51
|
Pervez SA, Madinehei M, Moghimian N. Graphene in Solid-State Batteries: An Overview. NANOMATERIALS 2022; 12:nano12132310. [PMID: 35808146 PMCID: PMC9268036 DOI: 10.3390/nano12132310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023]
Abstract
Solid-state batteries (SSBs) have emerged as a potential alternative to conventional Li-ion batteries (LIBs) since they are safer and offer higher energy density. Despite the hype, SSBs are yet to surpass their liquid counterparts in terms of electrochemical performance. This is mainly due to challenges at both the materials and cell integration levels. Various strategies have been devised to address the issue of SSBs. In this review, we have explored the role of graphene-based materials (GBM) in enhancing the electrochemical performance of SSBs. We have covered each individual component of an SSB (electrolyte, cathode, anode, and interface) and highlighted the approaches using GBMs to achieve stable and better performance. The recent literature shows that GBMs impart stability to SSBs by improving Li+ ion kinetics in the electrodes, electrolyte and at the interfaces. Furthermore, they improve the mechanical and thermal properties of the polymer and ceramic solid-state electrolytes (SSEs). Overall, the enhancements endowed by GBMs will address the challenges that are stunting the proliferation of SSBs.
Collapse
|
52
|
|
53
|
de Oliveira ÉC, da Silva Bruckmann F, Schopf PF, Viana AR, Mortari SR, Sagrillo MR, de Vasconcellos NJS, da Silva Fernandes L, Bohn Rhoden CR. In vitro and in vivo safety profile assessment of graphene oxide decorated with different concentrations of magnetite. JOURNAL OF NANOPARTICLE RESEARCH 2022; 24:150. [DOI: 10.1007/s11051-022-05529-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023]
|
54
|
Zamora-Ledezma C, Narváez-Muñoz C, Guerrero VH, Medina E, Meseguer-Olmo L. Nanofluid Formulations Based on Two-Dimensional Nanoparticles, Their Performance, and Potential Application as Water-Based Drilling Fluids. ACS OMEGA 2022; 7:20457-20476. [PMID: 35935292 PMCID: PMC9347972 DOI: 10.1021/acsomega.2c02082] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The development of sustainable, cost-efficient, and high-performance nanofluids is one of the current research topics within drilling applications. The inclusion of tailorable nanoparticles offers the possibility of formulating water-based fluids with enhanced properties, providing unprecedented opportunities in the energy, oil, gas, water, or infrastructure industries. In this work, the most recent and relevant findings related with the development of customizable nanofluids are discussed, focusing on those based on the incorporation of 2D (two-dimensional) nanoparticles and environmentally friendly precursors. The advantages and drawbacks of using 2D layered nanomaterials including but not limited to silicon nano-glass flakes, graphene, MoS2, disk-shaped Laponite nanoparticles, layered magnesium aluminum silicate nanoparticles, and nanolayered organo-montmorillonite are presented. The current formulation approaches are listed, as well as their physicochemical characterization: rheology, viscoelastic properties, and filtration properties (fluid losses). The most influential factors affecting the drilling fluid performance, such as the pH, temperature, ionic strength interaction, and pressure, are also debated. Finally, an overview about the simulation at the microscale of fluids flux in porous media is presented, aiming to illustrate the approaches that could be taken to supplement the experimental efforts to research the performance of drilling muds. The information discussed shows that the addition of 2D nanolayered structures to drilling fluids promotes a substantial improvement in the rheological, viscoelastic, and filtration properties, additionally contributing to cuttings removal, and wellbore stability and strengthening. This also offers a unique opportunity to modulate and improve the thermal and lubrication properties of the fluids, which is highly appealing during drilling operations.
