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - James F Casella
- Department of Pediatrics, Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
87
|
Zimmerman B, Rypma B, Gratton G, Fabiani M. Age-related changes in cerebrovascular health and their effects on neural function and cognition: A comprehensive review. Psychophysiology 2021; 58:e13796. [PMID: 33728712 PMCID: PMC8244108 DOI: 10.1111/psyp.13796] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/11/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022]
Abstract
The process of aging includes changes in cellular biology that affect local interactions between cells and their environments and eventually propagate to systemic levels. In the brain, where neurons critically depend on an efficient and dynamic supply of oxygen and glucose, age-related changes in the complex interaction between the brain parenchyma and the cerebrovasculature have effects on health and functioning that negatively impact cognition and play a role in pathology. Thus, cerebrovascular health is considered one of the main mechanisms by which a healthy lifestyle, such as habitual cardiorespiratory exercise and a healthful diet, could lead to improved cognitive outcomes with aging. This review aims at detailing how the physiology of the cerebral vascular system changes with age and how these changes lead to differential trajectories of cognitive maintenance or decline. This provides a framework for generating specific mechanistic hypotheses about the efficacy of proposed interventions and lifestyle covariates that contribute to enhanced cognitive well-being. Finally, we discuss the methodological implications of age-related changes in the cerebral vasculature for human cognitive neuroscience research and propose directions for future experiments aimed at investigating age-related changes in the relationship between physiology and cognitive mechanisms.
Collapse
Affiliation(s)
- Benjamin Zimmerman
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gabriele Gratton
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Monica Fabiani
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
88
|
Lin Z, Sur S, Liu P, Li Y, Jiang D, Hou X, Darrow J, Pillai JJ, Yasar S, Rosenberg P, Albert M, Moghekar A, Lu H. Blood-Brain Barrier Breakdown in Relationship to Alzheimer and Vascular Disease. Ann Neurol 2021; 90:227-238. [PMID: 34041783 PMCID: PMC8805295 DOI: 10.1002/ana.26134] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 02/06/2023]
Abstract
Objective: Blood–brain barrier (BBB) breakdown has been suggested to be an early biomarker in human cognitive impairment. However, the relationship between BBB breakdown and brain pathology, most commonly Alzheimer disease (AD) and vascular disease, is still poorly understood. The present study measured human BBB function in mild cognitive impairment (MCI) patients on 2 molecular scales, specifically BBB’s permeability to water and albumin molecules. Methods: Fifty-five elderly participants were enrolled, including 33 MCI patients and 22 controls. BBB permeability to water was measured with a new magnetic resonance imaging technique, water extraction with phase contrast arterial spin tagging. BBB permeability to albumin was determined using cerebrospinal fluid (CSF)/serum albumin ratio. Cognitive performance was assessed by domain-specific composite scores. AD pathology (including CSF Aβ and ptau) and vascular risk factors were examined. Results: Compared to cognitively normal subjects, BBB in MCI patients manifested an increased permeability to small molecules such as water but was no more permeable to large molecules such as albumin. BBB permeability to water was found to be related to AD markers of CSF Aβ and ptau. On the other hand, BBB permeability to albumin was found to be related to vascular risk factors, especially hypercholesterolemia, but was not related to AD pathology. BBB permeability to small molecules, but not to large molecules, was found to be predictive of cognitive function. Interpretation: These findings provide early evidence that BBB breakdown is related to both AD and vascular risks, but their effects can be differentiated by spatial scales. BBB permeability to small molecules has a greater impact on cognitive performance.
