51
|
Reprogramming of Mesothelial-Mesenchymal Transition in Chronic Peritoneal Diseases by Estrogen Receptor Modulation and TGF-β1 Inhibition. Int J Mol Sci 2020; 21:ijms21114158. [PMID: 32532126 PMCID: PMC7312018 DOI: 10.3390/ijms21114158] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
In chronic peritoneal diseases, mesothelial-mesenchymal transition is determined by cues from the extracellular environment rather than just the cellular genome. The transformation of peritoneal mesothelial cells and other host cells into myofibroblasts is mediated by cell membrane receptors, Transforming Growth Factor β1 (TGF-β1), Src and Hypoxia-inducible factor (HIF). This article provides a narrative review of the reprogramming of mesothelial mesenchymal transition in chronic peritoneal diseases, drawing on the similarities in pathophysiology between encapsulating peritoneal sclerosis and peritoneal metastasis, with a particular focus on TGF-β1 signaling and estrogen receptor modulators. Estrogen receptors act at the cell membrane/cytosol as tyrosine kinases that can phosphorylate Src, in a similar way to other receptor tyrosine kinases; or can activate the estrogen response element via nuclear translocation. Tamoxifen can modulate estrogen membrane receptors, and has been shown to be a potent inhibitor of mesothelial-mesenchymal transition (MMT), peritoneal mesothelial cell migration, stromal fibrosis, and neoangiogenesis in the treatment of encapsulating peritoneal sclerosis, with a known side effect and safety profile. The ability of tamoxifen to inhibit the transduction pathways of TGF-β1 and HIF and achieve a quiescent peritoneal stroma makes it a potential candidate for use in cancer treatments. This is relevant to tumors that spread to the peritoneum, particularly those with mesenchymal phenotypes, such as colorectal CMS4 and MSS/EMT gastric cancers, and pancreatic cancer with its desmoplastic stroma. Morphological changes observed during mesothelial mesenchymal transition can be treated with estrogen receptor modulation and TGF-β1 inhibition, which may enable the regression of encapsulating peritoneal sclerosis and peritoneal metastasis.
Collapse
|
52
|
Cong X, Zhang Y, Zhu Z, Li S, Yin X, Zhai Z, Zhang Y, Xue Y. CD66b + neutrophils and α-SMA + fibroblasts predict clinical outcomes and benefits from postoperative chemotherapy in gastric adenocarcinoma. Cancer Med 2020; 9:2761-2773. [PMID: 32096331 PMCID: PMC7163111 DOI: 10.1002/cam4.2939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 12/26/2022] Open
Abstract
Background Emerging evidence indicates that the tumor microenvironment (TME) influences tumor progression through the various cells it contains. Tumor‐associated neutrophils (TANs) and cancer‐associated fibroblasts (CAFs) are prominent constituents of diverse malignant solid tumors and are crucial in the TME and cancer evolution. However, the relationships and combined prognostic value of these two cell types are not known in gastric adenocarcinoma (GAC). Materials and Methods In total, 215 GAC patients who underwent curative surgery were enrolled. TANs were assessed by immunohistochemical staining for CD66b, and CAFs were evaluated by immunohistochemical staining for α‐smooth muscle actin (α‐SMA). Results The percentages of patients with high‐density TANs and CAFs in GAC tissue were 47.9% (103/215) and 43.3% (93/215), respectively. The densities of TANs and CAFs in GAC tissue samples were markedly elevated and independently correlated with GAC clinical outcomes. A strong correlation (R = .348, P < .001) was detected between TANs and CAFs in GAC. The combination of TANs and CAFs produced a more exact outcome than either factor alone. Patients with an α‐SMAlowCD66bhigh (hazard ratio [HR] = 1.791; 95% CI: 1.062‐3.021; P = .029), α‐SMAhighCD66blow (HR = 2.402; 95% CI: 1.379‐4.183; P = .002), or α‐SMAhighCD66bhigh (HR = 3.599; 95% CI: 2.330‐5.560; P < .001) phenotype were gradually correlated with poorer disease‐free survival than the subset of patients with an α‐SMAlowCD66blow phenotype. The same results were observed for disease‐specific survival in the subgroups. Noticeably, in stage II‐III patients with the α‐SMAlowCD66blow phenotype, an advantage was obtained with postoperative chemotherapeutics, and the risk of a poor prognosis was reduced compared with stage II‐III patients with the α‐SMAlowCD66bhigh, α‐SMAhighCD66blow or α‐SMAhighCD66bhigh phenotype (HR: 0.260, 95% CI: 0.124‐0.542, P < .001 for disease‐free survival; and HR: 0.258, 95% CI: 124‐0.538, P < .001 for disease‐specific survival). Conclusion Overall, we concluded that the combination of CD66b+ TANs and α‐SMA+ CAFs could be used as an independent factor for patient outcomes and to identify GAC patients who might benefit from the administration of postoperative chemotherapeutics.
Collapse
Affiliation(s)
- Xiliang Cong
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yongle Zhang
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ziyu Zhu
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Sen Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Yin
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhao Zhai
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yu Zhang
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingwei Xue
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
53
|
Zhao Y, Li J, Li D, Wang Z, Zhao J, Wu X, Sun Q, Lin PP, Plum P, Damanakis A, Gebauer F, Zhou M, Zhang Z, Schlösser H, Jauch KW, Nelson PJ, Bruns CJ. Tumor biology and multidisciplinary strategies of oligometastasis in gastrointestinal cancers. Semin Cancer Biol 2020; 60:334-343. [PMID: 31445220 DOI: 10.1016/j.semcancer.2019.08.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022]
Abstract
More than 70% of gastrointestinal (GI) cancers are diagnosed with metastases, leading to poor prognosis. For some cancer patients with limited sites of metastatic tumors, the term oligometastatic disease (OMD) has been coined as opposed to systemic polymetastasis (PMD) disease. Stephan Paget first described an organ-specific pattern of metastasis in 1889, now known as the "seed and soil" theory where distinct cancer types are found to metastasize to different tumor-specific sites. Our understanding of the biology of tumor metastasis and specifically the molecular mechanisms driving their formation are still limited, in particular, as it relates to the genesis of oligometastasis. In the following review, we discuss recent advances in general understanding of this metastatic behavior including the role of specific signaling pathways, various molecular features and biomarkers, as well as the interaction of carcinoma cells with their tissue microenvironments (both primary and metastatic niches). The unique features that underlie OMD provide potential targets for localized therapy. As it relates to clinical practice, OMD is emerging as treatable with surgical resection and/or other local therapy options. Strategies currently being applied in the clinical management of OMD will be discussed including surgical, radiation-based therapy, ablation procedures, and the results of emerging clinical trials involving immunotherapy.
Collapse
Affiliation(s)
- Yue Zhao
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany; Department of General, Visceral und Vascular Surgery, Otto von Guericke University, Magdeburg, Germany.
| | - Jiahui Li
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Dai Li
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany; Department of Anethesiology, Changhai Hospital, Naval Medical University, Shanghai, PR China
| | - Zhefang Wang
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Jiangang Zhao
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany; Department of General, Visceral und Vascular Surgery, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Xiaolin Wu
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Qiye Sun
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | | | - Patrick Plum
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany; Institute for Pathology, University Hospital Cologne, Cologne, Germany
| | - Alexander Damanakis
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Florian Gebauer
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Menglong Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hans Schlösser
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Center for Integrated Oncology (CIO) Achen, Bonn, Cologne and Düsseldorf, Cologne, Germany
| | - Karl-Walter Jauch
- Department of General, Visceral und Vascular Surgery, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Peter J Nelson
- Department of Internal Medicine IV, University Hospital of Munich, Ludwig-Maximilians-University Munich, Germany
| | - Christiane J Bruns
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany; Center for Integrated Oncology (CIO) Achen, Bonn, Cologne and Düsseldorf, Cologne, Germany.
| |
Collapse
|
54
|
Role of Metastasis-Related Genes in Cisplatin Chemoresistance in Gastric Cancer. Int J Mol Sci 2019; 21:ijms21010254. [PMID: 31905926 PMCID: PMC6981396 DOI: 10.3390/ijms21010254] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
The role of metastasis-related genes in cisplatin (CDDP) chemoresistance in gastric cancer is poorly understood. Here, we examined the expression of four metastasis-related genes (namely, c-met, HMGB1, RegIV, PCDHB9) in 39 cases of gastric cancer treated with neoadjuvant therapy with CDDP or CDDP+5-fluorouracil and evaluated its association with CDDP responsiveness. Comparison of CDDP-sensitive cases with CDDP-resistant cases, the expression of c-met, HMGB1, and PCDHB9 was correlated with CDDP resistance. Among them, the expression of HMGB1 showed the most significant correlation with CDDP resistance in multivariate analysis. Treatment of TMK-1 and MKN74 human gastric cancer cell lines with ethyl pyruvate (EP) or tanshinone IIA (TAN), which are reported to inhibit HMGB1 signaling, showed a 4–5-fold increase in inhibition by CDDP. Treatment with EP or TAN also suppressed the expression of TLR4 and MyD88 in the HMGB1 signal transduction pathway and suppressed the activity of NFκB in both cell lines. These results suggest that the expression of these cancer metastasis-related genes is also related to anticancer drug resistance and that suppression of HMGB1 may be particularly useful for CDDP sensitization.