Collapse
Affiliation(s)
- Camilo Zamora-Ledezma
- Tissue
Regeneration and Repair Group: Orthobiology, Biomaterials and Tissue
Engineering, UCAM-Universidad Católica
de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Christian Narváez-Muñoz
- Escola
Tècnica Superior d’Enginyers de Camins, Canals i Ports, Universitat Politècnica de Catalunya—Barcelonatech
(UPC), Jordi Girona 1, Campus Nord UPC, 08034 Barcelona, Spain
- Centre
Internacional de Mètodes Numérics en Enginyeria (CIMNE), Gran Capitán s/n, Campus Nord UPC, 08034 Barcelona, Spain
| | - Víctor H. Guerrero
- Departamento
de Materiales, Escuela Politécnica
Nacional, Quito, 170525, Ecuador
| | - Ernesto Medina
- Departamento
de Física, Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 170901, Ecuador
| | - Luis Meseguer-Olmo
- Tissue
Regeneration and Repair Group: Orthobiology, Biomaterials and Tissue
Engineering, UCAM-Universidad Católica
de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| |
Collapse
|
55
|
Grilli F, Hajimohammadi Gohari P, Zou S. Characteristics of Graphene Oxide for Gene Transfection and Controlled Release in Breast Cancer Cells. Int J Mol Sci 2022; 23:6802. [PMID: 35743245 PMCID: PMC9224565 DOI: 10.3390/ijms23126802] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022] Open
Abstract
Functionalized graphene oxide (GO) nanoparticles are being increasingly employed for designing modern drug delivery systems because of their high degree of functionalization, high surface area with exceptional loading capacity, and tunable dimensions. With intelligent controlled release and gene silencing capability, GO is an effective nanocarrier that permits the targeted delivery of small drug molecules, antibodies, nucleic acids, and peptides to the liquid or solid tumor sites. However, the toxicity and biocompatibility of GO-based formulations should be evaluated, as these nanomaterials may introduce aggregations or may accumulate in normal tissues while targeting tumors or malignant cells. These side effects may potentially be impacted by the dosage, exposure time, flake size, shape, functional groups, and surface charges. In this review, the strategies to deliver the nucleic acid via the functionalization of GO flakes are summarized to describe the specific targeting of liquid and solid breast tumors. In addition, we describe the current approaches aimed at optimizing the controlled release towards a reduction in GO accumulation in non-specific tissues in terms of the cytotoxicity while maximizing the drug efficacy. Finally, the challenges and future research perspectives are briefly discussed.
Collapse
Affiliation(s)
- Francesca Grilli
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada; (F.G.); (P.H.G.)
- Ottawa-Carleton Institute for Biomedical Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, ON K1N 6N5, Canada
| | - Parisa Hajimohammadi Gohari
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada; (F.G.); (P.H.G.)
- Ottawa-Carleton Institute for Biomedical Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, ON K1N 6N5, Canada
| | - Shan Zou
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada; (F.G.); (P.H.G.)
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
56
|
The convergence of in silico approach and nanomedicine for efficient cancer treatment; in vitro investigations on curcumin loaded multifunctional graphene oxide nanocomposite structure. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
57
|
Fattahi Z, Hasanzadeh M. Nanotechnology-assisted microfluidic systems platform for chemical and bioanalysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
58
|
Omran B, Baek KH. Graphene-derived antibacterial nanocomposites for water disinfection: Current and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118836. [PMID: 35032599 DOI: 10.1016/j.envpol.2022.118836] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 05/11/2023]
Abstract
Antimicrobial nanomaterials provide numerous opportunities for the synthesis of next-generation sustainable water disinfectants. Using the keywords graphene and water disinfection and graphene antibacterial activity, a detailed search of the Scopus database yielded 198 and 1433 studies on using graphene for water disinfection applications and graphene antibacterial activity in the last ten years, respectively. Graphene family nanomaterials (GFNs) have emerged as effective antibacterial agents. The current innovations in graphene-, graphene oxide (GO)-, reduced graphene oxide (rGO)-, and graphene quantum dot (GQD)-based nanocomposites for water disinfection, including their functionalization with semiconductor photocatalysts and metal and metal oxide nanoparticles, have been thoroughly discussed in this review. Furthermore, their novel application in the fabrication of 3D porous hydrogels, thin films, and membranes has been emphasized. The physicochemical and structural properties affecting their antibacterial efficiency, such as sheet size, layer number, shape, edges, smoothness/roughness, arrangement mode, aggregation, dispersibility, and surface functionalization have been highlighted. The various mechanisms involved in GFN antibacterial action have been reviewed, including the mechanisms of membrane stress, ROS-dependent and -independent oxidative stress, cell wrapping/trapping, charge transfer, and interaction with cellular components. For safe applications, the potential biosafety and biocompatibility of GFNs in aquatic environments are emphasized. Finally, the current limitations and future perspectives are discussed. This review may provide ideas for developing efficient and practical solutions using graphene-, GO-, rGO-, and GQD-based nanocomposites in water disinfection by rationally employing their unique properties.