Collapse
Affiliation(s)
- Zixuan Lin
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sandeepa Sur
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Peiying Liu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yang Li
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Dengrong Jiang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Xirui Hou
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jacqueline Darrow
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jay J Pillai
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sevil Yasar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Paul Rosenberg
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Hanzhang Lu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD
| |
Collapse
|
89
|
Gu Y, Gao H, Kim K, Liu Y, Ramos-Estebanez C, Luo Y, Wang Y, Yu X. Dynamic oxygen-17 MRI with adaptive temporal resolution using golden-means-based 3D radial sampling. Magn Reson Med 2021; 85:3112-3124. [PMID: 33368649 PMCID: PMC8324328 DOI: 10.1002/mrm.28636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/26/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE The aim of this study was to develop a high-resolution 3D oxygen-17 (17 O) MRI method to delineate the kinetics of 17 O-enriched water (H217 O) across the entire mouse brain after a bolus injection via the tail vein. METHODS The dynamic 17 O signal was acquired with a golden-means-based 3D radial sampling scheme. To achieve adequate temporal resolution with preserved spatial resolution, a k-space-weighted view sharing strategy was used in image reconstruction with an adaptive window size tailored to the kinetics of the 17 O signal. Simulation studies were performed to determine the adequate image reconstruction parameters. The established method was applied to delineating the kinetics of intravenously injected H217 O in vivo in the post-stroke mouse brain. RESULTS The proposed dynamic 17 O-MRI method achieved an isotropic resolution of 1.21 mm (0.77 mm nominal) in mouse brain at 9.4T, with the temporal resolution increased gradually from 3 s at the initial phase of rapid signal increase to 15 s at the steady-state. The high spatial resolution enabled the delineation of the heterogeneous H217 O uptake and washout kinetics in stroke-affected mouse brain. CONCLUSION The current study demonstrated a 3D 17 O-MRI method for dynamic monitoring of 17 O signal changes with high spatial and temporal resolution. The method can be utilized to quantify physiological parameters such as cerebral blood flow and blood-brain barrier permeability by tracking injected H217 O. It can also be used to measure oxygen consumption rate in 17 O-oxygen inhalation studies.
Collapse
Affiliation(s)
- Yuning Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Huiyun Gao
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kihwan Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yuchi Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ciro Ramos-Estebanez
- Department of Neurology & Rehabilitation and Neurosurgery, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yu Luo
- Department of Molecular Genetics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Yunmei Wang
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
90
|
Lin Z, Jiang D, Liu D, Li Y, Uh J, Hou X, Pillai JJ, Qin Q, Ge Y, Lu H. Noncontrast assessment of blood-brain barrier permeability to water: Shorter acquisition, test-retest reproducibility, and comparison with contrast-based method. Magn Reson Med 2021; 86:143-156. [PMID: 33559214 DOI: 10.1002/mrm.28687] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/28/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE Assessment of the blood-brain barrier (BBB) permeability without the need for contrast agent is desirable, and the ability to measure the permeability to small molecules such as water may further increase the sensitivity in detecting diseases. This study proposed a time-efficient, noncontrast method to measure BBB permeability to water, evaluated its test-retest reproducibility, and compared it with a contrast agent-based method. METHODS A single-delay water extraction with phase-contrast arterial spin tagging (WEPCAST) method was devised in which spatial profile of the signal along the superior sagittal sinus was used to estimate bolus arrival time, and the WEPCAST signal at the corresponding location was used to compute water extraction fraction, which was combined with global cerebral blood flow to estimate BBB permeability surface area product to water. The reliability of WEPCAST sequence was examined in terms of intrasession, intersession, and inter-vendor (Philips [Ingenia, Best, the Netherlands] and Siemens [Prisma, Erlangen, Germany]) reproducibility. Finally, we compared this new technique to a contrast agent-based method. RESULTS Single-delay WEPCAST reduced the scan duration from approximately 20 min to 5 min. Extract fraction values estimated from single-delay WEPCAST showed good consistency with the multi-delay method (R = 0.82, P = .004). Group-averaged permeability surface area product values were found to be 137.5 ± 9.3 mL/100 g/min. Intrasession, intersession, and inter-vendor coefficient of variation of the permeability surface area product values were 6.6 ± 4.5%, 6.9 ± 3.7%, and 8.9 ± 3.0%, respectively. Finally, permeability surface area product obtained from WEPCAST MRI showed a significant correlation with that from the contrast-based method (R = .73, P = .02). CONCLUSION Single-delay WEPCAST MRI can measure BBB permeability to water within 5 min with an intrasession, intersession, and inter-vendor test-retest reproducibility of 6% to 9%. This method may provide a useful marker of BBB breakdown in clinical studies.
