51
|
Abstract
With nucleosomes being tightly associated with the majority of eukaryotic DNA, it is essential that mechanisms are in place that can move nucleosomes 'out of the way'. A focus of current research comprises chromatin remodeling complexes, which are ATP-consuming protein complexes that, for example, pull or push nucleosomes along DNA. The precise mechanisms used by those complexes are not yet understood. Hints for possible mechanisms might be found among the various spontaneous fluctuations that nucleosomes show in the absence of remodelers. Thermal fluctuations induce the partial unwrapping of DNA from the nucleosomes and introduce twist or loop defects in the wrapped DNA, leading to nucleosome sliding along DNA. In this minireview, we discuss nucleosome dynamics from two angles. First, we describe the dynamical modes of nucleosomes in the absence of remodelers that are experimentally fairly well characterized and theoretically understood. Then, we discuss remodelers and describe recent insights about the possible schemes that they might use.
Collapse
Affiliation(s)
- Ralf Blossey
- Université de Sciences et de Technologies de Lille, Interdisciplinary Research Institute, USR 3078 CNRS, Villeneuve d'Ascq, France.
| | | |
Collapse
|
52
|
Abstract
The DNA of eukaryotic cells is spooled around large histone protein complexes, forming nucleosomes that make up the basis for a high-order packaging structure called chromatin. Compared to naked DNA, nucleosomal DNA is less accessible to regulatory proteins and regulatory processes. The exact positions of nucleosomes therefore influence several cellular processes, including gene expression, chromosome segregation, recombination, replication, and DNA repair. Here, we review recent technological advances enabling the genome-wide mapping of nucleosome positions in the model eukaryote Saccharomyces cerevisiae. We discuss the various parameters that determine nucleosome positioning in vivo, including cis factors like AT content, variable tandem repeats, and poly(dA:dT) tracts that function as chromatin barriers and trans factors such as chromatin remodeling complexes, transcription factors, histone-modifying enzymes, and RNA polymerases. In the last section, we review the biological role of chromatin in gene transcription, the evolution of gene regulation, and epigenetic phenomena.
Collapse
|
53
|
Reed SH. Nucleotide excision repair in chromatin: damage removal at the drop of a HAT. DNA Repair (Amst) 2011; 10:734-42. [PMID: 21600858 DOI: 10.1016/j.dnarep.2011.04.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In an earlier review of our understanding of the mechanism of nucleotide excision repair (NER) we examined the process with respect to how it occurs in chromatin [1]. We described how much of our mechanistic understanding of NER was derived from biochemical studies that analysed the repair reaction in DNA substrates not representative of that which exists in the living cell. We pointed out that our efforts to understand how NER operates in chromatin had been hampered in part because of the well-known inhibition of NER that occurs when DNA is assembled into nucleosomes and used as the substrate to examine the repair reaction in vitro. Despite this technical bottleneck, we summarized the biochemical, genetic and cell-based studies which have provided insights into the molecular mechanism of NER in the cellular context. More recently, we revisited the topic of how UV induced DNA damage is repaired in chromatin. In this review we examined the commonly held view that depicts a struggle in which the DNA repair machinery battles to overcome the inhibitory effect of chromatin during the repair process. We suggested that in this interpretation of events, the DNA repair mechanisms might be described as 'tilting at windmills': fighting an imaginary foe [2]. We surmised that this scenario was overly simplistic, and we described an emerging picture in which the DNA repair process and chromatin remodeling were mechanistically linked and were in fact functioning cooperatively to organize the efficient removal of DNA damage from the genome. Here we discuss the latest findings, which contribute to the idea that DNA damage induced changes to chromatin represent an important way in which the DNA repair process is initiated and organized throughout the genome to promote the efficient removal of damage in response to UV radiation.
Collapse
Affiliation(s)
- Simon H Reed
- Department of Medical Genetics, Haematology and Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
54
|
Fransz P, de Jong H. From nucleosome to chromosome: a dynamic organization of genetic information. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:4-17. [PMID: 21443619 DOI: 10.1111/j.1365-313x.2011.04526.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Gene activity is controlled at different levels of chromatin organization, which involve genomic sequences, nucleosome structure, chromatin folding and chromosome arrangement. These levels are interconnected and influence each other. At the basic level nucleosomes generally occlude the DNA sequence from interacting with DNA-binding proteins. Evidently, nucleosome positioning is a major factor in gene control and chromatin organization. Understanding the biological rules that govern the deposition and removal of the nucleosomes to and from the chromatin fiber is the key to understanding gene regulation and chromatin organization. In this review we describe and discuss the relationship between the different levels of chromatin organization in plants and animals.
Collapse
Affiliation(s)
- Paul Fransz
- Nuclear Organization Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | | |
Collapse
|
55
|
Lee JY, Wei S, Lee TH. Effects of histone acetylation by Piccolo NuA4 on the structure of a nucleosome and the interactions between two nucleosomes. J Biol Chem 2011; 286:11099-109. [PMID: 21282115 DOI: 10.1074/jbc.m110.192047] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We characterized the effect of histone acetylation on the structure of a nucleosome and the interactions between two nucleosomes. In this study, nucleosomes reconstituted with the Selex "Widom 601" sequence were acetylated with the Piccolo NuA4 complex, which acetylates mainly H4 N-terminal tail lysine residues and some H2A/H3 N-terminal tail lysine residues. Upon the acetylation, we observed directional unwrapping of nucleosomal DNA that accompanies topology change of the DNA. Interactions between two nucleosomes in solution were also monitored to discover multiple transient dinucleosomal states that can be categorized to short-lived and long-lived (∼1 s) states. The formation of dinucleosomes is strongly Mg(2+)-dependent, and unacetylated nucleosomes favor the formation of long-lived dinucleosomes 4-fold as much as the acetylated ones. These results suggest that the acetylation of histones by Piccolo NuA4 disturbs not only the structure of a nucleosome but also the interactions between two nucleosomes. Lastly, we suggest a structural model for a stable dinucleosomal state where the two nucleosomes are separated by ∼2 nm face-to-face and rotated by 34° with respect to each other.
Collapse
Affiliation(s)
- Ju Yeon Lee
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
56
|
Yang D, Arya G. Structure and binding of the H4 histone tail and the effects of lysine 16 acetylation. Phys Chem Chem Phys 2010; 13:2911-21. [PMID: 21157623 DOI: 10.1039/c0cp01487g] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The H4 histone tail plays a critical role in chromatin folding and regulation--it mediates strong interactions with the acidic patch of proximal nucleosomes and its acetylation at lysine 16 (K16) leads to partial unfolding of chromatin. The molecular mechanism associated with the H4 tail/acidic patch interactions and its modulation via K16 acetylation remains unknown. Here we employ a combination of molecular dynamics simulations, molecular docking calculations, and free energy computations to investigate the structure of the H4 tail in solution, the binding of the H4 tail with the acidic patch, and the effects of K16 acetylation. The H4 tail exhibits a disordered configuration except in the region Ala15-Lys20, where it exhibits a strong propensity for an α-helical structure. This α-helical region is found to dock very favorably into the acidic patch groove of a nucleosome with a binding free energy of approximately -7 kcal mol(-1). We have identified the specific interactions that stabilize this binding as well as the associated energetics. The acetylation of K16 is found to reduce the α-helix forming propensity of the H4 tail and K16's accessibility for mediating external interactions. More importantly, K16 acetylation destabilizes the binding of the H4 tail at the acidic patch by mitigating specific salt bridges and longer-ranged electrostatic interactions mediated by K16. Our study thus provides new microscopic insights into the compaction of chromatin and its regulation via posttranslational modifications of histone tails, which could be of interest to chromatin biology, cancer, epigenetics, and drug design.
Collapse
Affiliation(s)
- Darren Yang
- Department of NanoEngineering, University of California at San Diego, 9500 Gilman Drive, MC 0448, La Jolla, CA 92093, USA
| | | |
Collapse
|
57
|
Liu N, Balliano A, Hayes JJ. Mechanism(s) of SWI/SNF-induced nucleosome mobilization. Chembiochem 2010; 12:196-204. [PMID: 21243709 DOI: 10.1002/cbic.201000455] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Indexed: 11/12/2022]
Abstract
Impediments to DNA access due to assembly of the eukaryotic genome into chromatin are in part overcome by the activity of ATP-dependent chromatin-remodeling complexes. These complexes employ energy derived from ATP hydrolysis to destabilize histone-DNA interactions and alter nucleosome positions, thereby increasing the accessibility of DNA-binding factors to their targets. However, the mechanism by which theses complexes accomplish this task remains unresolved. We review aspects of nucleosome alteration by the SWI/SNF complex, the archetypal remodeling enzyme. We focus on experiments that provide insights into how SWI/SNF induces nucleosome movement along DNA. Numerous biochemical activities have been characterized for this complex, all likely providing clues as to the molecular mechanism of translocation.
