51
|
Cao Q, Luo S, Yao W, Qu Y, Wang N, Hong J, Murayama S, Zhang Z, Chen J, Hashimoto K, Qi Q, Zhang JC. Suppression of abnormal α-synuclein expression by activation of BDNF transcription ameliorates Parkinson's disease-like pathology. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:1-15. [PMID: 35784012 PMCID: PMC9207554 DOI: 10.1016/j.omtn.2022.05.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022]
Abstract
Parkinson’s disease (PD) is characterized by the formation of Lewy bodies (LBs) in the brain. LBs are mainly composed of phosphorylated and aggregated α-synuclein (α-Syn). Thus, strategies to reduce the expression of α-Syn offer promising therapeutic avenues for PD. DNA/RNA heteroduplex oligonucleotides (HDOs) are a novel technology for gene silencing. Using an α-Syn-HDO that specifically targets α-Syn, we examined whether α-Syn-HDO attenuates pathological changes in the brain of mouse models of PD. Overexpression of α-Syn induced dopaminergic neuron degeneration through inhibition of cyclic AMP-responsive-element-binding protein (CREB) and activation of methyl CpG binding protein 2 (MeCP2), resulting in brain-derived neurotrophic factor (BDNF) downregulation. α-Syn-HDO exerted a more potent silencing effect on α-Syn than α-Syn-antisense oligonucleotides (ASOs). α-Syn-HDO attenuated abnormal α-Syn expression and ameliorated dopaminergic neuron degeneration via BDNF upregulation by activation of CREB and inhibition of MeCP2. These findings demonstrated that inhibition of α-Syn by α-Syn-HDO protected against dopaminergic neuron degeneration via activation of BDNF transcription. Therefore, α-Syn-HDO may serve as a new therapeutic agent for PD.
Collapse
Affiliation(s)
- Qianqian Cao
- Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shilin Luo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Wei Yao
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 260-8670 Chiba, Japan
| | - Nanbu Wang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510632, China
| | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Shigeo Murayama
- Department of Neuropathology (Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital & Institute of Gerontology, Tokyo 173-0015, Japan
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 260-8670 Chiba, Japan
| | - Qi Qi
- MOE Key Laboratory of Tumor Molecular Biology, Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ji-Chun Zhang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
52
|
Altered BDNF levels are associated with cognitive impairment in Parkinson's disease patients with depression. Parkinsonism Relat Disord 2022; 103:122-128. [DOI: 10.1016/j.parkreldis.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022]
|
53
|
Szarowicz CA, Steece-Collier K, Caulfield ME. New Frontiers in Neurodegeneration and Regeneration Associated with Brain-Derived Neurotrophic Factor and the rs6265 Single Nucleotide Polymorphism. Int J Mol Sci 2022; 23:8011. [PMID: 35887357 PMCID: PMC9319713 DOI: 10.3390/ijms23148011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/20/2022] Open
Abstract
Brain-derived neurotrophic factor is an extensively studied neurotrophin implicated in the pathology of multiple neurodegenerative and psychiatric disorders including, but not limited to, Parkinson's disease, Alzheimer's disease, Huntington's disease, traumatic brain injury, major de-pressive disorder, and schizophrenia. Here we provide a brief summary of current knowledge on the role of BDNF and the common human single nucleotide polymorphism, rs6265, in driving the pathogenesis and rehabilitation in these disorders, as well as the status of BDNF-targeted therapies. A common trend has emerged correlating low BDNF levels, either detected within the central nervous system or peripherally, to disease states, suggesting that BDNF replacement therapies may hold clinical promise. In addition, we introduce evidence for a distinct role of the BDNF pro-peptide as a biologically active ligand and the need for continuing studies on its neurological function outside of that as a molecular chaperone. Finally, we highlight the latest research describing the role of rs6265 expression in mechanisms of neurodegeneration as well as paradoxical advances in the understanding of this genetic variant in neuroregeneration. All of this is discussed in the context of personalized medicine, acknowledging there is no "one size fits all" therapy for neurodegenerative or psychiatric disorders and that continued study of the multiple BDNF isoforms and genetic variants represents an avenue for discovery ripe with therapeutic potential.
Collapse
Affiliation(s)
- Carlye A. Szarowicz
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (C.A.S.); (K.S.-C.)
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Kathy Steece-Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (C.A.S.); (K.S.-C.)
| | - Margaret E. Caulfield
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (C.A.S.); (K.S.-C.)
| |
Collapse
|
54
|
4'-Iodo-α-Pyrrolidinononanophenone Provokes Differentiated SH-SY5Y Cell Apoptosis Through Downregulating Nitric Oxide Production and Bcl-2 Expression. Neurotox Res 2022; 40:1322-1336. [PMID: 35834058 DOI: 10.1007/s12640-022-00546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
Abuse of pyrrolidinophenone derivatives (PPs) is known to cause severe damage to the central nervous system due to their high lipophilicity. In this study, we compared sensitivity to toxicity elicited by 4'-iodo-α-pyrrolidinononanophenone (I-α-PNP), one of the most potent cytotoxic derivatives among PPs synthesized previously, between SH-SY5Y cells differentiated by all-trans-retinoic acid (ATRA) and the undifferentiated cells, and found that the differentiated cells are more sensitive to I-α-PNP toxicity than the undifferentiated cells. Treatment with I-α-PNP elicited some apoptotic alterations (Bax expression, loss of mitrochondrial membrane potential, and activation of caspases) in the differentiated cells, whose patterns were similar to those in the undifferentiated cells. I-α-PNP treatment resulted in no significant alteration in Bcl-2 expression in the undifferentiated cells, whereas it considerably downregulated the protein expression in the differentiated cells, suggesting that the high I-α-PNP sensitivity of the differentiated cells is mainly due to downregulation of Bcl-2 expression. I-α-PNP treatment decreased nitric oxide (NO) production and neuronal NOS (nNOS) expression in the differentiated cells, and the patterns of I-α-PNP-evoked alterations in phosphorylation of cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) expression were almost the same as that in nNOS expression. Additionally, the addition of an NO donor restored the I-α-PNP-evoked alterations in expressions of Bcl-2, BDNF, and nNOS in the differentiated cells. These findings suggest that the downregulation of Bcl-2 expression by I-α-PNP in differentiated cells is attributed to the acceleration of two negative feedback loops (nNOS/NO/CREB loop and CREB/BDNF loop) triggered by decreased NO production.
Collapse
|
55
|
Lucaci AG, Notaras MJ, Kosakovsky Pond SL, Colak D. The evolution of BDNF is defined by strict purifying selection and prodomain spatial coevolution, but what does it mean for human brain disease? Transl Psychiatry 2022; 12:258. [PMID: 35732627 PMCID: PMC9217794 DOI: 10.1038/s41398-022-02021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
Brain-Derived Neurotrophic Factor (BDNF) is an essential mediator of brain assembly, development, and maturation. BDNF has been implicated in a variety of brain disorders such as neurodevelopmental disorders (e.g., autism spectrum disorder), neuropsychiatric disorders (e.g., anxiety, depression, PTSD, and schizophrenia), and various neurodegenerative disorders (e.g., Parkinson's, Alzheimer's, etc.). To better understand the role of BDNF in disease, we sought to define the evolution of BDNF within Mammalia. We conducted sequence alignment and phylogenetic reconstruction of BDNF across a diverse selection of >160 mammalian species spanning ~177 million years of evolution. The selective evolutionary change was examined via several independent computational models of codon evolution including FEL (pervasive diversifying selection), MEME (episodic selection), and BGM (structural coevolution of sites within a single molecule). We report strict purifying selection in the main functional domain of BDNF (NGF domain, essentially comprising the mature BDNF protein). Additionally, we discover six sites in our homologous alignment which are under episodic selection in early regulatory regions (i.e. the prodomain) and 23 pairs of coevolving sites that are distributed across the entirety of BDNF. Coevolving BDNF sites exhibited complex spatial relationships and geometric features including triangular relations, acyclic graph networks, double-linked sites, and triple-linked sites, although the most notable pattern to emerge was that changes in the mature region of BDNF tended to coevolve along with sites in the prodomain. Thus, we propose that the discovery of both local and distal sites of coevolution likely reflects 'evolutionary fine-tuning' of BDNF's underlying regulation and function in mammals. This tracks with the observation that BDNF's mature domain (which encodes mature BDNF protein) is largely conserved, while the prodomain (which is linked to regulation and its own unique functionality) exhibits more pervasive and diversifying evolutionary selection. That said, the fact that negative purifying selection also occurs in BDNF's prodomain also highlights that this region also contains critical sites of sensitivity which also partially explains its disease relevance (via Val66Met and other prodomain variants). Taken together, these computational evolutionary analyses provide important context as to the origins and sensitivity of genetic changes within BDNF that may help to deconvolute the role of BDNF polymorphisms in human brain disorders.
Collapse
Affiliation(s)
- Alexander G. Lucaci
- grid.264727.20000 0001 2248 3398Institute for Genomics and Evolutionary Medicine, Science & Education Research Center, Temple University, Philadelphia, PA USA
| | - Michael J. Notaras
- grid.5386.8000000041936877XCenter for Neurogenetics, Brain & Mind Research Institute, Weill Medical College, Cornell University, New York, New York, USA
| | - Sergei L. Kosakovsky Pond
- grid.264727.20000 0001 2248 3398Institute for Genomics and Evolutionary Medicine, Science & Education Research Center, Temple University, Philadelphia, PA USA
| | - Dilek Colak
- Center for Neurogenetics, Brain & Mind Research Institute, Weill Medical College, Cornell University, New York, New York, USA. .,Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
56
|
Zhang HL, Wang XC, Liu R. Zinc in Regulating Protein Kinases and Phosphatases in Neurodegenerative Diseases. Biomolecules 2022; 12:biom12060785. [PMID: 35740910 PMCID: PMC9220840 DOI: 10.3390/biom12060785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/12/2022] Open
Abstract
Zinc is essential for human growth and development. As a trace nutrient, zinc plays important roles in numerous signal transduction pathways involved in distinct physiologic or pathologic processes. Protein phosphorylation is a posttranslational modification which regulates protein activity, degradation, and interaction with other molecules. Protein kinases (PKs) and phosphatases (PPs), with their effects of adding phosphate to or removing phosphate from certain substrates, are master regulators in controlling the phosphorylation of proteins. In this review, we summarize the disturbance of zinc homeostasis and role of zinc disturbance in regulating protein kinases and protein phosphatases in neurodegenerative diseases, with the focus of that in Alzheimer’s disease, providing a new perspective for understanding the mechanisms of these neurologic diseases.
Collapse
|
57
|
Regulation of BDNF transcription by Nrf2 and MeCP2 ameliorates MPTP-induced neurotoxicity. Cell Death Dis 2022; 8:267. [PMID: 35595779 PMCID: PMC9122988 DOI: 10.1038/s41420-022-01063-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 12/31/2022]
Abstract
Mounting evidence suggests the key role of brain-derived neurotrophic factor (BDNF) in the dopaminergic neurotoxicity of Parkinson’s disease (PD). Activation of NF-E2-related factor-2 (Nrf2) and inhibition of methyl CpG-binding protein 2 (MeCP2) can regulate BDNF upregulation. However, the regulation of BDNF by Nrf2 and MeCP2 in the PD pathogenesis has not been reported. Here, we revealed that Nrf2/MeCP2 coordinately regulated BDNF transcription, reversing the decreased levels of BDNF expression in 1-methyl-4-phenylpyridinium (MPP+)-treated SH-SY5Y cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. Repeated administration of sulforaphane (SFN, an Nrf2 activator) attenuated dopaminergic neurotoxicity in MPTP-treated mice through activation of BDNF and suppression of MeCP2 expression. Furthermore, intracerebroventricular injection of MeCP2-HDO, a DNA/RNA heteroduplex oligonucleotide (HDO) silencing MeCP2 expression, ameliorated dopaminergic neurotoxicity in MPTP-treated mice via activation of Nrf2 and BDNF expression. Moreover, we found decreased levels of Nrf2 and BDNF, and increased levels of MeCP2 protein expression in the striatum of patients with dementia with Lewy bodies (DLB). Interesting, there were correlations between BDNF and Nrf2 (or MeCP2) expression in the striatum from DLB patients. Therefore, it is likely that the activation of BDNF transcription by activation of Nrf2 and/or suppression of MeCP2 could be a new therapeutic approach for PD.