Collapse
|
55
|
Zhou H, Xiong Y, Peng L, Wang R, Zhang H, Fu Z. LncRNA-cCSC1 modulates cancer stem cell properties in colorectal cancer via activation of the Hedgehog signaling pathway. J Cell Biochem 2019; 121:2510-2524. [PMID: 31680315 DOI: 10.1002/jcb.29473] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/10/2019] [Indexed: 12/27/2022]
Abstract
Several long noncoding RNAs (lncRNAs) have been identified in various malignant tumors and determined to contribute to the process of tumorigenesis, including that of colorectal cancer (CRC). Cancer stem cells (CSCs) have been demonstrated to promote the expansion and maintain the invasion and metastasis of cancer cells, owing to their self-renewal capacity. However, the underlying modulation mechanism of CSC-associated lncRNAs in CRC remains largely unclear. Using integrated bioinformatic analysis, we identified a novel lncRNA (lncRNA-cCSC1) that is highly expressed in CRC and colorectal cancer stem cells (CRCSCs). The biological functions of lncRNA-cCSC1 were assessed in vitro and vivo through the silencing or upregulation of its expression. The depletion of lncRNA-cCSC1 markedly inhibited the self-renewal capacity of the CRCSCs and reduced their drug resistance to 5-fluorouracil. In contrast, lncRNA-cCSC1 overexpression increased the self-renewal effect. Furthermore, aberrant lncRNA-cCSC1 expression resulted in a concomitant alteration of smoothened (SMO) and GLI family zinc finger 1 (Gli1) expression in the Hedgehog (Hh) signaling pathway. Our study is the first to identify a novel lncRNA-cCSC1 in CRC and to indicate that it may regulate CSC-like properties via the Hh signaling pathway. Thus, lncRNA-cCSC1 could be a potential biomarker and promising therapeutic target for CRC.
Collapse
Affiliation(s)
- He Zhou
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongfu Xiong
- The First Department of Hepatobiliary Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Linglong Peng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rong Wang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Hairong Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhongxue Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
56
|
Sun HR, Wang S, Yan SC, Zhang Y, Nelson PJ, Jia HL, Qin LX, Dong QZ. Therapeutic Strategies Targeting Cancer Stem Cells and Their Microenvironment. Front Oncol 2019; 9:1104. [PMID: 31709180 PMCID: PMC6821685 DOI: 10.3389/fonc.2019.01104] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) have been demonstrated in a variety of tumors and are thought to act as a clonogenic core for the genesis of new tumor growth. This small subpopulation of cancer cells has been proposed to help drive tumorigenesis, metastasis, recurrence and conventional therapy resistance. CSCs show self-renewal and flexible clonogenic properties and help define specific tumor microenvironments (TME). The interaction between CSCs and TME is thought to function as a dynamic support system that fosters the generation and maintenance of CSCs. Investigation of the interaction between CSCs and the TME is shedding light on the biologic mechanisms underlying the process of tumor malignancy, metastasis, and therapy resistance. We summarize recent advances in CSC biology and their environment, and discuss the challenges and future strategies for targeting this biology as a new therapeutic approach.
Collapse
Affiliation(s)
- Hao-Ran Sun
- Department of General Surgery, Cancer Metastasis Institute, Institutes of Biomedical Sciences, Huashan Hospital, Fudan University, Shanghai, China
| | - Shun Wang
- Department of General Surgery, Cancer Metastasis Institute, Institutes of Biomedical Sciences, Huashan Hospital, Fudan University, Shanghai, China
| | - Shi-Can Yan
- Department of General Surgery, Cancer Metastasis Institute, Institutes of Biomedical Sciences, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Zhang
- Department of General Surgery, Cancer Metastasis Institute, Institutes of Biomedical Sciences, Huashan Hospital, Fudan University, Shanghai, China
| | - Peter J. Nelson
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Hu-Liang Jia
- Department of General Surgery, Cancer Metastasis Institute, Institutes of Biomedical Sciences, Huashan Hospital, Fudan University, Shanghai, China
| | - Lun-Xiu Qin
- Department of General Surgery, Cancer Metastasis Institute, Institutes of Biomedical Sciences, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiong-Zhu Dong
- Department of General Surgery, Cancer Metastasis Institute, Institutes of Biomedical Sciences, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
57
|
Zhang L, Shi H, Chen H, Gong A, Liu Y, Song L, Xu X, You T, Fan X, Wang D, Cheng F, Zhu H. Dedifferentiation process driven by radiotherapy-induced HMGB1/TLR2/YAP/HIF-1α signaling enhances pancreatic cancer stemness. Cell Death Dis 2019; 10:724. [PMID: 31558702 PMCID: PMC6763460 DOI: 10.1038/s41419-019-1956-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 08/16/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022]
Abstract
Differentiated cancer cells reacquiring stem cell traits following radiotherapy may enrich cancer stem cells and accelerate tumor recurrence and metastasis. We are interested in the mechanistic role of dying cells-derived HMGB1 in CD133- pancreatic cancer cells dedifferentiation following radiotherapy. We firstly confirmed that X-ray irradiation induced differentiation of CD133- pancreatic cancer cells, from either sorted from patient samples or established cell lines, into cancer stem-like cells (iCSCs). Using an in vitro coculture model, X-ray irradiation induced dying cells to release HMGB1, which further promoted CD133- pancreatic cancer cells regaining stem cell traits, such as higher sphere forming ability and expressed higher level of stemness-related genes and proteins. Inhibiting the expression and activity of HMGB1 attenuated the dedifferentiation stimulating effect of irradiated, dying cells on C133- pancreatic cancer cells in vitro and in PDX models. Mechanistically, HMGB1 binding with TLR2 receptor functions in a paracrine manner to affect CD133- pancreatic cancer cells dedifferentiation via activating Hippo-YAP pathway and HIF-1α expression in oxygen independent manner in vitro and in vivo. We conclude that X-ray irradiation induces CD133- pancreatic cancer cell dedifferentiation into a CSC phenotype, and inhibiting HMGB1 may be a strategy to prevent CSC enrichment and further pancreatic carcinoma relapse.
Collapse
MESH Headings
- AC133 Antigen/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Cell Death/radiation effects
- Cell Dedifferentiation/radiation effects
- Cell Line, Tumor
- Chromatin Immunoprecipitation
- Epithelial-Mesenchymal Transition/genetics
- Epithelial-Mesenchymal Transition/radiation effects
- Female
- HMGB1 Protein/genetics
- HMGB1 Protein/metabolism
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Nude
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/radiotherapy
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/radiation effects
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/radiotherapy
- Signal Transduction/genetics
- Signal Transduction/radiation effects
- Toll-Like Receptor 2/genetics
- Toll-Like Receptor 2/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transplantation, Heterologous
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Lirong Zhang
- The Affiliated Hospital of Jiangsu University, 212001, Zhenjiang, China
| | - Hui Shi
- The Affiliated Hospital of Jiangsu University, 212001, Zhenjiang, China
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), SYSU, 518107, Shenzhen, China
| | - Aihua Gong
- School of Medicine, Jiangsu University, 212013, Zhenjiang, China
| | - Yanfang Liu
- The First People's Hospital of Zhenjiang, 212001, Zhenjiang, China
| | - Lian Song
- The Affiliated Hospital of Jiangsu University, 212001, Zhenjiang, China
| | - Xuewen Xu
- The Affiliated Hospital of Jiangsu University, 212001, Zhenjiang, China
| | - Tao You
- The Affiliated Hospital of Jiangsu University, 212001, Zhenjiang, China
| | - Xin Fan
- The Affiliated Hospital of Jiangsu University, 212001, Zhenjiang, China
| | - Dongqing Wang
- The Affiliated Hospital of Jiangsu University, 212001, Zhenjiang, China.
| | - Fang Cheng
- The Affiliated Hospital of Jiangsu University, 212001, Zhenjiang, China.
- School of Pharmaceutical Sciences (Shenzhen), SYSU, 518107, Shenzhen, China.
- Faculty of Science and Engineering, ÅboAkademi University and Turku Centre for Biotechnology, FI-20520, Turku, Finland.
| | - Haitao Zhu
- The Affiliated Hospital of Jiangsu University, 212001, Zhenjiang, China.
| |
Collapse
|
58
|
Huang TX, Guan XY, Fu L. Therapeutic targeting of the crosstalk between cancer-associated fibroblasts and cancer stem cells. Am J Cancer Res 2019; 9:1889-1904. [PMID: 31598393 PMCID: PMC6780671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) play critical roles in cancer progression and treatment failure. CAFs display extreme phenotypic heterogeneity and functional diversity. Some subpopulations of CAFs have the ability to reconstitute cancer stemness by promoting the expansion of cancer stem cells (CSCs) or by inducing the generation of CSCs from differentiated cancer cells. CAFs regulate cancer stemness in different types of solid tumors by activating a wide array of CSC-related signaling by secreting proteins and exosomes. As feedback, the CSCs can also induce the proliferation and further activation of CAFs to promote their CSC-supporting activities, thus completing the loop of CAF-CSC crosstalk. Current research on targeting CAF-CSC crosstalk could be classified into (i) specific depletion of CAF subpopulations that have CSC-supporting activities and (ii) targeting molecular signaling in CAF-CSC crosstalk, such as the IL6/STAT3, TGF-β/SDF-1/PI3K, WNT/β-catenin, HGF/cMET and SHH/Hh pathways. Strategies targeting CAF-CSC crosstalk may open new avenues for overcoming cancer progression and therapeutic resistance.