Collapse
Affiliation(s)
- Ning Liu
- Department of Biochemistry and Biophysics, University of Rochester, Medical Center, Rochester, NY 14642, USA
| | | | | |
Collapse
|
58
|
Korolev N, Lyubartsev AP, Nordenskiöld L. Cation-induced polyelectrolyte-polyelectrolyte attraction in solutions of DNA and nucleosome core particles. Adv Colloid Interface Sci 2010; 158:32-47. [PMID: 19758583 DOI: 10.1016/j.cis.2009.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 08/05/2009] [Accepted: 08/15/2009] [Indexed: 12/26/2022]
Abstract
The paper reviews our current studies on the experimentally induced cation compaction and aggregation in solutions of DNA and nucleosome core particles and the theoretical modelling of these processes using coarse-grained continuum models with explicit mobile ions and with all-atom molecular dynamics (MD) simulations. Recent experimental results on DNA condensation by cationic oligopeptides and the effects of added salt are presented. The results of MD simulations modelling DNA-DNA attraction due to the presence of multivalent ions including the polyamine spermidine and fragments of histone tails, which exhibit bridging between adjacent DNA molecules, are discussed. Experimental data on NCP aggregation, using recombinantly prepared systems are summarized. Literature data and our results of studying of the NCP solutions are compared with predictions of coarse-grained MD simulations, including the important ion correlation as well as bridging mechanisms. The importance of the results to chromatin folding and aggregation is discussed.
Collapse
Affiliation(s)
- Nikolay Korolev
- Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | |
Collapse
|
59
|
Jin J, Bai L, Johnson DS, Fulbright RM, Kireeva ML, Kashlev M, Wang MD. Synergistic action of RNA polymerases in overcoming the nucleosomal barrier. Nat Struct Mol Biol 2010; 17:745-52. [PMID: 20453861 PMCID: PMC2938954 DOI: 10.1038/nsmb.1798] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 03/05/2010] [Indexed: 12/25/2022]
Abstract
During gene expression, RNA polymerase (RNAP) encounters a major barrier at a nucleosome and yet must access the nucleosomal DNA. Previous in vivo evidence has suggested that multiple RNAPs might increase transcription efficiency through nucleosomes. Here we have quantitatively investigated this hypothesis using Escherichia coli RNAP as a model system by directly monitoring its location on the DNA via a single-molecule DNA-unzipping technique. When an RNAP encountered a nucleosome, it paused with a distinctive 10-base pair periodicity and backtracked by approximately 10-15 base pairs. When two RNAPs elongate in close proximity, the trailing RNAP apparently assists in the leading RNAP's elongation, reducing its backtracking and enhancing its transcription through a nucleosome by a factor of 5. Taken together, our data indicate that histone-DNA interactions dictate RNAP pausing behavior, and alleviation of nucleosome-induced backtracking by multiple polymerases may prove to be a mechanism for overcoming the nucleosomal barrier in vivo.
Collapse
Affiliation(s)
- Jing Jin
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Thompson RF, Fazzari MJ, Greally JM. Experimental approaches to the study of epigenomic dysregulation in ageing. Exp Gerontol 2010; 45:255-68. [PMID: 20060885 DOI: 10.1016/j.exger.2009.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Revised: 12/19/2009] [Accepted: 12/28/2009] [Indexed: 12/25/2022]
Abstract
In this review, we describe how normal ageing may involve the acquisition of epigenetic errors over time, akin to the accumulation of genetic mutations with ageing. We describe how such experiments are currently performed, their limitations technically and analytically and their application to ageing research.
Collapse
Affiliation(s)
- Reid F Thompson
- Department of Genetics and Center for Epigenomics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
61
|
Inhibition of protein deacetylation augments herpes simplex virus type 1-activated transcription of host fucosyltransferase genes associated with virus-induced sLex expression. Arch Virol 2009; 155:305-13. [DOI: 10.1007/s00705-009-0580-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 12/02/2009] [Indexed: 02/03/2023]
|
62
|
Segal E, Widom J. What controls nucleosome positions? Trends Genet 2009; 25:335-43. [PMID: 19596482 PMCID: PMC2810357 DOI: 10.1016/j.tig.2009.06.002] [Citation(s) in RCA: 282] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/02/2009] [Accepted: 06/02/2009] [Indexed: 10/20/2022]
Abstract
The DNA of eukaryotic genomes is wrapped in nucleosomes, which strongly distort and occlude the DNA from access to most DNA-binding proteins. An understanding of the mechanisms that control nucleosome positioning along the DNA is thus essential to understanding the binding and action of proteins that carry out essential genetic functions. New genome-wide data on in vivo and in vitro nucleosome positioning greatly advance our understanding of several factors that can influence nucleosome positioning, including DNA sequence preferences, DNA methylation, histone variants and post-translational modifications, higher order chromatin structure, and the actions of transcription factors, chromatin remodelers and other DNA-binding proteins. We discuss how these factors function and ways in which they might be integrated into a unified framework that accounts for both the preservation of nucleosome positioning and the dynamic nucleosome repositioning that occur across biological conditions, cell types, developmental processes and disease.
Collapse
Affiliation(s)
- Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | | |
Collapse
|
63
|
Manohar M, Mooney AM, North JA, Nakkula RJ, Picking JW, Edon A, Fishel R, Poirier MG, Ottesen JJ. Acetylation of histone H3 at the nucleosome dyad alters DNA-histone binding. J Biol Chem 2009; 284:23312-21. [PMID: 19520870 DOI: 10.1074/jbc.m109.003202] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone post-translational modifications are essential for regulating and facilitating biological processes such as RNA transcription and DNA repair. Fifteen modifications are located in the DNA-histone dyad interface and include the acetylation of H3-K115 (H3-K115Ac) and H3-K122 (H3-K122Ac), but the functional consequences of these modifications are unknown. We have prepared semisynthetic histone H3 acetylated at Lys-115 and/or Lys-122 by expressed protein ligation and incorporated them into single nucleosomes. Competitive reconstitution analysis demonstrated that the acetylation of H3-K115 and H3-K122 reduces the free energy of histone octamer binding. Restriction enzyme kinetic analysis suggests that these histone modifications do not alter DNA accessibility near the sites of modification. However, acetylation of H3-K122 increases the rate of thermal repositioning. Remarkably, Lys --> Gln substitution mutations, which are used to mimic Lys acetylation, do not fully duplicate the effects of the H3-K115Ac or H3-K122Ac modifications. Our results are consistent with the conclusion that acetylation in the dyad interface reduces DNA-histone interaction(s), which may facilitate nucleosome repositioning and/or assembly/disassembly.
Collapse
Affiliation(s)
- Mridula Manohar
- Department of Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
Eukaryotic DNA is packaged into a nucleoprotein structure known as chromatin, which is comprised of DNA, histones, and nonhistone proteins. Chromatin structure is highly dynamic, and can shift from a transcriptionally inactive state to an active form in response to intra- and extracellular signals. A major factor in chromatin architecture is the covalent modification of histones through the addition of chemical moieties, such as acetyl, methyl, ubiquitin, and phosphate groups. The acetylation of the amino-terminal tails of histones is a process that is highly conserved in eukaryotes, and was one of the earliest histone modifications characterized. Since its identification in 1964, a large body of evidence has accumulated demonstrating that histone acetylation plays an important role in transcription. Despite our ever-growing understanding of the nuclear processes involved in nucleosome acetylation, however, the exact biochemical mechanisms underlying the downstream effects of histone acetylation have yet to be fully elucidated. To date, histone acetylation has been proposed to function in 2 nonmutually exclusive manners: by directly altering chromatin structure, and by acting as a molecular tag for the recruitment of chromatin-modifying complexes. Here, we discuss recent research focusing on these 2 potential roles of histone acetylation and clarify what we actually know about the function of this modification.