Collapse
|
58
|
Akbari M, Gholipour M, Hussen BM, Taheri M, Eslami S, Sayad A, Ghafouri-Fard S. Expression of BDNF-Associated lncRNAs in Parkinson's disease. Metab Brain Dis 2022; 37:901-909. [PMID: 35305235 DOI: 10.1007/s11011-022-00946-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/22/2022] [Indexed: 12/22/2022]
Abstract
Decreased level of neurotrophic factor brain-derived neurotrophic factor (BDNF) has been supposed to participate in the pathoetiology of Parkinson's disease (PD). However, the underlying mechanisms of its dysregulation and the functional network between this factor and other transcripts have not been elucidated. In the current study, we measured expressions of BDNF, and four related long non-coding RNAs, namely BDNF-AS, MIR137HG, MIAT and PNKY in blood of PD patients and normal controls to find their expression levels in these patients and propose a possible mechanism for dysregulation of BDNF in PD patients. Notably, we detected down-regulation of all transcripts in the circulation of PD patients compared with controls. There was no significant difference in expression of either gene between male and female PD patients or patients receiving L-Dopa versus those receiving other drugs. Expression of none of genes was correlated with age, disease duration, disease stage, MMSE or UPDRS. Dynamic principal component analysis showed that expression levels of these genes almost clearly separated samples collected from healthy controls and PD patients into their respective groups. This suggests that the observed lncRNAs differences are associated with the pathophysiology of PD, and these lncRNAs might constitute an important biomarker signature for PD.
Collapse
Affiliation(s)
- Mohammadarian Akbari
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Solat Eslami
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
59
|
The Therapeutic Role of Exercise and Probiotics in Stressful Brain Conditions. Int J Mol Sci 2022; 23:ijms23073610. [PMID: 35408972 PMCID: PMC8998860 DOI: 10.3390/ijms23073610] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress has been recognized as a contributing factor in aging and in the progression of multiple neurological disorders such as Parkinson’s disease, Alzheimer’s dementia, ischemic stroke, and head and spinal cord injury. The increased production of reactive oxygen species (ROS) has been associated with mitochondrial dysfunction, altered metal homeostasis, and compromised brain antioxidant defence. All these changes have been reported to directly affect synaptic activity and neurotransmission in neurons, leading to cognitive dysfunction. In this context two non-invasive strategies could be employed in an attempt to improve the aforementioned stressful brain status. In this regard, it has been shown that exercise could increase the resistance against oxidative stress, thus providing enhanced neuroprotection. Indeed, there is evidence suggesting that regular physical exercise diminishes BBB permeability as it reinforces antioxidative capacity, reduces oxidative stress, and has anti-inflammatory effects. However, the differential effects of different types of exercise (aerobic exhausted exercise, anaerobic exercise, or the combination of both types) and the duration of physical activity will be also addressed in this review as likely determinants of therapeutic efficacy. The second proposed strategy is related to the use of probiotics, which can also reduce some biomarkers of oxidative stress and inflammatory cytokines, although their underlying mechanisms of action remain unclear. Moreover, various probiotics produce neuroactive molecules that directly or indirectly impact signalling in the brain. In this review, we will discuss how physical activity can be incorporated as a component of therapeutic strategies in oxidative stress-based neurological disorders along with the augmentation of probiotics intake.
Collapse
|
60
|
Stefani A, Pierantozzi M, Cardarelli S, Stefani L, Cerroni R, Conti M, Garasto E, Mercuri NB, Marini C, Sucapane P. Neurotrophins as Therapeutic Agents for Parkinson’s Disease; New Chances From Focused Ultrasound? Front Neurosci 2022; 16:846681. [PMID: 35401084 PMCID: PMC8990810 DOI: 10.3389/fnins.2022.846681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/31/2022] [Indexed: 01/02/2023] Open
Abstract
Magnetic Resonance–guided Focused Ultrasound (MRgFUS) represents an effective micro-lesioning approach to target pharmaco-resistant tremor, mostly in patients afflicted by essential tremor (ET) and/or Parkinson’s disease (PD). So far, experimental protocols are verifying the clinical extension to other facets of the movement disorder galaxy (i.e., internal pallidus for disabling dyskinesias). Aside from those neurosurgical options, one of the most intriguing opportunities of this technique relies on its capability to remedy the impermeability of blood–brain barrier (BBB). Temporary BBB opening through low-intensity focused ultrasound turned out to be safe and feasible in patients with PD, Alzheimer’s disease, and amyotrophic lateral sclerosis. As a mere consequence of the procedures, some groups described even reversible but significant mild cognitive amelioration, up to hippocampal neurogenesis partially associated to the increased of endogenous brain-derived neurotrophic factor (BDNF). A further development elevates MRgFUS to the status of therapeutic tool for drug delivery of putative neurorestorative therapies. Since 2012, FUS-assisted intravenous administration of BDNF or neurturin allowed hippocampal or striatal delivery. Experimental studies emphasized synergistic modalities. In a rodent model for Huntington’s disease, engineered liposomes can carry glial cell line–derived neurotrophic factor (GDNF) plasmid DNA (GDNFp) to form a GDNFp-liposome (GDNFp-LPs) complex through pulsed FUS exposures with microbubbles; in a subacute MPTP-PD model, the combination of intravenous administration of neurotrophic factors (either through protein or gene delivery) plus FUS did curb nigrostriatal degeneration. Here, we explore these arguments, focusing on the current, translational application of neurotrophins in neurodegenerative diseases.
Collapse
Affiliation(s)
- Alessandro Stefani
- Department of System Medicine, Parkinson Center, University Tor Vergata, Rome, Italy
- *Correspondence: Alessandro Stefani,
| | | | - Silvia Cardarelli
- Department of System Medicine, Parkinson Center, University Tor Vergata, Rome, Italy
| | - Lucrezia Stefani
- Department of System Medicine, Parkinson Center, University Tor Vergata, Rome, Italy
| | - Rocco Cerroni
- Department of System Medicine, Parkinson Center, University Tor Vergata, Rome, Italy
| | - Matteo Conti
- Department of System Medicine, UOC Neurology, University Tor Vergata, Rome, Italy
| | - Elena Garasto
- Department of System Medicine, UOC Neurology, University Tor Vergata, Rome, Italy
| | - Nicola B. Mercuri
- Department of System Medicine, UOC Neurology, University Tor Vergata, Rome, Italy
| | - Carmine Marini
- UOC Neurology and Stroke Unit, University of L’Aquila, L’Aquila, Italy
| | | |
Collapse
|
61
|
See WZC, Naidu R, Tang KS. Cellular and Molecular Events Leading to Paraquat-Induced Apoptosis: Mechanistic Insights into Parkinson’s Disease Pathophysiology. Mol Neurobiol 2022; 59:3353-3369. [PMID: 35306641 PMCID: PMC9148284 DOI: 10.1007/s12035-022-02799-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 03/09/2022] [Indexed: 12/17/2022]
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the cardinal features of tremor, bradykinesia, rigidity, and postural instability, in addition to other non-motor symptoms. Pathologically, PD is attributed to the loss of dopaminergic neurons in the substantia nigra pars compacta, with the hallmark of the presence of intracellular protein aggregates of α-synuclein in the form of Lewy bodies. The pathogenesis of PD is still yet to be fully elucidated due to the multifactorial nature of the disease. However, a myriad of studies has indicated several intracellular events in triggering apoptotic neuronal cell death in PD. These include oxidative stress, mitochondria dysfunction, endoplasmic reticulum stress, alteration in dopamine catabolism, inactivation of tyrosine hydroxylase, and decreased levels of neurotrophic factors. Laboratory studies using the herbicide paraquat in different in vitro and in vivo models have demonstrated the induction of many PD pathological features. The selective neurotoxicity induced by paraquat has brought a new dawn in our perspectives about the pathophysiology of PD. Epidemiological data have suggested an increased risk of developing PD in the human population exposed to paraquat for a long term. This model has opened new frontiers in the quest for new therapeutic targets for PD. The purpose of this review is to synthesize the relationship between the exposure of paraquat and the pathogenesis of PD in in vitro and in vivo models.
Collapse
Affiliation(s)
- Wesley Zhi Chung See
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Kim San Tang
- School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
62
|
Hamamah S, Aghazarian A, Nazaryan A, Hajnal A, Covasa M. Role of Microbiota-Gut-Brain Axis in Regulating Dopaminergic Signaling. Biomedicines 2022; 10:biomedicines10020436. [PMID: 35203645 PMCID: PMC8962300 DOI: 10.3390/biomedicines10020436] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 01/09/2023] Open
Abstract
Dopamine is a neurotransmitter that plays a critical role both peripherally and centrally in vital functions such as cognition, reward, satiety, voluntary motor movements, pleasure, and motivation. Optimal dopamine bioavailability is essential for normal brain functioning and protection against the development of neurological diseases. Emerging evidence shows that gut microbiota have significant roles in maintaining adequate concentrations of dopamine via intricate, bidirectional communication known as the microbiota-gut-brain axis. The vagus nerve, immune system, hypothalamus–pituitary–adrenal axis, and microbial metabolites serve as important mediators of the reciprocal microbiota-gut-brain signaling. Furthermore, gut microbiota contain intrinsic enzymatic activity that is highly involved in dopamine metabolism, facilitating dopamine synthesis as well as its metabolite breakdown. This review examines the relationship between key genera of gut microbiota such as Prevotella, Bacteroides, Lactobacillus, Bifidobacterium, Clostridium, Enterococcus, and Ruminococcus and their effects on dopamine. The effects of gut dysbiosis on dopamine bioavailability and the subsequent impact on dopamine-related pathological conditions such as Parkinson’s disease are also discussed. Understanding the role of gut microbiota in modulating dopamine activity and bioavailability both in the periphery and in the central nervous system can help identify new therapeutic targets as well as optimize available methods to prevent, delay, or restore dopaminergic deficits in neurologic and metabolic disorders.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.N.)
| | - Armin Aghazarian
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.N.)
| | - Anthony Nazaryan
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.N.)
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA;
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.N.)
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania
- Correspondence:
| |
Collapse
|
63
|
Keifer J. Regulation of AMPAR trafficking in synaptic plasticity by BDNF and the impact of neurodegenerative disease. J Neurosci Res 2022; 100:979-991. [PMID: 35128708 DOI: 10.1002/jnr.25022] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023]
Abstract
Research demonstrates that the neural mechanisms underlying synaptic plasticity and learning and memory involve mobilization of AMPA-type neurotransmitter receptors at glutamatergic synaptic contacts, and that these mechanisms are targeted during neurodegenerative disease. Strengthening neural transmission occurs with insertion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) into synapses while weakening results from receptor withdrawal. A key player in the trafficking of AMPARs during plasticity and learning is the brain-derived neurotrophic factor (BDNF) signaling system. BDNF is a neurotrophic factor that supports neuronal growth and is required for learning and memory. Significantly, a primary feature of many neurodegenerative diseases is a reduction in BDNF protein as well as disrupted neuronal surface expression of synaptic AMPARs. The resulting weakening of synaptic contacts leads to synapse loss and neuronal degeneration that underlies the cognitive impairment and dementia observed in patients with progressive neurodegenerative disease such as Alzheimer's. In the face of these data, one therapeutic approach is to increase BDNF bioavailability in brain. While this has been met with significant challenges, the results of the research have been promising. In spite of this, there are currently no clinical trials to test many of these findings on patients. Here, research showing that BDNF drives AMPARs to synapses, AMPAR trafficking is essential for synaptic plasticity and learning, and that neurodegenerative disease results in a significant decline in BDNF will be reviewed. The aim is to draw attention to the need for increasing patient-directed clinical studies to test the possible benefits of increasing levels of neurotrophins, specifically BDNF, to treat brain disorders. Much is known about the cellular mechanisms that underlie learning and memory in brain. It can be concluded that signaling by neurotrophins like BDNF and AMPA-type glutamate receptor synaptic trafficking are fundamental to these processes. Data from animal models and patients reveal that these mechanisms are adversely targeted during neurodegenerative disease and results in memory loss and cognitive decline. A brief summary of our understanding of these mechanisms indicates that it is time to apply this knowledge base directly to development of therapeutic treatments that enhance neurotrophins for brain disorders in patient populations.
