51
|
Joshi-Barve S, Barve SS, Butt W, Klein J, McClain CJ. Inhibition of proteasome function leads to NF-kappaB-independent IL-8 expression in human hepatocytes. Hepatology 2003; 38:1178-87. [PMID: 14578856 DOI: 10.1053/jhep.2003.50470] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Breakdown of cellular proteins is a highly regulated process, and the ubiquitin-proteasome pathway is the major proteolytic system in the cell. It regulates the levels of numerous proteins that control gene expression and cell division, as well as responses to stress and inflammation. Recent studies have reported abnormalities in proteasome function in alcoholic liver disease (ALD). Moreover, a direct relation has been reported between impaired proteasome function and oxidative stress in experimental models of ALD. Neutrophil infiltration is a hallmark of ALD, and activated neutrophils are thought to play a role in the pathology of ALD. As a potent neutrophil chemoattractant and activator, interleukin 8 (IL-8) likely plays a key mechanistic role in many forms of liver injury. In this study, we evaluated the effects of inhibition of proteasome function on expression and release of IL-8 by human fetal hepatocytes and hepatoma cells. Our data demonstrate that inhibition of proteasome function in hepatocytes leads to apoptotic cell death. Decreased hepatocyte survival coincides with enhanced expression of IL-8, both at the protein and the messenger RNA (mRNA) levels. This increase in IL-8 is independent of nuclear factor kappaB (NF-kappaB) activation and is associated with an increase in c-Jun N-terminal kinase (JNK) and activator protein-1 (AP-1) activity. In conclusion, hepatocytes dying because of inhibition of proteasome function produce massive quantities of the proinflammatory chemokine IL-8, possibly resulting in neutrophil infiltration, increased inflammation, and liver injury.
Collapse
Affiliation(s)
- Swati Joshi-Barve
- Department of Internal Medicine, University of Louisville Medical Center, Louisville, KY 40292, USA
| | | | | | | | | |
Collapse
|
52
|
Abstract
Controlled proteolysis of regulatory or aberrant proteins by the ubiquitin/proteasome system is indispensable for cell viability. Conformational diseases such as Alzheimer's, Parkinson's and Huntington's disease are characterised by the accumulation of misfolded or aggregation-prone proteins. Since these proteins are typical substrates of the ubiquitin/proteasome system, it is not surprising that various models propose impairment of this system as a contributing factor to the pathology of conformational disorders. The complex nature of the ubiquitin/proteasome system and its universal role in cell physiology however turns evaluation of these attractive hypotheses into a major challenge. Several reporter substrates for the ubiquitin/proteasome system have recently been developed to facilitate functional studies of the system in living cells. In this review, we will discuss these new tools as well as the proteins associated with conformational disease that have been studied with these reporters.
Collapse
Affiliation(s)
- Kristina Lindsten
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
53
|
Abstract
The ubiquitin-proteasome system targets numerous cellular proteins for degradation. In addition, modifications by ubiquitin-like proteins as well as proteins containing ubiquitin-interacting and -associated motifs modulate many others. This tightly controlled process involves multiple specific and general enzymes of the system as well as many modifying and ancillary proteins. Thus, it is not surprising that ubiquitin-mediated degradation/processing/modification regulates a broad array of basic cellular processes. Moreover, aberrations in the system have been implicated, either as a primary cause or secondary consequence, in the pathogenesis of both inherited and acquired neurodegenerative diseases. Recent findings indicate that the system is involved in the pathogenesis of Parkinson's, Alzheimer's, Huntington's, and Prion diseases as well as amyotrophic lateral sclerosis. This raises hopes for a better understanding of the pathogenetic mechanisms involved in these diseases and for the development of novel, mechanism-based therapeutic modalities.
Collapse
Affiliation(s)
- Aaron Ciechanover
- Department of Biochemistry and The Rappaport Family Institute for Research in the Medical Sciences, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| | | |
Collapse
|
54
|
Lindsten K, Menéndez-Benito V, Masucci MG, Dantuma NP. A transgenic mouse model of the ubiquitin/proteasome system. Nat Biotechnol 2003; 21:897-902. [PMID: 12872133 DOI: 10.1038/nbt851] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2002] [Accepted: 05/05/2003] [Indexed: 11/09/2022]
Abstract
Impairment of the ubiquitin/proteasome system has been proposed to play a role in neurodegenerative disorders such as Alzheimer and Parkinson diseases. Although recent studies confirmed that some disease-related proteins block proteasomal degradation, and despite the existence of excellent animal models of both diseases, in vivo data about the system are lacking. We have developed a model for in vivo analysis of the ubiquitin/proteasome system by generating mouse strains transgenic for a green fluorescent protein (GFP) reporter carrying a constitutively active degradation signal. Administration of proteasome inhibitors to the transgenic animals resulted in a substantial accumulation of GFP in multiple tissues, confirming the in vivo functionality of the reporter. Moreover, accumulation of the reporter was induced in primary neurons by UBB+1, an aberrant ubiquitin found in Alzheimer disease. These transgenic animals provide a tool for monitoring the status of the ubiquitin/proteasome system in physiologic or pathologic conditions.