Collapse
Affiliation(s)
- Jennifer K Choi
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BCV6T1Z3, Canada
| | | |
Collapse
|
65
|
Fraser RM, Keszenman-Pereyra D, Simmen MW, Allan J. High-resolution mapping of sequence-directed nucleosome positioning on genomic DNA. J Mol Biol 2009; 390:292-305. [PMID: 19427325 DOI: 10.1016/j.jmb.2009.04.079] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 04/24/2009] [Accepted: 04/30/2009] [Indexed: 11/26/2022]
Abstract
We have mapped in vitro nucleosome positioning on the sheep beta-lactoglobulin gene using high-throughput sequencing to characterise the DNA sequences recovered from reconstituted nucleosomes. This methodology surpasses previous approaches for coverage, accuracy and resolution and, most importantly, offers a simple yet rapid and relatively inexpensive method to characterise genomic DNA sequences in terms of nucleosome positioning capacity. We demonstrate an unambiguous correspondence between in vitro and in vivo nucleosome positioning around the promoter of the gene; identify discrete, sequence-specific nucleosomal structures above the level of the canonical core particle-a feature that has implications for regulatory protein access and higher-order chromatin packing; and reveal new insights into the involvement of periodically organised dinucleotide sequence motifs of the type GG and CC and not AA and TT, as determinants of nucleosome positioning-an observation that supports the idea that the core histone octamer can exploit different patterns of sequence organisation, or structural potential, in the DNA to bring about nucleosome positioning.
Collapse
Affiliation(s)
- Ross M Fraser
- Institute of Cell Biology, University of Edinburgh, UK
| | | | | | | |
Collapse
|
66
|
Sun F, Xie Q, Ma J, Yang S, Chen Q, Hong A. Nuclear factor Y is required for basal activation and chromatin accessibility of fibroblast growth factor receptor 2 promoter in osteoblast-like cells. J Biol Chem 2008; 284:3136-3147. [PMID: 19047043 PMCID: PMC2631964 DOI: 10.1074/jbc.m808992200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Fibroblast growth factor receptor 2 (FGFR2) plays an important regulatory
role in bone development. However, the regulatory mechanisms controlling FGFR2
expression remain poorly understood. Here we have identified a role for the
nuclear factor Y (NF-Y) in constitutive activation of FGFR2. A unique DNase I
hypersensitive site was detected in the region encompassing nucleotides -270
to +230 after scanning a large range covering 33.3 kilobases around the
transcription start site of FGFR2. Using a PCR-based chromatin accessibility
assay, an open chromatin conformation was detected around the proximal
5′ fragment of FGFR2 gene. Deletion constructs of the 5′-flanking
region of FGFR2 were fused to a luciferase reporter gene. After transient
transfection in C3H10T1/2, ME3T3-E1, and C2C12 as well as primary osteoblasts,
a minimal region -86/+139 that is highly homologous to the human sequence and
bears a CCAAT box was identified as the core promoter. Electrophoretic
mobility shift assay supershift and chromatin immunoprecipitation demonstrated
that the CCAAT box was the binding site for NF-Y. Deletion of NF-Y consensus
sequence resulted in the total loss of NF-Y promoter activity. Overexpression
of NF-Y protein and transfection of NF-Y small interfering RNAs in the cells
substantially changed the promoter activity. Moreover, NF-Y small interfering
RNAs greatly inhibited the endogenous FGFR2 transcription level and the
chromatin accessibility and H3 acetylation across the promoter. Taken
together, our results demonstrate that interaction of NF-Y at the CCAAT box is
pivotal to FGFR2 gene transcription partly through the construction of a local
open chromatin configuration across the promoter.
Collapse
Affiliation(s)
- Fenyong Sun
- Institute of Genetic Engineering, Jinan University, National Engineering Research Center of Genetic Medicine, Key Lab for Genetic Medicine of Guangdong Province, Guangzhou 510632, China
| | - Qiuling Xie
- Institute of Genetic Engineering, Jinan University, National Engineering Research Center of Genetic Medicine, Key Lab for Genetic Medicine of Guangdong Province, Guangzhou 510632, China
| | - Ji Ma
- Institute of Genetic Engineering, Jinan University, National Engineering Research Center of Genetic Medicine, Key Lab for Genetic Medicine of Guangdong Province, Guangzhou 510632, China
| | - Songhai Yang
- Shaoguan Tielu Hospital, Shaoguan, 512023, Guangdong, China
| | - Qiongyu Chen
- Institute of Genetic Engineering, Jinan University, National Engineering Research Center of Genetic Medicine, Key Lab for Genetic Medicine of Guangdong Province, Guangzhou 510632, China
| | - An Hong
- Institute of Genetic Engineering, Jinan University, National Engineering Research Center of Genetic Medicine, Key Lab for Genetic Medicine of Guangdong Province, Guangzhou 510632, China.
| |
Collapse
|
67
|
Field Y, Kaplan N, Fondufe-Mittendorf Y, Moore IK, Sharon E, Lubling Y, Widom J, Segal E. Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Comput Biol 2008; 4:e1000216. [PMID: 18989395 PMCID: PMC2570626 DOI: 10.1371/journal.pcbi.1000216] [Citation(s) in RCA: 365] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 09/24/2008] [Indexed: 11/19/2022] Open
Abstract
The detailed positions of nucleosomes profoundly impact gene regulation and are partly encoded by the genomic DNA sequence. However, less is known about the functional consequences of this encoding. Here, we address this question using a genome-wide map of ∼380,000 yeast nucleosomes that we sequenced in their entirety. Utilizing the high resolution of our map, we refine our understanding of how nucleosome organizations are encoded by the DNA sequence and demonstrate that the genomic sequence is highly predictive of the in vivo nucleosome organization, even across new nucleosome-bound sequences that we isolated from fly and human. We find that Poly(dA:dT) tracts are an important component of these nucleosome positioning signals and that their nucleosome-disfavoring action results in large nucleosome depletion over them and over their flanking regions and enhances the accessibility of transcription factors to their cognate sites. Our results suggest that the yeast genome may utilize these nucleosome positioning signals to regulate gene expression with different transcriptional noise and activation kinetics and DNA replication with different origin efficiency. These distinct functions may be achieved by encoding both relatively closed (nucleosome-covered) chromatin organizations over some factor binding sites, where factors must compete with nucleosomes for DNA access, and relatively open (nucleosome-depleted) organizations over other factor sites, where factors bind without competition. The detailed positions of nucleosomes along genomes have critical roles in transcriptional regulation. Consequently, it is important to understand the principles that govern the organization of nucleosomes in vivo and the functional consequences of this organization. Here we report on progress in identifying the functional consequences of nucleosome organization, in understanding the way in which nucleosome organization is encoded in the DNA, and in linking the two, by suggesting that distinct transcriptional behaviors are encoded through the genome's intrinsic nucleosome organization. Our results thus provide insight on the broader question of understanding how transcriptional programs are encoded in the DNA sequence. These new insights were enabled by individually sequencing ∼380,000 nucleosomes from yeast in their entirety. Using this map, we refine our previous model for predicting nucleosome positions and demonstrate that our new model predicts nucleosome organizations in yeast with high accuracy and that its nucleosome positioning signals are predictive across eukaryotes. We show that the yeast genome may utilize these nucleosome positioning signals to encode regions with both relatively open (nucleosome-depleted) chromatin organizations and relatively closed (nucleosome-covered) chromatin organizations and that this encoding can partly explain aspects of transcription factor binding, gene expression, transcriptional noise, and DNA replication.
Collapse
Affiliation(s)
- Yair Field
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Kaplan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Yvonne Fondufe-Mittendorf
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois, United States of America
| | - Irene K. Moore
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois, United States of America
| | - Eilon Sharon
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Yaniv Lubling
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Jonathan Widom
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois, United States of America
- * E-mail: (JW); (ES)
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (JW); (ES)
| |
Collapse
|
68
|
Acetylation of Rsc4p by Gcn5p is essential in the absence of histone H3 acetylation. Mol Cell Biol 2008; 28:6967-72. [PMID: 18809572 DOI: 10.1128/mcb.00570-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rsc4p, a subunit of the RSC chromatin-remodeling complex, is acetylated at lysine 25 by Gcn5p, a well-characterized histone acetyltransferase (HAT). Mutation of lysine 25 does not result in a significant growth defect, and therefore whether this modification is important for the function of the essential RSC complex was unknown. In a search to uncover the molecular basis for the lethality resulting from loss of multiple histone H3-specific HATs, we determined that loss of Rsc4p acetylation is lethal in strains lacking histone H3 acetylation. Phenotype comparison of mutants with arginine and glutamine substitutions of acetylatable lysines within the histone H3 tail suggests that it is a failure to neutralize the charge of the H3 tail that is lethal in strains lacking Rsc4p acetylation. We also demonstrate that Rsc4p acetylation does not require any of the known Gcn5p-dependent HAT complexes and thus represents a truly novel function for Gcn5p. These results demonstrate for the first time the vital and yet redundant functions of histone H3 and Rsc4p acetylation in maintaining cell viability.
