51
|
Wennberg AMV, Savica R, Mielke MM. Association between Various Brain Pathologies and Gait Disturbance. Dement Geriatr Cogn Disord 2017; 43:128-143. [PMID: 28152532 PMCID: PMC5466166 DOI: 10.1159/000456541] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/15/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Approximately 30% of older adults have disrupted gait. It is associated with increased risk of cognitive decline, disability, dementia, and death. Additionally, most older adults present with 1 or more neuropathologies at autopsy. Recently, there has been an effort to investigate the association between subclinical neuropathology and gait. SUMMARY We reviewed studies that investigated the association between gait and neuropathologies. Although all pathologies reviewed were associated with gait, grey matter atrophy was most consistently linked with poorer gait performance. Studies investigating the association between white matter and gait focused primarily on total white matter. Future research using more parsed regional analysis will provide more insight into this relationship. Evidence from studies investigating neuronal activity and gait suggests that gait disruption is associated with both under- and overactivation. Additional research is needed to delineate these conflicting results. Lastly, early evidence suggests that both amyloid and tau aggregation negatively impact multiple gait parameters, but additional studies are warranted. Overall, there was substantial methodological heterogeneity and a paucity of longitudinal studies. Key Messages: Longitudinal studies mapping changes in different types of neuropathology as they relate to changes in multiple gait parameters are needed to better understand trajectories of pathology and gait.
Collapse
Affiliation(s)
| | - Rodolfo Savica
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA,Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Michelle M. Mielke
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA,Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
52
|
Ingram T, Chakrabarti L. Proteomic profiling of mitochondria: what does it tell us about the ageing brain? Aging (Albany NY) 2016; 8:3161-3179. [PMID: 27992860 PMCID: PMC5270661 DOI: 10.18632/aging.101131] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/01/2016] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction is evident in numerous neurodegenerative and age-related disorders. It has also been linked to cellular ageing, however our current understanding of the mitochondrial changes that occur are unclear. Functional studies have made some progress reporting reduced respiration, dynamic structural modifications and loss of membrane potential, though there are conflicts within these findings. Proteomic analyses, together with functional studies, are required in order to profile the mitochondrial changes that occur with age and can contribute to unravelling the complexity of the ageing phenotype. The emergence of improved protein separation techniques, combined with mass spectrometry analyses has allowed the identification of age and cell-type specific mitochondrial changes in energy metabolism, antioxidants, fusion and fission machinery, chaperones, membrane proteins and biosynthesis pathways. Here, we identify and review recent data from the analyses of mitochondria from rodent brains. It is expected that knowledge gained from understanding age-related mitochondrial changes of the brain should lead to improved biomarkers of normal ageing and also age-related disease progression.
Collapse
Affiliation(s)
- Thomas Ingram
- SVMS, Faculty of Medicine, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Lisa Chakrabarti
- SVMS, Faculty of Medicine, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| |
Collapse
|
53
|
Healthy brain ageing assessed with 18F-FDG PET and age-dependent recovery factors after partial volume effect correction. Eur J Nucl Med Mol Imaging 2016; 44:838-849. [PMID: 27878594 DOI: 10.1007/s00259-016-3569-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/03/2016] [Indexed: 12/26/2022]
|
54
|
Saint-Aubert L, Almkvist O, Chiotis K, Almeida R, Wall A, Nordberg A. Regional tau deposition measured by [ 18F]THK5317 positron emission tomography is associated to cognition via glucose metabolism in Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2016; 8:38. [PMID: 27683159 PMCID: PMC5041516 DOI: 10.1186/s13195-016-0204-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/09/2016] [Indexed: 12/15/2022]
Abstract
Background The recent development of tau-specific positron emission tomography (PET) tracers has allowed in vivo quantification of regional tau deposition and offers the opportunity to monitor the progression of tau pathology along with cognitive impairment. In this study, we investigated the relationships of cerebral tau deposition ([18F]THK5317-PET) and metabolism ([18F]FDG-PET) with concomitant cognitive function in patients with probable Alzheimer’s disease (AD). Methods Nine patients diagnosed with AD dementia and 11 with prodromal AD (mild cognitive impairment, amyloid-positive on [11C]PiB-PET) were included in this study. All patients underwent PET scans using each tracer, as well as episodic memory and global cognition assessment. Linear models were used to investigate the association of regional [18F]THK5317 retention and [18F]FDG uptake with cognition. The possible mediating effect of local metabolism on the relationship between tau deposition and cognitive performance was investigated using mediation analyses. Results Significant negative associations were found between [18F]THK5317 regional