Collapse
Affiliation(s)
- Joyce Keifer
- Neuroscience Group, Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| |
Collapse
|
64
|
Conti F, Lazzara F, Romano GL, Platania CBM, Drago F, Bucolo C. Caffeine Protects Against Retinal Inflammation. Front Pharmacol 2022; 12:824885. [PMID: 35069225 PMCID: PMC8773454 DOI: 10.3389/fphar.2021.824885] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 01/28/2023] Open
Abstract
Caffeine, one of the most consumed central nervous system (CNS) stimulants, is an antagonist of A1 and A2A adenosine receptors. In this study, we investigated the potential protective effects of this methylxanthine in the retinal tissue. We tested caffeine by using in vitro and in vivo paradigms of retinal inflammation. Human retinal pigment epithelial cells (ARPE-19) were exposed to lipopolysaccharide (LPS) with or without caffeine. This latter was able to reduce the inflammatory response in ARPE-19 cells exposed to LPS, attenuating the release of IL-1β, IL-6, and TNF-α and the nuclear translocation of p-NFκB. Additionally, caffeine treatment restored the integrity of the ARPE-19 monolayer assessed by transepithelial electrical resistance (TEER) and the sodium fluorescein permeability test. Finally, the ischemia reperfusion (I/R) injury model was used in C57BL/6J mice to induce retinal inflammation and investigate the effects of caffeine treatment. Mouse eyes were treated topically with caffeine, and a pattern electroretinogram (PERG) was used to assess the retinal ganglion cell (RGC) function; furthermore, we evaluated the levels of IL-6 and BDNF in the retina. Retinal BDNF dropped significantly (p < 0.05) in the I/R group compared to the control group (normal mice); on the contrary, caffeine treatment maintained physiological levels of BDNF in the retina of I/R eyes. Caffeine was also able to reduce IL-6 mRNA levels in the retina of I/R eyes. In conclusion, these findings suggest that caffeine is a good candidate to counteract inflammation in retinal diseases.
Collapse
Affiliation(s)
- Federica Conti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| |
Collapse
|
65
|
Fujitani M, Otani Y, Miyajima H. Do Neurotrophins Connect Neurological Disorders and Heart Diseases? Biomolecules 2021; 11:1730. [PMID: 34827728 PMCID: PMC8615910 DOI: 10.3390/biom11111730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022] Open
Abstract
Neurotrophins (NTs) are one of the most characterized neurotrophic factor family members and consist of four members in mammals. Growing evidence suggests that there is a complex inter- and bi-directional relationship between central nervous system (CNS) disorders and cardiac dysfunction, so-called "brain-heart axis". Recent studies suggest that CNS disorders, including neurodegenerative diseases, stroke, and depression, affect cardiovascular function via various mechanisms, such as hypothalamic-pituitary-adrenal axis augmentation. Although this brain-heart axis has been well studied in humans and mice, the involvement of NT signaling in the axis has not been fully investigated. In the first half of this review, we emphasize the importance of NTs not only in the nervous system, but also in the cardiovascular system from the embryonic stage to the adult state. In the second half, we discuss the involvement of NTs in the pathogenesis of cardiovascular diseases, and then examine whether an alteration in NTs could serve as the mediator between neurological disorders and heart dysfunction. The further investigation we propose herein could contribute to finding direct evidence for the involvement of NTs in the axis and new treatment for cardiovascular diseases.
Collapse
Affiliation(s)
- Masashi Fujitani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi 693-8501, Shimane, Japan; (Y.O.); (H.M.)
| | | | | |
Collapse
|
66
|
Di Rosa MC, Zimbone S, Saab MW, Tomasello MF. The Pleiotropic Potential of BDNF beyond Neurons: Implication for a Healthy Mind in a Healthy Body. Life (Basel) 2021; 11:life11111256. [PMID: 34833132 PMCID: PMC8625665 DOI: 10.3390/life11111256] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) represents one of the most widely studied neurotrophins because of the many mechanisms in which it is involved. Among these, a growing body of evidence indicates BDNF as a pleiotropic signaling molecule and unveils non-negligible implications in the regulation of energy balance. BDNF and its receptor are extensively expressed in the hypothalamus, regions where peripheral signals, associated with feeding control and metabolism activation, and are integrated to elaborate anorexigenic and orexigenic effects. Thus, BDNF coordinates adaptive responses to fluctuations in energy intake and expenditure, connecting the central nervous system with peripheral tissues, including muscle, liver, and the adipose tissue in a complex operational network. This review discusses the latest literature dealing with the involvement of BDNF in the maintenance of energy balance. We have focused on the physiological and molecular mechanisms by which BDNF: (I) controls the mitochondrial function and dynamics; (II) influences thermogenesis and tissue differentiation; (III) mediates the effects of exercise on cognitive functions; and (IV) modulates insulin sensitivity and glucose transport at the cellular level. Deepening the understanding of the mechanisms exploited to maintain energy homeostasis will lay the groundwork for the development of novel therapeutical approaches to help people to maintain a healthy mind in a healthy body.
Collapse
Affiliation(s)
- Maria Carmela Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (M.C.D.R.); (M.W.S.)
- Institute of Crystallography, CNR, Via P. Gaifami 18, 95126 Catania, Italy;
| | - Stefania Zimbone
- Institute of Crystallography, CNR, Via P. Gaifami 18, 95126 Catania, Italy;
| | - Miriam Wissam Saab
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (M.C.D.R.); (M.W.S.)
| | | |
Collapse
|
67
|
Glycosphingolipid metabolism and its role in ageing and Parkinson's disease. Glycoconj J 2021; 39:39-53. [PMID: 34757540 PMCID: PMC8979855 DOI: 10.1007/s10719-021-10023-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/14/2023]
Abstract
It is well established that lysosomal glucocerebrosidase gene (GBA) variants are a risk factor for Parkinson’s disease (PD), with increasing evidence suggesting a loss of function mechanism. One question raised by this genetic association is whether variants of genes involved in other aspects of sphingolipid metabolism are also associated with PD. Recent studies in sporadic PD have identified variants in multiple genes linked to diseases of glycosphingolipid (GSL) metabolism to be associated with PD. GSL biosynthesis is a complex pathway involving the coordinated action of multiple enzymes in the Golgi apparatus. GSL catabolism takes place in the lysosome and is dependent on the action of multiple acid hydrolases specific for certain substrates and glycan linkages. The finding that variants in multiple GSL catabolic genes are over-represented in PD in a heterozygous state highlights the importance of GSLs in the healthy brain and how lipid imbalances and lysosomal dysfunction are associated with normal ageing and neurodegenerative diseases. In this article we will explore the link between lysosomal storage disorders and PD, the GSL changes seen in both normal ageing, lysosomal storage disorders (LSDs) and PD and the mechanisms by which these changes can affect neurodegeneration.
Collapse
|
68
|
Gudden J, Arias Vasquez A, Bloemendaal M. The Effects of Intermittent Fasting on Brain and Cognitive Function. Nutrients 2021; 13:nu13093166. [PMID: 34579042 PMCID: PMC8470960 DOI: 10.3390/nu13093166] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
The importance of diet and the gut-brain axis for brain health and cognitive function is increasingly acknowledged. Dietary interventions are tested for their potential to prevent and/or treat brain disorders. Intermittent fasting (IF), the abstinence or strong limitation of calories for 12 to 48 h, alternated with periods of regular food intake, has shown promising results on neurobiological health in animal models. In this review article, we discuss the potential benefits of IF on cognitive function and the possible effects on the prevention and progress of brain-related disorders in animals and humans. We do so by summarizing the effects of IF which through metabolic, cellular, and circadian mechanisms lead to anatomical and functional changes in the brain. Our review shows that there is no clear evidence of a positive short-term effect of IF on cognition in healthy subjects. Clinical studies show benefits of IF for epilepsy, Alzheimer’s disease, and multiple sclerosis on disease symptoms and progress. Findings from animal studies show mechanisms by which Parkinson’s disease, ischemic stroke, autism spectrum disorder, and mood and anxiety disorders could benefit from IF. Future research should disentangle whether positive effects of IF hold true regardless of age or the presence of obesity. Moreover, variations in fasting patterns, total caloric intake, and intake of specific nutrients may be relevant components of IF success. Longitudinal studies and randomized clinical trials (RCTs) will provide a window into the long-term effects of IF on the development and progress of brain-related diseases.
Collapse
Affiliation(s)
- Jip Gudden
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (J.G.); (A.A.V.)
| | - Alejandro Arias Vasquez
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (J.G.); (A.A.V.)
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Mirjam Bloemendaal
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (J.G.); (A.A.V.)
- Correspondence:
| |
Collapse
|
69
|
Yi X, Yang Y, Zhao Z, Xu M, Zhang Y, Sheng Y, Tian J, Xu Z. Serum mBDNF and ProBDNF Expression Levels as Diagnosis Clue for Early Stage Parkinson's Disease. Front Neurol 2021; 12:680765. [PMID: 34456846 PMCID: PMC8385195 DOI: 10.3389/fneur.2021.680765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common chronic, progressive, and neurodegenerative diseases characterized clinically by resting tremor, bradykinesia, rigidity, and postural instability. As this disease is usually detected in the later stages, the cure is often delayed, ultimately leading to disability due to the lack of early diagnostic techniques. Therefore, it is of great importance to identify reliable biomarkers with high sensitivity and specificity for the early diagnosis of PD. In this study, we aimed to investigate whether serum expressions of mature brain-derived neurotrophic factor (mBDNF) and proBDNF can serve as biomarkers for the diagnosis of PD at early stage. One hundred and fifty-six patients with limb tremor and/or bradykinesia meeting the inclusion criteria were assigned to either ex-PD group (PD cases) or ex-NPD group (non-PD cases) and then reassigned to either po-PD group (with PD) or po-NPD group (without PD) at 1-year follow-up based on the results of the rediagnoses as performed in accordance with MDS Parkinson's diagnostic criteria. To improve early diagnostic accuracy, grouping (PD group and non-PD group) at initial visit and follow-up was performed differently and independently. Serum mBDNF and proBDNF levels were measured by enzyme-linked immunosorbent assays. The results demonstrated that serum levels of mBDNF and mBDNF/proBDNF were significantly lower in the ex-PD group (19.73 ± 7.31 and 0.09 ± 0.05 ng/ml) as compared with the ex-NPD group (23.47 ± 8.21 and 0.15 ± 0.12 ng/ml) (p < 0.01 for both) and in the po-PD group (19.24 ± 7.20 and 0.09 ± 0.05 ng/ml) as compared with the po-NPD group (25.05 ± 7.67 and 0.16 ± 0.14 ng/ml) (p < 0.01 for both). However, a significantly higher serum level of proBDNF was noted in the ex-PD group (235.49 ± 60.75 ng/ml) as compared with the ex-NPD group (191.75 ± 66.12 ng/ml) (p < 0.01) and in the po-PD group (235.56 ± 60.80 ng/ml) as compared with the po-NPD group (188.42 ± 65.08 ng/ml) (p < 0.01). In conclusion, mBDNF/proBDNF can be used as biomarkers for early stage Parkinson's disease; in addition, mBDNF plus proBDNF has better diagnostic value than mBDNF alone in the diagnosis of PD.
Collapse
Affiliation(s)
- Xu Yi
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yujia Yang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zhengfan Zhao
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Manyu Xu
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yuan Zhang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yingying Sheng
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Junying Tian
- Department of Foreign Language, Chongqing Medical University, Chongqing, China
| | - Zhiqiang Xu
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
70
|
Zhang Y, Zhou L, Lian H, Zhang Y, Tong S, Wang Z. Dopamine receptor 2 downregulation and brain-derived neurotrophic factor upregulation in the paraventricular nucleus are correlated with brown adipose tissue thermogenesis in rats with bilateral substantia nigra lesions. J Chem Neuroanat 2021; 117:102016. [PMID: 34454019 DOI: 10.1016/j.jchemneu.2021.102016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 01/19/2023]
Abstract
The thermogenesis resulting from brown adipose tissue (BAT)-induced energy consumption is an important method of energy regulation. It has been reported that brain-derived neurotrophic factor (BDNF)-positive neurons in the paraventricular nucleus (PVN) can regulate adaptive thermogenesis in interscapular brown adipose tissue (IBAT), but the upstream regulatory mechanism is still unclear. Our previous studies have found that a large number of dopamine (DA) receptors (DRs) are expressed on BDNF-positive neurons in the PVN and that the substantia nigra (SN) can directly project to the PVN (forming the SN-PVN pathway). Therefore, we speculate that DA in the SN can regulate the expression of BDNF via DRs and then affect IBAT thermogenesis. In this study, bilateral SN lesions were induced in rats with 6-hydroxydopamine (6-OHDA), and the altered expression of DRs and BDNF in the PVN and the metabolic changes in IBAT were studied via double immunofluorescence and western blotting. The results showed that BDNF-positive neurons in the PVN expressed DR 1 (D1) and DR 2 (D2) and were surrounded by a large number of tyrosine hydroxylase (TH)-positive nerve fibers. Compared with the control group, the 6-OHDA group exhibited significantly fewer TH-positive neurons and significantly lower TH expression in the SN, but body weight, IBAT weight and food consumption did not differ between the groups. In the PVN, BDNF expression was upregulated in the 6-OHDA group, while D2 and TH expression was downregulated. In IBAT, the expression of uncoupling protein-1 (UCP-1), phosphorylated hormone-sensitive lipase (p-HSL), TH and β3-adrenergic receptor (β3-AR) was increased, while the expression of fatty acid synthase (FAS) was decreased. The IBAT cell diameter was also decreased in the 6-OHDA group. The results suggest that the SN-PVN pathway may be an upstream neural pathway that can affect BDNF expression in the PVN and that DRs may mediate its regulatory effects. This study expands our understanding of the relationship between DA and obesity.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Human Anatomy and Histoembrology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China
| | - Li Zhou
- Department of Human Anatomy and Histoembrology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China
| | - Hui Lian
- Department of Human Anatomy and Histoembrology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China
| | - Yimin Zhang
- Department of Human Anatomy and Histoembrology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China
| | - Shilin Tong
- Department of Human Anatomy and Histoembrology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhiyong Wang
- Department of Human Anatomy and Histoembrology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Noninvasive Neuromodulation, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
71
|
Van Laar AD, Van Laar VS, San Sebastian W, Merola A, Bradley Elder J, Lonser RR, Bankiewicz KS. An Update on Gene Therapy Approaches for Parkinson's Disease: Restoration of Dopaminergic Function. JOURNAL OF PARKINSONS DISEASE 2021; 11:S173-S182. [PMID: 34366374 PMCID: PMC8543243 DOI: 10.3233/jpd-212724] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
At present there is a significant unmet need for clinically available treatments for Parkinson’s disease (PD) patients to stably restore balance to dopamine network function, leaving patients with inadequate management of symptoms as the disease progresses. Gene therapy is an attractive approach to impart a durable effect on neuronal function through introduction of genetic material to reestablish dopamine levels and/or functionally recover dopaminergic signaling by improving neuronal health. Ongoing clinical gene therapy trials in PD are focused on enzymatic enhancement of dopamine production and/or the restoration of the nigrostriatal pathway to improve dopaminergic network function. In this review, we discuss data from current gene therapy trials for PD and recent advances in study design and surgical approaches.