Collapse
Affiliation(s)
- Zixuan Lin
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dapeng Liu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Yang Li
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jinsoo Uh
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Xirui Hou
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jay J Pillai
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Yulin Ge
- Department of Radiology, New York University Langone Medical Center, New York, New York, USA
| | - Hanzhang Lu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
91
|
Bagnato F, Gauthier SA, Laule C, Moore GRW, Bove R, Cai Z, Cohen-Adad J, Harrison DM, Klawiter EC, Morrow SA, Öz G, Rooney WD, Smith SA, Calabresi PA, Henry RG, Oh J, Ontaneda D, Pelletier D, Reich DS, Shinohara RT, Sicotte NL. Imaging Mechanisms of Disease Progression in Multiple Sclerosis: Beyond Brain Atrophy. J Neuroimaging 2021; 30:251-266. [PMID: 32418324 DOI: 10.1111/jon.12700] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Clinicians involved with different aspects of the care of persons with multiple sclerosis (MS) and scientists with expertise on clinical and imaging techniques convened in Dallas, TX, USA on February 27, 2019 at a North American Imaging in Multiple Sclerosis Cooperative workshop meeting. The aim of the workshop was to discuss cardinal pathobiological mechanisms implicated in the progression of MS and novel imaging techniques, beyond brain atrophy, to unravel these pathologies. Indeed, although brain volume assessment demonstrates changes linked to disease progression, identifying the biological mechanisms leading up to that volume loss are key for understanding disease mechanisms. To this end, the workshop focused on the application of advanced magnetic resonance imaging (MRI) and positron emission tomography (PET) imaging techniques to assess and measure disease progression in both the brain and the spinal cord. Clinical translation of quantitative MRI was recognized as of vital importance, although the need to maintain a relatively short acquisition time mandated by most radiology departments remains the major obstacle toward this effort. Regarding PET, the panel agreed upon its utility to identify ongoing pathological processes. However, due to costs, required expertise, and the use of ionizing radiation, PET was not considered to be a viable option for ongoing care of persons with MS. Collaborative efforts fostering robust study designs and imaging technique standardization across scanners and centers are needed to unravel disease mechanisms leading to progression and discovering medications halting neurodegeneration and/or promoting repair.
Collapse
Affiliation(s)
- Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Susan A Gauthier
- Judith Jaffe Multiple Sclerosis Center, Department of Neurology, Feil Family Brain and Mind Institute, and Department of Radiology, Weill Cornell Medicine, New York, NY
| | - Cornelia Laule
- Department of Radiology, Pathology, and Laboratory Medicine, Department of Physics and Astronomy, and International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - George R Wayne Moore
- Department of Pathology and Laboratory Medicine, and International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Riley Bove
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA
| | - Zhengxin Cai
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, CT
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal and Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, Quebec, Canada
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD
| | - Eric C Klawiter
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Sarah A Morrow
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Gülin Öz
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - William D Rooney
- Advanced Imaging Research Center, Departments of Biomedical Engineering, Neurology, and Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| | - Seth A Smith
- Radiology and Radiological Sciences and Vanderbilt University Imaging Institute, Vanderbilt University Medical Center, and Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Roland G Henry
- Departments of Neurology, Radiology and Biomedical Imaging, and the UC San Francisco & Berkeley Bioengineering Graduate Group, University of California San Francisco, San Francisco, CA
| | - Jiwon Oh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Division of Neurology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Daniel Pelletier
- Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Penn Statistics in Imaging and Visualization Center, University of Pennsylvania, Philadelphia, PA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| | -
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
92
|