retention, mainly in temporal regions, and both episodic memory and global cognition. Significant positive associations were found between [18F]FDG regional uptake and cognition. The association of [18F]FDG with global cognition was regionally more extensive than that of [18F]THK5317, while the opposite was observed with episodic memory, suggesting that [18F]THK5317 retention might be more sensitive than [18F]FDG regional uptake to early cognitive impairment. Finally, [18F]FDG uptake had a mediating effect on the relationship between [18F]THK5317 retention in temporal regions and global cognition. Conclusions These findings suggest a mediating role for local glucose metabolism in the observed association between in vivo tau deposition and concomitant cognitive impairment in AD. Electronic supplementary material The online version of this article (doi:10.1186/s13195-016-0204-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laure Saint-Aubert
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Novum 5th floor, Huddinge, 141 57, Sweden
| | - Ove Almkvist
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Novum 5th floor, Huddinge, 141 57, Sweden.,Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Konstantinos Chiotis
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Novum 5th floor, Huddinge, 141 57, Sweden
| | - Rita Almeida
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anders Wall
- PET Centre, Uppsala University Hospital, Uppsala, Sweden.,Nuclear medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Agneta Nordberg
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Novum 5th floor, Huddinge, 141 57, Sweden. .,Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
55
|
Nagata K, Yamazaki T, Takano D, Maeda T, Fujimaki Y, Nakase T, Sato Y. Cerebral circulation in aging. Ageing Res Rev 2016; 30:49-60. [PMID: 27484894 DOI: 10.1016/j.arr.2016.06.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/20/2022]
Abstract
Cerebral circulation is known to be protected by the regulatory function against the hypoperfusion that will affect the cognitive function as a result of brain ischemia and energy failure. The regulatory function includes cerebrovascular autoregulation, chemical control, metabolic control, and neurogenic control, and those compensatory mechanisms can be influenced by hypertension, atherosclerosis, cardiac diseases, cerebrovascular diseases and aging. On the other hand, large and/or small infarction, intracranial hemorrhage, subarachnoid hemorrhage, atherosclerosis, amylod angiopathy are also more directly associated with cognitive decline not only in those with vascular cognitive impairment or vascular dementia but also those with Alzheimer's disease.
Collapse
Affiliation(s)
- Ken Nagata
- Department of Neurology, Clinical Research Institute, Yokohama General Hospital, Yokohama, Japan.
| | - Takashi Yamazaki
- Department of Neurology, Clinical Research Institute, Yokohama General Hospital, Yokohama, Japan
| | - Daiki Takano
- Department of Neurology, Clinical Research Institute, Yokohama General Hospital, Yokohama, Japan
| | - Tetsuya Maeda
- Department of Neurology and Gerontology, Iwate Medical University, Morioka, Japan
| | - Yumi Fujimaki
- Department of Neurology, Research Institute for Brain and Blood Vessels, Akita, Japan
| | - Taizen Nakase
- Department of Neurology, Research Institute for Brain and Blood Vessels, Akita, Japan
| | - Yuichi Sato
- Department of Neurology, Noshiro Yamamoto Medical Association Hospital, Noshiro, Japan
| |
Collapse
|
56
|
Braz ID, Fisher JP. The impact of age on cerebral perfusion, oxygenation and metabolism during exercise in humans. J Physiol 2016; 594:4471-83. [PMID: 26435295 PMCID: PMC4983626 DOI: 10.1113/jp271081] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/24/2015] [Indexed: 01/05/2023] Open
Abstract
Age is one of the most important risk factors for dementia and stroke. Examination of the cerebral circulatory responses to acute exercise in the elderly may help to pinpoint the mechanisms by which exercise training can reduce the risk of brain diseases, inform the optimization of exercise training programmes and assist with the identification of age-related alterations in cerebral vascular function. During low-to-moderate intensity dynamic exercise, enhanced neuronal activity is accompanied by cerebral perfusion increases of ∼10-30%. Beyond ∼60-70% maximal oxygen uptake, cerebral metabolism remains elevated but perfusion in the anterior portion of the circulation returns towards baseline, substantively because of a hyperventilation-mediated reduction in the partial pressure of arterial carbon dioxide (P aC O2) and cerebral vasoconstriction. Cerebral perfusion is lower in older individuals, both at rest and during incremental dynamic exercise. Nevertheless, the increase in the estimated cerebral metabolic rate for oxygen and the arterial-internal jugular venous differences for glucose and lactate are similar in young and older individuals exercising at the same relative exercise intensities. Correction for the age-related reduction in P aC O2 during exercise by the provision of supplementary CO2 is suggested to remove ∼50% of the difference in cerebral perfusion between young and older individuals. A multitude of candidates could account for the remaining difference, including cerebral atrophy, and enhanced vasoconstrictor and blunted vasodilatory pathways. In summary, age-related reductions in cerebral perfusion during exercise are partly associated with a lower P aC O2 in exercising older individuals; nevertheless the cerebral extraction of glucose, lactate and oxygen appear to be preserved.