Collapse
Affiliation(s)
- Amber D Van Laar
- Asklepios BioPharmaceutical, Inc., Columbus, OH, USA.,Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Victor S Van Laar
- Department of Neurological Surgery, Ohio State University College of Medicine, Columbus, OH, USA
| | - Waldy San Sebastian
- Asklepios BioPharmaceutical, Inc., Columbus, OH, USA.,Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Aristide Merola
- Department of Neurology, College of Medicine, the Ohio State University, Columbus, OH, USA
| | - J Bradley Elder
- Department of Neurological Surgery, Ohio State University College of Medicine, Columbus, OH, USA
| | - Russell R Lonser
- Department of Neurological Surgery, Ohio State University College of Medicine, Columbus, OH, USA
| | - Krystof S Bankiewicz
- Department of Neurological Surgery, Ohio State University College of Medicine, Columbus, OH, USA.,Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
72
|
Chang E, Wang J. Brain-derived neurotrophic factor attenuates cognitive impairment and motor deficits in a mouse model of Parkinson's disease. Brain Behav 2021; 11:e2251. [PMID: 34132500 PMCID: PMC8413743 DOI: 10.1002/brb3.2251] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/28/2021] [Accepted: 06/01/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is one of the most common neurodegenerative disorders that seriously impair the life quality and survival of patients. Herein, we aim to investigate the neuroprotective roles of brain-derived neurotrophic factor (BDNF) in PD mice and reveal the underlying mechanisms. BDNF overexpression was achieved via the injection of adeno-associated viruses (AAV) with BDNF gene. METHODS PD mouse model was established by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. Tests of rotarod, pole, open field, and novel object recognition were conducted to evaluate the motor and cognitive functions of treated mice. RESULTS Mitochondrial impairment, mitochondrial respiratory chain enzymes, and tyrosine hydroxylase (TH)-positive dopaminergic neurons were detected to uncover the molecular mechanism. BDNF overexpression attenuated motor deficits and cognitive impairment in MPTP-induced PD mice. Mechanistically, BDNF mitigated mitochondrial impairment increased the activity of respiratory chain Complex I and Ⅱ+III, and finally alleviated TH-positive dopaminergic neuron loss in MPTP-induced PD mice. CONCLUSION This study highlights the potential of BDNF as a therapeutic candidate for the treatment of mitochondrial impairment-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- E Chang
- Department of Rehabilitation MedicineCangzhou Central HospitalCangzhouHebeiChina
| | - Jiongmei Wang
- Department of Rehabilitation MedicineCangzhou Central HospitalCangzhouHebeiChina
| |
Collapse
|
73
|
Asuni GP, Speidell A, Mocchetti I. Neuronal apoptosis induced by morphine withdrawal is mediated by the p75 neurotrophin receptor. J Neurochem 2021; 158:169-181. [PMID: 33742683 PMCID: PMC10176599 DOI: 10.1111/jnc.15355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/22/2021] [Accepted: 03/15/2021] [Indexed: 01/01/2023]
Abstract
Morphine withdrawal evokes neuronal apoptosis through mechanisms that are still under investigation. We have previously shown that morphine withdrawal increases the levels of pro-brain-derived neurotrophic factor (BDNF), a proneurotrophin that promotes neuronal apoptosis through the binding and activation of the pan-neurotrophin receptor p75 (p75NTR). In this work, we sought to examine whether morphine withdrawal increases p75NTR-driven signaling events. We employed a repeated morphine treatment-withdrawal paradigm in order to investigate biochemical and histological indicators of p75NTR-mediated neuronal apoptosis in mice. We found that repeated cycles of spontaneous morphine withdrawal promote an accumulation of p75NTR in hippocampal synapses. At the same time, TrkB, the receptor that is crucial for BDNF-mediated synaptic plasticity in the hippocampus, was decreased, suggesting that withdrawal alters the neurotrophin receptor environment to favor synaptic remodeling and apoptosis. Indeed, we observed evidence of neuronal apoptosis in the hippocampus, including activation of c-Jun N-terminal kinase (JNK) and increased active caspase-3. These effects were not seen in saline or morphine-treated mice which had not undergone withdrawal. To determine whether p75NTR was necessary in promoting these outcomes, we repeated these experiments in p75NTR heterozygous mice. The lack of one p75NTR allele was sufficient to prevent the increases in phosphorylated JNK and active caspase-3. Our results suggest that p75NTR participates in the neurotoxic and proinflammatory state evoked by morphine withdrawal. Because p75NTR activation negatively influences synaptic repair and promotes cell death, preventing opioid withdrawal is crucial for reducing neurotoxic mechanisms accompanying opioid use disorders.
Collapse
Affiliation(s)
- Gino P. Asuni
- Laboratory of Preclinical Neurobiology, Georgetown University Medical Center, Washington DC, USA
| | - Andrew Speidell
- Laboratory of Preclinical Neurobiology, Georgetown University Medical Center, Washington DC, USA
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington DC, USA
| | - Italo Mocchetti
- Laboratory of Preclinical Neurobiology, Georgetown University Medical Center, Washington DC, USA
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington DC, USA
| |
Collapse
|
74
|
Erro R, Mencacci NE, Bhatia KP. The Emerging Role of Phosphodiesterases in Movement Disorders. Mov Disord 2021; 36:2225-2243. [PMID: 34155691 PMCID: PMC8596847 DOI: 10.1002/mds.28686] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclic nucleotide phosphodiesterase (PDE) enzymes catalyze the hydrolysis and inactivation of the cyclic nucleotides cyclic adenosine monophosphate and cyclic guanosine monophosphate, which act as intracellular second messengers for many signal transduction pathways in the central nervous system. Several classes of PDE enzymes with specific tissue distributions and cyclic nucleotide selectivity are highly expressed in brain regions involved in cognitive and motor functions, which are known to be implicated in neurodegenerative diseases, such as Parkinson's disease and Huntington's disease. The indication that PDEs are intimately involved in the pathophysiology of different movement disorders further stems from recent discoveries that mutations in genes encoding different PDEs, including PDE2A, PDE8B, and PDE10A, are responsible for rare forms of monogenic parkinsonism and chorea. We here aim to provide a translational overview of the preclinical and clinical data on PDEs, the role of which is emerging in the field of movement disorders, offering a novel venue for a better understanding of their pathophysiology. Modulating cyclic nucleotide signaling, by either acting on their synthesis or on their degradation, represents a promising area for development of novel therapeutic approaches. The study of PDE mutations linked to monogenic movement disorders offers the opportunity of better understanding the role of PDEs in disease pathogenesis, a necessary step to successfully benefit the treatment of both hyperkinetic and hypokinetic movement disorders. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Niccoló E Mencacci
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|
75
|
Leo M, Schmitt LI, Steffen R, Kutritz A, Kleinschnitz C, Hagenacker T. Modulation of Glutamate Transporter EAAT1 and Inward-Rectifier Potassium Channel K ir4.1 Expression in Cultured Spinal Cord Astrocytes by Platinum-Based Chemotherapeutics. Int J Mol Sci 2021; 22:6300. [PMID: 34208258 PMCID: PMC8230757 DOI: 10.3390/ijms22126300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022] Open
Abstract
Platinum-based chemotherapeutics still play an essential role in cancer treatment. Despite their high effectiveness, severe side effects such as chemotherapy-induced neuropathy (CIPN) occur frequently. The pathophysiology of CIPN by platinum-based chemotherapeutics is not fully understood yet, but primarily the disturbance of dorsal root ganglion cells is discussed. However, there is increasing evidence of central nervous system involvement with activation of spinal cord astrocytes after treatment with chemotherapeutics. We investigated the influence of cis- or oxaliplatin on the functionality of cultured rat spinal cord astrocytes by using immunocytochemistry and patch-clamp electrophysiology. Cis- or oxaliplatin activated spinal astrocytes and led to downregulation of the excitatory amino acid transporter 1 (EAAT1) expression. Furthermore, the expression and function of potassium channel Kir4.1 were modulated. Pre-exposure to a specific Kir4.1 blocker in control astrocytes led to a reduced immune reactivity (IR) of EAAT1 and a nearly complete block of the current density. When spinal astrocytes were pre-exposed to antibiotic minocycline, all effects of cis- or oxaliplatin were abolished. Taken together, the modulation of Kir4.1 and EAAT1 proteins in astrocytes could be linked to the direct impact of cis- or oxaliplatin, identifying spinal astrocytes as a potential target in the prevention and treatment of chemotherapy-induced neuropathy.
Collapse
Affiliation(s)
- Markus Leo
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, 45147 Essen, Germany; (L.-I.S.); (R.S.); (A.K.); (C.K.); (T.H.)
| | | | | | | | | | | |
Collapse
|
76
|
Soman SK, Tingle D, Dagda RY, Torres M, Dagda M, Dagda RK. Cleaved PINK1 induces neuronal plasticity through PKA-mediated BDNF functional regulation. J Neurosci Res 2021; 99:2134-2155. [PMID: 34046942 DOI: 10.1002/jnr.24854] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/17/2022]
Abstract
Mutations in PTEN-induced kinase 1 (PINK1) lead to early onset autosomal recessive Parkinson's disease in humans. In healthy neurons, full-length PINK1 (fPINK1) is post-translationally cleaved into different lower molecular weight forms, and cleaved PINK1 (cPINK1) gets shuttled to the cytosolic compartments to support extra-mitochondrial functions. While numerous studies have exemplified the role of mitochondrially localized PINK1 in modulating mitophagy in oxidatively stressed neurons, little is known regarding the physiological role of cPINK1 in healthy neurons. We have previously shown that cPINK1, but not fPINK1, modulates the neurite outgrowth and the maintenance of dendritic arbors by activating downstream protein kinase A (PKA) signaling in healthy neurons. However, the molecular mechanisms by which cPINK1 promotes neurite outgrowth remain to be elucidated. In this report, we show that cPINK1 supports neuronal development by modulating the expression and extracellular release of brain-derived neurotrophic factor (BDNF). Consistent with this role, we observed a progressive increase in the level of endogenous cPINK1 but not fPINK1 during prenatal and postnatal development of mouse brains and during development in primary cortical neurons. In cultured primary neurons, the pharmacological activation of endogenous PINK1 leads to enhanced downstream PKA activity, subsequent activation of the PKA-modulated transcription factor cAMP response element-binding protein (CREB), increased intracellular production and extracellular release of BDNF, and enhanced activation of the BDNF receptor-TRKβ. Mechanistically, cPINK1-mediated increased dendrite complexity requires the binding of extracellular BDNF to TRKβ. In summary, our data support a physiological role of cPINK1 in stimulating neuronal development by activating the PKA-CREB-BDNF signaling axis in a feedforward loop.