Rao MR, Norquay G, Stewart NJ, Wild JM. Measuring 129 Xe transfer across the blood-brain barrier using MR spectroscopy. Magn Reson Med 2021; 85:2939-2949. [PMID: 33458859 PMCID: PMC7986241 DOI: 10.1002/mrm.28646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/04/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE This study develops a tracer kinetic model of xenon uptake in the human brain to determine the transfer rate of inhaled hyperpolarized 129 Xe from cerebral blood to gray matter that accounts for the effects of cerebral physiology, perfusion and magnetization dynamics. The 129 Xe transfer rate is expressed using a tracer transfer coefficient, which estimates the quantity of hyperpolarized 129 Xe dissolved in cerebral blood under exchange with depolarized 129 Xe dissolved in gray matter under equilibrium of concentration. THEORY AND METHODS Time-resolved MR spectra of hyperpolarized 129 Xe dissolved in the human brain were acquired from three healthy volunteers. Acquired spectra were numerically fitted with five Lorentzian peaks in accordance with known 129 Xe brain spectral peaks. The signal dynamics of spectral peaks for gray matter and red blood cells were quantified, and correction for the 129 Xe T1 dependence upon blood oxygenation was applied. 129 Xe transfer dynamics determined from the ratio of the peaks for gray matter and red blood cells was numerically fitted with the developed tracer kinetic model. RESULTS For all the acquired NMR spectra, the developed tracer kinetic model fitted the data with tracer transfer coefficients between 0.1 and 0.14. CONCLUSION In this study, a tracer kinetic model was developed and validated that estimates the transfer rate of HP 129 Xe from cerebral blood to gray matter in the human brain.
Collapse
Affiliation(s)
- Madhwesha R Rao
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease and Insigneo Institute of In-silico Medicine, University of Sheffield, Sheffield, UK
| | - Graham Norquay
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease and Insigneo Institute of In-silico Medicine, University of Sheffield, Sheffield, UK
| | - Neil J Stewart
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease and Insigneo Institute of In-silico Medicine, University of Sheffield, Sheffield, UK
| | - Jim M Wild
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease and Insigneo Institute of In-silico Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
93
|
Mak E, Dounavi ME, Low A, Carter SF, McKiernan E, Williams GB, Jones PS, Carriere I, Muniz GT, Ritchie K, Ritchie C, Su L, O'Brien JT. Proximity to dementia onset and multi-modal neuroimaging changes: The prevent-dementia study. Neuroimage 2021; 229:117749. [PMID: 33454416 DOI: 10.1016/j.neuroimage.2021.117749] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND First-degree relatives of people with dementia (FH+) are at increased risk of developing Alzheimer's disease (AD). Here, we investigate "estimated years to onset of dementia" (EYO) as a surrogate marker of preclinical disease progression and assess its associations with multi-modal neuroimaging biomarkers. METHODS 89 FH+ participants in the PREVENT-Dementia study underwent longitudinal MR imaging over 2 years. EYO was calculated as the difference between the parental age of dementia diagnosis and the current age of the participant (mean EYO = 23.9 years). MPRAGE, ASL and DWI data were processed using Freesurfer, FSL-BASIL and DTI-TK. White matter lesion maps were segmented from FLAIR scans. The SPM Sandwich Estimator Toolbox was used to test for the main effects of EYO and interactions between EYO, Time, and APOE-ε4+. Threshold free cluster enhancement and family wise error rate correction (TFCE FWER) was performed on voxelwise statistical maps. RESULTS There were no significant effects of EYO on regional grey matter atrophy or white matter hyperintensities. However, a shorter EYO was associated with lower white matter Fractional Anisotropy and elevated Mean/Radial Diffusivity, particularly in the corpus callosum (TFCEFWERp < 0.05). The influence of EYO on white matter deficits were significantly stronger compared to that of normal ageing. APOE-ε4 carriers exhibited hyperperfusion with nearer proximity to estimated onset in temporo-parietal regions. There were no interactions between EYO and time, suggesting that EYO was not associated with accelerated imaging changes in this sample. CONCLUSIONS Amongst cognitively normal midlife adults with a family history of dementia, a shorter hypothetical proximity to dementia onset may be associated with incipient brain abnormalities, characterised by white matter disruptions and perfusion abnormalities, particularly amongst APOE-ε4 carriers. Our findings also confer biological validity to the construct of EYO as a potential stage marker of preclinical progression in the context of sporadic dementia. Further clinical follow-up of our longitudinal sample would provide critical validation of these findings.