Collapse
Affiliation(s)
- Tu-Xiong Huang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pharmacology and Shenzhen International Cancer Center, Shenzhen University School of MedicineShenzhen, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong KongHong Kong
| | - Li Fu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pharmacology and Shenzhen International Cancer Center, Shenzhen University School of MedicineShenzhen, China
| |
Collapse
|
59
|
Abstract
Cancers are not composed merely of cancer cells alone; instead, they are complex 'ecosystems' comprising many different cell types and noncellular factors. The tumour stroma is a critical component of the tumour microenvironment, where it has crucial roles in tumour initiation, progression, and metastasis. Most anticancer therapies target cancer cells specifically, but the tumour stroma can promote the resistance of cancer cells to such therapies, eventually resulting in fatal disease. Therefore, novel treatment strategies should combine anticancer and antistromal agents. Herein, we provide an overview of the advances in understanding the complex cancer cell-tumour stroma interactions and discuss how this knowledge can result in more effective therapeutic strategies, which might ultimately improve patient outcomes.
Collapse
|
60
|
Khademalhosseini M, Arababadi MK. Toll-like receptor 4 and breast cancer: an updated systematic review. Breast Cancer 2019; 26:265-271. [PMID: 30543015 DOI: 10.1007/s12282-018-00935-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023]
Abstract
Toll-like receptors (TLRs) may play dual roles in human cancers. TLR4 is a key molecule which may participate in both friend and foe roles against breast cancer. This review article collected recent data regarding the mechanisms used by TLR4 in the eradication of breast cancer cells and induction of the tumor cells, and discussed the mechanisms involved in the various functions of TLR4. The literature searches revealed that TLR4 is a key molecule that participates in breast cancer cell eradication or induction of breast cancer development and also transformation of the normal cells. TLR4 eradicates breast cancer cells via recognition of their DAMPs and then induces immune responses. Over-expression of TLR4 and also alterations in its signaling, including association of some intrinsic pathways such as TGF-β signaling and TP53, are the crucial factors to alter TLR4 functions against breast cancer.
Collapse
Affiliation(s)
- Morteza Khademalhosseini
- Geriatric Care Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Kazemi Arababadi
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
61
|
Yan Y, Chen X, Wang X, Zhao Z, Hu W, Zeng S, Wei J, Yang X, Qian L, Zhou S, Sun L, Gong Z, Xu Z. The effects and the mechanisms of autophagy on the cancer-associated fibroblasts in cancer. J Exp Clin Cancer Res 2019; 38:171. [PMID: 31014370 PMCID: PMC6480893 DOI: 10.1186/s13046-019-1172-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/10/2019] [Indexed: 02/08/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) plays an essential role in cancer cell growth, metabolism and immunoreaction. Autophagy is an intracellular self-degradative process that balances cell energy source and regulates tissue homeostasis. Targeting autophagy has gained interest with multiple preclinical and clinical trials, such as the pharmacological inhibitor chloroquine or the inducer rapamycin, especially in exploiting its ability to modulate the secretory capability of CAFs to enhance drug delivery or inhibit it to prevent its influence on cancer cell chemoresistance. In this review, we summarize the reports on autophagy in cancer-associated fibroblasts by detailing the mechanism and role of autophagy in CAFs, including the hypoxic-autophagy positive feedback cycle, the metabolic cross-talk between CAFs and tumors induced by autophagy, CAFs secreted cytokines promote cancer survival by secretory autophagy, CAFs autophagy-induced EMT, stemness, senescence and treatment sensitivity, as well as the research of antitumor chemicals, miRNAs and lncRNAs. Additionally, we discuss the evidence of molecules in CAFs that are relevant to autophagy and the contribution to sensitive treatments as a potential target for cancer treatment.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
| | - Zijin Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Wenfeng Hu
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
| | - Jie Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
| | - Xue Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
| | - Long Qian
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
| | - Shuyi Zhou
- Hunan Provincial People’s Hospital Xingsha Branch (People’s Hospital of Changsha County), Changsha, 410008 Hunan China
| | - Lunquan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
| |
Collapse
|
62
|
Houthuijzen JM, Jonkers J. Cancer-associated fibroblasts as key regulators of the breast cancer tumor microenvironment. Cancer Metastasis Rev 2019; 37:577-597. [PMID: 30465162 DOI: 10.1007/s10555-018-9768-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tumor cells exist in close proximity with non-malignant cells. Extensive and multilayered crosstalk between tumor cells and stromal cells tailors the tumor microenvironment (TME) to support survival, growth, and metastasis. Fibroblasts are one of the largest populations of non-malignant host cells that can be found within the TME of breast, pancreatic, and prostate tumors. Substantial scientific evidence has shown that these cancer-associated fibroblasts (CAFs) are not only associated with tumors by proximity but are also actively recruited to developing tumors where they can influence other cells of the TME as well as influencing tumor cell survival and metastasis. This review discusses the impact of CAFs on breast cancer biology and highlights their heterogeneity, origin and their role in tumor progression, ECM remodeling, therapy resistance, metastasis, and the challenges ahead of targeting CAFs to improve therapy response.
Collapse
Affiliation(s)
- J M Houthuijzen
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - J Jonkers
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
63
|
Stress responses in stromal cells and tumor homeostasis. Pharmacol Ther 2019; 200:55-68. [PMID: 30998941 DOI: 10.1016/j.pharmthera.2019.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
In most (if not all) solid tumors, malignant cells are outnumbered by their non-malignant counterparts, including immune, endothelial and stromal cells. However, while the mechanisms whereby cancer cells adapt to microenvironmental perturbations have been studied in great detail, relatively little is known on stress responses in non-malignant compartments of the tumor microenvironment. Here, we discuss the mechanisms whereby cancer-associated fibroblasts and other cellular components of the tumor stroma react to stress in the context of an intimate crosstalk with malignant, endothelial and immune cells, and how such crosstalk influences disease progression and response to treatment.
Collapse
|
64
|
New J, Thomas SM. Autophagy-dependent secretion: mechanism, factors secreted, and disease implications. Autophagy 2019; 15:1682-1693. [PMID: 30894055 DOI: 10.1080/15548627.2019.1596479] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although best understood as a degradative pathway, recent evidence demonstrates pronounced involvement of the macroautophagic/autophagic molecular machinery in cellular secretion. With either overexpression or inhibition of autophagy mediators, dramatic alterations in the cellular secretory profile occur. This affects secretion of a plethora of factors ranging from cytokines, to granule contents, and even viral particles. Encompassing a wide range of secreted factors, autophagy-dependent secretion is implicated in diseases ranging from cancer to neurodegeneration. With a growing body of evidence shedding light onto the molecular mediators, this review delineates the molecular machinery involved in selective targeting of the autophagosome for either degradation or secretion. In addition, we summarize the current understanding of factors and cargo secreted through this unconventional route, and describe the implications of this pathway in both health and disease. Abbreviations: BECN1, beclin 1; CAF, cancer associated fibroblast; CUPS, compartment for unconventional protein secretion; CXCL, C-X-C motif chemokine ligand; ER, endoplasmic reticulum; FGF2, fibroblast growth factor 2; HMGB1, high mobility group box 1; IDE, insulin degrading enzyme; IL, Interleukin; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MAPS, misfolding associated protein secretion; MEF, mouse embryonic fibroblast; MTORC1, MTOR complex I; PtdIns, phosphatidyl inositol; SEC22B, SEC22 homolog B, vesicle trafficking protein (gene/pseudogene); SFV, Semliki forest virus; SNCA, synuclein alpha; SQSTM1, sequestosome 1; STX, Syntaxin; TASCC, TOR-associated spatial coupling compartment; TGFB, transforming growth factor beta; TRIM16, tripartite motif containing 16; UPS, unconventional protein secretion; VWF, von Willebrand factor.