Collapse
Affiliation(s)
- Igor D Braz
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - James P Fisher
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
57
|
Cunnane SC, Courchesne-Loyer A, Vandenberghe C, St-Pierre V, Fortier M, Hennebelle M, Croteau E, Bocti C, Fulop T, Castellano CA. Can Ketones Help Rescue Brain Fuel Supply in Later Life? Implications for Cognitive Health during Aging and the Treatment of Alzheimer's Disease. Front Mol Neurosci 2016; 9:53. [PMID: 27458340 PMCID: PMC4937039 DOI: 10.3389/fnmol.2016.00053] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/21/2016] [Indexed: 02/02/2023] Open
Abstract
We propose that brain energy deficit is an important pre-symptomatic feature of Alzheimer's disease (AD) that requires closer attention in the development of AD therapeutics. Our rationale is fourfold: (i) Glucose uptake is lower in the frontal cortex of people >65 years-old despite cognitive scores that are normal for age. (ii) The regional deficit in brain glucose uptake is present in adults <40 years-old who have genetic or lifestyle risk factors for AD but in whom cognitive decline has not yet started. Examples include young adult carriers of presenilin-1 or apolipoprotein E4, and young adults with mild insulin resistance or with a maternal family history of AD. (iii) Regional brain glucose uptake is impaired in AD and mild cognitive impairment (MCI), but brain uptake of ketones (beta-hydroxybutyrate and acetoacetate), remains the same in AD and MCI as in cognitively healthy age-matched controls. These observations point to a brain fuel deficit which appears to be specific to glucose, precedes cognitive decline associated with AD, and becomes more severe as MCI progresses toward AD. Since glucose is the brain's main fuel, we suggest that gradual brain glucose exhaustion is contributing significantly to the onset or progression of AD. (iv) Interventions that raise ketone availability to the brain improve cognitive outcomes in both MCI and AD as well as in acute experimental hypoglycemia. Ketones are the brain's main alternative fuel to glucose and brain ketone uptake is still normal in MCI and in early AD, which would help explain why ketogenic interventions improve some cognitive outcomes in MCI and AD. We suggest that the brain energy deficit needs to be overcome in order to successfully develop more effective therapeutics for AD. At present, oral ketogenic supplements are the most promising means of achieving this goal.
Collapse
Affiliation(s)
- Stephen C Cunnane
- Research Center on Aging, SherbrookeQC, Canada; Department of Medicine, Université de Sherbrooke, SherbrookeQC, Canada; Department of Pharmacology and Physiology, Université de Sherbrooke, SherbrookeQC, Canada
| | - Alexandre Courchesne-Loyer
- Research Center on Aging, SherbrookeQC, Canada; Department of Pharmacology and Physiology, Université de Sherbrooke, SherbrookeQC, Canada
| | - Camille Vandenberghe
- Research Center on Aging, SherbrookeQC, Canada; Department of Pharmacology and Physiology, Université de Sherbrooke, SherbrookeQC, Canada
| | - Valérie St-Pierre
- Research Center on Aging, SherbrookeQC, Canada; Department of Pharmacology and Physiology, Université de Sherbrooke, SherbrookeQC, Canada
| | | | | | | | - Christian Bocti
- Research Center on Aging, SherbrookeQC, Canada; Department of Medicine, Université de Sherbrooke, SherbrookeQC, Canada
| | - Tamas Fulop
- Research Center on Aging, SherbrookeQC, Canada; Department of Medicine, Université de Sherbrooke, SherbrookeQC, Canada
| | | |
Collapse
|
58
|
Trotta N, Archambaud F, Goldman S, Baete K, Van Laere K, Wens V, Van Bogaert P, Chiron C, De Tiège X. Functional integration changes in regional brain glucose metabolism from childhood to adulthood. Hum Brain Mapp 2016; 37:3017-30. [PMID: 27133021 DOI: 10.1002/hbm.23223] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/31/2016] [Accepted: 04/10/2016] [Indexed: 02/03/2023] Open
Abstract
The aim of this study was to investigate the age-related changes in resting-state neurometabolic connectivity from childhood to adulthood (6-50 years old). Fifty-four healthy adult subjects and twenty-three pseudo-healthy children underwent [(18) F]-fluorodeoxyglucose positron emission tomography at rest. Using statistical parametric mapping (SPM8), age and age squared were first used as covariate of interest to identify linear and non-linear age effects on the regional distribution of glucose metabolism throughout the brain. Then, by selecting voxels of interest (VOI) within the regions showing significant age-related metabolic changes, a psychophysiological interaction (PPI) analysis was used to search for age-induced changes in the contribution of VOIs to the metabolic activity in other brain areas. Significant linear or non-linear age-related changes in regional glucose metabolism were found in prefrontal cortices (DMPFC/ACC), cerebellar lobules, and thalamo-hippocampal areas bilaterally. Decreases were found in the contribution of thalamic, hippocampal, and cerebellar regions to DMPFC/ACC metabolic activity as well as in the contribution of hippocampi to preSMA and right IFG metabolic activities. Increases were found in the contribution of the right hippocampus to insular cortex and of the cerebellar lobule IX to superior parietal cortex metabolic activities. This study evidences significant linear or non-linear age-related changes in regional glucose metabolism of mesial prefrontal, thalamic, mesiotemporal, and cerebellar areas, associated with significant modifications in neurometabolic connectivity involving fronto-thalamic, fronto-hippocampal, and fronto-cerebellar networks. These changes in functional brain integration likely represent a metabolic correlate of age-dependent effects on sensory, motor, and high-level cognitive functional networks. Hum Brain Mapp 37:3017-3030, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicola Trotta