Collapse
Affiliation(s)
- Elijah Mak
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK.
| | - Maria-Eleni Dounavi
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - Audrey Low
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - Stephen F Carter
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - Elizabeth McKiernan
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - Guy B Williams
- Department of Clinical Neurosciences and Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - P Simon Jones
- Department of Clinical Neurosciences and Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Isabelle Carriere
- Centre for Dementia Prevention, University of Edinburgh, Edinburgh, UK
| | | | - Karen Ritchie
- Centre for Dementia Prevention, University of Edinburgh, Edinburgh, UK; INSERM and University of Montpellier, Montpellier, France
| | - Craig Ritchie
- Centre for Dementia Prevention, University of Edinburgh, Edinburgh, UK
| | - Li Su
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - John T O'Brien
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| |
Collapse
|
94
|
Petitclerc L, Schmid S, Hirschler L, van Osch MJP. Combining T 2 measurements and crusher gradients into a single ASL sequence for comparison of the measurement of water transport across the blood-brain barrier. Magn Reson Med 2020; 85:2649-2660. [PMID: 33252152 PMCID: PMC7898618 DOI: 10.1002/mrm.28613] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 02/01/2023]
Abstract
Purpose Arterial spin labeling can be used to assess the transition time of water molecules across the blood–brain barrier when combined with sequence modules, which allow a separation of intravascular from tissue signal. The bipolar gradient technique measures the intravascular fraction by removing flowing spins. The T2‐relaxation‐under‐spin‐tagging (TRUST) technique modulates the TE to differentiate between intravascular and extravascular spins based on T2. These modules were combined into a single time‐encoded pseudo‐continuous arterial spin labeling sequence to compare their mechanisms of action as well as their assessment of water transition across the blood–brain barrier. Methods This protocol was acquired on a scanner with 9 healthy volunteers who provided written, informed consent. The sequence consisted of a Hadamard‐encoded pseudo‐continuous arterial spin labeling module, followed by the TRUST module (effective TEs of 0, 40, and 80 ms) and bipolar flow‐crushing gradients (2, 4, and ∞ cm/s). An additional experiment was performed with TRUST and a 3D gradient and spin‐echo readout. Results Gradients imperfectly canceled the intravascular signal, as evidenced by the presence of residual signal in the arteries at early postlabeling delays as well as the underestimation of the intravascular fraction as compared with the TRUST method. The TRUST module allowed us to detect the transport of water deeper into the vascular tree through changes in T2 than the used crusher gradients could, with their limited b‐value. Conclusion Of the implemented techniques, TRUST allowed us to follow intravascular signal deeper into the vascular tree than the approach with (relatively weak) crusher gradients when quantifying the transport time of water across the blood–brain barrier.