Collapse
Affiliation(s)
- Jacob New
- Departments of Otolaryngology, University of Kansas Medical Center , Kansas City , KS , USA.,Anatomy & Cell Biology, University of Kansas Medical Center , Kansas City , KS , USA
| | - Sufi Mary Thomas
- Departments of Otolaryngology, University of Kansas Medical Center , Kansas City , KS , USA.,Anatomy & Cell Biology, University of Kansas Medical Center , Kansas City , KS , USA.,Cancer Biology, University of Kansas Medical Center , Kansas City , KS , USA
| |
Collapse
|
65
|
Abstract
Cancer stem cells (CSCs) are crucial for tumor recurrence and distant metastasis. Immunologically targeting CSCs represents a promising strategy to improve efficacy of multimodal cancer therapy. Modulating the innate immune response involving Toll-like receptors, macrophages, natural killer cells, and γδT cells has therapeutic effects on CSCs. Antigens expressed by CSCs provide specific targets for immunotherapy. CSC-primed dendritic cell-based vaccines have induced significant antitumor immunity as an adjuvant therapy in experimental models of established tumors. Targeting the tumor microenvironment CSC niche with cytokines or checkpoint blockade provides additional strategies to eliminate CSCs.
Collapse
Affiliation(s)
- Jing Zhang
- Division of Surgical Oncology, University of Michigan Rogel Cancer Center, Room 3410, 1150 East Medical Center Drive, Ann Arbor, MI 48109, USA; Department of the 2nd Thoracic Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 116 Zhuodaoquan South Road, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Qiao Li
- Division of Surgical Oncology, University of Michigan Rogel Cancer Center, 3520B MSRB-1, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Alfred E Chang
- Division of Surgical Oncology, University of Michigan Rogel Cancer Center, Room 3304, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
66
|
He H, Wang X, Chen J, Sun L, Sun H, Xie K. High-Mobility Group Box 1 (HMGB1) Promotes Angiogenesis and Tumor Migration by Regulating Hypoxia-Inducible Factor 1 (HIF-1α) Expression via the Phosphatidylinositol 3-Kinase (PI3K)/AKT Signaling Pathway in Breast Cancer Cells. Med Sci Monit 2019; 25:2352-2360. [PMID: 30930461 PMCID: PMC6454982 DOI: 10.12659/msm.915690] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background High-mobility group box 1 (HMGB1) is an essential contributor towards initiation and progression of many kinds of cancers. Nevertheless, our understanding of the molecular etiology of HMGB1-modulated vasculogenesis, as well as invasion, of breast cancer is poor. This study explored HMGB1 expression in breast cancer and its role in the development and spread of malignancy. Material/Methods We enrolled 15 patients with breast cancer who received primary surgery at the Department of Thyroid and Breast Surgery in our hospital. HMGB1 was recorded and analyzed. Results Our investigation successfully proves that HMGB1 is upregulated in breast cancer tissues in comparison to the surrounding non-malignant tissues. HMGB1 enhanced vessel formation in breast cancer tissues by regulating hypoxia-inducible factor 1 (HIF-1α), which in turn upregulates the expression of VEGF. Furthermore, HMGB1-mediated upregulation of HIF-1α relies on its ability to stimulate the phosphatidylinositol 3-kinase (PI3K) pathway to reinforce AKT subunit phosphorylation. HMGB1 overexpression reinforces the vasculogenesis in malignancies not only in vivo but also in vitro. Additionally, shRNA knockdown of HMGB1 prohibited the vessel-forming and invasive capabilities, downregulated VEGF and HIF-1α, and suppressed AKT phosphorylation in breast cancer cells. Most importantly, PI3K/AKT axis suppression eliminated the effect of HMGB1-modulated vascularization and invasion in breast cancer cells. Conclusions Our research indicates that HMGB1 serves as a crucial regulator of malignant cell-modulated vessel formation and is involved in the development of malignancy. Our findings indicate that HMGB1 is a promising target for breast cancer treatment.
Collapse
Affiliation(s)
- Honger He
- Department of Radiotherapy, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang, China (mainland)
| | - Xingmu Wang
- Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang, China (mainland)
| | - Jianjun Chen
- Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang, China (mainland)
| | - Liping Sun
- Department of Pathology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang, China (mainland)
| | - Honggang Sun
- Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang, China (mainland)
| | - Kejie Xie
- Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang, China (mainland)
| |
Collapse
|
67
|
Zhu HF, Zhang XH, Gu CS, Zhong Y, Long T, Ma YD, Hu ZY, Li ZG, Wang XY. Cancer-associated fibroblasts promote colorectal cancer progression by secreting CLEC3B. Cancer Biol Ther 2019; 20:967-978. [PMID: 30894065 DOI: 10.1080/15384047.2019.1591122] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Nontumour cells in the tumour microenvironment, especially fibroblasts, contribute to tumour progression and metastasis. The occurrence and evolution of colorectal cancer (CRC) is closely related to cancer-associated fibroblasts (CAFs). The aim of this work was to evaluate the effects of the growth factors and cytokines secreted by CAFs on CRC progression. The secreted cytokines were examined in CAFs by Human Cytokine Antibody array. We screened 37 differentially secreted cytokines in the culture supernatants of CAFs and NFs. CLEC3B, attractin, kallikrein 5 and legumain were selected for further verification. CLEC3B was more highly expressed in the stroma of CRC tissues than the other 3 cytokines. Immunohistochemistry revealed that CLEC3B expression was associated with serosal invasion by CRC. Patients with co-expression of CLEC3B and α-SMA had worse survival outcomes than those with only CLEC3B or α-SMA expression. CLEC3B secreted from CAFs may promote tumour migration. Knockdown of endogenous CLEC3B in CAFs markedly decreased CRC cell migration, while recombinant human CLEC3B clearly promoted CRC cell migration and actin remodelling. In conclusion, our findings suggest that CAFs promote the CRC cell migration and skeletal reorganization by secreting CLEC3B. CLEC3B might be a potential therapeutic molecule for CRC treatment.
Collapse
Affiliation(s)
- Hui-Fang Zhu
- a Department of Pathology, Nanfang Hospital , Southern Medical University , Guangzhou , Guangdong 510515, China.,b Department of Pathology, School of Basic Medical Sciences , Southern Medical University , Guangzhou , Guangdong 510515, China.,c Key Laboratory of Molecular Tumor Pathology of Guangdong Province , Guangzhou , GuangDong , China
| | - Xu-Hui Zhang
- d Department of Oncology , Guangdong Second Provincial General Hospital , Guangzhou , China
| | - Chuan-Sha Gu
- a Department of Pathology, Nanfang Hospital , Southern Medical University , Guangzhou , Guangdong 510515, China.,b Department of Pathology, School of Basic Medical Sciences , Southern Medical University , Guangzhou , Guangdong 510515, China.,c Key Laboratory of Molecular Tumor Pathology of Guangdong Province , Guangzhou , GuangDong , China
| | - Yan Zhong
- a Department of Pathology, Nanfang Hospital , Southern Medical University , Guangzhou , Guangdong 510515, China
| | - Ting Long
- a Department of Pathology, Nanfang Hospital , Southern Medical University , Guangzhou , Guangdong 510515, China
| | - Yi-Dan Ma
- a Department of Pathology, Nanfang Hospital , Southern Medical University , Guangzhou , Guangdong 510515, China
| | - Zhi-Yan Hu
- a Department of Pathology, Nanfang Hospital , Southern Medical University , Guangzhou , Guangdong 510515, China.,b Department of Pathology, School of Basic Medical Sciences , Southern Medical University , Guangzhou , Guangdong 510515, China.,c Key Laboratory of Molecular Tumor Pathology of Guangdong Province , Guangzhou , GuangDong , China
| | - Zu-Guo Li
- a Department of Pathology, Nanfang Hospital , Southern Medical University , Guangzhou , Guangdong 510515, China.,b Department of Pathology, School of Basic Medical Sciences , Southern Medical University , Guangzhou , Guangdong 510515, China.,c Key Laboratory of Molecular Tumor Pathology of Guangdong Province , Guangzhou , GuangDong , China
| | - Xiao-Yan Wang
- a Department of Pathology, Nanfang Hospital , Southern Medical University , Guangzhou , Guangdong 510515, China.,b Department of Pathology, School of Basic Medical Sciences , Southern Medical University , Guangzhou , Guangdong 510515, China.,c Key Laboratory of Molecular Tumor Pathology of Guangdong Province , Guangzhou , GuangDong , China
| |
Collapse
|
68
|
Biological heterogeneity and versatility of cancer-associated fibroblasts in the tumor microenvironment. Oncogene 2019; 38:4887-4901. [PMID: 30816343 DOI: 10.1038/s41388-019-0765-y] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022]
Abstract
Increasing lines of evidence show that the malignant behavior of cancer is not exclusively attributable to cancer cells but also radically influenced by cancerous stroma activity and controlled through various mechanisms by the microenvironment. In addition to structural components, such as the extracellular matrix, stromal cells, such as macrophages, endothelial cells, and specifically cancer-associated fibroblasts (CAFs), have attracted substantial attention over recent decades. CAFs provide routes for aggressive carcinomas and contribute to invasion and metastasis through the biochemical alteration and regulation of cancer-related pathways. However, another facet of CAFs that has been neglected by numerous studies is that CAFs might serve as a negative regulator of cancer progression under certain circumstances. The various origins of CAFs, the diverse tissues in which they reside and their interactions with different cancer cells appear to be responsible for this inconsistency. This review summarizes the latest knowledge regarding CAF heterogeneity and offers a novel perspective and a beneficial approach for obtaining an improved understanding of CAFs.