Collapse
Affiliation(s)
- Smijin K Soman
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - David Tingle
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Raul Y Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Mariana Torres
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Marisela Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Ruben K Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
77
|
Suggesting 7,8-dihydroxyflavone as a promising nutraceutical against CNS disorders. Neurochem Int 2021; 148:105068. [PMID: 34022252 DOI: 10.1016/j.neuint.2021.105068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 11/20/2022]
Abstract
7,8-dihydroxyflavone (DHF), a naturally-occurring plant-based flavone, is a high-affinity tyrosine kinase receptor B (TrkB) agonist and a bioactive molecule of therapeutic interest for neuronal survival, differentiation, synaptic plasticity and neurogenesis. In the family of neurotrophic factors, this small BDNF-mimetic molecule has attracted considerable attention due to its oral bioavailability and ability to cross the blood-brain barrier. Recent evidences have shed light on the neuroprotective role of this pleiotropic flavone against several neurological disorders, including Alzheimer's disease, Parkinson's disease, cerebral ischemia, Huntington's disease, and other CNS disorders. DHF also elicits potent protective actions against toxins-induced insults to brain and neuronal cells. DHF shows promising anti-oxidant and anti-inflammatory properties in ameliorating the neurodegenerative processes affecting the CNS. This review provides an overview of the significant neuroprotective potentials of DHF and discusses how it exerts its multitudinous beneficial effects by modulating different pathways linked with the pathophysiology of CNS disorders, and thus proposes it to be a nutraceutical against a broad spectrum of neurological disorders.
Collapse
|
78
|
Miller KM, Mercado NM, Sortwell CE. Synucleinopathy-associated pathogenesis in Parkinson's disease and the potential for brain-derived neurotrophic factor. NPJ PARKINSONS DISEASE 2021; 7:35. [PMID: 33846345 PMCID: PMC8041900 DOI: 10.1038/s41531-021-00179-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
The lack of disease-modifying treatments for Parkinson’s disease (PD) is in part due to an incomplete understanding of the disease’s etiology. Alpha-synuclein (α-syn) has become a point of focus in PD due to its connection to both familial and idiopathic cases—specifically its localization to Lewy bodies (LBs), a pathological hallmark of PD. Within this review, we will present a comprehensive overview of the data linking synuclein-associated Lewy pathology with intracellular dysfunction. We first present the alterations in neuronal proteins and transcriptome associated with LBs in postmortem human PD tissue. We next compare these findings to those associated with LB-like inclusions initiated by in vitro exposure to α-syn preformed fibrils (PFFs) and highlight the profound and relatively unique reduction of brain-derived neurotrophic factor (BDNF) in this model. Finally, we discuss the multitude of ways in which BDNF offers the potential to exert disease-modifying effects on the basal ganglia. What remains unknown is the potential for BDNF to mitigate inclusion-associated dysfunction within the context of synucleinopathy. Collectively, this review reiterates the merit of using the PFF model as a tool to understand the physiological changes associated with LBs, while highlighting the neuroprotective potential of harnessing endogenous BDNF.
Collapse
Affiliation(s)
- Kathryn M Miller
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA.,Neuroscience Graduate Program, College of Natural Science, Michigan State University, East Lansing, MI, USA
| | - Natosha M Mercado
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA.,Neuroscience Graduate Program, College of Natural Science, Michigan State University, East Lansing, MI, USA
| | - Caryl E Sortwell
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA. .,Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, USA.
| |
Collapse
|
79
|
Nam Y, Moon GJ, Kim SR. Therapeutic Potential of AAV1-Rheb(S16H) Transduction against Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22063064. [PMID: 33802760 PMCID: PMC8002454 DOI: 10.3390/ijms22063064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 01/19/2023] Open
Abstract
Neurotrophic factors (NTFs) are essential for cell growth, survival, synaptic plasticity, and maintenance of specific neuronal population in the central nervous system. Multiple studies have demonstrated that alterations in the levels and activities of NTFs are related to the pathology and symptoms of neurodegenerative disorders, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and Huntington’s disease. Hence, the key molecule that can regulate the expression of NTFs is an important target for gene therapy coupling adeno-associated virus vector (AAV) gene. We have previously reported that the Ras homolog protein enriched in brain (Rheb)–mammalian target of rapamycin complex 1 (mTORC1) axis plays a vital role in preventing neuronal death in the brain of AD and PD patients. AAV transduction using a constitutively active form of Rheb exerts a neuroprotective effect through the upregulation of NTFs, thereby promoting the neurotrophic interaction between astrocytes and neurons in AD conditions. These findings suggest the role of Rheb as an important regulator of the regulatory system of NTFs to treat neurodegenerative diseases. In this review, we present an overview of the role of Rheb in neurodegenerative diseases and summarize the therapeutic potential of AAV serotype 1 (AAV1)-Rheb(S16H) transduction in the treatment of neurodegenerative disorders, focusing on diseases, such as AD and PD.
Collapse
Affiliation(s)
- Youngpyo Nam
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Korea;
| | - Gyeong Joon Moon
- Center for Cell Therapy, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Korea;
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sang Ryong Kim
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Korea;
- School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-7362; Fax: +82-53-943-2762
| |
Collapse
|
80
|
Gottschalk CG, Jana M, Roy A, Patel DR, Pahan K. Gemfibrozil Protects Dopaminergic Neurons in a Mouse Model of Parkinson's Disease via PPARα-Dependent Astrocytic GDNF Pathway. J Neurosci 2021; 41:2287-2300. [PMID: 33514677 PMCID: PMC8018777 DOI: 10.1523/jneurosci.3018-19.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 11/21/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder in humans. Despite intense investigations, effective therapies are not yet available to halt the progression of PD. Gemfibrozil, a Food and Drug Administration-approved lipid-lowering drug, is known to decrease the risk of coronary heart disease by increasing the level of high-density lipoprotein cholesterol and decreasing the level of low-density lipoprotein cholesterol. This study underlines the importance of gemfibrozil in protecting dopaminergic neurons in an animal model of PD. Oral administration of the human equivalent dose of gemfibrozil protected tyrosine hydroxylase (TH)-positive dopaminergic neurons in the substantia nigra pars compacta and TH fibers in the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-insulted mice of both sexes. Accordingly, gemfibrozil also normalized striatal neurotransmitters and improved locomotor activities in MPTP-intoxicated mice. Gemfibrozil-mediated protection of the nigrostriatal and locomotor activities in WT but not PPARα-/- mice from MPTP intoxication suggests that gemfibrozil needs the involvement of peroxisome proliferator-activated receptor α (PPARα) in protecting dopaminergic neurons. While investigating further mechanisms, we found that gemfibrozil stimulated the transcription of glial-derived neurotrophic factor (GDNF) gene in astrocytes via PPARα and that gemfibrozil protected nigral neurons, normalized striatal fibers and neurotransmitters, and improved locomotor activities in MPTP-intoxicated Gfafcre mice, but not GdnfΔastro mice lacking GDNF in astrocytes. These findings highlight the importance of the PPARα-dependent astroglial GDNF pathway in gemfibrozil-mediated protection of dopaminergic neurons in an animal model of PD and suggest the possible therapeutic use of gemfibrozil in PD patients.SIGNIFICANCE STATEMENT Increasing the level of glial cell-derived neurotrophic factor (GDNF) in the brain is important for the protection of dopamine neurons in Parkinson's disease (PD). Although gene manipulation and GDNF protein infusion into the brain are available options, it seems from the therapeutic angle that the best option would be to stimulate/induce the production of GDNF in vivo in the brain of PD patients. Here, we delineate that gemfibrozil, a lipid-lowering drug, stimulates GDNF in astrocytes via peroxisome proliferator-activated receptor α (PPARα). Moreover, gemfibrozil protected nigral neurons, normalized striatal fibers and neurotransmitters, and improved locomotor activities from MPTP toxicity via the PPARα-dependent astroglial GDNF pathway. These studies highlight a new property of gemfibrozil and suggest its possible therapeutic use in PD patients.
Collapse
Affiliation(s)
- Carl G Gottschalk
- Department of Neurological Sciences, Rush University Medical Center, Chicago 60612
| | - Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago 60612
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago 60612
| | - Avik Roy
- Department of Neurological Sciences, Rush University Medical Center, Chicago 60612
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago 60612
| | - Dhruv R Patel
- Department of Neurological Sciences, Rush University Medical Center, Chicago 60612
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago 60612
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago 60612
| |
Collapse
|
81
|
Neuroprotective Effects of Heat-Killed Lactobacillus plantarum 200655 Isolated from Kimchi Against Oxidative Stress. Probiotics Antimicrob Proteins 2021; 13:788-795. [PMID: 33454870 DOI: 10.1007/s12602-020-09740-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 10/22/2022]
Abstract
Oxidative stress plays an important role in exacerbating neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. In a previous study, Lactobacillus plantarum 200655 was shown to possess probiotic and antioxidant potential. The current study aimed to evaluate the neuroprotective effects of heat-killed L. plantarum 200655. We incubated intestinal cells (HT-29) with heat-killed L. plantarum 200655 in a conditioned medium (CM) and found that the brain-derived neurotrophic factor (BDNF) mRNA level was elevated in the HT-29 cells and the CM contained high concentrations of BDNF. The CM protected neuroblastoma cells (SH-SY5Y) from hydrogen peroxide (H2O2)-induced toxicity. Moreover, the CM increased BDNF and tyrosine hydroxylase (TH) mRNA expression and significantly reduced the apoptosis-related Bax/Bcl-2 ratio in H2O2-treated SH-SY5Y cells. At the protein level, the CM resulted in downregulation of caspase-3. These results indicate that L. plantarum 200655 might be used as a prophylactic functional ingredient to prevent neurodegenerative disease.
Collapse
|
82
|
ERRγ ligand HPB2 upregulates BDNF-TrkB and enhances dopaminergic neuronal phenotype. Pharmacol Res 2021; 165:105423. [PMID: 33434621 DOI: 10.1016/j.phrs.2021.105423] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/24/2020] [Accepted: 12/31/2020] [Indexed: 12/27/2022]
Abstract
Brain derived neurotrophic factor (BDNF) promotes maturation of dopaminergic (DAergic) neurons in the midbrain and positively regulates their maintenance and outgrowth. Therefore, understanding the mechanisms regulating the BDNF signaling pathway in DAergic neurons may help discover potential therapeutic strategies for neuropsychological disorders associated with dysregulation of DAergic neurotransmission. Because estrogen-related receptor gamma (ERRγ) is highly expressed in both the fetal nervous system and adult brains during DAergic neuronal differentiation, and it is involved in regulating the DAergic neuronal phenotype, we asked in this study whether ERRγ ligand regulates BDNF signaling and subsequent DAergic neuronal phenotype. Based on the X-ray crystal structures of the ligand binding domain of ERRγ, we designed and synthesized the ERRγ agonist, (E)-4-hydroxy-N'-(4-(phenylethynyl)benzylidene)benzohydrazide (HPB2) (Kd value, 8.35 μmol/L). HPB2 increased BDNF mRNA and protein levels, and enhanced the expression of the BDNF receptor tropomyosin receptor kinase B (TrkB) in human neuroblastoma SH-SY5Y, differentiated Lund human mesencephalic (LUHMES) cells, and primary ventral mesencephalic (VM) neurons. HPB2-induced upregulation of BDNF was attenuated by GSK5182, an antagonist of ERRγ, and siRNA-mediated ERRγ silencing. HPB2-induced activation of extracellular-signal-regulated kinase (ERK) and phosphorylation of cAMP-response element binding protein (CREB) was responsible for BDNF upregulation in SH-SY5Y cells. HPB2 enhanced the DAergic neuronal phenotype, namely upregulation of tyrosine hydroxylase (TH) and DA transporter (DAT) with neurite outgrowth, both in SH-SY5Y and primary VM neurons, which was interfered by the inhibition of BDNF-TrkB signaling, ERRγ knockdown, or blockade of ERK activation. HPB2 also upregulated BDNF and TH in the striatum and induced neurite elongation in the substantia nigra of mice brain. In conclusion, ERRγ activation regulated BDNF expression and the subsequent DAergic neuronal phenotype in neuronal cells. Our results might provide new insights into the mechanism underlying the regulation of BDNF expression, leading to novel therapeutic strategies for neuropsychological disorders associated with DAergic dysregulation.
Collapse
|
83
|
Currenti W, Godos J, Castellano S, Mogavero MP, Ferri R, Caraci F, Grosso G, Galvano F. Time restricted feeding and mental health: a review of possible mechanisms on affective and cognitive disorders. Int J Food Sci Nutr 2020; 72:723-733. [PMID: 33356688 DOI: 10.1080/09637486.2020.1866504] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the last decades, a high increase in life expectancy not adequately balanced by an improvement in the quality of life has been observed, leading possibly to an increase in the prevalence of affective and cognitive disorders related to aging, such as depression, cognitive impairment, dementia and Alzheimer's disease. As mental illnesses have multifactorial aetiologies, many modifiable factors including lifestyle and nutrition play an essential role. Among nutritional factors, intermittent fasting has emerged as an innovative strategy to prevent and treat mental health disorders, sleep disturbances and cognitive impairment. Among all types of intermittent fasting regimens, the time restricted feeding appears to be the most promising protocol as it allows to induce benefits of a total fasting without reducing global calories and nutrients intake. This review summarises the evidence on the effect of time restricted feeding towards brain health, emphasising its role on brain signalling, neurogenesis and synaptic plasticity.