Collapse
|
69
|
Poirier MG, Bussiek M, Langowski J, Widom J. Spontaneous access to DNA target sites in folded chromatin fibers. J Mol Biol 2008; 379:772-86. [PMID: 18485363 DOI: 10.1016/j.jmb.2008.04.025] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
Abstract
DNA wrapped in nucleosomes is sterically occluded from many protein complexes that must act on it; how such complexes gain access to nucleosomal DNA is not known. In vitro studies on isolated nucleosomes show that they undergo spontaneous partial unwrapping conformational transitions, which make the wrapped nucleosomal DNA transiently accessible. Thus, site exposure might provide a general mechanism allowing access of protein complexes to nucleosomal DNA. However, existing quantitative analyses of site exposure focused on single nucleosomes, while the presence of neighbor nucleosomes and concomitant chromatin folding might significantly influence site exposure. In this work, we carried out quantitative studies on the accessibility of nucleosomal DNA in homogeneous nucleosome arrays. Two striking findings emerged. Organization into chromatin fibers changes the accessibility of nucleosomal DNA only modestly, from approximately 3-fold decreases to approximately 8-fold increases in accessibility. This means that nucleosome arrays are intrinsically dynamic and accessible even when they are visibly condensed. In contrast, chromatin folding decreases the accessibility of linker DNA by as much as approximately 50-fold. Thus, nucleosome positioning dramatically influences the accessibility of target sites located inside nucleosomes, while chromatin folding dramatically regulates access to target sites in linker DNA.
Collapse
Affiliation(s)
- Michael G Poirier
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA
| | | | | | | |
Collapse
|
70
|
Ultrasensitive gene regulation by positive feedback loops in nucleosome modification. Mol Syst Biol 2008; 4:182. [PMID: 18414483 PMCID: PMC2387233 DOI: 10.1038/msb.2008.21] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 02/25/2008] [Indexed: 11/09/2022] Open
Abstract
Eukaryotic transcription involves the synergistic interaction of many different proteins. However, the question remains how eukaryotic promoters achieve ultrasensitive or threshold responses to changes in the concentration or activity of a single transcription factor (TF). We show theoretically that by recruiting a histone-modifying enzyme, a TF binding non-cooperatively to a single site can change the balance between opposing positive feedback loops in histone modification to produce a large change in gene expression in response to a small change in concentration of the TF. This mechanism can also generate bistable promoter responses, allowing a gene to be on in some cells and off in others, despite the cells being in identical conditions. In addition, the system provides a simple means by which the activities of many TFs could be integrated at a promoter.
Collapse
|
71
|
Ferreira H, Flaus A, Owen-Hughes T. Histone modifications influence the action of Snf2 family remodelling enzymes by different mechanisms. J Mol Biol 2007; 374:563-79. [PMID: 17949749 PMCID: PMC2279226 DOI: 10.1016/j.jmb.2007.09.059] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 08/27/2007] [Accepted: 09/10/2007] [Indexed: 11/25/2022]
Abstract
Alteration of chromatin structure by chromatin modifying and remodelling activities is a key stage in the regulation of many nuclear processes. These activities are frequently interlinked, and many chromatin remodelling enzymes contain motifs that recognise modified histones. Here we adopt a peptide ligation strategy to generate specifically modified chromatin templates and used these to study the interaction of the Chd1, Isw2 and RSC remodelling complexes with differentially acetylated nucleosomes. Specific patterns of histone acetylation are found to alter the rate of chromatin remodelling in different ways. For example, histone H3 lysine 14 acetylation acts to increase recruitment of the RSC complex to nucleosomes. However, histone H4 tetra-acetylation alters the spectrum of remodelled products generated by increasing octamer transfer in trans. In contrast, histone H4 tetra-acetylation was also found to reduce the activity of the Chd1 and Isw2 remodelling enzymes by reducing catalytic turnover without affecting recruitment. These observations illustrate a range of different means by which modifications to histones can influence the action of remodelling enzymes.
Collapse
Affiliation(s)
- Helder Ferreira
- Division of Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | | | | |
Collapse
|
72
|
Abstract
Histone modifications such as acetylation, methylation and phosphorylation have been implicated in fundamental cellular processes such as epigenetic regulation of gene expression, organization of chromatin structure, chromosome segregation, DNA replication and DNA repair. Males absent on the first (MOF) is responsible for acetylating histone H4 at lysine 16 (H4K16) and is a key component of the MSL complex required for dosage compensation in Drosophila. The human ortholog of MOF (hMOF) has the same substrate specificity and recent purification of the human and Drosophila MOF complexes showed that these complexes were also highly conserved through evolution. Several studies have shown that loss of hMOF in mammalian cells leads to a number of different phenotypes; a G2/M cell cycle arrest, nuclear morphological defects, spontaneous chromosomal aberrations, reduced transcription of certain genes and an impaired DNA repair response upon ionizing irradiation. Moreover, hMOF is involved in ATM activation in response to DNA damage and acetylation of p53 by hMOF influences the cell's decision to undergo apoptosis instead of a cell cycle arrest. These data, highlighting hMOF as an important component of many cellular processes, as well as links between hMOF and cancer will be discussed.
Collapse
Affiliation(s)
- S Rea
- Gene Expression Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
73
|
Zhang L, Su X, Liu S, Knapp AR, Parthun MR, Marcucci G, Freitas MA. Histone H4 N-terminal acetylation in Kasumi-1 cells treated with depsipeptide determined by acetic acid-urea polyacrylamide gel electrophoresis, amino acid coded mass tagging, and mass spectrometry. J Proteome Res 2007; 6:81-8. [PMID: 17203951 PMCID: PMC2759876 DOI: 10.1021/pr060139u] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Disrupted patterns of acetylation and deacetylation of core histones play an important role in silencing transcription of hematopoietic important genes in acute myeloid leukemia (AML). A thorough investigation of these mechanisms and the response to pharmacologic modifiers will provide a better understanding of the role of histone acetylation in leukemogenesis. We describe here an analytical approach that combines acid urea polyacrylamide gel electrophoresis (AU-PAGE), amino acid coded mass tagging (AACM), and mass spectrometry (MS) for the investigation of histone acetylation patterns. The combined approach was used to follow the dynamics of H4 acetylation in Kasumi-1 cells harboring the fusion gene AML1/ETO shown to aberrantly recruit histone deacetylases (HDACs). The histones in Kasumi-1 cells were labeled by growing the cells in media in which lysine was replaced with stable isotope-labeled lysine (Lys-D4). Labeled and unlabeled cells were treated with depsipeptide and analyzed at different time points (0, 4, 8, 12, 24, and 48 h). The cells were mixed, the histone was extracted, and acetylated H4 isoforms were separated using AU-PAGE before in-gel trypsin digestion. The digests were analyzed by MALDI-TOF MS. Peptides were identified by mass and isotope pattern. LC-MS/MS of Arg-C digests were also performed to verify the acetylation pattern for H4. The major pattern of acetylation was determined as follows: initial acetylation at K16, followed by acetylation at K12, and finally acetylation of either K8 and/or K5.
Collapse
|
74
|
|
75
|
Ferreira H, Somers J, Webster R, Flaus A, Owen-Hughes T. Histone tails and the H3 alphaN helix regulate nucleosome mobility and stability. Mol Cell Biol 2007; 27:4037-48. [PMID: 17387148 PMCID: PMC1900026 DOI: 10.1128/mcb.02229-06] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleosomes fulfill the apparently conflicting roles of compacting DNA within eukaryotic genomes while permitting access to regulatory factors. Central to this is their ability to stably associate with DNA while retaining the ability to undergo rearrangements that increase access to the underlying DNA. Here, we have studied different aspects of nucleosome dynamics including nucleosome sliding, histone dimer exchange, and DNA wrapping within nucleosomes. We find that alterations to histone proteins, especially the histone tails and vicinity of the histone H3 alphaN helix, can affect these processes differently, suggesting that they are mechanistically distinct. This raises the possibility that modifications to histone proteins may provide a means of fine-tuning specific aspects of the dynamic properties of nucleosomes to the context in which they are located.