Collapse
Affiliation(s)
- Basma Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo PO, 11727, Egypt
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
59
|
Raju L, Jacob MS, Rajkumar E. Don’t dust off the dust! – A facile synthesis of graphene quantum dots derived from indoor dust towards their cytotoxicity and antibacterial activity. NEW J CHEM 2022. [DOI: 10.1039/d2nj02876j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study presents a feasible and sustainable way for producing crystalline graphene quantum dots derived from indoor dust particles using a simple eco-friendly hydrothermal procedure.
Collapse
Affiliation(s)
- Liju Raju
- Department of Chemistry, Madras Christian College (Autonomous), Affiliated to the University of Madras, Tambaram East, Chennai, Tamilnadu, India
| | - Megha Sara Jacob
- Department of Chemistry, Madras Christian College (Autonomous), Affiliated to the University of Madras, Tambaram East, Chennai, Tamilnadu, India
| | - Eswaran Rajkumar
- Department of Chemistry, Madras Christian College (Autonomous), Affiliated to the University of Madras, Tambaram East, Chennai, Tamilnadu, India
| |
Collapse
|
60
|
Li X, Miu J, An M, Mei J, Zheng F, Jiang J, Wang H, Huang Y, Li Q. Preparation of graphene/copper composites with a thiophenol molecular junction for thermal conduction application. NEW J CHEM 2022. [DOI: 10.1039/d2nj00374k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electron thermal conduction route is constructed between graphene and Cu using a thiophenol molecular junction.
Collapse
Affiliation(s)
- Xiaofang Li
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
- School of Chemical and Pharmaceutical Science, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Normal University, Guilin 541004, China
| | - Jianwen Miu
- School of Chemical and Pharmaceutical Science, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Normal University, Guilin 541004, China
| | - Meng An
- School of Chemical and Pharmaceutical Science, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Normal University, Guilin 541004, China
| | - Jing Mei
- School of Chemical and Pharmaceutical Science, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Normal University, Guilin 541004, China
| | - Fenghua Zheng
- School of Chemical and Pharmaceutical Science, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Normal University, Guilin 541004, China
| | - Juantao Jiang
- School of Chemical and Pharmaceutical Science, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Normal University, Guilin 541004, China
| | - Hongqiang Wang
- School of Chemical and Pharmaceutical Science, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Normal University, Guilin 541004, China
| | - Youguo Huang
- School of Chemical and Pharmaceutical Science, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Normal University, Guilin 541004, China
| | - Qingyu Li
- School of Chemical and Pharmaceutical Science, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
61
|
Islam M, Lantada AD, Mager D, Korvink JG. Carbon-Based Materials for Articular Tissue Engineering: From Innovative Scaffolding Materials toward Engineered Living Carbon. Adv Healthc Mater 2022; 11:e2101834. [PMID: 34601815 PMCID: PMC11469261 DOI: 10.1002/adhm.202101834] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 12/14/2022]
Abstract
Carbon materials constitute a growing family of high-performance materials immersed in ongoing scientific technological revolutions. Their biochemical properties are interesting for a wide set of healthcare applications and their biomechanical performance, which can be modulated to mimic most human tissues, make them remarkable candidates for tissue repair and regeneration, especially for articular problems and osteochondral defects involving diverse tissues with very different morphologies and properties. However, more systematic approaches to the engineering design of carbon-based cell niches and scaffolds are needed and relevant challenges should still be overcome through extensive and collaborative research. In consequence, this study presents a comprehensive description of carbon materials and an explanation of their benefits for regenerative medicine, focusing on their rising impact in the area of osteochondral and articular repair and regeneration. Once the state-of-the-art is illustrated, innovative design and fabrication strategies for artificially recreating the cellular microenvironment within complex articular structures are discussed. Together with these modern design and fabrication approaches, current challenges, and research trends for reaching patients and creating social and economic impacts are examined. In a closing perspective, the engineering of living carbon materials is also presented for the first time and the related fundamental breakthroughs ahead are clarified.