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC) - ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium.,Department of Nuclear Medicine, Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Serge Goldman
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC) - ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium.,Department of Nuclear Medicine, Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Kristof Baete
- Department of Nuclear Medicine, UZ Leuven, Leuven, Belgium
| | - Koen Van Laere
- Department of Nuclear Medicine, UZ Leuven, Leuven, Belgium
| | - Vincent Wens
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC) - ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Patrick Van Bogaert
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC) - ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Xavier De Tiège
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC) - ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
59
|
Greve DN, Salat DH, Bowen SL, Izquierdo-Garcia D, Schultz AP, Catana C, Becker JA, Svarer C, Knudsen GM, Sperling RA, Johnson KA. Different partial volume correction methods lead to different conclusions: An (18)F-FDG-PET study of aging. Neuroimage 2016; 132:334-343. [PMID: 26915497 DOI: 10.1016/j.neuroimage.2016.02.042] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 12/23/2022] Open
Abstract
A cross-sectional group study of the effects of aging on brain metabolism as measured with (18)F-FDG-PET was performed using several different partial volume correction (PVC) methods: no correction (NoPVC), Meltzer (MZ), Müller-Gärtner (MG), and the symmetric geometric transfer matrix (SGTM) using 99 subjects aged 65-87years from the Harvard Aging Brain study. Sensitivity to parameter selection was tested for MZ and MG. The various methods and parameter settings resulted in an extremely wide range of conclusions as to the effects of age on metabolism, from almost no changes to virtually all of cortical regions showing a decrease with age. Simulations showed that NoPVC had significant bias that made the age effect on metabolism appear to be much larger and more significant than it is. MZ was found to be the same as NoPVC for liberal brain masks; for conservative brain masks, MZ showed few areas correlated with age. MG and SGTM were found to be similar; however, MG was sensitive to a thresholding parameter that can result in data loss. CSF uptake was surprisingly high at about 15% of that in gray matter. The exclusion of CSF from SGTM and MG models, which is almost universally done, caused a substantial loss in the power to detect age-related changes. This diversity of results reflects the literature on the metabolism of aging and suggests that extreme care should be taken when applying PVC or interpreting results that have been corrected for partial volume effects. Using the SGTM, significant age-related changes of about 7% per decade were found in frontal and cingulate cortices as well as primary visual and insular cortices.
Collapse
Affiliation(s)
- Douglas N Greve
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Radiology Department, Harvard Medical School, Boston, MA, USA.
| | - David H Salat
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Neuroimaging Research for Veterans Center, VA Boston Healthcare, USA
| | - Spencer L Bowen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - David Izquierdo-Garcia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Aaron P Schultz
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Ciprian Catana
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - J Alex Becker
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Claus Svarer
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Reisa A Sperling
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Keith A Johnson
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
60
|
Guo J, Bakshi V, Lin AL. Early Shifts of Brain Metabolism by Caloric Restriction Preserve White Matter Integrity and Long-Term Memory in Aging Mice. Front Aging Neurosci 2015; 7:213. [PMID: 26617514 PMCID: PMC4643125 DOI: 10.3389/fnagi.2015.00213] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/30/2015] [Indexed: 12/15/2022] Open
Abstract
Preservation of brain integrity with age is highly associated with lifespan determination. Caloric restriction (CR) has been shown to increase longevity and healthspan in various species; however, its effects on preserving living brain functions in aging remain largely unexplored. In the study, we used multimodal, non-invasive neuroimaging (PET/MRI/MRS) to determine in vivo brain glucose metabolism, energy metabolites, and white matter structural integrity in young and old mice fed with either control or 40% CR diet. In addition, we determined the animals' memory and learning ability with behavioral assessments. Blood glucose, blood ketone bodies, and body weight were also measured. We found distinct patterns between normal aging and CR aging on brain functions - normal aging showed reductions in brain glucose metabolism, white matter integrity, and long-term memory, resembling human brain aging. CR aging, in contrast, displayed an early shift from glucose to ketone bodies metabolism, which was associated with preservations of brain energy production, white matter integrity, and long-term memory in aging mice. Among all the mice, we found a positive correlation between blood glucose level and body weight, but an inverse association between blood glucose level and lifespan. Our findings suggest that CR could slow down brain aging, in part due to the early shift of energy metabolism caused by lower caloric intake, and we were able to identify the age-dependent effects of CR non-invasively using neuroimaging. These results provide a rationale for CR-induced sustenance of brain health with extended longevity.