Collapse
Affiliation(s)
- Helder Ferreira
- Division of Gene Regulation and Expression, The Wellcome Trust Biocentre, Department of Biochemistry, University of Dundee, Dundee, United Kingdom
| | | | | | | | | |
Collapse
|
76
|
Evans-Molina C, Garmey JC, Ketchum R, Brayman KL, Deng S, Mirmira RG. Glucose regulation of insulin gene transcription and pre-mRNA processing in human islets. Diabetes 2007; 56:827-835. [PMID: 17327454 PMCID: PMC3705758 DOI: 10.2337/db06-1440] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glucose is the primary regulator of insulin granule release from pancreatic islets. In rodent islets, the role of glucose in the acute regulation of insulin gene transcription has remained unclear, primarily because the abundance and long half-life of insulin mRNA confounds analysis of transcription by traditional methods that measure steady-state mRNA levels. To investigate the nature of glucose-regulated insulin gene transcription in human islets, we first quantitated the abundance and half-lives of insulin mRNA and pre-mRNAs after addition of actinomycin D (to stop transcription). Our results indicated that intron 1-and intron 2-containing pre-mRNAs were approximately 150- and 2,000-fold less abundant, respectively, than mature mRNA. 5' intron 2-containing pre-mRNAs displayed half-lives of only approximately 60 min, whereas all other transcripts displayed more extended lifetimes. In response to elevated glucose, pre-mRNA species increased within 60 min, whereas increases in mature mRNA did not occur until 48 h, suggesting that measurement of mature mRNA species does not accurately reflect the acute transcriptional response of the insulin gene to glucose. The acute increase in pre-mRNA species was preceded by a sixfold increase in histone H4 acetylation and a twofold increase in RNA polymerase II recruitment at the insulin promoter. Taken together, our data suggest that pre-mRNA species may be a more reliable reflection of acute changes to human insulin gene transcriptional rates and that glucose acutely enhances insulin transcription by a mechanism that enhances chromatin accessibility and leads to recruitment of basal transcriptional machinery.
Collapse
Affiliation(s)
| | - James C. Garmey
- Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Robert Ketchum
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Kenneth L. Brayman
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Shaoping Deng
- Human Islet Laboratory, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|
77
|
Roberts SA, Ramsden DA. Loading of the nonhomologous end joining factor, Ku, on protein-occluded DNA ends. J Biol Chem 2007; 282:10605-13. [PMID: 17289670 DOI: 10.1074/jbc.m611125200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nonhomologous end joining pathway for DNA double strand break repair requires Ku to bind DNA ends and subsequently recruit other nonhomologous end joining factors, including the DNA-dependent protein kinase catalytic subunit and the XRCC4-Ligase IV complex, to the break site. Ku loads at a break by threading the DNA ends through a circular channel in its structure. This binding mechanism explains both the high specificity of Ku for ends and its ability to translocate along DNA once loaded. However, DNA in cells is typically coated with other proteins (e.g. histones), which might be expected to block the ability of Ku to load in this manner. Here we address how the nature of a protein obstruction dictates how Ku interacts with a DNA end. Ku is unable to access the ends within an important intermediate in V(D)J recombination (a complex of RAG proteins bound to cleaved recombination targeting signals), but Ku readily displaces the linker histone, H1, from DNA. Ku also retains physiological affinity for nucleosome-associated ends. Loading onto nucleosome-associated ends still occurs by threading the end through its channel, but rather than displacing the nucleosome, Ku peels as much as 50 bp of DNA away from the histone octamer surface. We suggest a model where Ku utilizes an unusual characteristic of its three-dimensional structure to recognize certain protein-occluded ends without the extensive remodeling of chromatin structure required by other DNA repair pathways.
Collapse
Affiliation(s)
- Steven A Roberts
- Lineberger Comprehensive Cancer Center and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
78
|
Bertin A, Renouard M, Pedersen JS, Livolant F, Durand D. H3 and H4 histone tails play a central role in the interactions of recombinant NCPs. Biophys J 2007; 92:2633-45. [PMID: 17237203 PMCID: PMC1864844 DOI: 10.1529/biophysj.106.093815] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Using small-angle x-ray scattering, we probe the effect of histone tails on both internucleosomal interactions and nucleosome conformation. To get insight into the specific role of H3 and H4 histone tails, perfectly monodisperse recombinant nucleosome core particles were reconstituted, either intact or deprived of both H3 and H4 histone tails (gH3gH4). The main result is that H3 and H4 histone tails are necessary to induce attractive interactions between NCPs. A pair potential model was used to describe interactions between NCPs. At all salt concentrations, interactions between gH3gH4 NCPs are best described by repulsive interactions exclusively. For intact NCPs, an additional attractive term, with a 5-10 kT magnitude and 20 A range, is required to account for interparticle interactions above 50 mM monovalent salt. Regarding conformation, intact NCPs in solution are similar to NCPs in 3D crystals. gH3gH4 NCPs instead give rise to slightly different small-angle x-ray scattering curves that can be understood as a more opened conformation of the particle, where DNA ends are slightly detached from the core.
Collapse
Affiliation(s)
- Aurélie Bertin
- Laboratoire de Physique des Solides, Centre National de la Recherche Scientifique, UMR 8502, Université Paris-Sud, 91405 Orsay Cédex, France.
| | | | | | | | | |
Collapse
|
79
|
Francis J, Babu DA, Deering TG, Chakrabarti SK, Garmey JC, Evans-Molina C, Taylor DG, Mirmira RG. Role of chromatin accessibility in the occupancy and transcription of the insulin gene by the pancreatic and duodenal homeobox factor 1. Mol Endocrinol 2006; 20:3133-45. [PMID: 16901969 PMCID: PMC3617569 DOI: 10.1210/me.2006-0126] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The pancreatic and duodenal homeobox factor 1 (Pdx-1) is a Hox-like transcription factor that is responsible for the activation of the insulin gene. Previous studies have demonstrated the interaction in vitro of Pdx-1 with short (20-40 nucleotide) DNA fragments corresponding to A boxes of the insulin promoter. Precisely how Pdx-1 binds to DNA in the complex milieu of chromatin, however, has never been studied. In this study, we explored how Pdx-1-DNA interactions might be influenced by chromatin accessibility at the insulin gene in beta-cells (betaTC3) vs. pancreatic ductal cells (mPAC). We demonstrate that Pdx-1 occupies the endogenous insulin promoter in betaTC3 cells but not in mPAC cells, a finding that is independent of the intracellular Pdx-1 protein concentration. Based on micrococcal nuclease protection assays, the difference in promoter binding between the two cell types appears to be secondary to chromatin accessibility at predicted Pdx-1 binding sites between bp -126 to -296 (relative to the transcriptional start site) of the insulin promoter. Binding studies using purified Pdx-1 and reconstituted chromatin in vitro suggest that the positioning of a nucleosome(s) within this crucial region of the promoter might account for differences in chromatin accessibility. Consistent with these observations, fluorescence colocalization studies show that Pdx-1 does not occupy regions of compacted, nucleosome-rich chromatin within the nucleus. Our findings suggest a model whereby insulin transcription in the beta-cell is at least partially facilitated by enhanced chromatin accessibility within a crucial regulatory region between bp -126 to -296, thereby permitting occupancy by transactivators such as Pdx-1.
Collapse
Affiliation(s)
- Joshua Francis
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Daniella A. Babu
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Tye G. Deering
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Swarup K. Chakrabarti
- Department of Medicine and the Diabetes Center, University of Virginia, Charlottesville, VA 22908
| | - James C. Garmey
- Department of Medicine and the Diabetes Center, University of Virginia, Charlottesville, VA 22908
| | - Carmella Evans-Molina
- Department of Medicine and the Diabetes Center, University of Virginia, Charlottesville, VA 22908
| | - David G. Taylor
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Raghavendra G. Mirmira
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
- Department of Medicine and the Diabetes Center, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
80
|
Calestagne-Morelli A, Ausió J. Long-range histone acetylation: biological significance, structural implications, and mechanismsThis paper is one of a selection of papers published in this Special Issue, entitled 27th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process. Biochem Cell Biol 2006; 84:518-27. [PMID: 16936824 DOI: 10.1139/o06-067] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Genomic characterization of various euchromatic regions in higher eukaryotes has revealed that domain-wide hyperacetylation (over several kb) occurs at a range of loci, including individual genes, gene family clusters, compound clusters, and more general clusters of unrelated genes. Patterns of long-range histone hyperacetylation are strictly conserved within each unique cellular system studied and they reflect biological variability in gene regulation. Domain-wide histone acetylation consists generally of nonuniform peaks of enriched hyperacetylation of specific core histones, histone isoforms, and (or) histone variants against a backdrop of nonspecific acetylation across the domain in question. Here we review the characteristics of long-range histone acetylation in some higher eukaryotes and draw special attention to recent literature on the multiple effects that histone hyperacetylation has on chromatin’s structural integrity and how they affect transcription. These include the thermal, ionic, cumulative, and isoform-specific (H4 K16) consequences of acetylation that result in a more dynamic core complex and chromatin fiber.