Collapse
Affiliation(s)
- Monsur Islam
- Karlsruhe Institute of TechnologyInstitute of Microstructure TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Andrés Díaz Lantada
- Department of Mechanical EngineeringUniversidad Politécnica de MadridJosé Gutiérrez Abascal 2Madrid28006Spain
| | - Dario Mager
- Karlsruhe Institute of TechnologyInstitute of Microstructure TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Jan G. Korvink
- Karlsruhe Institute of TechnologyInstitute of Microstructure TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| |
Collapse
|
62
|
Chen H, Xing L, Guo H, Luo C, Zhang X. Dual-targeting SERS-encoded graphene oxide nanocarrier for intracellular co-delivery of doxorubicin and 9-aminoacridine with enhanced combination therapy. Analyst 2021; 146:6893-6901. [PMID: 34633394 DOI: 10.1039/d1an01237a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A graphene oxide (GO)-based nanocarrier that imparts tumor-selective delivery of dual-drug with enhanced therapeutic index, is introduced. GO is conjugated with Au@Ag and Fe3O4 nanoparticles, which facilitates it with SERS tracking and magnetic targeting abilities, followed by the covalent binding of the anti-HER2 antibody, thus allowing it to both actively and passively target SKBR3 cells, human breast cancer cells expressed with HER2. Intracellular drug delivery behaviors are probed using SERS spectroscopy in a spatiotemporal manner, which demonstrates that nanocarriers are internalized into the lysosomes and release the drug in response to the acidic microenvironment. The nanocarriers loaded with dual-drug possess increased cancer cytotoxicity in comparison to those loaded with a single drug. Attractively, the enhanced cytotoxicity against cancer cells is achieved with relatively low concentrations of the drug, which is demonstrated to be involved in the drug adsorption status. These results may give us the new prospects to design GO-based delivery systems with rational drug dosages, thus achieving optimal therapeutic response of the multi-drug with increased tumor selectivity and reduced side effects.
Collapse
Affiliation(s)
- Hui Chen
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, 200093 Shanghai, China.
| | - Longqiang Xing
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, 200093 Shanghai, China.
| | - Huiru Guo
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, 200093 Shanghai, China.
| | - Caixia Luo
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, 200093 Shanghai, China.
| | - Xuedian Zhang
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, 200093 Shanghai, China.
| |
Collapse
|
63
|
Mili M, Jaiswal A, Hada V, Sagiri SS, Pal K, Chowdhary R, Malik R, Gupta RS, Gupta MK, Chourasia JP, Hashmi S, Rathore SKS, Srivastava AK, Verma S. Development of Graphene Quantum Dots by Valorizing the Bioresources – A Critical Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202102353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Medha Mili
- Council of Scientific and Industrial Research-Advanced Materials and Processes Research Institute (AMPRI) Near Habibganj Naka, Hoshangabad Road Bhopal MP 462 026 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad (U.P.) 201002 India
| | - Ayushi Jaiswal
- Council of Scientific and Industrial Research-Advanced Materials and Processes Research Institute (AMPRI) Near Habibganj Naka, Hoshangabad Road Bhopal MP 462 026 India
| | - Vaishnavi Hada
- Council of Scientific and Industrial Research-Advanced Materials and Processes Research Institute (AMPRI) Near Habibganj Naka, Hoshangabad Road Bhopal MP 462 026 India
| | - Sai S. Sagiri
- Institute of Postharvest and Food Sciences Agricultural Research Organization, Volcani Center Rishon LeZion 7528809 Israel
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering National Institute of Technology Rourkela India
| | - Rashmi Chowdhary
- All India Institute of Medical Sciences (AIIMS) Bhopal, M.P 462020 India
| | - Rajesh Malik