Collapse
Affiliation(s)
- Janet Guo
- Sanders-Brown Center on Aging, University of Kentucky , Lexington, KY , USA ; Department of Pharmacology and Nutritional Sciences, University of Kentucky , Lexington, KY , USA
| | - Vikas Bakshi
- Sanders-Brown Center on Aging, University of Kentucky , Lexington, KY , USA ; Department of Pharmacology and Nutritional Sciences, University of Kentucky , Lexington, KY , USA
| | - Ai-Ling Lin
- Sanders-Brown Center on Aging, University of Kentucky , Lexington, KY , USA ; Department of Pharmacology and Nutritional Sciences, University of Kentucky , Lexington, KY , USA ; Department of Biomedical Engineering, University of Kentucky , Lexington, KY , USA
| |
Collapse
|
61
|
Nugent S, Castellano CA, Bocti C, Dionne I, Fulop T, Cunnane SC. Relationship of metabolic and endocrine parameters to brain glucose metabolism in older adults: do cognitively-normal older adults have a particular metabolic phenotype? Biogerontology 2015; 17:241-55. [DOI: 10.1007/s10522-015-9595-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/25/2015] [Indexed: 01/13/2023]
|
62
|
FDG-PET Contributions to the Pathophysiology of Memory Impairment. Neuropsychol Rev 2015; 25:326-55. [PMID: 26319237 DOI: 10.1007/s11065-015-9297-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
|
63
|
Triplett JC, Swomley A, Kirk J, Lewis K, Orr M, Rodriguez K, Cai J, Klein JB, Buffenstein R, Butterfield DA. Metabolic clues to salubrious longevity in the brain of the longest-lived rodent: the naked mole-rat. J Neurochem 2015; 134:538-50. [PMID: 25940666 DOI: 10.1111/jnc.13149] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/13/2015] [Accepted: 04/23/2015] [Indexed: 12/16/2022]
Abstract
Naked mole-rats (NMRs) are the oldest-living rodent species. Living underground in a thermally stable ecological niche, NMRs have evolved certain exceptional traits, resulting in sustained health spans, negligible cognitive decline, and a pronounced resistance to age-related disease. Uncovering insights into mechanisms underlying these extraordinary traits involved in successful aging may conceivably provide crucial clues to extend the human life span and health span. One of the most fundamental processes inside the cell is the production of ATP, which is an essential fuel in driving all other energy-requiring cellular activities. Not surprisingly, a prominent hallmark in age-related diseases, such as neurodegeneration and cancer, is the impairment and dysregulation of metabolic pathways. Using a two-dimensional polyacrylamide gel electrophoresis proteomics approach, alterations in expression and phosphorylation levels of metabolic proteins in the brains of NMRs, aged 2-24 years, were evaluated in an age-dependent manner. We identified 13 proteins with altered levels and/or phosphorylation states that play key roles in various metabolic pathways including glycolysis, β-oxidation, the malate-aspartate shuttle, the Tricarboxylic Acid Cycle (TCA) cycle, the electron transport chain, NADPH production, as well as the production of glutamate. New insights into potential pathways involved in metabolic aspects of successful aging have been obtained by the identification of key proteins through which the NMR brain responds and adapts to the aging process and how the NMR brain adapted to resist age-related degeneration. This study examines the changes in the proteome and phosphoproteome in the brain of the naked mole-rat aged 2-24 years. We identified 13 proteins (labeled in red) with altered expression and/or phosphorylation levels that are conceivably associated with sustained metabolic functions in the oldest NMRs that may promote a sustained health span and life span.
Collapse
Affiliation(s)
- Judy C Triplett
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Aaron Swomley
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Jessime Kirk
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Katilyn Lewis
- Sam and Ann Barsop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas, USA.,Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Miranda Orr
- Sam and Ann Barsop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas, USA.,Department of Physiology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Karl Rodriguez
- Sam and Ann Barsop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas, USA.,Department of Physiology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jian Cai
- Department of Nephrology and Proteomics Center, University of Louisville, Louisville, Kentucky, USA
| | - Jon B Klein
- Department of Nephrology and Proteomics Center, University of Louisville, Louisville, Kentucky, USA
| | - Rochelle Buffenstein
- Sam and Ann Barsop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas, USA.,Department of Physiology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
64
|
Fractal Structure and Entropy Production within the Central Nervous System. ENTROPY 2014. [DOI: 10.3390/e16084497] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
65
|
Metabolomics of Human Brain Aging and Age-Related Neurodegenerative Diseases. J Neuropathol Exp Neurol 2014; 73:640-57. [DOI: 10.1097/nen.0000000000000091] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
66
|
Lin AL, Rothman DL. What have novel imaging techniques revealed about metabolism in the aging brain? FUTURE NEUROLOGY 2014; 9:341-354. [PMID: 25214817 DOI: 10.2217/fnl.14.13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Brain metabolism declines with age and do so in an accelerated manner in neurodegenerative disorders. Noninvasive neuroimaging techniques have played an important role to identify the metabolic biomarkers in aging brain. Particularly, PET with fluorine-18 (18F)-labeled 2-fluoro-2-deoxy-d-glucose tracer and proton magnetic resonance spectroscopy (MRS) have been widely used to monitor changes in brain metabolism over time, identify the risk for Alzheimer's disease (AD) and predict the conversion from mild cognitive impairment to AD. Novel techniques, including PET carbon-11 Pittsburgh compound B, carbon-13 and phosphorus-31 MRS, have also been introduced to determine Aβ plaques deposition, mitochondrial functions and brain bioenergetics in aging brain and neurodegenerative disorders. Here, we introduce the basic principle of the imaging techniques, review the findings from 2-fluoro-2-deoxy-d-glucose-PET, Pittsburgh compound B PET, proton, carbon-13 and phosphorus-31 MRS on changes in metabolism in normal aging brain, mild cognitive impairment and AD, and discuss the potential of neuroimaging to identify effective interventions and treatment efficacy for neurodegenerative disorders.