Collapse
Affiliation(s)
- Kristina Lindsten
- Microbiology and Tumor Biology Center, Karolinska Institutet, Box 280, S-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
55
|
Hope AD, de Silva R, Fischer DF, Hol EM, van Leeuwen FW, Lees AJ. Alzheimer's associated variant ubiquitin causes inhibition of the 26S proteasome and chaperone expression. J Neurochem 2003; 86:394-404. [PMID: 12871580 DOI: 10.1046/j.1471-4159.2003.01844.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intracellular protein inclusions in Alzheimer's disease and progressive supranuclear palsy contain UBB+1, a variant ubiquitin. UBB+1 is able block the 26S proteasome in cell lines. Proteasome inhibition by drug action has previously been shown to induce a heat-shock response and render protection against stress. We investigated UBB+1 by developing a stable, conditional expression model in SH-SY5Y human neuroblastoma cells. Induction of UBB+1 expression caused proteasome inhibition as was confirmed by reduced ability to process misfolded canavanyl proteins, accumulation of GFPu, a proteasome substrate, and reduced cleavage of a fluorogenic substrate. We show that expression of UBB+1 induces expression of heat-shock proteins. This priming of the chaperone system in these cells promotes a subsequent resistance to tert-butyl hydroperoxide-mediated oxidative stress. We conclude that although UBB+1-expressing cells have a compromised ubiquitin-proteasome system, they are protected against oxidative stress conditions.
Collapse
Affiliation(s)
- Andrew D Hope
- Reta Lila Weston Institute of Neurological Studies, University College, London, UK.
| | | | | | | | | | | |
Collapse
|
56
|
McNaught KSP, Olanow CW. Proteolytic stress: a unifying concept for the etiopathogenesis of Parkinson's disease. Ann Neurol 2003; 53 Suppl 3:S73-84; discussion S84-6. [PMID: 12666100 DOI: 10.1002/ana.10512] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The etiopathogenesis of Parkinson's disease (PD) has been elusive. Recently, several lines of evidence have converged to suggest that defects in the ubiquitin-proteasome system and proteolytic stress underlie nigral pathology in both familial and sporadic forms of the illness. In support of this concept, mutations in alpha-synuclein that cause the protein to misfold and resist proteasomal degradation cause familial PD. Similarly, mutations in two enzymes involved in the normal function of the ubiquitin-proteasome system, parkin and ubiquitin C-terminal hydrolase L1, are also associated with hereditary PD. Furthermore, structural and function defects in 26/20S proteasomes with accumulation and aggregation of potentially cytotoxic abnormal proteins have been identified in the substantia nigra pars compacta of patients with sporadic PD. Thus, a defect in protein handling appears to be a common factor in sporadic and the various familial forms of PD. This hypothesis may also account for the vulnerability of the substantia nigra pars compacta in PD, why the disorder is age related, and the nature of the Lewy body. It has also facilitated the development of experimental models that recapitulate the behavioral and pathological features of PD, and hopefully will lead to the development of novel neuroprotective therapies for the disorder.
Collapse
Affiliation(s)
- Kevin St P McNaught
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
57
|
Bardag-Gorce F, Riley N, Nguyen V, Montgomery RO, French BA, Li J, van Leeuwen FW, Lungo W, McPhaul LW, French SW. The mechanism of cytokeratin aggresome formation: the role of mutant ubiquitin (UBB+1). Exp Mol Pathol 2003; 74:160-7. [PMID: 12710947 DOI: 10.1016/s0014-4800(02)00024-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aggresome formation in cells involves the failure of the ubiquitin-proteasome pathway to dispose of proteins destined for degradation by the 26S proteasome. UBB(+1) is present in Mallory bodies in alcoholic liver disease and in aggresomes formed in Alzheimer's desease. The present investigation focuses on the role that UBB(+1) plays in cytokeratin aggresome formation in Mallory bodies (MBs) in vitro. Immunoprecipitation with a monoclonal antibody to cytokeratin-8 (CK-8) was used. The immunoprecipitate was incubated for 24 h in the presence of different constituents involved in aggresome formation including ubiquitin, UBB(+1), the proteasome inhibitor PS341, an ATP generating energy source, a deubiquitinating enzyme inhibitor, a purified proteasome fraction, and an E(1-3) conjugating enzyme fraction. MB-like protein aggregates formed in the presence of ubiquitin, plus UBB(+1) or PS341. These aggregates stained positively for CK-8. UBB(+1), and a proteasome subunit Tbp7, as demonstrated on Western blots. A second approach was used to form MBs in vitro in cultured hepatocytes transfected with UBB(+1) protein using Chariot. The cells were double stained using CK-8 and ubiquitin antibodies. The two proteins colocalized in MB-like aggregates. The results support the possibility that aggresome formation is a complex multifactor process, which is favored by inhibition of the proteasome and by the presence of UBB(+1).