- All India Institute of Medical Sciences (AIIMS) Bhopal, M.P 462020 India
| | - Radha S. Gupta
- All India Institute of Medical Sciences (AIIMS) Bhopal, M.P 462020 India
| | - Manoj K. Gupta
- Council of Scientific and Industrial Research-Advanced Materials and Processes Research Institute (AMPRI) Near Habibganj Naka, Hoshangabad Road Bhopal MP 462 026 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad (U.P.) 201002 India
| | - Jamana P. Chourasia
- Council of Scientific and Industrial Research-Advanced Materials and Processes Research Institute (AMPRI) Near Habibganj Naka, Hoshangabad Road Bhopal MP 462 026 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad (U.P.) 201002 India
| | - Sar Hashmi
- Council of Scientific and Industrial Research-Advanced Materials and Processes Research Institute (AMPRI) Near Habibganj Naka, Hoshangabad Road Bhopal MP 462 026 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad (U.P.) 201002 India
| | - Sanjai K. S. Rathore
- Council of Scientific and Industrial Research-Advanced Materials and Processes Research Institute (AMPRI) Near Habibganj Naka, Hoshangabad Road Bhopal MP 462 026 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad (U.P.) 201002 India
| | - Avanish K. Srivastava
- Council of Scientific and Industrial Research-Advanced Materials and Processes Research Institute (AMPRI) Near Habibganj Naka, Hoshangabad Road Bhopal MP 462 026 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad (U.P.) 201002 India
| | - Sarika Verma
- Council of Scientific and Industrial Research-Advanced Materials and Processes Research Institute (AMPRI) Near Habibganj Naka, Hoshangabad Road Bhopal MP 462 026 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad (U.P.) 201002 India
| |
Collapse
|
64
|
Santos Silva T, Melo Soares M, Oliveira Carreira AC, de Sá Schiavo Matias G, Coming Tegon C, Massi M, de Aguiar Oliveira A, da Silva Júnior LN, Costa de Carvalho HJ, Doná Rodrigues Almeida GH, Silva Araujo M, Fratini P, Miglino MA. Biological Characterization of Polymeric Matrix and Graphene Oxide Biocomposites Filaments for Biomedical Implant Applications: A Preliminary Report. Polymers (Basel) 2021; 13:3382. [PMID: 34641197 PMCID: PMC8512758 DOI: 10.3390/polym13193382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 12/18/2022] Open
Abstract
Carbon nanostructures application, such as graphene (Gr) and graphene oxide (GO), provides suitable efforts for new material acquirement in biomedical areas. By aiming to combine the unique physicochemical properties of GO to Poly L-lactic acid (PLLA), PLLA-GO filaments were produced and characterized by X-ray diffraction (XRD). The in vivo biocompatibility of these nanocomposites was performed by subcutaneous and intramuscular implantation in adult Wistar rats. Evaluation of the implantation inflammatory response (21 days) and mesenchymal stem cells (MSCs) with PLLA-GO took place in culture for 7 days. Through XRD, new crystallographic planes were formed by mixing GO with PLLA (PLLA-GO). Using macroscopic analysis, GO implanted in the subcutaneous region showed particles' organization, forming a structure similar to a ribbon, without tissue invasion. Histologically, no tissue architecture changes were observed, and PLLA-GO cell adhesion was demonstrated by scanning electron microscopy (SEM). Finally, PLLA-GO nanocomposites showed promising results due to the in vivo biocompatibility test, which demonstrated effective integration and absence of inflammation after 21 days of implantation. These results indicate the future use of PLLA-GO nanocomposites as a new effort for tissue engineering (TE) application, although further analysis is required to evaluate their proliferative capacity and viability.
Collapse
Affiliation(s)
- Thamires Santos Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Marcelo Melo Soares
- Department of Materials Engineering, Mackgraph Institute, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil; (M.M.S.); (C.C.T.); (M.M.); (A.d.A.O.)