Collapse
Affiliation(s)
- Alison Calestagne-Morelli
- Department of Biochemistry and Microbiology, University of Victoria, Petch building, 220, Victoria, BC V8W 3P6, Canada
| | | |
Collapse
|
81
|
Mersfelder EL, Parthun MR. The tale beyond the tail: histone core domain modifications and the regulation of chromatin structure. Nucleic Acids Res 2006; 34:2653-62. [PMID: 16714444 PMCID: PMC1464108 DOI: 10.1093/nar/gkl338] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Histone post-translational modifications occur, not only in the N-terminal tail domains, but also in the core domains. While modifications in the N-terminal tail function largely through the regulation of the binding of non-histone proteins to chromatin, based on their location in the nucleosome, core domain modifications may also function through distinct mechanisms involving structural alterations to the nucleosome. This article reviews the recent developments in regards to these novel histone modifications and discusses their important role in the regulation of chromatin structure.
Collapse
Affiliation(s)
| | - Mark R. Parthun
- To whom correspondence should be addressed. Tel: +1 614 292 6215; Fax: +1 614 292 4118;
| |
Collapse
|
82
|
Affiliation(s)
- Kensal van Holde
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA.
| | | |
Collapse
|
83
|
Millar CB, Xu F, Zhang K, Grunstein M. Acetylation of H2AZ Lys 14 is associated with genome-wide gene activity in yeast. Genes Dev 2006; 20:711-22. [PMID: 16543223 PMCID: PMC1413291 DOI: 10.1101/gad.1395506] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Histone variants and their post-translational modifications help regulate chromosomal functions. Htz1 is an evolutionarily conserved H2A variant found at several promoters in the yeast Saccharomyces cerevisiae. In this study, we undertook a genome-wide analysis of Htz1 and its modifications in yeast. Using mass spectrometric analysis, we determined that Htz1 is acetylated at Lys 3, Lys 8, Lys 10, and Lys 14 within its N-terminal tail, with K14 being the most abundant acetylated site. ChIP and microarray analysis were then used to compare the location of Htz1-K14 acetylation to that of Htz1 genome-wide. The data presented here demonstrate that while Htz1 is associated preferentially with the promoters of repressed genes, K14 acetylation is enriched at the promoters of active genes, and requires two known histone acetyltransferases, Gcn5 and Esa1. In support of our genome-wide analysis, we found that the acetylatable lysines of Htz1 are required for its full deposition during nucleosome reassembly upon repression of PHO5. Since the majority of Htz1 acetylation is seen at active promoters, where nucleosomes are known to be disassembled, our data argue for a dynamic process in which reassembly of Htz1 is regulated by its acetylation at promoters during transcription.
Collapse
Affiliation(s)
- Catherine B Millar
- Department of Biological Chemistry, Geffen School of Medicine and the Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
84
|
Kampmann M. Facilitated diffusion in chromatin lattices: mechanistic diversity and regulatory potential. Mol Microbiol 2005; 57:889-99. [PMID: 16091032 DOI: 10.1111/j.1365-2958.2005.04707.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The interaction between a protein and a specific DNA site is the molecular basis for vital processes in all organisms. Location of the DNA target site by the protein commonly involves facilitated diffusion. Mechanisms of facilitated diffusion vary among proteins; they include one- and two-dimensional sliding along DNA, direct transfer between uncorrelated sites, as well as combinations of these mechanisms. Facilitated diffusion has almost exclusively been studied in vitro. This review discusses facilitated diffusion in the context of the living cell and proposes a theoretical model for facilitated diffusion in chromatin lattices. Chromatin structure differentially affects proteins in different modes of diffusion. The interplay of facilitated diffusion and chromatin structure can determine the rate of protein association with the target site, the frequency of association-dissociation events at the target site, and, under particular conditions, the occupancy of the target site. Facilitated diffusion is required in vivo for efficient DNA repair and bacteriophage restriction and has potential roles in fine-tuning gene regulatory networks and kinetically compartmentalizing the eukaryotic nucleus.
Collapse
Affiliation(s)
- Martin Kampmann
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
85
|
Nusinzon I, Horvath CM. Histone deacetylases as transcriptional activators? Role reversal in inducible gene regulation. Sci Signal 2005; 2005:re11. [PMID: 16091625 DOI: 10.1126/stke.2962005re11] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Histone deacetylation enzymes have often been associated with the suppression of eukaryotic gene transcription. In contrast, recent studies of inducible gene regulation indicate that protein deacetylation can also be required as a transcriptional activation signal. The concept of protein deacetylation as a requirement for transcription activation seems to contradict earlier conclusions about the function of deacetylation in gene suppression. However, in the context of a more global interpretation, these opposing effects of deacetylation imply its dynamic role in the overall control of gene expression. The exact requirement for deacetylation differs among promoters, depending on their specific architecture and regulation scenario.
Collapse
Affiliation(s)
- Inna Nusinzon
- Department of Medicine, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
86
|
Gemmen GJ, Sim R, Haushalter KA, Ke PC, Kadonaga JT, Smith DE. Forced Unraveling of Nucleosomes Assembled on Heterogeneous DNA Using Core Histones, NAP-1, and ACF. J Mol Biol 2005; 351:89-99. [PMID: 16002089 DOI: 10.1016/j.jmb.2005.05.058] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 05/23/2005] [Accepted: 05/26/2005] [Indexed: 11/24/2022]
Abstract
Periodic arrays of nucleosomes were assembled on heterogeneous DNA using core histones, the histone chaperone NAP-1, and ATP-dependent chromatin assembly and remodeling factor (ACF). The mechanical properties of these complexes were interrogated by stretching them with optical tweezers. Abrupt events releasing approximately 55-95 base-pairs of DNA, attributable to the non-equilibrium unraveling of individual nucleosomes, were frequently observed. This finding is comparable with a previous observation of 72-80 bp unraveling events for nucleosomes assembled by salt dialysis on a repeating sea urchin 5 S RNA positioning element, but the unraveling force varied over a wider range ( approximately 5-65 pN, with the majority of events at lower force). Because ACF assembles nucleosomes uniformly on heterogeneous DNA sequences, as in native chromatin, we attribute this variation to a dependence of the unraveling force on the DNA sequence within individual nucleosomes. The mean force increased from 24 pN to 31 pN as NaCl was decreased from 100 mM to 5 mM. Spontaneous DNA re-wrapping events were occasionally observed in real time during force relaxation. The observed wide variations in the dynamic force needed to unravel individual nucleosomes and the occurrences of sudden DNA re-wrapping events may have an important regulatory influence on DNA-directed nuclear processes, such as the binding of transcription factors and the movement of polymerase complexes on chromatin.
Collapse
Affiliation(s)
- Gregory J Gemmen
- Physics Department, University of California, San Diego, 9500 Gilman, La Jolla, CA 92093-0379, USA
| | | | | | | | | | | |
Collapse
|
87
|
Tamburini BA, Tyler JK. Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair. Mol Cell Biol 2005; 25:4903-13. [PMID: 15923609 PMCID: PMC1140608 DOI: 10.1128/mcb.25.12.4903-4913.2005] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many recent studies have demonstrated recruitment of chromatin-modifying enzymes to double-strand breaks. Instead, we wanted to examine chromatin modifications during the repair of these double-strand breaks. We show that homologous recombination triggers the acetylation of N-terminal lysines on histones H3 and H4 flanking a double-strand break, followed by deacetylation of H3 and H4. Consistent with a requirement for acetylation and deacetylation during homologous recombination, Saccharomyces cerevisiae with substitutions of the acetylatable lysines of histone H4, deleted for the N-terminal tail of histone H3 or H4, deleted for the histone acetyltransferase GCN5 gene or the histone deacetylase RPD3 gene, shows inviability following induction of an HO lesion that is repaired primarily by homologous recombination. Furthermore, the histone acetyltransferases Gcn5 and Esa1 and the histone deacetylases Rpd3, Sir2, and Hst1 are recruited to the HO lesion during homologous recombinational repair. We have also observed a distinct pattern of histone deacetylation at the donor locus during homologous recombination. Our results demonstrate that dynamic changes in histone acetylation accompany homologous recombination and that the ability to modulate histone acetylation is essential for viability following homologous recombination.