Collapse
Affiliation(s)
- Walter Currenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Itaely
| | | | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Maria P Mogavero
- Istituti Clinici Scientifici Maugeri, IRCCS, Scientific Institute of Pavia, Pavia, Italy
| | | | - Filippo Caraci
- Oasi Research Institute - IRCCS, Troina, Italy.,Department of Drug Sciences, University of Catania, Catania, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Itaely
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Itaely
| |
Collapse
|
84
|
Patricio F, Morales-Andrade AA, Patricio-Martínez A, Limón ID. Cannabidiol as a Therapeutic Target: Evidence of its Neuroprotective and Neuromodulatory Function in Parkinson's Disease. Front Pharmacol 2020; 11:595635. [PMID: 33384602 PMCID: PMC7770114 DOI: 10.3389/fphar.2020.595635] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
The phytocannabinoids of Cannabis sativa L. have, since ancient times, been proposed as a pharmacological alternative for treating various central nervous system (CNS) disorders. Interestingly, cannabinoid receptors (CBRs) are highly expressed in the basal ganglia (BG) circuit of both animals and humans. The BG are subcortical structures that regulate the initiation, execution, and orientation of movement. CBRs regulate dopaminergic transmission in the nigro-striatal pathway and, thus, the BG circuit also. The functioning of the BG is affected in pathologies related to movement disorders, especially those occurring in Parkinson’s disease (PD), which produces motor and non-motor symptoms that involving GABAergic, glutamatergic, and dopaminergic neural networks. To date, the most effective medication for PD is levodopa (l-DOPA); however, long-term levodopa treatment causes a type of long-term dyskinesias, l-DOPA-induced dyskinesias (LIDs). With neuromodulation offering a novel treatment strategy for PD patients, research has focused on the endocannabinoid system (ECS), as it participates in the physiological neuromodulation of the BG in order to control movement. CBRs have been shown to inhibit neurotransmitter release, while endocannabinoids (eCBs) play a key role in the synaptic regulation of the BG. In the past decade, cannabidiol (CBD), a non-psychotropic phytocannabinoid, has been shown to have compensatory effects both on the ECS and as a neuromodulator and neuroprotector in models such as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and reserpine, as well as other PD models. Although the CBD-induced neuroprotection observed in animal models of PD has been attributed to the activation of the CB1 receptor, recent research conducted at a molecular level has proposed that CBD is capable of activating other receptors, such as CB2 and the TRPV-1 receptor, both of which are expressed in the dopaminergic neurons of the nigro-striatal pathway. These findings open new lines of scientific inquiry into the effects of CBD at the level of neural communication. Cannabidiol activates the PPARγ, GPR55, GPR3, GPR6, GPR12, and GPR18 receptors, causing a variety of biochemical, molecular, and behavioral effects due to the broad range of receptors it activates in the CNS. Given the low number of pharmacological treatment alternatives for PD currently available, the search for molecules with the therapeutic potential to improve neuronal communication is crucial. Therefore, the investigation of CBD and the mechanisms involved in its function is required in order to ascertain whether receptor activation could be a treatment alternative for both PD and LID.
Collapse
Affiliation(s)
- Felipe Patricio
- Laboratorio De Neurofarmacología, Facultad De Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Alan Axel Morales-Andrade
- Laboratorio De Neurofarmacología, Facultad De Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Aleidy Patricio-Martínez
- Laboratorio De Neurofarmacología, Facultad De Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.,Facultad De Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ilhuicamina Daniel Limón
- Laboratorio De Neurofarmacología, Facultad De Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
85
|
Trombetta IC, DeMoura JR, Alves CR, Carbonari-Brito R, Cepeda FX, Lemos JR. Serum Levels of BDNF in Cardiovascular Protection and in Response to Exercise. Arq Bras Cardiol 2020; 115:263-269. [PMID: 32876194 PMCID: PMC8384297 DOI: 10.36660/abc.20190368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
As doenças cardiovasculares (DCV) são atualmente a maior causa de morte no Brasil e no mundo. Em 2016 as DCV foram responsáveis por mais de 17 milhões de mortes, representando 31% de todas as mortes em nível global. Mecanismos moleculares e genéticos podem estar envolvidos na proteção cardiovascular e devem ser considerados nas novas abordagens terapêuticas. Nesse sentido, recentes estudos têm relatado que o Fator Neurotrófico Derivado do Encéfalo (Brain-Derived Neurotrophic Factor, BDNF) está reduzido em indivíduos predispostos a desenvolverem DCV, e que o treinamento físico aeróbio aumenta as quantidades de BDNF circulante. O BDNF é uma neurotrofina encontrada em altas concentrações no hipocampo e córtex cerebral, sendo considerada molécula-chave na manutenção da plasticidade sináptica e na sobrevivência das células neuronais. Além da plasticidade neuronal, BDNF também é importante na função vascular, promovendo angiogênese por meio da regulação por espécies reativas de oxigênio (ROS). Entretanto, uma variante do gene do BDNF em humanos, o polimorfismo Val66Met (substituição do aminoácido valina por uma metionina na posição 66 do códon), que ocorre em 20-30% da população caucasiana, pode afetar as concentrações de BDNF no plasma e sua atividade em todos os tecidos periféricos contendo receptores tirosina quinase B (TrkB), como o endotélio. De fato, recentemente observamos que o polimorfismo Val66Met prejudica a reatividade vascular e o BDNF circulante em resposta ao treinamento físico. Dessa forma, apresentaremos a seguir uma discussão sobre os níveis séricos de BDNF na proteção cardiovascular, a variante genética Val66Met na reatividade vascular e o efeito do exercício físico.
Collapse
Affiliation(s)
| | - José Roberto DeMoura
- Universidade Nove de Julho (UNINOVE), São Paulo, SP - Brasil.,Escola de Educação Física da Polícia Militar do Estado de São Paulo, São Paulo, SP - Brasil
| | | | | | | | - José Ribeiro Lemos
- Escola de Educação Física da Polícia Militar do Estado de São Paulo, São Paulo, SP - Brasil
| |
Collapse
|
86
|
Policastro G, Brunelli M, Tinazzi M, Chiamulera C, Emerich DF, Paolone G. Cytokine-, Neurotrophin-, and Motor Rehabilitation-Induced Plasticity in Parkinson's Disease. Neural Plast 2020; 2020:8814028. [PMID: 33293946 PMCID: PMC7714573 DOI: 10.1155/2020/8814028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation and cytokine-dependent neurotoxicity appear to be major contributors to the neuropathology in Parkinson's disease (PD). While pharmacological advancements have been a mainstay in the treatment of PD for decades, it is becoming increasingly clear that nonpharmacological approaches including traditional and nontraditional forms of exercise and physical rehabilitation can be critical adjunctive or even primary treatment avenues. Here, we provide an overview of preclinical and clinical research detailing the biological role of proinflammatory molecules in PD and how motor rehabilitation can be used to therapeutically modulate neuroinflammation, restore neural plasticity, and improve motor function in PD.
Collapse
Affiliation(s)
| | - Matteo Brunelli
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Michele Tinazzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | | | | | - Giovanna Paolone
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
87
|
Rana T, Behl T, Sehgal A, Srivastava P, Bungau S. Unfolding the Role of BDNF as a Biomarker for Treatment of Depression. J Mol Neurosci 2020; 71:2008-2021. [PMID: 33230708 DOI: 10.1007/s12031-020-01754-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/08/2020] [Indexed: 12/13/2022]
Abstract
Depression is a well-known disabling mental illness characterized by sadness, loss of interest in activities, and decreased energy. The symptoms of depression are usually recurrent in vulnerable individuals, and persistence of symptoms significantly impairs individuals' quality of life. The exact pathophysiology of depression remains ambiguous, though many hypotheses have been proposed. Brain-derived neurotrophic factor (BDNF) has recently been reported to play a vital role in the pathophysiology of depression. BDNF is an important neurotrophic factor found in the human brain and is involved in neuronal growth and proliferation, synaptic neurotransmission, and neuroplasticity. The neurotrophic theory of depression proposes that depression results from reduced BDNF levels in the brain, which can be treated with antidepressants to alleviate depressive behavior and increase BDNF levels. The aim of this review is to provide broad insight into the role of BDNF in the pathogenesis of depression and in antidepressant therapy. The studies mentioned in this review article greatly support the role of BDNF in the pathogenesis of depression and treatment of this disorder with antidepressants. Since abnormalities in BDNF levels lead to the production of diverse insults that amplify the development or progression of depression, it is important to study and explore BDNF impairment in relation to depression, neuroplasticity, and neurogenesis, and increasing BDNF levels through antidepressant therapy, showing positive response in the management of depression.
Collapse
Affiliation(s)
- Tarapati Rana
- Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | | | - Simona Bungau
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
88
|
Małczyńska-Sims P, Chalimoniuk M, Sułek A. The Effect of Endurance Training on Brain-Derived Neurotrophic Factor and Inflammatory Markers in Healthy People and Parkinson's Disease. A Narrative Review. Front Physiol 2020; 11:578981. [PMID: 33329027 PMCID: PMC7711132 DOI: 10.3389/fphys.2020.578981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Background: One purpose of the training conducted by people is to lose bodyweight and improve their physical condition. It is well-known that endurance training provides many positive changes in the body, not only those associated with current beauty standards. It also promotes biochemical changes such as a decreased inflammatory status, memory improvements through increased brain-derived neurotrophic factor levels, and reduced stress hormone levels. The positive effects of training may provide a novel solution for people with Parkinson's disease, as a way to reduce the inflammatory status and decrease neurodegeneration through stimulation of neuroplasticity and improved motor conditions. Aim: This narrative review aims to focus on the relationship between an acute bout of endurance exercise, endurance training (continuous and interval), brain-derived neurotrophic factor and inflammatory status in the three subject groups (young adults, older adult, and patients with Parkinson's disease), and to review the current state of knowledge about the possible causes of the differences in brain-derived neurotrophic factor and inflammatory status response to a bout of endurance exercise and endurance training. Furthermore, short practical recommendations for PD patients were formulated for improving the efficacy of the training process during rehabilitation. Methods: A narrative review was performed following an electronic search of the database PubMed/Medline and Web of Science for English-language articles between January 2010 and January 2020. Results: Analysis of the available publications with partial results revealed (1) a possible connection between the brain-derived neurotrophic factor level and inflammatory status, and (2) a more beneficial influence of endurance training compared with acute bouts of endurance exercise. Conclusion: Despite the lack of direct evidence, the results from studies show that endurance training may have a positive effect on inflammatory status and brain-derived neurotrophic factor levels. Introducing endurance training as part of the rehabilitation in Parkinson's disease might provide benefits for patients in addition to pharmacological therapy supplementation.
Collapse
Affiliation(s)
| | - Małgorzata Chalimoniuk
- Department of Physical Education and Health in Biała Podlaska, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Anna Sułek
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
89
|
Huang Y, Huang C, Zhang Q, Wu W, Sun J. Serum BDNF discriminates Parkinson's disease patients with depression from without depression and reflect motor severity and gender differences. J Neurol 2020; 268:1411-1418. [PMID: 33179143 DOI: 10.1007/s00415-020-10299-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To evaluate the diagnostic value of serum Brain-derived neurotrophic factor (BDNF) levels for discriminating PD with depression from without depression, and to investigate whether serum BDNF levels were associated with motor severity and gender in depressed PD patients. METHODS Demographic and clinical data were collected from 122 PD patients with depression, 137 without depression and 110 healthy controls. All participants' serum BDNF concentrations were measured. Their motor abilities and activity were assessed by the Unified PD Rating Scale Part III (UPDRS III) score and the Hoehn and Yahr (H-Y) stage. Depression was scored using the 17-item Hamilton Rating Scale for Depression (HAMD-17). Associations were analyzed with multivariate regression. RESULTS The serum BDNF levels were lower in depressed PD patients compared to non-depressed PD patients and controls (p < 0.001). The BDNF levels were negatively correlated with UPDRS III score (r = - 0.54, p < 0.001) and H-Y stage (r = - 0.45, p < 0.001). Decreased BDNF levels were associated with women only among depressed PD patients (r = 0.45, p < 0.001). The HAMD-17 score was negatively correlated with BDNF levels (r = - 0.59, p < 0.001), and positively associated with UPDRS III score (r = 0.51, p < 0.001). Multiple regression analysis demonstrated that in the depressed PD patients, female, H-Y stage and UPDRS III score were independent contributors to the BDNF levels (p < 0.001; p = 0.006; p = 0.03, respectively), BDNF and UPDRS III score were independent contributors to HAMD-17 score (p < 0.001, p = 0.01, respectively). CONCLUSIONS Decreased serum BDNF levels may be a useful clinical biomarker of depression in PD patients. Serum BDNF may serve as a potential biomarker for motor severity of PD patients with depression, especially in female.