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Gustavo de Sá Schiavo Matias
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Carolina Coming Tegon
- Department of Materials Engineering, Mackgraph Institute, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil; (M.M.S.); (C.C.T.); (M.M.); (A.d.A.O.)
| | - Marcos Massi
- Department of Materials Engineering, Mackgraph Institute, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil; (M.M.S.); (C.C.T.); (M.M.); (A.d.A.O.)
| | - Andressa de Aguiar Oliveira
- Department of Materials Engineering, Mackgraph Institute, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil; (M.M.S.); (C.C.T.); (M.M.); (A.d.A.O.)
| | - Leandro Norberto da Silva Júnior
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Hianka Jasmyne Costa de Carvalho
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Gustavo Henrique Doná Rodrigues Almeida
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Michelle Silva Araujo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Paula Fratini
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| |
Collapse
|
65
|
Zhao Y, Xu S, Zhou K, Tian T, Yang Z, Su Y, Wang Y, Zhang Y, Hu N. Lithium titanate nanoplates embedded with graphene quantum dots as electrode materials for high-rate lithium-ion batteries. NANOTECHNOLOGY 2021; 32:505403. [PMID: 34517362 DOI: 10.1088/1361-6528/ac264b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Anode materials based on lithium titanate (LTO)/graphene composites are considered as ideal candidates for high-rate lithium-ion batteries (LIBs). Considering the blocking effects of graphene nanosheets in electrodes during ion-transfer processes, construction of LTO/graphene composite structures with enhanced electrical and ionic conductivity via facile and scalable techniques is still challenging for high-rate LIB. In this work, structures of anode materials based on LTO nanoplates embedded with graphene quantum dots (GQDs) are demonstrated for high-rate LIB. The hybrids can be facilely prepared viain situintroduction of GQDs during the process LTO preparation, which enables a uniform dispersion of GQDs within LTO. This method is convenient, rapid, and can be easily scaled-up. The introduction of 0.05 wt.% GQDs can greatly enhance the electrochemical performance of the electrodes. The electrodes with 0.05 wt.% GQDs deliver a specific discharge capacity of 185, 181 and 179 mAh g-1at 5, 10, and 20 C, respectively. The performance enhancement is suggested to be due to the synergistic interactions between LTO and GQDs. The strategy as well as as-designed structures of LTO/GQDs show potentials for application as high-rate anode materials in LIBs application.
Collapse
Affiliation(s)
- Yang Zhao
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Shiwei Xu
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Kexin Zhou
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Tian Tian
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhi Yang
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yanjie Su
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ying Wang
- Center for Advanced Electronic Materials and Devices, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yafei Zhang
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Nantao Hu
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
66
|
Theoretical and Experimental Research on Ammonia Sensing Properties of Sulfur-Doped Graphene Oxide. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this paper, gas sensing characteristics of sulfur-doped graphene oxide (S-GO) are firstly presented. The results of the sensing test revealed that, at room temperature (20 °C), S-GO has the optimal sensitivity to NH3. The S-GO gas sensor has a relatively short response and recovery time for the NH3 detection. Further, the sensing limit of ammonia at room temperature is 0.5 ppm. Theoretical models of graphene and S-doped graphene are established, and electrical properties of the graphene and S-doped graphene are calculated. The enhanced sensing performance was ascribed to the electrical properties’ improvement after the graphene was S-doped.