Collapse
Affiliation(s)
- F Bardag-Gorce
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA 90509, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Riley NE, Bardag-Gorce F, Montgomery RO, Li J, Lungo W, Lue YH, French SW. Microtubules are required for cytokeratin aggresome (Mallory body) formation in hepatocytes: an in vitro study. Exp Mol Pathol 2003; 74:173-9. [PMID: 12710949 DOI: 10.1016/s0014-4800(03)00005-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mallory bodies are cytokeratin-ubiquitin aggresomes that form in hepatocytes in many different chronic liver diseases. One of the key components in aggresome formation, not yet investigated in Mallory body formation, is the role of microtubules. An in vitro tissue culture assay is required to test for microtubule involvement in Mallory body formation so that Mallory body formation can be observed in the presence or absence of microtubule-disrupting agents. In this report, a new model of in vitro Mallory body formation was developed, which uses cultured hepatocytes isolated from drug-primed mice. When hepatocytes were incubated in the presence of antimicrotubule agents, they failed to form Mallory bodies. It is concluded that intact microtubules are required for Mallory body formation.
Collapse
Affiliation(s)
- N E Riley
- Department of Pathology, Harbor-UCLA Medical Center, 1000 W. Carson Street, Torrance, CA 90509, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Riley NE, Li J, McPhaul LW, Bardag-Gorce F, Lue YH, French SW. Heat shock proteins are present in mallory bodies (cytokeratin aggresomes) in human liver biopsy specimens. Exp Mol Pathol 2003; 74:168-72. [PMID: 12710948 DOI: 10.1016/s0014-4800(02)00020-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mallory bodies (MBs) are aggresomes, composed of cytokeratin and various other proteins, which form in diseased liver because of disruption in the ubiquitin-proteasome protein degradation pathway. Heat shock proteins (hsp's) are thought to be involved in this process because it was discovered that MB formation is induced by heat shock in drug-primed mice. It has been reported that ubiquitin and a mutant form of ubiquitin (UBB(+1)) are found in aggresomes formed in the neurons in Alzheimer's disease and in the liver MBs in various liver diseases. In addition, hsp 70 has been found in aggresomes in Alzheimer's and in MBs in drug-primed mice. Therefore, we hypothesized that hsp's might be involved in MB formation in human liver diseases. Liver biopsy sections were double-stained using ubiquitin and hsp 70 or 90b antibodies. Both hsps 70 and 90b were found in MBs in all liver diseases investigated including primary billiary cirrhosis, nonalcoholic steatohepatitis, hepatitis B and C, idiopathic cirrhosis, alcoholic hepatitis, and hepatocellular carcinoma. Ubiquitin and the hsp's colocalized in all MBs in the diseased liver sections. These results indicate that hsp involvement in MB formation is similar to that seen in aggresome formation in other conformational diseases.
Collapse
Affiliation(s)
- N E Riley
- Department of Pathology and Medicine, Harbor-University of California at Los Angeles Medical Center, Torrance, CA 90509, USA
| | | | | | | | | | | |
Collapse
|
60
|
Fickert P, Trauner M, Fuchsbichler A, Stumptner C, Zatloukal K, Denk H. Mallory body formation in primary biliary cirrhosis is associated with increased amounts and abnormal phosphorylation and ubiquitination of cytokeratins. J Hepatol 2003; 38:387-94. [PMID: 12663227 DOI: 10.1016/s0168-8278(02)00439-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS Animal studies revealed a key role of toxic bile acids in the regulation of hepatocytic cytokeratin (CK) expression and Mallory body (MB) formation. In this study, we compared CK expression, phosphorylation, and ubiquitination in primary biliary cirrhosis (PBC), chronic hepatitis C (CHC) and control livers to determine whether bile acid-induced CK alterations are associated with cytoskeletal alterations and MB formation in a prototypic chronic cholestatic liver disease. METHODS CK 8 and CK 18 mRNA and protein levels were investigated by reverse transcriptase-polymerase chain reaction and Western blotting. Intermediate filament (IF) cytoskeletal alterations were assessed by immunofluorescence microscopy using antibodies against CKs, CK phosphoepitopes, MBs, and ubiquitin. RESULTS Despite unchanged mRNA levels, CK 8 and CK 18 protein levels were significantly elevated in PBC suggesting stabilization of CKs, possibly due to decreased degradation. CK-IF alterations in PBC comprised increased density with abnormal phosphorylation of the IF network of hepatocytes in acinar zone 1 and in the periphery of cirrhotic nodules. In addition, in these areas hepatocytes with diminished IF network containing MBs consisting of abnormally phosphorylated and ubiquitinated CK were observed. CONCLUSIONS These findings support our concept that IF cytoskeletal alterations and MB formation in cholestatic liver diseases are related to bile acid-induced cell stress.