Collapse
Affiliation(s)
- Beth A Tamburini
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center at Fitzsimons, P.O. Box 6511, Aurora, CO 80045, USA
| | | |
Collapse
|
88
|
Reed SH. Nucleotide excision repair in chromatin: The shape of things to come. DNA Repair (Amst) 2005; 4:909-18. [PMID: 15905137 DOI: 10.1016/j.dnarep.2005.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2005] [Indexed: 11/26/2022]
Abstract
Much of our mechanistic understanding of nucleotide excision repair (NER) has been derived from biochemical studies that have analysed the reaction as it occurs on DNA substrates that are not representative of DNA as it exists in the living cell. These studies have been extremely useful in deciphering the core mechanism of the NER reaction, but efforts to understand how NER operates in chromatin have been hampered in part because assembling DNA into nucleosomes, the first level of chromatin compaction, is inhibitory to NER in vitro. However, recent research using biochemical, genetic and cell-based studies is now providing us with the first insights into the molecular mechanism of NER as it occurs in the cellular context. A number of recent studies have provided glimpses of a chromatin--NER connection. Here I review this literature and evaluate how it might aid our understanding, and shape our future research into NER.
Collapse
Affiliation(s)
- Simon H Reed
- Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
89
|
Sekinger EA, Moqtaderi Z, Struhl K. Intrinsic Histone-DNA Interactions and Low Nucleosome Density Are Important for Preferential Accessibility of Promoter Regions in Yeast. Mol Cell 2005; 18:735-48. [PMID: 15949447 DOI: 10.1016/j.molcel.2005.05.003] [Citation(s) in RCA: 266] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 04/27/2005] [Accepted: 05/05/2005] [Indexed: 01/16/2023]
Abstract
In yeast cells, preferential accessibility of the HIS3-PET56 promoter region is determined by a general property of the DNA sequence, not by defined sequence elements. In vivo, this region is largely devoid of nucleosomes, and accessibility is directly related to reduced histone density. The HIS3-PET56 and DED1 promoter regions associate poorly with histones in vitro, indicating that intrinsic nucleosome stability is a major determinant of preferential accessibility. Specific and genome-wide analyses indicate that low nucleosome density is a very common feature of yeast promoter regions that correlates poorly with transcriptional activation. Thus, the yeast genome is organized into structurally distinct promoter and nonpromoter regions whose DNA sequences inherently differ with respect to nucleosome formation. This organization ensures that transcription factors bind preferentially to appropriate sites in promoters, rather than to the excess of irrelevant sites in nonpromoter regions.
Collapse
Affiliation(s)
- Edward A Sekinger
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
90
|
Beard BC, Stevenson JJ, Wilson SH, Smerdon MJ. Base excision repair in nucleosomes lacking histone tails. DNA Repair (Amst) 2005; 4:203-9. [PMID: 15590328 DOI: 10.1016/j.dnarep.2004.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2004] [Accepted: 09/18/2004] [Indexed: 10/26/2022]
Abstract
Recently, we developed an in vitro system using human uracil DNA glycosylase (UDG), AP endonuclease (APE), DNA polymerase beta (pol beta) and rotationally positioned DNA containing a single uracil associated with a 'designed' nucleosome, to test short-patch base excision repair (BER) in chromatin. We found that UDG and APE carry out their catalytic activities with reduced efficiency on nucleosome substrates, showing a distinction between uracil facing 'out' or 'in' from the histone surface, while DNA polymerase beta (pol beta) is completely inhibited by nucleosome formation. In this report, we tested the inhibition of BER enzymes by the N-terminal 'tails' of core histones that take part in both inter- and intra-nucleosome interactions, and contain sites of post-translational modifications. Histone tails were removed by limited trypsin digestion of 'donor' nucleosome core particles and histone octamers were exchanged onto a nucleosome-positioning DNA sequence containing a single G:U mismatch. The data indicate that UDG and APE activities are not significantly enhanced with tailless nucleosomes, and the distinction between rotational settings of uracil on the histone surface is unaffected. More importantly, the inhibition of pol beta activity is not relieved by removal of the histone tails, even though these tails interact with DNA in the G:U mismatch region. Finally, inclusion of X-ray cross complement group protein 1 (XRCC1) or Werner syndrome protein (WRN) had no effect on the BER reactions. Thus, additional activities may be required in cells for efficient BER of at least some structural domains in chromatin.
Collapse
Affiliation(s)
- Brian C Beard
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660, USA
| | | | | | | |
Collapse
|
91
|
Dion MF, Altschuler SJ, Wu LF, Rando OJ. Genomic characterization reveals a simple histone H4 acetylation code. Proc Natl Acad Sci U S A 2005; 102:5501-6. [PMID: 15795371 PMCID: PMC555684 DOI: 10.1073/pnas.0500136102] [Citation(s) in RCA: 289] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The histone code hypothesis holds that covalent posttranslational modifications of histone tails are interpreted by the cell to yield a rich combinatorial transcriptional output. This hypothesis has been the subject of active debate in the literature. Here, we investigated the combinatorial complexity of the acetylation code at the four lysine residues of the histone H4 tail in budding yeast. We constructed yeast strains carrying all 15 possible combinations of mutations among lysines 5, 8, 12, and 16 to arginine in the histone H4 tail, mimicking positively charged, unacetylated lysine states, and characterized the resulting genome-wide changes in gene expression by using DNA microarrays. Only the lysine 16 mutation had specific transcriptional consequences independent of the mutational state of the other lysines (affecting approximately 100 genes). In contrast, for lysines 5, 8, and 12, expression changes were due to nonspecific, cumulative effects seen as increased transcription correlating with an increase in the total number of mutations (affecting approximately 1,200 genes). Thus, acetylation of histone H4 is interpreted by two mechanisms: a specific mechanism for lysine 16 and a nonspecific, cumulative mechanism for lysines 5, 8, and 12.
Collapse
Affiliation(s)
- Michael F Dion
- Bauer Center for Genomics Research, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
92
|
Brower-Toland B, Wacker DA, Fulbright RM, Lis JT, Kraus WL, Wang MD. Specific contributions of histone tails and their acetylation to the mechanical stability of nucleosomes. J Mol Biol 2004; 346:135-46. [PMID: 15663933 DOI: 10.1016/j.jmb.2004.11.056] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 11/21/2004] [Accepted: 11/22/2004] [Indexed: 12/22/2022]
Abstract
The distinct contributions of histone tails and their acetylation to nucleosomal stability were examined by mechanical disruption of individual nucleosomes in a single chromatin fiber using an optical trap. Enzymatic removal of H2A/H2B tails primarily decreased the strength of histone-DNA interactions located approximately +/-36bp from the dyad axis of symmetry (off-dyad strong interactions), whereas removal of the H3/H4 tails played a greater role in regulating the total amount of DNA bound. Similarly, nucleosomes composed of histones acetylated to different degrees by the histone acetyltransferase p300 exhibited significant decreases in the off-dyad strong interactions and the total amount of DNA bound. Acetylation of H2A/H2B appears to play a particularly critical role in weakening the off-dyad strong interactions. Collectively, our results suggest that the destabilizing effects of tail acetylation may be due to elimination of specific key interactions in the nucleosome.
Collapse
Affiliation(s)
- Brent Brower-Toland
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
93
|
Abstract
During DNA replication, transcription and DNA repair in eukaryotes, the cellular machineries performing these tasks need to gain access to the DNA that is packaged into chromatin in the nucleus. Chromatin is a dynamic structure that modulates the access of regulatory factors to the genetic material. A precise coordination and organization of events in opening and closing of the chromatin is crucial to ensure that the correct spatial and temporal epigenetic code is maintained within the eukaryotic genome. This review will summarize the current knowledge of how chromatin remodeling and histone modifying complexes cooperate to break and remake chromatin during nuclear processes on the DNA template.