Collapse
|
67
|
Wang H, Zhang L, Wang D, Geng D, Zhang M, Du W, Chen H. Dispersion of graphene oxide and its application prospect in cement-based materials: a review. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1948423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Huangqi Wang
- School of Chemical and Environmental Engineering, University of Mining and Technology-Beijing, Beijing, China
| | - Liran Zhang
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing, China
| | - Dongmin Wang
- School of Chemical and Environmental Engineering, University of Mining and Technology-Beijing, Beijing, China
| | - Danhua Geng
- School of Chemical and Environmental Engineering, University of Mining and Technology-Beijing, Beijing, China
| | - Ming Zhang
- School of Chemical and Environmental Engineering, University of Mining and Technology-Beijing, Beijing, China
| | - Wenqian Du
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing, China
| | - Huixin Chen
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing, China
| |
Collapse
|
68
|
Mousavi H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int J Biol Macromol 2021; 186:1003-1166. [PMID: 34174311 DOI: 10.1016/j.ijbiomac.2021.06.123] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Heterocyclic compounds are among the most prestigious and valuable chemical molecules with diverse and magnificent applications in various sciences. Due to the remarkable and numerous properties of the heterocyclic frameworks, the development of efficient and convenient synthetic methods for the preparation of such outstanding compounds is of great importance. Undoubtedly, catalysis has a conspicuous role in modern chemical synthesis and green chemistry. Therefore, when designing a chemical reaction, choosing and or preparing powerful and environmentally benign simple catalysts or complicated catalytic systems for an acceleration of the chemical reaction is a pivotal part of work for synthetic chemists. Chitosan, as a biocompatible and biodegradable pseudo-natural polysaccharide is one of the excellent choices for the preparation of suitable catalytic systems due to its unique properties. In this review paper, every effort has been made to cover all research articles in the field of one-pot synthesis of heterocyclic frameworks in the presence of chitosan-based catalytic systems, which were published roughly by the first quarter of 2020. It is hoped that this review paper can be a little help to synthetic scientists, methodologists, and catalyst designers, both on the laboratory and industrial scales.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
69
|
Nanocomposite Materials Based on Electrochemically Synthesized Graphene Polymers: Molecular Architecture Strategies for Sensor Applications. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9060149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of graphene and its derivatives in the development of electrochemical sensors has been growing in recent decades. Part of this success is due to the excellent characteristics of such materials, such as good electrical and mechanical properties and a large specific surface area. The formation of composites and nanocomposites with these two materials leads to better sensing performance compared to pure graphene and conductive polymers. The increased large specific surface area of the nanocomposites and the synergistic effect between graphene and conducting polymers is responsible for this interesting result. The most widely used methodologies for the synthesis of these materials are still based on chemical routes. However, electrochemical routes have emerged and are gaining space, affording advantages such as low cost and the promising possibility of modulation of the structural characteristics of composites. As a result, application in sensor devices can lead to increased sensitivity and decreased analysis cost. Thus, this review presents the main aspects for the construction of nanomaterials based on graphene oxide and conducting polymers, as well as the recent efforts made to apply this methodology in the development of sensors and biosensors.
Collapse
|
70
|
Entezar-Almahdi E, Heidari R, Ghasemi S, Mohammadi-Samani S, Farjadian F. Integrin receptor mediated pH-responsive nano-hydrogel based on histidine-modified poly(aminoethyl methacrylamide) as targeted cisplatin delivery system. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102402] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
71
|
Sadighian S, Bayat N, Najaflou S, Kermanian M, Hamidi M. Preparation of Graphene Oxide/Fe
3
O
4
Nanocomposite as a Potential Magnetic Nanocarrier and MRI Contrast Agent. ChemistrySelect 2021. [DOI: 10.1002/slct.202100195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Somayeh Sadighian
- Zanjan Pharmaceutical Nanotechnology Research Center School of Pharmacy Zanjan University of Medical Sciences Zanjan Iran
- Department of Pharmaceutical Biomaterials School of Pharmacy Zanjan University of Medical Sciences Zanjan Iran
| | - Nahid Bayat
- Zanjan Pharmaceutical Nanotechnology Research Center School of Pharmacy Zanjan University of Medical Sciences Zanjan Iran
| | - Sahar Najaflou
- Zanjan Pharmaceutical Nanotechnology Research Center School of Pharmacy Zanjan University of Medical Sciences Zanjan Iran
| | - Mehraneh Kermanian
- Zanjan Pharmaceutical Nanotechnology Research Center School of Pharmacy Zanjan University of Medical Sciences Zanjan Iran
- Department of Pharmaceutical Biomaterials School of Pharmacy Zanjan University of Medical Sciences Zanjan Iran
| | - Mehrdad Hamidi
- Zanjan Pharmaceutical Nanotechnology Research Center School of Pharmacy Zanjan University of Medical Sciences Zanjan Iran
| |
Collapse
|
72
|
Jampilek J, Kralova K. Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1059. [PMID: 33668271 PMCID: PMC7956197 DOI: 10.3390/ma14051059] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Carbon is one of the most abundant elements on Earth. In addition to the well-known crystallographic modifications such as graphite and diamond, other allotropic carbon modifications such as graphene-based nanomaterials and carbon nanotubes have recently come to the fore. These carbon nanomaterials can be designed to help deliver or target drugs more efficiently and to innovate therapeutic approaches, especially for cancer treatment, but also for the development of new diagnostic agents for malignancies and are expected to help combine molecular imaging for diagnosis with therapies. This paper summarizes the latest designed drug delivery nanosystems based on graphene, graphene quantum dots, graphene oxide, reduced graphene oxide and carbon nanotubes, mainly for anticancer therapy.