Collapse
Affiliation(s)
- Léonie Petitclerc
- Gorter Center for High-Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands.,Leiden Institute for Brain and Cognition, Leiden, Netherlands
| | - Sophie Schmid
- Gorter Center for High-Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands.,Leiden Institute for Brain and Cognition, Leiden, Netherlands
| | - Lydiane Hirschler
- Gorter Center for High-Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Matthias J P van Osch
- Gorter Center for High-Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands.,Leiden Institute for Brain and Cognition, Leiden, Netherlands
| |
Collapse
|
95
|
Shao X, Jann K, Ma SJ, Yan L, Montagne A, Ringman JM, Zlokovic BV, Wang DJJ. Comparison Between Blood-Brain Barrier Water Exchange Rate and Permeability to Gadolinium-Based Contrast Agent in an Elderly Cohort. Front Neurosci 2020; 14:571480. [PMID: 33328848 PMCID: PMC7733970 DOI: 10.3389/fnins.2020.571480] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/06/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Dynamic contrast-enhanced (DCE) MRI using intravenous injection of gadolinium-based contrast agents (GBCAs) is commonly used for imaging blood-brain barrier (BBB) permeability. Water is an alternative endogenous tracer with limited exchange rate across the BBB. A direct comparison between BBB water exchange rate and BBB permeability to GBCA is missing. The purpose of this study was to directly compare BBB permeability to GBCA (Ktrans and kGad = Ktrans/Vp) and water exchange rate (kw) in a cohort of elderly subjects at risk of cerebral small vessel disease (cSVD). Methods: Ktrans/kGad and kw were measured by DCE-MRI and diffusion prepared pseudo-continuous arterial spin labeling (DP-pCASL), respectively, at 3 Tesla in 16 elderly subjects (3 male, age = 67.9 ± 3.0 yrs) at risk of cSVD. The test-retest reproducibility of kw measurements was evaluated with repeated scans ~6 weeks apart. Mixed effects linear regression was performed in the whole brain, gray matter (GM), white matter (WM), and 6 subcortical brain regions to investigate associations between Ktrans/kGad and test-retest kw. In addition, kw and Ktrans/kGad were compared in normal appearing white matter (NAWM), white matter hyperintensity (WMH) lesions and penumbra. Results: Significant correlation was found between kw and Ktrans only in WM (β = 6.7 × 104, P = 0.036), caudate (β = 8.6 × 104, P = 0.029), and middle cerebral artery (MCA) perforator territory (β = 6.9 × 104, P = 0.009), but not in the whole brain, GM or rest 5 brain regions. Significant correlation was found between kw and kGad in MCA perforator territory (β = 1.5 × 103, P = 0.049), medial-temporal lobe (β = 3.5 × 103, P = 0.032), and hippocampus (β = 3.4 × 103, P = 0.038), but not in the rest brain regions. Good reproducibility of kw measurements (ICC=0.75) was achieved. Ktrans was significantly lower inside WMH than WMH penumbra (16.2%, P = 0.026), and kGad was significantly lower in NAWM than in the WMH penumbra (20.8%, P < 0.001). Conclusion: kw provides a measure of water exchange rate across the BBB with good test-retest reproducibility. The BBB mechanism underlying kw and Ktrans/kGad is likely to be different, as manifested by correlations in only three brain regions for each pair of comparison between kw and Ktrans or kGad.