Collapse
|
94
|
Patenge N, Elkin SK, Oettinger MA. ATP-dependent remodeling by SWI/SNF and ISWI proteins stimulates V(D)J cleavage of 5 S arrays. J Biol Chem 2004; 279:35360-7. [PMID: 15201272 DOI: 10.1074/jbc.m405790200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Control of V(D)J recombination is critical for the generation of a fully developed immune repertoire. The molecular mechanisms underlying the regulation of antigen receptor gene assembly are beginning to be revealed. Here we studied the influence of chromatin modifications on V(D)J cleavage of a polynucleosomal substrate, in which V(D)J cleavage is greatly reduced compared with naked DNA. ATP-dependent remodeling by human SWI/SNF (hSWI/SNF) in the presence of HMG1 led to a substantial increase of cleavage by the recombination activation gene (RAG) proteins. Either BRG1, the ATPase subunit of hSWI/SNF, or SNF2h, the ATPase of human ISWI complexes, was capable of stimulating V(D)J cleavage of the array, although these remodelers act by different mechanisms. No effect of histone hyperacetylation was detectable in this system. As is observed on naked DNA, in the presence of core RAG1, the full-length RAG2 protein proved to be more active than core RAG2 on these polynucleosomal arrays, reinforcing the importance of the RAG2 C-terminal domain for efficient recombination. Comparison of 5 S array cleavage by the RAG proteins or by the restriction enzyme HhaI after remodeling by hSWI/SNF suggested that RAG proteins and HhaI might have different requirements for maximal accessibility of the substrate.
Collapse
Affiliation(s)
- Nadja Patenge
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
95
|
Chromosomal HMG-box proteins. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0167-7306(03)39005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
96
|
Tsai CC, Fondell JD. Nuclear Receptor Recruitment of Histone-Modifying Enzymes to Target Gene Promoters. NUCLEAR RECEPTOR COREGULATORS 2004; 68:93-122. [PMID: 15193452 DOI: 10.1016/s0083-6729(04)68003-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nuclear receptors (NRs) compose one of the largest known families of eukaryotic transcription factors and, as such, serve as a paradigm for understanding the fundamental molecular mechanisms of eukaryotic transcriptional regulation. The packaging of eukaryotic genomic DNA into a higher ordered chromatin structure, which generally acts as a barrier to transcription by inhibiting transcription factor accessibility, has a major influence on the mechanisms by which NRs activate or repress gene expression. A major breakthrough in the field's understanding of these mechanisms comes from the recent identification of NR-associated coregulatory factors (i.e., coactivators and corepressors). Although several of these NR cofactors are involved in chromatin remodeling and facilitating the recruitment of the basal transcription machinery, the focus of this chapter is on NR coactivators and corepressors that act to covalently modify the amino-terminal tails of core histones. These modifications (acetylation, methylation, and phosphorylation) are thought to directly affect chromatin structure and?or serve as binding surfaces for other coregulatory proteins. This chapter presents the most current models for NR recruitment of histone-modifying enzymes and then summarizes their functional importance in NR-associated gene expression.
Collapse
Affiliation(s)
- Chih-Cheng Tsai
- Department of Physiology and Biophysics, UMDNJ, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
97
|
Chakrabarti SK, Francis J, Ziesmann SM, Garmey JC, Mirmira RG. Covalent histone modifications underlie the developmental regulation of insulin gene transcription in pancreatic beta cells. J Biol Chem 2003; 278:23617-23. [PMID: 12711597 DOI: 10.1074/jbc.m303423200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone modifying enzymes contribute to the activation or inactivation of transcription by ultimately catalyzing the unfolding or further compaction, respectively, of chromatin structure. Actively transcribed genes are typically hyperacetylated at Lys residues of histones H3 and H4 and hypermethylated at Lys-4 of histone H3 (H3-K4). To determine whether covalent histone modifications play a role in the beta cell-specific expression of the insulin gene, we performed chromatin immunoprecipitation assays using anti-histone antibodies and extracts from beta cell lines, non-beta cell lines, and ES cells, and quantitated specific histone modifications at the insulin promoter by real-time PCR. Our studies reveal that the proximal insulin promoter is hyperacetylated at histone H3 only in beta cells. This hyperacetylation is highly correlated to recruitment of the histone acetyltransferase p300 to the proximal promoter in beta cells, and is consistent with the role of hyperacetylation in promoting euchromatin formation. We also observed that the proximal insulin promoter of beta cells is hypermethylated at H3-K4, and that this modification is correlated to the recruitment of the histone methyltransferase SET7/9 to the promoter. ES cells demonstrate a histone modification pattern intermediate between that of beta cells and non-beta cells, and is consistent with their potential to express the insulin gene. We therefore propose a model in which insulin transcription in the beta cell is facilitated by a unique combination of transcription factors that acts in the setting of an open, euchromatic structure of the insulin gene.
Collapse
Affiliation(s)
- Swarup K Chakrabarti
- Department of Internal Medicine, University of Virginia Health Sciences Center, Charlottesville, Virginia 22903, USA
| | | | | | | | | |
Collapse
|
98
|
Cacchione S, Luis Rodríguez J, Mechelli R, Franco L, Savino M. Acetylated nucleosome assembly on telomeric DNAs. Biophys Chem 2003; 104:381-92. [PMID: 12878307 DOI: 10.1016/s0301-4622(03)00028-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The role of histone N-terminal domains on the thermodynamic stability of nucleosomes assembled on several different telomeric DNAs as well as on 'average' sequence DNA and on strong nucleosome positioning sequences, has been studied by competitive reconstitution. We find that histone tails hyperacetylation favors nucleosome formation, in a similar extent for all the examined sequences. On the contrary, removal of histone terminal domains by selective trypsinization causes a decrease of nucleosome stability which is smaller for telomeres compared to the other sequences examined, suggesting that telomeric sequences have only minor interactions with histone tails. Micrococcal nuclease kinetics shows enhanced accessibility of acetylated nucleosomes formed both on telomeric and 'average' sequence DNAs. These results suggest a more complex role for histone acetylation than the decrease of electrostatic interactions between DNA and histones.
Collapse
Affiliation(s)
- Stefano Cacchione
- Dipartimento di Genetica e Biologia Molecolare, Fondazione Istituto Pasteur-Fondazione Cenci Bolognetti, Università di Roma La Sapienza, Piazzale A. Moro 5, 00185, Roma, Italy
| | | | | | | | | |
Collapse
|
99
|
Boeger H, Griesenbeck J, Strattan JS, Kornberg RD. Nucleosomes unfold completely at a transcriptionally active promoter. Mol Cell 2003; 11:1587-98. [PMID: 12820971 DOI: 10.1016/s1097-2765(03)00231-4] [Citation(s) in RCA: 319] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
It has long been known that promoter DNA is converted to a nuclease-sensitive state upon transcriptional activation. Recent findings have raised the possibility that this conversion reflects only a partial unfolding or other perturbation of nucleosomal structure, rather than the loss of nucleosomes. We report topological, sedimentation, nuclease digestion, and ChIP analyses, which demonstrate the complete unfolding of nucleosomes at the transcriptionally active PHO5 promoter of the yeast Saccharomyces cerevisiae. Although nucleosome loss occurs at all promoter sites, it is not complete at any of them, suggesting the existence of an equilibrium between the removal of nucleosomes and their reformation.
Collapse
Affiliation(s)
- Hinrich Boeger
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
100
|
Travers AA. Priming the nucleosome: a role for HMGB proteins? EMBO Rep 2003; 4:131-6. [PMID: 12612600 PMCID: PMC1315838 DOI: 10.1038/sj.embor.embor741] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2002] [Accepted: 12/20/2002] [Indexed: 11/09/2022] Open
Abstract
The high-mobility-group B (HMGB) chromosomal proteins are characterized by the HMG box, a DNA-binding domain that both introduces a tight bend into DNA and binds preferentially to a variety of distorted DNA structures. The HMGB proteins seem to act primarily as architectural facilitators in the manipulation of nucleoprotein complexes; for example, in the assembly of complexes involved in recombination and transcription. Recent genetic and biochemical evidence suggests that these proteins can facilitate nucleosome remodelling. One mechanism by which HMGB proteins could prime the nucleosome for migration is to loosen the wrapped DNA and so enhance accessibility to chromatin-remodelling complexes and possibly also to transcription factors. By constraining a tight loop of untwisted DNA at the edge of a nucleosome, an HMGB protein could induce movements in the contacts between certain core histones that would result in an overall change in nucleosome structure.
Collapse
Affiliation(s)
- Andrew A Travers
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| |
Collapse
|