Collapse
Affiliation(s)
- Yixian Huang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, 215004, China.
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Caili Huang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, 215004, China
| | - Qilin Zhang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, 215004, China
| | - Wenqi Wu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, 215004, China
| | - Jiawei Sun
- Department of Neurology, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, 215004, China
| |
Collapse
|
90
|
Faust K, Vajkoczy P, Xi B, Harnack D. The Effects of Deep Brain Stimulation of the Subthalamic Nucleus on Vascular Endothelial Growth Factor, Brain-Derived Neurotrophic Factor, and Glial Cell Line-Derived Neurotrophic Factor in a Rat Model of Parkinson's Disease. Stereotact Funct Neurosurg 2020; 99:256-266. [PMID: 33152730 DOI: 10.1159/000511121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/23/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has evolved as a powerful therapeutic alternative for the treatment of Parkinson's disease (PD). Despite its clinical efficacy, the mechanisms of action have remained poorly understood. In addition to the immediate symptomatic effects, long-term neuroprotective effects have been suggested. Those may be mediated through neurotrophic factors (NFs) like vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and glial cell line-derived neurotrophic factor (GDNF). Here, the impact of DBS on the expression of NFs was analysed in a rat model of PD. METHODS Unilateral 6-hydroxydopamine (6-OHDA) lesioned rats received DBS in the STN using an implantable microstimulation system, sham DBS in the STN, or no electrode placement. Continuous unilateral STN-DBS (current intensity 50 µA, frequency 130 Hz, and pulse width 52 µs) was conducted for 14 days. Rats were then sacrificed and brains shock frozen. Striata and motor cortices were dissected with a cryostat. Levels of VEGF, BDNF, and GDNF were analysed, both by quantitative PCR and colorimetric ELISA. RESULTS PCR revealed a significant upregulation of only BDNF mRNA in the ipsilateral striata of the DBS group, when compared to the sham-stimulated group. There was no significant increase in VEGF mRNA or GDNF mRNA. ELISA analysis showed augmentations of BDNF, VEGF, as well as GDNF protein in the ipsilateral striata after DBS compared to sham stimulation. In the motor cortex, significant increases after DBS were observed for BDNF only, not for the other 2 NFs. CONCLUSIONS The upregulation of trophic factors induced by STN-DBS may participate in its long-term therapeutic efficacy and potentially neuroprotective effects.
Collapse
Affiliation(s)
- Katharina Faust
- Department of Neurosurgery, Charité University Hospital, Berlin, Germany,
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité University Hospital, Berlin, Germany
| | - Bai Xi
- Department of Neurosurgery, Charité University Hospital, Berlin, Germany
| | - Daniel Harnack
- Beelitz Neurology, Rehabilitation Clinic, Berlin, Germany
| |
Collapse
|
91
|
Kumar R, Kumar R, Khurana N, Singh SK, Khurana S, Verma S, Sharma N, Kapoor B, Vyas M, Khursheed R, Awasthi A, Kaur J, Corrie L. Enhanced oral bioavailability and neuroprotective effect of fisetin through its SNEDDS against rotenone-induced Parkinson's disease rat model. Food Chem Toxicol 2020; 144:111590. [DOI: 10.1016/j.fct.2020.111590] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022]
|
92
|
Li X, Zhao J, Li Z, Zhang L, Huo Z. Applications of Acupuncture Therapy in Modulating the Plasticity of Neurodegenerative Disease and Depression: Do MicroRNA and Neurotrophin BDNF Shed Light on the Underlying Mechanism? Neural Plast 2020; 2020:8850653. [PMID: 33029119 PMCID: PMC7527896 DOI: 10.1155/2020/8850653] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/12/2020] [Accepted: 09/05/2020] [Indexed: 02/08/2023] Open
Abstract
As the global population ages, the incidence of neurodegenerative diseases has risen. Furthermore, it has been suggested that depression, especially in elderly people, may also be an indication of latent neurodegeneration. Stroke, Alzheimer's disease (AD), and Parkinson's disease (PD) are usually accompanied by depression. The urgent challenge is further enforced by psychiatric comorbid conditions, particularly the feeling of despair in these patients. Fortunately, as our understanding of the neurobiological substrates of maladies affecting the central nervous system (CNS) has increased, more therapeutic options and novel potential biological mechanisms have been presented: (1) Neurodegenerative diseases share some similarities in their pathological characteristics, including changes in neuron structure or function and neuronal plasticity. (2) MicroRNAs (miRNAs) are small noncoding RNAs that contribute to the pathogenesis of diverse neurological disease. (3) One ubiquitous neurotrophin, brain-derived neurotrophic factor (BDNF), is crucial for the development of the nervous system. Accumulating data have indicated that miRNAs not only are related to BDNF regulation but also can directly bind with the 3'-UTR of BDNF to regulate BDNF and participate in neuroplasticity. In this short review, we present evidence of shared biological substrates among stroke, AD, PD, and depression and summarize the possible influencing mechanisms of acupuncture on the neuroplasticity of these diseases. We discuss neuroplasticity underscored by the roles of miRNAs and BDNF, which might further reveal the potential biological mechanism of neurodegenerative diseases and depression by acupuncture.
Collapse
Affiliation(s)
- Xia Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun Zhao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhigang Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Li Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zejun Huo
- Department of Chinese Medicine, Peking University 3rd Hospital, Beijing 100191, China
| |
Collapse
|
93
|
Chung CC, Huang PH, Chan L, Chen JH, Chien LN, Hong CT. Plasma Exosomal Brain-Derived Neurotrophic Factor Correlated with the Postural Instability and Gait Disturbance-Related Motor Symptoms in Patients with Parkinson's Disease. Diagnostics (Basel) 2020; 10:E684. [PMID: 32932791 PMCID: PMC7555255 DOI: 10.3390/diagnostics10090684] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is an essential neurotrophin, responsible for neuronal development, function, and survival. Assessments of peripheral blood BDNF in patients with Parkinson's disease (PD) previously yielded inconsistent results. Plasma exosomes can carry BDNF, so this study investigated the role of plasma exosomal BDNF level as a biomarker of PD. A total of 114 patients with mild to moderate PD and 42 non-PD controls were recruited, and their clinical presentations were evaluated. Plasma exosomes were isolated with exoEasy Maxi Kits, and enzyme-linked immunosorbent assay was used to assess plasma exosomal BDNF levels. Statistical analysis was performed using SPSS version 19.0, and findings were considered significant at p < 0.05. The analysis revealed no significant differences in plasma exosomal BDNF levels between patients with PD and controls. Patients with PD with low plasma exosomal BDNF levels (in the lowest quartile) exhibited a significant association with daily activity dysfunction but not with cognition/mood or overall motor symptoms as assessed using the Unified Parkinson's Disease Rating Scale (UPDRS). Investigation of UPDRS part III subitems revealed that low plasma exosomal BDNF level was significantly associated with increased motor severity of postural instability and gait disturbance (PIGD)-associated symptoms (rising from a chair, gait, and postural stability) after adjustment for age and sex. In conclusion, although plasma exosomal BDNF level could not distinguish patients with PD from controls, the association with PIGD symptoms in patients with PD may indicate its potential role as a biomarker. Follow-up studies should investigate the association between plasma exosomal BDNF levels and changes in clinical symptoms.
Collapse
Affiliation(s)
- Chen Chih Chung
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Zhongzheng Rd, Zhonghe District, New Taipei City 23561, Taiwan; (C.C.C.); (L.C.); (J.-H.C.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 11031, Taiwan
| | - Pai Hao Huang
- Department of Neurology, Cathay General Hospital, Taipei 106, Taiwan;
| | - Lung Chan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Zhongzheng Rd, Zhonghe District, New Taipei City 23561, Taiwan; (C.C.C.); (L.C.); (J.-H.C.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jia-Hung Chen
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Zhongzheng Rd, Zhonghe District, New Taipei City 23561, Taiwan; (C.C.C.); (L.C.); (J.-H.C.)
| | - Li-Nien Chien
- School of Health Care Administration, College of Management, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Chien Tai Hong
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Zhongzheng Rd, Zhonghe District, New Taipei City 23561, Taiwan; (C.C.C.); (L.C.); (J.-H.C.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
94
|
Sénécal V, Barat C, Tremblay MJ. The delicate balance between neurotoxicity and neuroprotection in the context of HIV-1 infection. Glia 2020; 69:255-280. [PMID: 32910482 DOI: 10.1002/glia.23904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus type-1 (HIV-1) causes a spectrum of neurological impairments, termed HIV-associated neurocognitive disorder (HAND), following the infiltration of infected cells into the brain. Even though the implementation of antiretroviral therapy reduced the systemic viral load, the prevalence of HAND remains unchanged and infected patients develop persisting neurological disturbances affecting their quality of life. As a result, HAND have gained importance in basic and clinical researches, warranting the need of developing new adjunctive treatments. Nonetheless, a better understanding of the molecular and cellular mechanisms remains necessary. Several studies consolidated their efforts into elucidating the neurotoxic signaling leading to HAND including the deleterious actions of HIV-1 viral proteins and inflammatory mediators. However, the scope of these studies is not sufficient to address all the complexity related to HAND development. Fewer studies focused on an altered neuroprotective capacity of the brain to respond to HIV-1 infection. Neurotrophic factors are endogenous polyproteins involved in neuronal survival, synaptic plasticity, and neurogenesis. Any defects in the processing or production of these crucial factors might compose a risk factor rendering the brain more vulnerable to neuronal damages. Due to their essential roles, they have been investigated for their diverse interplays with HIV-1 infection. In this review, we present a complete description of the neurotrophic factors involved in HAND. We discuss emerging concepts for their therapeutic applications and summarize the complex mechanisms that down-regulate their production in favor of a neurotoxic environment. For certain factors, we finally address opposing roles that rather lead to increased inflammation.
Collapse
Affiliation(s)
- Vincent Sénécal
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, Quebec, Canada
| | - Corinne Barat
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, Quebec, Canada
| | - Michel J Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, Quebec, Canada.,Département de Microbiologie-infectiologie et immunologie, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
95
|
Troncoso-Escudero P, Sepulveda D, Pérez-Arancibia R, Parra AV, Arcos J, Grunenwald F, Vidal RL. On the Right Track to Treat Movement Disorders: Promising Therapeutic Approaches for Parkinson's and Huntington's Disease. Front Aging Neurosci 2020; 12:571185. [PMID: 33101007 PMCID: PMC7497570 DOI: 10.3389/fnagi.2020.571185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Movement disorders are neurological conditions in which patients manifest a diverse range of movement impairments. Distinct structures within the basal ganglia of the brain, an area involved in movement regulation, are differentially affected for every disease. Among the most studied movement disorder conditions are Parkinson's (PD) and Huntington's disease (HD), in which the deregulation of the movement circuitry due to the loss of specific neuronal populations in basal ganglia is the underlying cause of motor symptoms. These symptoms are due to the loss principally of dopaminergic neurons of the substantia nigra (SN) par compacta and the GABAergic neurons of the striatum in PD and HD, respectively. Although these diseases were described in the 19th century, no effective treatment can slow down, reverse, or stop disease progression. Available pharmacological therapies have been focused on preventing or alleviating motor symptoms to improve the quality of life of patients, but these drugs are not able to mitigate the progressive neurodegeneration. Currently, considerable therapeutic advances have been achieved seeking a more efficacious and durable therapeutic effect. Here, we will focus on the new advances of several therapeutic approaches for PD and HD, starting with the available pharmacological treatments to alleviate the motor symptoms in both diseases. Then, we describe therapeutic strategies that aim to restore specific neuronal populations or their activity. Among the discussed strategies, the use of Neurotrophic factors (NTFs) and genetic approaches to prevent the neuronal loss in these diseases will be described. We will highlight strategies that have been evaluated in both Parkinson's and Huntington's patients, and also the ones with strong preclinical evidence. These current therapeutic techniques represent the most promising tools for the safe treatment of both diseases, specifically those aimed to avoid neuronal loss during disease progression.