Collapse
|
69
|
Chen X, Cheng F, Liu Y, Zhang L, Song L, Cai X, You T, Fan X, Wang D, Gong A, Zhu H. Toll-like receptor 2 and Toll-like receptor 4 exhibit distinct regulation of cancer cell stemness mediated by cell death-induced high-mobility group box 1. EBioMedicine 2019; 40:135-150. [PMID: 30679086 PMCID: PMC6413584 DOI: 10.1016/j.ebiom.2018.12.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/26/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND High-mobility group box 1 (HMGB1), a common extracellular damage associated molecular pattern molecule, is overexpressed in several solid tumors including pancreatic carcinoma. We previously observed that radiotherapy induced dying cells secrete HMGB1 and accelerate pancreatic carcinoma progression through an unclear mechanism. METHODS Using the Millicell system as an in vitro co-culture model, we performed quantitative reverse transcriptase-polymerase chain reaction, western blot and sphere forming ability analyses to access the effect of dying-cell-derived HMGB1 on CD133+ cancer cell stemness in vitro and in vivo. Interactions between HMGB1 and Toll-like receptor 2(TLR2)/TLR4 were studied by co- immunoprecipitation. Western blot and short-hairpin RNA-based knockdown assays were conducted to detect HMGB1 and TLR2/TLR4 signaling activity. FINDINGS Radiation-associated, dying-cell-derived HMGB1 maintained stemness and contributed to CD133+ cancer stem cell self-renewal in vitro and in vivo. In overexpressing and silencing experiments, we demonstrated that the process was activated by TLR2 receptor, whereas TLR4 antagonized HMGB1-TLR2 signaling. Wnt/β-catenin signaling supported the HMGB1-TLR2 mediated stemness of CD133+ cancer cells. INTERPRETATION Our results show how irradiation-induced cell death might enhance the stemness of resident cancer cells, and indicate HMGB1-TLR2 signaling as a potential therapeutic target for preventing pancreatic cancer recurrence.
Collapse
Affiliation(s)
- Xuelian Chen
- Central laboratory of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Fang Cheng
- Central laboratory of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- School of Pharmaceutical Sciences (Shenzhen), SYSU, 510006, China
- Faculty of Science and Engineering, Åbo Akademi University and Turku Centre for Biotechnology, Turku FI-20520, Finland
| | - Yanfang Liu
- Department of Central Laboratory, The First People's Hospital of Zhenjiang, Zhenjiang 212001, China
| | - Lirong Zhang
- Central laboratory of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Lian Song
- Central laboratory of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Xiaojie Cai
- Central laboratory of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Tao You
- Central laboratory of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Xin Fan
- Central laboratory of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Dongqing Wang
- Central laboratory of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Aihua Gong
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Haitao Zhu
- Central laboratory of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| |
Collapse
|
70
|
Huang T, Wan X, Alvarez AA, James CD, Song X, Yang Y, Sastry N, Nakano I, Sulman EP, Hu B, Cheng SY. MIR93 (microRNA -93) regulates tumorigenicity and therapy response of glioblastoma by targeting autophagy. Autophagy 2019; 15:1100-1111. [PMID: 30654687 DOI: 10.1080/15548627.2019.1569947] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Macroautophagy/autophagy is a natural intracellular process that maintains cellular homeostasis and protects cells from death under stress conditions. Autophagy sustains tumor survival and growth when induced by common cancer treatments, including IR and cytotoxic chemotherapy, thereby contributing to therapeutic resistance of tumors. In this study, we report that the expression of MIR93, noted in two clinically relevant tumor subtypes of GBM, influenced GSC phenotype as well as tumor response to therapy through its effects on autophagy. Our mechanistic studies revealed that MIR93 regulated autophagic activities in GSCs through simultaneous inhibition of multiple autophagy regulators, including BECN1/Beclin 1, ATG5, ATG4B, and SQSTM1/p62. Moreover, two first-line treatments for GBM, IR and temozolomide (TMZ), as well as rapamycin (Rap), the prototypic MTOR inhibitor, decreased MIR93 expression that, in turn, stimulated autophagic processes in GSCs. Inhibition of autophagy by ectopic MIR93 expression, or via autophagy inhibitors NSC (an ATG4B inhibitor) and CQ, enhanced the activity of IR and TMZ against GSCs. Collectively, our findings reveal a key role for MIR93 in the regulation of autophagy and suggest a combination treatment strategy involving the inhibition of autophagy while administering cytotoxic therapy. Abbreviations: ACTB: actin beta; ATG4B: autophagy related 4B cysteine peptidase; ATG5: autophagy related 5; BECN1: beclin 1; CL: classical; CQ: chloroquine diphosphate; CSCs: cancer stem cells; GBM: glioblastoma; GSCs: glioma stem-like cells; HEK: human embryonic kidney; IB: immunoblotting; IF: immunofluorescent staining; IR: irradiation; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MES: mesenchymal; MIR93: microRNA 93; MIRC: a control miRNA; miRNA/miR: microRNA; MTOR: mechanistic target of rapamycin kinase; NSC: NSC185085; PN: proneural; qRT-PCR: quantitative reverse transcription-polymerase chain reaction; Rap: rapamycin; SQSTM1/p62: sequestosome 1; TCGA: the cancer genome atlas; TMZ: temozolomide; WT: wild type; ZIP93: lentiviral miRZIP targeting MIR93; ZIPC: lentiviral miRZip targeting control miRNA.
Collapse
Affiliation(s)
- Tianzhi Huang
- a The Ken & Ruth Devee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute , The Robert H. Lurie Comprehensive Cancer Center, Northwestern Universityd Feinberg School of Medicine , Chicago , IL , USA
| | - Xuechao Wan
- a The Ken & Ruth Devee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute , The Robert H. Lurie Comprehensive Cancer Center, Northwestern Universityd Feinberg School of Medicine , Chicago , IL , USA
| | - Angel A Alvarez
- a The Ken & Ruth Devee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute , The Robert H. Lurie Comprehensive Cancer Center, Northwestern Universityd Feinberg School of Medicine , Chicago , IL , USA
| | - C David James
- b Department of Neurological Surgery , Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Xiao Song
- a The Ken & Ruth Devee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute , The Robert H. Lurie Comprehensive Cancer Center, Northwestern Universityd Feinberg School of Medicine , Chicago , IL , USA
| | - Yongyong Yang
- a The Ken & Ruth Devee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute , The Robert H. Lurie Comprehensive Cancer Center, Northwestern Universityd Feinberg School of Medicine , Chicago , IL , USA
| | - Namratha Sastry
- a The Ken & Ruth Devee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute , The Robert H. Lurie Comprehensive Cancer Center, Northwestern Universityd Feinberg School of Medicine , Chicago , IL , USA
| | - Ichiro Nakano
- c Department of Neurosurgery , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Erik P Sulman
- d Department of Radiation Oncology , The University of Texas M. D. Anderson Cancer Center, Department of Radiation Oncology , Houston , TX , USA
| | - Bo Hu
- a The Ken & Ruth Devee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute , The Robert H. Lurie Comprehensive Cancer Center, Northwestern Universityd Feinberg School of Medicine , Chicago , IL , USA
| | - Shi-Yuan Cheng
- a The Ken & Ruth Devee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute , The Robert H. Lurie Comprehensive Cancer Center, Northwestern Universityd Feinberg School of Medicine , Chicago , IL , USA
| |
Collapse
|
71
|
Lu L, Shen X, Tao B, Lin C, Li K, Luo Z, Cai K. The nanoparticle-facilitated autophagy inhibition of cancer stem cells for improved chemotherapeutic effects on glioblastomas. J Mater Chem B 2019; 7:2054-2062. [DOI: 10.1039/c8tb03165g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Paclitaxel (PTX) and chloroquine (CQ) loaded bovine serum albumin (BSA) nanoparticles can achieve efficient glioma therapyviaautophagy inhibition.
Collapse
Affiliation(s)
- Lu Lu
- Ministry of Education College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Xinkun Shen
- Ministry of Education College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Bailong Tao
- Ministry of Education College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Chuanchuan Lin
- Ministry of Education College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Ke Li
- Ministry of Education College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Zhong Luo
- School of Life Science
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Kaiyong Cai
- Ministry of Education College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| |
Collapse
|
72
|
Abstract
Autophagy is an important process of cellular degradation and has been proven to contribute to tumorigenesis. High-mobility group box 1 (HMGB1) is an abundant nonhistone protein that has been widely reported to play a central role in the induction of autophagy. In nucleus, HMGB1 upregulates the expression of HSP27 to induce autophagy. In cytoplasm, the Beclin-1/PI3K-III complex can be activated by HMGB1 to promote autophagy. Extracellular HMGB1 binds to the receptor for advanced glycation end products to induce autophagy. Recent studies have shown that HMGB1-induced autophagy exerts multiple functions in various cancers like proliferation. Moreover, inhibition of HMGB1-induced autophagy can reverse chemoresistance, which is regulated by noncoding RNAs such as microRNAs and lncRNAs. Here, we provide a brief introduction to HMGB1 and HMGB1-induced autophagy in cancer. We also discuss the challenges associated with performing further investigations on this issue. HMGB1-induced autophagy exerts significant functions in cancer and has potential utility for new strategy to reverse drug resistance.