Collapse
Affiliation(s)
- Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kay Jann
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Samantha J. Ma
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lirong Yan
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Axel Montagne
- Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - John M. Ringman
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Berislav V. Zlokovic
- Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Danny J. J. Wang
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
96
|
Ivanidze J, Skafida M, Pandya S, Patel D, Osborne JR, Raj A, Gupta A, Henchcliffe C, Dyke JP. Molecular Imaging of Striatal Dopaminergic Neuronal Loss and the Neurovascular Unit in Parkinson Disease. Front Neurosci 2020; 14:528809. [PMID: 33071729 PMCID: PMC7530280 DOI: 10.3389/fnins.2020.528809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/28/2020] [Indexed: 11/13/2022] Open
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disorder, characterized by loss of nigrostriatal dopaminergic neurons. Impairment of the neurovascular unit (NVU) has been hypothesized to play a critical role in early PD pathophysiology, and to precede neurodegenerative mechanisms. [C-11]-PE2I (N-(3-iodoprop-2E-enyl)-2b-carbomethoxy-3b-(4-methyl-phenyl)nortropane) (PE2I) is a PET radiotracer targeting neuronal dopamine transporters (DaT) with high specificity, allowing for highly accurate and specific DaT quantification. We investigated NVU integrity using arterial spin labeling (ASL) MRI in a prospective cohort of 26 patients with PD, and correlated our findings with analysis of striatal DaT density using PE2I PET in a subcohort of 17 patients. Analysis was performed in FreeSurfer to obtain rCBF and mean standardized regional PET avidity. Pearson correlations and Mann-Whitney tests were performed. Significantly lower mean normalized striatal PE2I SUV values were seen in multiple regions in patients with greater disease duration (p < 0.05). PET uptake in the putamen correlated with disease duration independent of patient age. Stratifying patients based on Montreal Cognitive Assessment (MoCA) scores (stratified into ≥ 27 vs. < 27), there was statistically significantly lower PE2I PET avidity in the higher MoCA score group in both more and less affected sides of the caudate, putamen and pallidum (p < 0.05). A moderate negative correlation between MDS-UPDRS part 3 (motor) "off" and rCBF values was also seen in the L and R cerebellum WM (r = -0.43 and -0.47, p < 0.05). A statistically significant negative correlation was found between dominant hand pegboard test results and rCBF in the less affected pallidum (r = -0.41; p = 0.046). A statistically significant negative correlation of ASL MRI with [11C]-PE2I PET was also found (r = -0.53 to -0.58; p-value 0.017-0.033) between left cerebral WM rCBF and more and less affected striatal PET regions. Our ROI-based analyses suggest that longer disease duration is associated with lower rCBF and lower PE2I mean SUV, implying greater NVU dysfunction and dopaminergic neuronal loss, respectively. Combined ASL MRI and PE2I PET imaging could inform future prospective clinical trials providing an improved mechanistic understanding of the disease, laying the foundation for the development of early disease biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Jana Ivanidze
- Department of Radiology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Myrto Skafida
- Department of Radiology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Sneha Pandya
- Department of Radiology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Dylon Patel
- Department of Neurology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Joseph R Osborne
- Department of Radiology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Ashish Raj
- Department of Radiology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Claire Henchcliffe
- Department of Neurology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Jonathan P Dyke
- Department of Radiology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
97
|
Bai R, Li Z, Sun C, Hsu YC, Liang H, Basser P. Feasibility of filter-exchange imaging (FEXI) in measuring different exchange processes in human brain. Neuroimage 2020; 219:117039. [DOI: 10.1016/j.neuroimage.2020.117039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 12/15/2022] Open
|
98
|
Schidlowski M, Boland M, Rüber T, Stöcker T. Blood-brain barrier permeability measurement by biexponentially modeling whole-brain arterial spin labeling data with multiple T 2 -weightings. NMR IN BIOMEDICINE 2020; 33:e4374. [PMID: 32715563 DOI: 10.1002/nbm.4374] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Blood-brain barrier (BBB) permeability assessment remains of ongoing interest in clinical practice and research. Transitions between intravascular (IV) and extravascular (EV) gray matter (GM) compartments may provide information regarding the microstructural status of the BBB. Due to different transverse relaxation times (T2 ) of water protons in vessels and GM, it is possible to determine the compartment in which these protons are located. This work presents and investigates the feasibility of a simplified analytical approach for compartmentalizing the proportions of magnetically marked water protons into IV and EV GM components by biexponentially modeling T2 -weighted arterial spin labeling (ASL) data. Numerous model assumptions were used to stabilize the fit and achieve in vivo applicability. Particularly, transverse relaxation times of IV and EV water protons were determined from the analysis of two supporting T2 -weighted ASL measurements, utilizing a monoexponential signal model. This stabilized a two-parameter biexponential fit of ASL data with T2 preparation (PLD = 0.9/1.2/1.5/1.8 s, TET2Prep = 0/30/40/60/80/120/160 ms), which thereby robustly provided estimates of the IV and EV compartment fractions. Experiments were conducted with three healthy volunteers in a 3 T scanner. Averaged over all subjects, the labeled water protons inherit T2,IV = 200 ± 18 ms initially and adapt T2,EV = 91 ± 2 ms with a longer retention time in cerebral structures. Accordingly, the EVlocated ASL signal fraction rises with increasing PLD from 0.31 ± 0.11 at the shortest PLD of 0.9 s to 0.73 ± 0.02 at the longest PLD of 1.8s. These results indicate a transition of the water protons from IV to EV space. The findings support the potential of biexponential modeling for compartmentalizing ASL spin fractions between IV and EV space. The novel integration of monoexponential parameter estimates stabilizes the two-compartment model fit, suggesting that this technique is suitable for robustly estimating the BBB permeability in vivo.