Collapse
Affiliation(s)
- Peter Fickert
- Department of Medicine, Karl-Franzens University Graz, Auenbruggerplatz 25, A-8036 Graz, Austria
| | | | | | | | | | | |
Collapse
|
61
|
Abstract
Neurodegenerative disorders such as Parkinson's disease (PD) and 'dementia with Lewy bodies' (DLB) are characterized pathologically by selective neuronal death and the appearance of intracytoplasmic protein aggregates (Lewy bodies). The process by which these inclusions are formed and their role in the neurodegenerative process remain elusive. In this study, we demonstrate a close relationship between Lewy bodies and aggresomes, which are cytoplasmic inclusions formed at the centrosome as a cytoprotective response to sequester and degrade excess levels of potentially toxic abnormal proteins within cells. We show that the centrosome/aggresome-related proteins gamma-tubulin and pericentrin display an aggresome-like distribution in Lewy bodies in PD and DLB. Lewy bodies also sequester the ubiquitin-activating enzyme (E1), the proteasome activators PA700 and PA28, and HSP70, all of which are recruited to aggresomes for enhanced proteolysis. Using novel antibodies that are specific and highly sensitive to ubiquitin-protein conjugates, we revealed the presence of numerous discrete ubiquitinated protein aggregates in neuronal soma and processes in PD and DLB. These aggregates appear to be being transported from peripheral sites to the centrosome where they are sequestered to form Lewy bodies in neurons. Finally, we have shown that inhibition of proteasomal function or generation of misfolded proteins cause the formation of aggresome/Lewy body-like inclusions and cytotoxicity in dopaminergic neurons in culture. These observations suggest that Lewy body formation may be an aggresome-related event in response to increasing levels of abnormal proteins in neurons. This phenomenon is consistent with growing evidence that altered protein handling underlies the etiopathogenesis of PD and related disorders.
Collapse
Affiliation(s)
- Kevin St P McNaught
- Department of Neurology, Mount Sinai School of Medicine, Annenberg 14-73, One Gustave L Levy Place, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
62
|
Bardag-Gorce F, van Leeuwen FW, Nguyen V, French BA, Li J, Riley N, McPhaul LW, Lue YH, French SW. The role of the ubiquitin-proteasome pathway in the formation of mallory bodies. Exp Mol Pathol 2002; 73:75-83. [PMID: 12231209 DOI: 10.1006/exmp.2002.2451] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The dynamics of Mallory body (MB) formation are difficult to follow in vivo. Because of the lack of an in vitro mouse hepatocyte culture model, a cellular extract approach was developed. In this model an immunoprecipitate was obtained using an antibody to cytokeratin-8 (CK-8). The isolate contained a large number of compounds: CK-8, ubiquitin, a frameshift mutation of ubiquitin (UBB(+1)), proteasomal subunits beta5 (a catalytic subunit of the 20S proteasome) and Tbp7 (an ATPase subunit of the 26S proteasome), transglutaminase, tubulin, heat shock proteins 90 and 70, and MBs. In Western blots, CK-8 immunoprecipitates showed colocalization of these components in a complex of proteins colocalized in a high-molecular-weight smear. When the CK-8 immunoprecipitate was incubated with the isolate of proteasomes and an energy generating source (ATP), the components of the ubiquitinated protein smear increased. These observations taken together with the in vivo observation that these proteins colocalized at the edge of the MB shown in the present study suggest that these proteins form aggregates through covalent binding of CK-8, ubiquitin, and the proteasomes. Covalent aggregation is suggested by the fact that the protein complex found in the high-molecular-weight smear that forms in vitro fails to dissociate in SDS. This protein complex is present in the CK-8 immunoprecipitates of livers forming MBs but not in control livers. In conclusion, the results support the concept that Mallory bodies are aggresomes which form as the result of the failure of the ubiquitin-proteasome complex to adequately eliminate cytokeratins destined for proteolysis.
Collapse
Affiliation(s)
- Fawzia Bardag-Gorce
- Department of Pathology and Medicine, Harbor- UCLA Medical Center, Torrance, California 90509, USA
| | | | | | | | | | | | | | | | | |
Collapse
|