Collapse
Affiliation(s)
- Tianwei Xu
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China,
| | - Lihua Jiang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China,
| | - Zhaoxia Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China,
| |
Collapse
|
73
|
Masso-Welch P, Girald Berlingeri S, King-Lyons ND, Mandell L, Hu J, Greene CJ, Federowicz M, Cao P, Connell TD, Heakal Y. LT-IIc, A Bacterial Type II Heat-Labile Enterotoxin, Induces Specific Lethality in Triple Negative Breast Cancer Cells by Modulation of Autophagy and Induction of Apoptosis and Necroptosis. Int J Mol Sci 2018; 20:ijms20010085. [PMID: 30587795 PMCID: PMC6337683 DOI: 10.3390/ijms20010085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 12/24/2022] Open
Abstract
Triple negative breast cancer (TNBC) remains a serious health problem with poor prognosis and limited therapeutic options. To discover novel approaches to treat TNBC, we screened cholera toxin (CT) and the members of the bacterial type II heat-labile enterotoxin family (LT-IIa, LT-IIb, and LT-IIc) for cytotoxicity in TNBC cells. Only LT-IIc significantly reduced viability of the TNBC cell lines BT549 and MDA-MB-231 (IC50 = 82.32 nM). LT-IIc had no significant cytotoxic effect on MCF10A (IC50 = 2600 nM), a non-tumorigenic breast epithelial cell line, and minimal effects on MCF7 and T47D, ER+ cells, or SKBR-3 cells, HER2+ cells. LT-IIc stimulated autophagy through inhibition of the mTOR pathway, while simultaneously inhibiting autophagic progression, as seen by accumulation of LC3B-II and p62. Morphologically, LT-IIc induced the formation of enlarged LAMP2+ autolysosomes, which was blocked by co-treatment with bafilomycin A1. LT-IIc induced apoptosis as demonstrated by the increase in caspase 3/7 activity and Annexin V staining. Co-treatment with necrostatin-1, however, demonstrated that the lethal response of LT-IIc is elicited, in part, by concomitant induction of necroptosis. Knockdown of ATG-5 failed to rescue LT-IIc-induced cytotoxicity, suggesting LT-IIc can exert its cytotoxic effects downstream or independently of autophagophore initiation. Collectively, these experiments demonstrate that LT-IIc acts bifunctionally, inducing autophagy, while simultaneously blocking autolysosomal progression in TNBC cells, inducing a specific cytotoxicity in this breast cancer subtype.
Collapse
Affiliation(s)
- Patricia Masso-Welch
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Sofia Girald Berlingeri
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA.
- Department of Pharmaceutical, Social and Administrative Sciences, School of Pharmacy, D'Youville College, 320 Porter Avenue, Buffalo, NY 14201, USA.
| | - Natalie D King-Lyons
- Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Buffalo, NY 14203, USA.
| | - Lorrie Mandell
- Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Buffalo, NY 14203, USA.
| | - John Hu
- Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Buffalo, NY 14203, USA.
| | - Christopher J Greene
- Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Buffalo, NY 14203, USA.
| | - Matthew Federowicz
- Department of Pharmaceutical, Social and Administrative Sciences, School of Pharmacy, D'Youville College, 320 Porter Avenue, Buffalo, NY 14201, USA.
| | - Peter Cao
- Department of Pharmaceutical, Social and Administrative Sciences, School of Pharmacy, D'Youville College, 320 Porter Avenue, Buffalo, NY 14201, USA.
| | - Terry D Connell
- Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Buffalo, NY 14203, USA.
| | - Yasser Heakal
- Department of Pharmaceutical, Social and Administrative Sciences, School of Pharmacy, D'Youville College, 320 Porter Avenue, Buffalo, NY 14201, USA.
| |
Collapse
|
74
|
Chen Q, Weng HY, Tang XP, Lin Y, Yuan Y, Li Q, Tang Z, Wu HB, Yang S, Li Y, Zhao XL, Fu WJ, Niu Q, Feng H, Zhang X, Wang Y, Bian XW, Yao XH. ARL4C stabilized by AKT/mTOR pathway promotes the invasion of PTEN-deficient primary human glioblastoma. J Pathol 2018; 247:266-278. [PMID: 30357833 DOI: 10.1002/path.5189] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 09/04/2018] [Accepted: 10/18/2018] [Indexed: 12/16/2022]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) deficiency in primary human glioblastoma (GBM) is associated with increased invasiveness and poor prognosis with unknown mechanisms. Therefore, how loss of PTEN promotes GBM progression remains to be elucidated. Herein, we identified that ADP-ribosylation factor like-4C (ARL4C) was highly expressed in PTEN-deficient human GBM cells and tissues. Mechanistically, loss of PTEN stabilized ARL4C protein due to AKT/mTOR pathway-mediated inhibition of ARL4C ubiquitination. Functionally, ARL4C enhanced the progression of GBM cells in vitro and in vivo. Moreover, microarray profiling and GST pull-down assay identified that ARL4C accelerated tumor progression via RAC1-mediated filopodium formation. Importantly, targeting PTEN potently inhibited GBM tumor progression in vitro and in vivo, whereas overexpression of ARL4C reversed the tumor progression impaired by PTEN overexpression. Clinically, analyses with patients' specimens validated a negative correlation between PTEN and ARL4C expression. Elevated ARL4C expression but PTEN deficiency in tumor was associated with poorer disease-free survival and overall survival of GBM patients. Taken together, ARL4C is critical for PTEN-deficient GBM progression and acts as a novel prognostic biomarker and a potential therapeutic candidate. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Qian Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Hai-Yan Weng
- Department of Pathology, The Affiliated Provincial Hospital, Anhui Medical University, Hefei, PR China
| | - Xiao-Peng Tang
- Department of Nephrology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yong Lin
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Ye Yuan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Qian Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Zhuo Tang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Hai-Bo Wu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Shuai Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yong Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Xi-Long Zhao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Wen-Juan Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Qin Niu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Xiao-Hong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| |
Collapse
|
75
|
Zhao Y, Dong Q, Li J, Zhang K, Qin J, Zhao J, Sun Q, Wang Z, Wartmann T, Jauch KW, Nelson PJ, Qin L, Bruns C. Targeting cancer stem cells and their niche: perspectives for future therapeutic targets and strategies. Semin Cancer Biol 2018; 53:139-155. [PMID: 30081228 DOI: 10.1016/j.semcancer.2018.08.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
A small subpopulation of cells within the bulk of tumors share features with somatic stem cells, in that, they are capable of self-renewal, they differentiate, and are highly resistant to conventional therapy. These cells have been referred to as cancer stem cells (CSCs). Recent reports support the central importance of a cancer stem cell-like niche that appears to help foster the generation and maintenance of CSCs. In response to signals provided by this microenvironment, CSCs express the tumorigenic characteristics that can drive tumor metastasis by the induction of epithelial-mesenchymal-transition (EMT) that in turn fosters the migration and recolonization of the cells as secondary tumors within metastatic niches. We summarize here recent advances in cancer stem cell research including the characterization of their genetic and epigenetic features, metabolic specialities, and crosstalk with aging-associated processes. Potential strategies for targeting CSCs, and their niche, by regulating CSCs plasticity, or therapeutic sensitivity is discussed. Finally, it is hoped that new strategies and related therapeutic approaches as outlined here may help prevent the formation of the metastatic niche, as well as counter tumor progression and metastatic growth.
Collapse
Affiliation(s)
- Yue Zhao
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany; Department of Surgery, Otto-von-Guericke University, Magdeburg, Germany.
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiahui Li
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Kaili Zhang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jie Qin
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Jiangang Zhao
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany; Department of General, Visceral und Vascular Surgery, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Qiye Sun
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Zhefang Wang
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Thomas Wartmann
- Department of Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Karl Walter Jauch
- Department of General, Visceral und Vascular Surgery, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Peter J Nelson
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - LunXiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Christiane Bruns
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
76
|
Dasari S, Fang Y, Mitra AK. Cancer Associated Fibroblasts: Naughty Neighbors That Drive Ovarian Cancer Progression. Cancers (Basel) 2018; 10:cancers10110406. [PMID: 30380628 PMCID: PMC6265896 DOI: 10.3390/cancers10110406] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/19/2018] [Accepted: 10/24/2018] [Indexed: 01/02/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy, and patient prognosis has not improved significantly over the last several decades. In order to improve therapeutic approaches and patient outcomes, there is a critical need for focused research towards better understanding of the disease. Recent findings have revealed that the tumor microenvironment plays an essential role in promoting cancer progression and metastasis. The tumor microenvironment consists of cancer cells and several different types of normal cells recruited and reprogrammed by the cancer cells to produce factors beneficial to tumor growth and spread. These normal cells present within the tumor, along with the various extracellular matrix proteins and secreted factors, constitute the tumor stroma and can compose 10–60% of the tumor volume. Cancer associated fibroblasts (CAFs) are a major constituent of the tumor microenvironment, and play a critical role in promoting many aspects of tumor function. This review will describe the various hypotheses about the origin of CAFs, their major functions in the tumor microenvironment in ovarian cancer, and will discuss the potential of targeting CAFs as a possible therapeutic approach.