Collapse
Affiliation(s)
- Ai-Ling Lin
- Sanders-Brown Center on Aging, Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Douglas L Rothman
- Magnetic Resonance Research Center, Diagnostic Radiology & Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
67
|
Vaidyanathan K, Durning S, Wells L. Functional O-GlcNAc modifications: implications in molecular regulation and pathophysiology. Crit Rev Biochem Mol Biol 2014; 49:140-163. [PMID: 24524620 PMCID: PMC4912837 DOI: 10.3109/10409238.2014.884535] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) is a regulatory post-translational modification of intracellular proteins. The dynamic and inducible cycling of the modification is governed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) in response to UDP-GlcNAc levels in the hexosamine biosynthetic pathway (HBP). Due to its reliance on glucose flux and substrate availability, a major focus in the field has been on how O-GlcNAc contributes to metabolic disease. For years this post-translational modification has been known to modify thousands of proteins implicated in various disorders, but direct functional connections have until recently remained elusive. New research is beginning to reveal the specific mechanisms through which O-GlcNAc influences cell dynamics and disease pathology including clear examples of O-GlcNAc modification at a specific site on a given protein altering its biological functions. The following review intends to focus primarily on studies in the last half decade linking O-GlcNAc modification of proteins with chromatin-directed gene regulation, developmental processes, and several metabolically related disorders including Alzheimer's, heart disease and cancer. These studies illustrate the emerging importance of this post-translational modification in biological processes and multiple pathophysiologies.
Collapse
Affiliation(s)
| | - Sean Durning
- Complex Carbohydrate Research Center, University of Georgia, Athens, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, USA
| |
Collapse
|
68
|
Liu Z, Ke L, Liu H, Huang W, Hu Z. Changes in topological organization of functional PET brain network with normal aging. PLoS One 2014; 9:e88690. [PMID: 24586370 PMCID: PMC3930631 DOI: 10.1371/journal.pone.0088690] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 01/09/2014] [Indexed: 11/18/2022] Open
Abstract
Recent studies about brain network have suggested that normal aging is associated with alterations in coordinated patterns of the large-scale brain functional and structural systems. However, age-related changes in functional networks constructed via positron emission tomography (PET) data are still barely understood. Here, we constructed functional brain networks composed of regions in younger (mean age years) and older (mean age years) age groups with PET data. younger and older healthy individuals were separately selected for two age groups, from a physical examination database. Corresponding brain functional networks of the two groups were constructed by thresholding average cerebral glucose metabolism correlation matrices of regions and analysed using graph theoretical approaches. Although both groups showed normal small-world architecture in the PET networks, increased clustering and decreased efficiency were found in older subjects, implying a degeneration process that brain system shifts from a small-world network to regular one along with normal aging. Moreover, normal senescence was related to changed nodal centralities predominantly in association and paralimbic cortex regions, e.g. increasing in orbitofrontal cortex (middle) and decreasing in left hippocampus. Additionally, the older networks were about equally as robust to random failures as younger counterpart, but more vulnerable against targeted attacks. Finally, methods in the construction of the PET networks revealed reasonable robustness. Our findings enhanced the understanding about the topological principles of PET networks and changes related to normal aging.