Collapse
Affiliation(s)
- Josef Jampilek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
73
|
Huang C, Zhu X, Li N, Ma X, Li Z, Fan J. Simultaneous Sensing of Force and Current Signals to Recognize Proteinogenic Amino Acids at a Single-Molecule Level. J Phys Chem Lett 2021; 12:793-799. [PMID: 33411544 DOI: 10.1021/acs.jpclett.0c02989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The identification ability of nanopore sequencing is severely hindered by the diversity of amino acids in a protein. To tackle this problem, a graphene nanoslit sensor is adopted to collect force and current signals to distinguish 20 residues. Extensive molecular dynamics simulations are performed on sequencing peptides under pulling force and applied electric field. Results show that the signals of force and current can be simultaneously collected. Tailoring the geometry of the nanoslit sensor optimizes signal differences between tyrosine and alanine residues. Using the tailored geometry, the characteristic signals of 20 types of residues are detected, enabling excellent distinguishability so that the residues are well-grouped by their properties and signals. The signals reveal a trend in which the larger amino acids have larger pulling forces and lower ionic currents. Generally, the graphene nanoslit sensor can be employed to simultaneously sense two signals, thereby enhancing the identification ability and providing an effective mode of nanopore protein sequencing.
Collapse
Affiliation(s)
- Changxiong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Xiaohong Zhu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Na Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Xinyao Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| |
Collapse
|
74
|
Hoseini-Ghahfarokhi M, Mirkiani S, Mozaffari N, Abdolahi Sadatlu MA, Ghasemi A, Abbaspour S, Akbarian M, Farjadian F, Karimi M. Applications of Graphene and Graphene Oxide in Smart Drug/Gene Delivery: Is the World Still Flat? Int J Nanomedicine 2020; 15:9469-9496. [PMID: 33281443 PMCID: PMC7710865 DOI: 10.2147/ijn.s265876] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/12/2020] [Indexed: 01/19/2023] Open
Abstract
Graphene, a wonder material, has made far-reaching developments in many different fields such as materials science, electronics, condensed physics, quantum physics, energy systems, etc. Since its discovery in 2004, extensive studies have been done for understanding its physical and chemical properties. Owing to its unique characteristics, it has rapidly became a potential candidate for nano-bio researchers to explore its usage in biomedical applications. In the last decade, remarkable efforts have been devoted to investigating the biomedical utilization of graphene and graphene-based materials, especially in smart drug and gene delivery as well as cancer therapy. Inspired by a great number of successful graphene-based materials integrations into the biomedical area, here we summarize the most recent developments made about graphene applications in biomedicine. In this paper, we review the up-to-date advances of graphene-based materials in drug delivery applications, specifically targeted drug/ gene delivery, delivery of antitumor drugs, controlled and stimuli-responsive drug release, photodynamic therapy applications and optical imaging and theranostics, as well as investigating the future trends and succeeding challenges in this topic to provide an outlook for future researches.
Collapse
Affiliation(s)
- Mojtaba Hoseini-Ghahfarokhi
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soroush Mirkiani
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Naeimeh Mozaffari
- Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra2601, Australia
| | | | - Amir Ghasemi
- Department of Engineering, Durham University, Durham DH1 3LE, United Kingdom
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Abbaspour
- Department of Engineering, Durham University, Durham DH1 3LE, United Kingdom
| | - Mohsen Akbarian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Karimi
- Iran Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|