Collapse
Affiliation(s)
- Subramanyam Dasari
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47401, USA.
| | - Yiming Fang
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47401, USA.
| | - Anirban K Mitra
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47401, USA.
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
77
|
Cen X, Liu S, Cheng K. The Role of Toll-Like Receptor in Inflammation and Tumor Immunity. Front Pharmacol 2018; 9:878. [PMID: 30127747 PMCID: PMC6088210 DOI: 10.3389/fphar.2018.00878] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022] Open
Abstract
Toll-like receptors (TLRs) activation enables host to recognize a large number of pathogen-associated molecule patterns (PAMPs), ignite immune cells to discriminate between self and non-self, and then promote the following innate and adaptive immune responses. Accumulated clinical/preclinical evidences have proven TLRs to be critical role in the autoimmune diseases, including inflammatory and tumor-associated diseases. Activation of TLRs is becoming or has been a target for cancer treatment. It is shown that TLRs can induce preferable anti-tumor effect by eliciting inflammatory cytokines expression and cytotoxic T lymphocytes (CTLs) response. As adjuvant, TLRs agonists can launch a strong immune response to assist cancer radiotherapy and bio-chemotherapy. On the other hand, tumor-associated antigens acting as PAMPs, can also activate TLRs and induce tumor gene-related programmed cell death, including apoptosis, autophagy and programmed necrosis. While there are also arguments that the excessive TLRs expression will promote tumor deterioration in various organisms, as the TLR-induced inflammation will accelerate the cancer cells boost in the tumor microenvironment (TME). However, the effect of TLRs acting on cancers is still not quite clear today. In this review, we will summarize the recent researches of TLRs in cancer treatment and their role in TME, giving a brief overview on future expectation.
Collapse
Affiliation(s)
- Xiaohong Cen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
78
|
Sun Z, Wang L, Dong L, Wang X. Emerging role of exosome signalling in maintaining cancer stem cell dynamic equilibrium. J Cell Mol Med 2018; 22:3719-3728. [PMID: 29799161 PMCID: PMC6050499 DOI: 10.1111/jcmm.13676] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/06/2018] [Indexed: 02/05/2023] Open
Abstract
Cancer stem cells (CSCs) are a small subset of heterogeneous cells existed in tumour tissues or cancer cell lines with self-renewal and differentiation potentials. CSCs were considered to be responsible for the failure of conventional therapy and tumour recurrence. However, CSCs are not a static cell population, CSCs and non-CSCs are maintained in dynamic interconversion state by their self-differentiation and dedifferentiation. Therefore, targeting CSCs for cancer therapy is still not enough,exploring the mechanism of dynamic interconversion between CSCs and non-CSCs and blocking the interconversion seems to be imperative. Exosomes are 30-100 nm size in diameter extracellular vesicles (EVs) secreted by multiple living cells into the extracellular space. They contain cell-state-specific bioactive materials, including DNA, mRNA, ncRNA, proteins, lipids, etc. with their specific surface markers, such as, CD63, CD81, Alix, Tsg101, etc. Exosomes have been considered as information carriers in cell communication between cancer cells and non-cancer cells, which affect gene expressions and cellular signalling pathways of recipient cells by delivering their contents. Now that exosomes acted as information carriers, whether they played role in maintaining dynamic equilibrium state between CSCs and non-CSCs and their mechanism of activity are unknown. This review summarized the current research advance of exosomes' role in maintaining CSC dynamic interconversion state and their possible mechanism of action, which will provide a better understanding the contribution of exosomes to dedifferentiation and stemness acquisition of non-CSCs, and highlight that exosomes might be taken as the attractive target approaches for cancer therapeutics.
Collapse
Affiliation(s)
- Zhen Sun
- Laboratory of Experimental OncologyState Key Laboratory of Biotherapy/Collaborative Innovation Center for BiotherapyWest China HospitalWest China Clinical Medical SchoolSichuan UniversityChengduChina
| | - Li Wang
- Laboratory of Lung Cancer, Lung Cancer Center West China HospitalWest China Clinical Medical SchoolSichuan UniversityChengduChina
| | - Lihua Dong
- Human Anatomy DepartmentSchool of Preclinical and Forensic MedcineSichuan UniversityChengduChina
| | - Xiujie Wang
- Laboratory of Experimental OncologyState Key Laboratory of Biotherapy/Collaborative Innovation Center for BiotherapyWest China HospitalWest China Clinical Medical SchoolSichuan UniversityChengduChina
| |
Collapse
|
79
|
Chen Y, Tan W, Wang C. Tumor-associated macrophage-derived cytokines enhance cancer stem-like characteristics through epithelial-mesenchymal transition. Onco Targets Ther 2018; 11:3817-3826. [PMID: 30013362 PMCID: PMC6038883 DOI: 10.2147/ott.s168317] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer stem cells are a small population of cells with the potential for self-renewal and multi-directional differentiation and are an important source of cancer initiation, treatment resistance, and recurrence. Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells lose their epithelial phenotype and convert to mesenchymal cells. Recent studies have shown that cancer cells undergoing EMT can become stem-like cells. Many kinds of tumors are associated with chronic inflammation, which plays a role in tumor progression. Among the various immune cells mediating chronic inflammation, macrophages account for ~30%-50% of the tumor mass. Macrophages are highly infiltrative in the tumor microenvironment and secrete a series of inflammatory factors and cytokines, such as transforming growth factor (TGF)-β, IL-6, IL-10, and tumor necrosis factor (TNF)-α, which promote EMT and enhance the stemness of cancer cells. This review summarizes and discusses recent research findings on some specific mechanisms of tumor-associated macrophage-derived cytokines in EMT and cancer stemness transition, which are emerging targets of cancer treatment.
Collapse
Affiliation(s)
- Yongxu Chen
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, Guangdong Province, People's Republic of China, .,School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, People's Republic of China,
| | - Wei Tan
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, Guangdong Province, People's Republic of China,
| | - Changjun Wang
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, Guangdong Province, People's Republic of China, .,School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, People's Republic of China,
| |
Collapse
|
80
|
Khan A, Wani MY, Al-Bogami AS, Subramanian K, Kandhavelu J, Ruff P, Penny C. Anticancer Activity of Novel Gabexate Mesilate Mimetics in Colorectal Cancer Cells. ChemistrySelect 2018. [DOI: 10.1002/slct.201800629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amber Khan
- Department of Internal Medicine; Faculty of Health Sciences; University of the Witwatersrand; 7 York Road, Parktown Johannesburg 2193 South Africa
| | - Mohmmad Younus Wani
- Chemistry Department; Faculty of Science; University of Jeddah, P.O. Box 80327; Jeddah 21589 Kingdom of Saudi Arabia
| | - Abdullah Saad Al-Bogami
- Chemistry Department; Faculty of Science; University of Jeddah, P.O. Box 80327; Jeddah 21589 Kingdom of Saudi Arabia
| | - Kumar Subramanian
- Department of Internal Medicine; Faculty of Health Sciences; University of the Witwatersrand; 7 York Road, Parktown Johannesburg 2193 South Africa
| | - Jeyalakshmi Kandhavelu
- Department of Internal Medicine; Faculty of Health Sciences; University of the Witwatersrand; 7 York Road, Parktown Johannesburg 2193 South Africa
| | - Paul Ruff
- Department of Internal Medicine; Faculty of Health Sciences; University of the Witwatersrand; 7 York Road, Parktown Johannesburg 2193 South Africa
| | - Clement Penny
- Department of Internal Medicine; Faculty of Health Sciences; University of the Witwatersrand; 7 York Road, Parktown Johannesburg 2193 South Africa
| |
Collapse
|
81
|
Cancer-associated fibroblasts induce PDL1+ neutrophils through the IL6-STAT3 pathway that foster immune suppression in hepatocellular carcinoma. Cell Death Dis 2018; 9:422. [PMID: 29556041 PMCID: PMC5859264 DOI: 10.1038/s41419-018-0458-4] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 12/11/2022]
Abstract
Emerging evidence indicate that cancer-associated fibroblasts (CAFs) affect tumor progression by reshaping the tumor microenvironment. Neutrophils are prominent components of solid tumors and important in cancer progression. Whether the phenotype and function of neutrophils in hepatocellular carcinoma (HCC) are influenced by CAFs is not well understood. Herein, we investigated the effect of HCC-derived CAFs (HCC-CAFs) on the neutrophils and explored the biological role of this effect. We found that HCC-CAFs induced chemotaxis of neutrophils and protected them from spontaneous apoptosis. Neutrophils were activated by the conditioned medium from HCC-CAFs with increased expression of CD66b, PDL1, IL8, TNFa, and CCL2, and with decreased expression of CD62L. HCC-CAF-primed neutrophils impaired T-cell function through the PD1/PDL1 signaling pathway. We revealed that HCC-CAFs induced the activation of STAT3 pathways in neutrophils, which are essential for the survival and function of activated neutrophils. In addition, we demonstrated that HCC-CAF-derived IL6 was responsible for the STAT3 activation of neutrophils. Collectively, our results suggest that HCC-CAFs regulate the survival, activation, and function of neutrophils within HCC through an IL6-STAT3-PDL1 signaling cascade, which presents a novel mechanism for the role of CAFs in remodeling the cancer niche and provides a potential target for HCC therapy.