Collapse
Affiliation(s)
- Zhiliang Liu
- State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou, China
| | - Lining Ke
- Institute of Clinical Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Huafeng Liu
- State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou, China
| | - Wenhua Huang
- Institute of Clinical Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- * E-mail: (WHH); (ZHH)
| | - Zhenghui Hu
- State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou, China
- * E-mail: (WHH); (ZHH)
| |
Collapse
|
69
|
Yoshizawa H, Gazes Y, Stern Y, Miyata Y, Uchiyama S. Characterizing the normative profile of 18F-FDG PET brain imaging: sex difference, aging effect, and cognitive reserve. Psychiatry Res 2014; 221:78-85. [PMID: 24262800 DOI: 10.1016/j.pscychresns.2013.10.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 07/14/2013] [Accepted: 10/25/2013] [Indexed: 10/26/2022]
Abstract
The aim of this study was to investigate findings of positron emission tomography with 18F-fluorodeoxyglucose (18F-FDG PET) in normal subjects to clarify the effects of sex differences, aging, and cognitive reserve on cerebral glucose metabolism. Participants comprised 123 normal adults who underwent 18F-FDG PET and a neuropsychological battery. We used statistical parametric mapping (SPM8) to investigate sex differences, and aging effects. The effects of cognitive reserve on 18F-FDG uptake were investigated using years of education as a proxy. Finally, we studied the effect of cognitive reserve on the recruitment of glucose metabolism in a memory task by dichotomizing the data according to educational level. Our results showed that the overall cerebral glucose metabolism in females was higher than that in males, whereas male participants had higher glucose metabolism in the bilateral inferior temporal gyri and cerebellum than females. Age-related hypometabolism was found in anterior regions, including the anterior cingulate gyrus. These areas are part of the attentional system, which may decline with aging even in healthy elderly individuals. Highly educated subjects revealed focal hypermetabolism in the right hemisphere and lower recruitment of glucose metabolism in memory tasks. This phenomenon is likely a candidate for a neural substrate of cognitive reserve.
Collapse
Affiliation(s)
- Hiroshi Yoshizawa
- Department of Neurology, Neurological Institute, Tokyo Women's Medical University, 8-1, Kawadacho, Shinjuku, Tokyo 162-8666, Japan.
| | - Yunglin Gazes
- Cognitive Neuroscience Division, Department of Neurology and Taub Institute, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Yaakov Stern
- Cognitive Neuroscience Division, Department of Neurology and Taub Institute, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Yoko Miyata
- Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Shinichiro Uchiyama
- Department of Neurology, Neurological Institute, Tokyo Women's Medical University, 8-1, Kawadacho, Shinjuku, Tokyo 162-8666, Japan
| |
Collapse
|
70
|
High-field proton magnetic resonance spectroscopy reveals metabolic effects of normal brain aging. Neurobiol Aging 2014; 35:1686-94. [PMID: 24559659 DOI: 10.1016/j.neurobiolaging.2014.01.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 12/19/2013] [Accepted: 01/19/2014] [Indexed: 11/24/2022]
Abstract
Altered brain metabolism is likely to be an important contributor to normal cognitive decline and brain pathology in elderly individuals. To characterize the metabolic changes associated with normal brain aging, we used high-field proton magnetic resonance spectroscopy in vivo to quantify 20 neurochemicals in the hippocampus and sensorimotor cortex of young adult and aged rats. We found significant differences in the neurochemical profile of the aged brain when compared with younger adults, including lower aspartate, ascorbate, glutamate, and macromolecules, and higher glucose, myo-inositol, N-acetylaspartylglutamate, total choline, and glutamine. These neurochemical biomarkers point to specific cellular mechanisms that are altered in brain aging, such as bioenergetics, oxidative stress, inflammation, cell membrane turnover, and endogenous neuroprotection. Proton magnetic resonance spectroscopy may be a valuable translational approach for studying mechanisms of brain aging and pathology, and for investigating treatments to preserve or enhance cognitive function in aging.
Collapse
|
71
|
Yin F, Boveris A, Cadenas E. Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration. Antioxid Redox Signal 2014; 20:353-71. [PMID: 22793257 PMCID: PMC3887431 DOI: 10.1089/ars.2012.4774] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE The mitochondrial energy-transducing capacity is essential for the maintenance of neuronal function, and the impairment of energy metabolism and redox homeostasis is a hallmark of brain aging, which is particularly accentuated in the early stages of neurodegenerative diseases. RECENT ADVANCES The communications between mitochondria and the rest of the cell by energy- and redox-sensitive signaling establish a master regulatory device that controls cellular energy levels and the redox environment. Impairment of this regulatory devise is critical for aging and the early stages of neurodegenerative diseases. CRITICAL ISSUES This review focuses on a coordinated metabolic network-cytosolic signaling, transcriptional regulation, and mitochondrial function-that controls the cellular energy levels and redox status as well as factors which impair this metabolic network during brain aging and neurodegeneration. FUTURE DIRECTIONS Characterization of mitochondrial function and mitochondria-cytosol communications will provide pivotal opportunities for identifying targets and developing new strategies aimed at restoring the mitochondrial energy-redox axis that is compromised in brain aging and neurodegeneration.