Collapse
Affiliation(s)
- Martin Schidlowski
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Markus Boland
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Theodor Rüber
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Goethe University Frankfurt, Frankfurt/Main, Germany
- Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Tony Stöcker
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department for Physics and Astronomy, University of Bonn, Bonn, Germany
| |
Collapse
|
99
|
Abstract
The blood-brain barrier (BBB) is the interface between the blood and brain tissue, which regulates the maintenance of homeostasis within the brain. Impaired BBB integrity is increasingly associated with various neurological diseases. To gain a better understanding of the underlying processes involved in BBB breakdown, magnetic resonance imaging (MRI) techniques are highly suitable for noninvasive BBB assessment. Commonly used MRI techniques to assess BBB integrity are dynamic contrast-enhanced and dynamic susceptibility contrast MRI, both relying on leakage of gadolinium-based contrast agents. A number of conceptually different methods exist that target other aspects of the BBB. These alternative techniques make use of endogenous markers, such as water and glucose, as contrast media. A comprehensive overview of currently available MRI techniques to assess the BBB condition is provided from a scientific point of view, including potential applications in disease. Improvements that are required to make these techniques clinically more easily applicable will also be discussed.
Collapse
|
100
|
Ohene Y, Harrison IF, Evans PG, Thomas DL, Lythgoe MF, Wells JA. Increased blood-brain barrier permeability to water in the aging brain detected using noninvasive multi-TE ASL MRI. Magn Reson Med 2020; 85:326-333. [PMID: 32910547 PMCID: PMC8432141 DOI: 10.1002/mrm.28496] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 11/25/2022]
Abstract
Purpose A fundamental goal in the drive to understand and find better treatments for dementia is the identification of the factors that render the aging brain vulnerable to neurodegenerative disease. Recent evidence indicates the integrity of the blood–brain barrier (BBB) to be an important component of functional failure underlying age‐related cognitive decline. Practical and sensitive measurement is necessary, therefore, to support diagnostic and therapeutic strategies targeted at maintaining BBB integrity in aging patients. Here, we investigated changes in BBB permeability to endogenous blood water in the aging brain. Methods A multiple‐echo‐time arterial spin‐labeling MRI technique, implemented on a 9.4T Bruker imaging system, was applied to 7‐ and 27‐month‐old mice to measure changes in water permeability across the BBB with aging. Results We observed that BBB water permeability was 32% faster in aged mice. This occurred along with a 2.1‐fold increase in mRNA expression of aquaporin‐4 water channels and a 7.1‐fold decrease in mRNA expression of α‐syntrophin protein, which anchors aquaporin‐4 to the BBB. Conclusion Age‐related changes to water permeability across the BBB can be captured using noninvasive noncontrast MRI techniques. Click here for author‐reader discussions
Collapse
Affiliation(s)
- Yolanda Ohene
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Ian F Harrison
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Phoebe G Evans
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - David L Thomas
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Mark F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Jack A Wells
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|