Collapse
|
82
|
Abstract
Mammalian cells harness autophagy to eliminate physiological byproducts of metabolism and cope with microenvironmental perturbations. Moreover, autophagy connects cellular adaptation with extracellular circuitries that impinge on immunity and metabolism. As it links transformed and non-transformed components of the tumour microenvironment, such an autophagic network is important for cancer initiation, progression and response to therapy. Here, we discuss the mechanisms whereby the autophagic network interfaces with multiple aspects of malignant disease.
Collapse
|
83
|
Morale MG, da Silva Abjaude W, Silva AM, Villa LL, Boccardo E. HPV-transformed cells exhibit altered HMGB1-TLR4/MyD88-SARM1 signaling axis. Sci Rep 2018; 8:3476. [PMID: 29472602 PMCID: PMC5823898 DOI: 10.1038/s41598-018-21416-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/30/2018] [Indexed: 12/27/2022] Open
Abstract
Cervical cancer is one of the leading causes of cancer death in women worldwide. Persistent infection with high-risk human papillomavirus (HPV) types is the main risk factor for the development of cervical cancer precursor lesions. HPV persistence and tumor development is usually characterized by innate immune system evasion. Alterations in Toll-like receptors (TLR) expression and activation may be important for the control of HPV infections and could play a role in the progression of lesions and tumors. In the present study, we analyzed the mRNA expression of 84 genes involved in TLR signaling pathways. We observed that 80% of the differentially expressed genes were downregulated in cervical cancer cell lines relative to normal keratinocytes. Major alterations were detected in genes coding for several proteins of the TLR signaling axis, including TLR adaptor molecules and genes associated with MAPK pathway, NFκB activation and antiviral immune response. In particular, we observed major alterations in the HMGB1-TLR4 signaling axis. Functional analysis also showed that HMGB1 expression is important for the proliferative and tumorigenic potential of cervical cancer cell lines. Taken together, these data indicate that alterations in TLR signaling pathways may play a role in the oncogenic potential of cells expressing HPV oncogenes.
Collapse
Affiliation(s)
- Mirian Galliote Morale
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil.,Centre of Translational Oncology, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil
| | - Walason da Silva Abjaude
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Aline Montenegro Silva
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Luisa Lina Villa
- Centre of Translational Oncology, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil.,Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Enrique Boccardo
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
84
|
Lopes-Coelho F, Gouveia-Fernandes S, Serpa J. Metabolic cooperation between cancer and non-cancerous stromal cells is pivotal in cancer progression. Tumour Biol 2018; 40:1010428318756203. [DOI: 10.1177/1010428318756203] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The way cancer cells adapt to microenvironment is crucial for the success of carcinogenesis, and metabolic fitness is essential for a cancer cell to survive and proliferate in a certain organ/tissue. The metabolic remodeling in a tumor niche is endured not only by cancer cells but also by non-cancerous cells that share the same microenvironment. For this reason, tumor cells and stromal cells constitute a complex network of signal and organic compound transfer that supports cellular viability and proliferation. The intensive dual-address cooperation of all components of a tumor sustains disease progression and metastasis. Herein, we will detail the role of cancer-associated fibroblasts, cancer-associated adipocytes, and inflammatory cells, mainly monocytes/macrophages (tumor-associated macrophages), in the remodeling and metabolic adaptation of tumors.
Collapse
Affiliation(s)
- Filipa Lopes-Coelho
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Sofia Gouveia-Fernandes
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Jacinta Serpa
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| |
Collapse
|
85
|
Gu J, Liu Y, Xie B, Ye P, Huang J, Lu Z. Roles of toll-like receptors: From inflammation to lung cancer progression. Biomed Rep 2017; 8:126-132. [PMID: 29435270 PMCID: PMC5778860 DOI: 10.3892/br.2017.1034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is among the most common malignant tumors worldwide, and is characterized by a low survival rate compared with other cancers. Toll-like receptors (TLRs) are highly conserved in evolution and widely expressed on immune cells, where they serve an important role in the innate immune system by evoking inflammatory responses. Evasion of immune destruction is an important hallmark in the development of cancer. There is an established association between chronic inflammation and cancer, with TLRs serving important roles in the immune response against tumor cells. Recently, TLRs have been identified on tumor cells, where their activation may orchestrate the downstream signaling pathways that serve crucial functions in tumorigenesis and tumor progression. The present review summarizes the roles of TLRs as sensors on lung cancer cells that regulate lung cancer progression with regard to cell growth and invasion, angiogenesis and cancer stem cell behavior. This aimed to provide theoretical support for the development of therapies that target TLR signaling pathways for the treatment of lung cancer.
Collapse
Affiliation(s)
- Jinjing Gu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yi Liu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310016, P.R. China
| | - Bin Xie
- School of Science, Hangzhou Normal University, Hangzhou, Zhejiang 310016, P.R. China
| | - Pingping Ye
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310016, P.R. China
| | - Jiefan Huang
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310016, P.R. China
| | - Zhe Lu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
86
|
To be or not to be cell autonomous? Autophagy says both. Essays Biochem 2017; 61:649-661. [PMID: 29233875 DOI: 10.1042/ebc20170025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 12/17/2022]
Abstract
Although cells are a part of the whole organism, classical dogma emphasizes that individual cells function autonomously. Many physiological and pathological conditions, including cancer, and metabolic and neurodegenerative diseases, have been considered mechanistically as cell-autonomous pathologies, meaning those that damage or defect within a selective population of affected cells suffice to produce disease. It is becoming clear, however, that cells and cellular processes cannot be considered in isolation. Best known for shuttling cytoplasmic content to the lysosome for degradation and repurposing of recycled building blocks such as amino acids, nucleotides, and fatty acids, autophagy serves a housekeeping function in every cell and plays key roles in cell development, immunity, tissue remodeling, and homeostasis with the surrounding environment and the distant organs. In this review, we underscore the importance of taking interactions with the microenvironment into consideration while addressing the cell autonomous and non-autonomous functions of autophagy between cells of the same and different types and in physiological and pathophysiological situations.
Collapse
|
87
|
Chen S, Zhu J, Wang F, Guan Z, Ge Y, Yang X, Cai J. LncRNAs and their role in cancer stem cells. Oncotarget 2017; 8:110685-110692. [PMID: 29299179 PMCID: PMC5746414 DOI: 10.18632/oncotarget.22161] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells (CSCs) play a vital role in the formation of tumors and have been studied as a target of anticancer therapy. Long non-coding RNAs (lncRNAs) are important in the genesis and progression of cancer. Various lncRNAs, such as ROR, HOTAIR, H19, UCA1, and ARSR, are involved in cancer stemness. These lncRNAs could regulate the expression of CSC-related transcriptional factors, such as SOX2, OCT4, and NANOG, in colorectal, prostate, bladder, breast, liver, and other cancer types. In this work, we review the progress of lncRNAs and cancer stem cells and discuss the potential signal pathways of lncRNAs in cancer stemness.
Collapse
Affiliation(s)
- Shusen Chen
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, 226321, China
| | - Jiamin Zhu
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, 226321, China
| | - Feng Wang
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, 226321, China
| | - Zhifeng Guan
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, 226321, China
| | - Yangyang Ge
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, 226321, China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jing Cai
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, 226321, China
| |
Collapse
|
88
|
Zhou J, Chen Q, Zou Y, Chen H, Qi L, Chen Y. Conservative surgery in the Zollinger-Ellison syndrome. Front Oncol 1984; 9:820. [PMID: 31555586 PMCID: PMC6722475 DOI: 10.3389/fonc.2019.00820] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
Breast cancer stem cells have been known to contribute immensely to the carcinogenesis of the breast and therapeutic resistance in the clinic. Current studies show that the population of breast cancer stem cells is heterogeneous, involving various cellular markers and regulatory signaling pathways. In addition, different subtypes of breast cancer exhibit distinct subtypes and frequencies of breast cancer stem cells. In this review, we provide an overview of the characteristics of breast cancer stem cells, including their various molecular markers, prominent regulatory signaling, and complex microenvironment. The cellular origins of breast cancer are discussed to understand the heterogeneity and diverse differentiations of stem cells. Importantly, we also outline the recent advances and controversies in the therapeutic implications of breast cancer stem cells in different subtypes of breast cancer.
Collapse
Affiliation(s)
- Jiaojiao Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, China
- *Correspondence: Jiaojiao Zhou
| | - Qishan Chen
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiheng Zou
- Department of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Huihui Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lina Qi
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, China
| | - Yiding Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, China
- Yiding Chen
| |
Collapse
|