Collapse
Affiliation(s)
- Paulina Troncoso-Escudero
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Denisse Sepulveda
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Rodrigo Pérez-Arancibia
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Alejandra V. Parra
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Javiera Arcos
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Felipe Grunenwald
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Rene L. Vidal
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| |
Collapse
|
96
|
O'Callaghan A, Harvey M, Houghton D, Gray WK, Weston KL, Oates LL, Romano B, Walker RW. Comparing the influence of exercise intensity on brain-derived neurotrophic factor serum levels in people with Parkinson's disease: a pilot study. Aging Clin Exp Res 2020; 32:1731-1738. [PMID: 31606860 DOI: 10.1007/s40520-019-01353-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Endogenous brain-derived neurotrophic factor (BDNF) is thought to be protective against the neurodegeneration seen in Parkinson's disease (PD), and is thought to increase during exercise. This has been proposed as a possible mechanism by which exercise improves outcomes for people with PD. We conducted a pilot study to investigate the role of exercise intensity on BDNF levels in people with PD. METHODS Participants of early- to mid-stage disease were recruited from a single PD service in north-east England, UK into two separate studies of exercise in PD, one involving moderate-intensity continuous training (MICT) and one involving high-intensity interval training (HIIT), both had control groups. In both the interventions, participants exercise three times per week for 12 weeks. Blood samples were taken for BDNF analysis at the start and end of the first session and the start and end of the final session, with corresponding samples taken in controls. RESULTS Data were available for 27 participants (13 intervention, 14 control) in the MICT intervention and 17 (9 intervention, 8 control) in the HIIT intervention. BDNF level did not rise significantly from the start to end of individual sessions. Across the 12 week period, they rose significantly in the HIIT intervention group, but not in controls or the MICT intervention group. CONCLUSIONS High-intensity interval training appears to have a greater impact on BDNF than MICT. Future work should directly compare exercise modalities and investigate the impact of BDNF levels on disease progression and quality of life.
Collapse
Affiliation(s)
- Ailish O'Callaghan
- Northumbria Healthcare NHS Foundation Trust, North Tyneside General Hospital, Rake Lane, North Shields, Tyne and Wear, NE29 8NH, UK
- North Cumbria University Hospitals NHS Trust, Cumberland Infirmary, Carlisle, UK
| | - Marguerite Harvey
- Northumbria Healthcare NHS Foundation Trust, North Tyneside General Hospital, Rake Lane, North Shields, Tyne and Wear, NE29 8NH, UK
| | - David Houghton
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - William K Gray
- Northumbria Healthcare NHS Foundation Trust, North Tyneside General Hospital, Rake Lane, North Shields, Tyne and Wear, NE29 8NH, UK.
| | - Kathryn L Weston
- School of Health and Social Care, Teesside University, Middlesbrough, UK
| | - Lloyd L Oates
- Northumbria Healthcare NHS Foundation Trust, North Tyneside General Hospital, Rake Lane, North Shields, Tyne and Wear, NE29 8NH, UK
| | | | - Richard W Walker
- Northumbria Healthcare NHS Foundation Trust, North Tyneside General Hospital, Rake Lane, North Shields, Tyne and Wear, NE29 8NH, UK
- Institute of Health and Society, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
97
|
Hernández-Vara J, Sáez-Francàs N, Lorenzo-Bosquet C, Corominas-Roso M, Cuberas-Borròs G, Lucas-Del Pozo S, Carter S, Armengol-Bellapart M, Castell-Conesa J. BDNF levels and nigrostriatal degeneration in “drug naïve” Parkinson's disease patients. An “in vivo” study using I-123-FP-CIT SPECT. Parkinsonism Relat Disord 2020; 78:31-35. [DOI: 10.1016/j.parkreldis.2020.06.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/05/2020] [Accepted: 06/29/2020] [Indexed: 01/01/2023]
|
98
|
Bilge SS, Günaydin C, Önger ME, Bozkurt A, Avci B. Neuroprotective action of agmatine in rotenone-induced model of Parkinson's disease: Role of BDNF/cREB and ERK pathway. Behav Brain Res 2020; 392:112692. [PMID: 32479847 DOI: 10.1016/j.bbr.2020.112692] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/14/2020] [Accepted: 05/03/2020] [Indexed: 01/10/2023]
Abstract
Numerous studies have investigated the role of agmatine in the central nervous system and indicated neuroprotective properties. In addition to its potent antioxidant effects, agmatine is an endogenous neuromodulator and has wide spectrum molecular actions on different receptor subtypes (NMDA, Imidazoline 1-2, alpha-2 adrenoreceptor, 5-HT2a, 5-HT3) and cellular signaling pathways (MAPK, PKA, NO, BDNF). Although the neuroprotective effects of agmatine demonstrated in experimental Parkinson's disease model, the effects of agmatine with the aspect of neuroplasticity and possible signaling mechanisms behind agmatine actions have not been investigated. Herein, in this study, we investigated the role of the of agmatine on rotenone-induced Parkinson's disease model. Agmatine at the dose of 100 mg/kg i.p., was mitigated oxidative damage and alleviated motor impairments which were the results of the rotenone insult. Additionally, agmatine decreased neuronal loss, tyrosine hydroxylase immunoreactivity and increased cREB, BDNF and ERK1/2 expression in the striatum, which are crucial neuroplasticity elements of striatal integrity. Taken together, the present study expands the knowledge of molecular mechanisms behind neuroprotective actions of agmatine in Parkinson's disease, and as far as we have known, this is the first study to delineate agmatine treated activation of cellular pathways which are important elements in neuronal cell survival.
Collapse
Affiliation(s)
- S Sırrı Bilge
- Ondokuz Mayıs University, School of Medicine, Department of Pharmacology, Samsun, Turkey.
| | - Caner Günaydin
- Ondokuz Mayıs University, School of Medicine, Department of Pharmacology, Samsun, Turkey.
| | - M Emin Önger
- Ondokuz Mayıs University, School of Medicine, Department of Histology and Embryology, Samsun, Turkey.
| | - Ayhan Bozkurt
- Ondokuz Mayıs University, School of Medicine, Department of Physiology, Samsun, Turkey.
| | - Bahattin Avci
- Ondokuz Mayıs University, School of Medicine, Department of Biochemistry, Samsun, Turkey.
| |
Collapse
|
99
|
Oliveira GSD, Iraci L, Pinheiro GS, Casal MZ, Haas AN, Pochmann D, Martinez FG, Elsner V, Dani C. Effect of exercise and grape juice on epigenetic modulation and functional outcomes in PD: A randomized clinical trial. Physiol Behav 2020; 227:113135. [PMID: 32798568 DOI: 10.1016/j.physbeh.2020.113135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This study aimed to investigate the impact of an aquatic physical training program associated with grape juice (Vitis labrusca) consumption on functional outcomes, Brain-Derived Neurotrophic Factor (BDNF) and global histone H4 acetylation levels in peripheral blood from individuals with Parkinson's disease. METHODS Nineteen participants were randomized to Aquatic Exercise (AQ, n = 9) and Aquatic Exercise + Grape Juice (AQ+GJ, n = 10) groups and performed to 4 weeks of an aquatic intervention (twice a week, approximately 60 min/session). The AQ+GJ groups also consumed 400 mL of grape juice per day during this period. Functional capacity (six-min walk test, 6MWT), mobility (The Timed Up and Go, TUG) and the risk of falls (Berg Balance Scale, BBS) were evaluated before and after intervention. In addition, blood collections were carried out for biomarker analysis (e.g. BDNF and global histone H4). RESULTS The aquatic exercise program induced functional improvement in individuals with Parkinson's disease, specifically ameliorating their mobility and functional capacity. In addition, enhanced levels of BDNF and histone H4 acetylation were found after the intervention. Grape juice consumption did not potentiate these effects, since any significant differences between the AQ and AQ+GJ groups were not found in all analysed variables. CONCLUSIONS The present study provides important insights about aquatic exercise-modulated BDNF levels in individuals with Parkinson's disease in combination with functional improvements, suggesting that histone acetylation status may interact to dictate the molecular mechanisms involved in this response. Parkinson disease, aquatic exercise, BDNF, epigenetic, grape juice.
Collapse
Affiliation(s)
| | - Lucio Iraci
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS-Brasil
| | | | - Marcela Zimmermann Casal
- Laboratório de Pesquisa do Exercício, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS-Brasil
| | - Aline Nogueira Haas
- Laboratório de Pesquisa do Exercício, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS-Brasil
| | - Daniela Pochmann
- Programa de Pós-Graduação em Biociências e Reabilitação do Centro Universitário Metodista -IPA. Rua Coronel Joaquim Pedro Salgado, 80 - Rio Branco, Porto Alegre - RS, CEP 90420-060, Brasil
| | - Flavia Gomes Martinez
- Laboratório de Pesquisa do Exercício, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS-Brasil
| | - Viviane Elsner
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS-Brasil; Programa de Pós-Graduação em Biociências e Reabilitação do Centro Universitário Metodista -IPA. Rua Coronel Joaquim Pedro Salgado, 80 - Rio Branco, Porto Alegre - RS, CEP 90420-060, Brasil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS-Brasil
| | - Caroline Dani
- Programa de Pós-Graduação em Biociências e Reabilitação do Centro Universitário Metodista -IPA. Rua Coronel Joaquim Pedro Salgado, 80 - Rio Branco, Porto Alegre - RS, CEP 90420-060, Brasil.
| |
Collapse
|
100
|
Segura C, Eraso M, Bonilla J, Mendivil CO, Santiago G, Useche N, Bernal-Pacheco O, Monsalve G, Sanchez L, Hernández E, Peláez-Jaramillo MJ, Cárdenas-Mojica A. Effect of a High-Intensity Tandem Bicycle Exercise Program on Clinical Severity, Functional Magnetic Resonance Imaging, and Plasma Biomarkers in Parkinson's Disease. Front Neurol 2020; 11:656. [PMID: 32793096 PMCID: PMC7393207 DOI: 10.3389/fneur.2020.00656] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: The optimal modality, intensity, duration, frequency, and dose-response of exercise as a therapy for Parkinson's Disease (PD) are insufficiently understood. Objective: To assess the impact of a high-intensity tandem bicycle program on clinical severity, biomarkers, and functional MRI (fMRI) in PD. Methods: A single-center, parallel-group clinical trial was conducted. Thirteen PD patients aged 65 or younger were divided in two groups: a control group and an intervention group that incorporated a cycling program at 80% of each individual's maximum heart rate (HR) (≥80 rpm), three times a week, for 16 weeks. Both groups continued their conventional medications for PD. At baseline and at the end of follow-up, we determined in all participants the Unified Parkinson's Disease Rating Scale, anthropometry, VO2max, PD biomarkers, and fMRI. Results: VO2max improved in the intervention group (IG) (+5.7 ml/kg/min), while it slightly deteriorated in the control group (CG) (-1.6 ml/kg/min) (p = 0.041). Mean Unified Parkinson's Disease Rating Scale (UPDRS) went down by 5.7 points in the IG and showed a small 0.9-point increase in the CG (p = 0.11). fMRI showed activation of the right fusiform gyrus during the motor task and functional connectivity between the cingulum and areas of the frontal cortex, and between the cerebellar vermis and the thalamus and posterior temporal gyrus. Plasma brain-derived neurotrophic factor (BDNF) levels increased more than 10-fold in the IG and decreased in the CG (p = 0.028). Larger increases in plasma BDNF correlated with greater decreases in UPDRS (r = -0.58, p = 0.04). Conclusions: Our findings suggest that high-intensity tandem bicycle improves motor function and biochemical and functional neuroimaging variables in PD patients. Trial registration number: ISRCTN 13047118, Registered on February 8, 2018.
Collapse
Affiliation(s)
- Carolina Segura
- Vida Activa, Department of Internal Medicine, Fundación Santa Fe de Bogotá, Bogota, Colombia
| | - Mauricio Eraso
- Vida Activa, Department of Internal Medicine, Fundación Santa Fe de Bogotá, Bogota, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Javier Bonilla
- School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Carlos O Mendivil
- School of Medicine, Universidad de los Andes, Bogota, Colombia.,Endocrinology Section, Department of Internal Medicine, Fundación Santa Fe de Bogotá, Bogota, Colombia
| | - Giselle Santiago
- Radiology and Diagnostic Imaging Department, Fundación Santa Fe de Bogotá, Bogota, Colombia
| | - Nicolás Useche
- Radiology and Diagnostic Imaging Department, Fundación Santa Fe de Bogotá, Bogota, Colombia
| | | | - Guillermo Monsalve
- Neurosurgery Section, Department of Surgery, Fundación Santa Fe de Bogotá, Bogota, Colombia
| | - Laura Sanchez
- School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Enrique Hernández
- School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | | | | |
Collapse
|