Collapse
Affiliation(s)
- Fei Yin
- 1 Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California , Los Angeles, California
| | | | | |
Collapse
|
72
|
Goyal MS, Hawrylycz M, Miller JA, Snyder AZ, Raichle ME. Aerobic glycolysis in the human brain is associated with development and neotenous gene expression. Cell Metab 2014; 19:49-57. [PMID: 24411938 PMCID: PMC4389678 DOI: 10.1016/j.cmet.2013.11.020] [Citation(s) in RCA: 291] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 08/02/2013] [Accepted: 11/06/2013] [Indexed: 11/26/2022]
Abstract
Aerobic glycolysis (AG; i.e., nonoxidative metabolism of glucose despite the presence of abundant oxygen) accounts for 10%-12% of glucose used by the adult human brain. AG varies regionally in the resting state. Brain AG may support synaptic growth and remodeling; however, data supporting this hypothesis are sparse. Here, we report on investigations on the role of AG in the human brain. Meta-analysis of prior brain glucose and oxygen metabolism studies demonstrates that AG increases during childhood, precisely when synaptic growth rates are highest. In resting adult humans, AG correlates with the persistence of gene expression typical of infancy (transcriptional neoteny). In brain regions with the highest AG, we find increased gene expression related to synapse formation and growth. In contrast, regions high in oxidative glucose metabolism express genes related to mitochondria and synaptic transmission. Our results suggest that brain AG supports developmental processes, particularly those required for synapse formation and growth.
Collapse
Affiliation(s)
- Manu S Goyal
- Neuroimaging Laboratories, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA.
| | - Michael Hawrylycz
- Allen Institute for Brain Science, 551 North 34(th) Street, Seattle, WA 98103, USA
| | - Jeremy A Miller
- Allen Institute for Brain Science, 551 North 34(th) Street, Seattle, WA 98103, USA
| | - Abraham Z Snyder
- Neuroimaging Laboratories, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA
| | - Marcus E Raichle
- Neuroimaging Laboratories, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
73
|
Relationships between brain metabolism decrease in normal aging and changes in structural and functional connectivity. Neuroimage 2013; 76:167-77. [PMID: 23518010 DOI: 10.1016/j.neuroimage.2013.03.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/07/2013] [Accepted: 03/04/2013] [Indexed: 11/22/2022] Open
|
74
|
Liebetrau M, Burggraf D, Büscher C, Linz W, Hamann GF. Ramipril prevents extracellular matrix accumulation in cerebral microvessels. Neurol Res 2013; 27:477-82. [PMID: 16025600 DOI: 10.1179/016164105x49256] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES The stroke-prone spontaneously hypertensive rat is a genetic model of severe hypertension with secondary vascular alterations. The aim of this study was to determine the influence of chronic hypertension and ramipril treatment on the extracellular matrix in the cerebral microvasculature. METHODS The study consisted of three groups: six normotensive Wistar rats, six untreated spontaneously hypertensive rats, and six hypertensive rats treated with an antihypertensive dose of ramipril (1 mg kg(-1)day(-1)) for 6 months. Alterations in the extracellular matrix were examined by western blot, immunohistochemistry, and immunofluorescence using an antibody against collagen type IV. RESULTS Western blotting showed a reduction of the total amount of collagen type IV by 50% in the ramipril group compared with the untreated hypertensive group (51.0+/-9.3% reduction, p = 0.0004). Compared with the untreated hypertensive rats, ramipril treatment prevented a loss of vessel density in the cortex (23.4+/-1.0 versus 20.4+/-2.0, p < 0.0001) and revealed a reduction of the amount of collagen per vessel (0.54+/-0.04 versus 0.60+/-0.08, p = 0.037). The ratio between the vessel wall and the lumen (0.69+/-0.08 versus 1.31+/-0.13) and the relative collagen intensity was lowered in the ramipril group (18.1+/-4.7% reduction, p < 0.0001). Using these methods the ramipril group showed similar results than the normotensive group. DISCUSSION Ramipril treatment completely prevented these hypertensive vascular changes. These results may stimulate a therapeutic approach with angiotensin converting enzyme inhibition in human hypertensive small vessel disease.
Collapse
Affiliation(s)
- Martin Liebetrau
- Department of Neurology, Dr. Horst Schmidt Klinik, Ludwig-Erhard Str. 100, 65199 Wiesbaden, Germany.
| | | | | | | | | |
Collapse
|
75
|
Shen X, Liu H, Hu Z, Hu H, Shi P. The relationship between cerebral glucose metabolism and age: report of a large brain PET data set. PLoS One 2012; 7:e51517. [PMID: 23284706 PMCID: PMC3527454 DOI: 10.1371/journal.pone.0051517] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 11/05/2012] [Indexed: 11/19/2022] Open
Abstract
Cerebral glucose metabolism is a reliable index of neural activity and may provide evidence for brain function in healthy adults. We studied the correlation between cerebral glucose metabolism and age under the resting-state in both sexes with position emission tomography. Statistical test of age effect on cerebral glucose metabolism was performed using the statistical parametric mapping software with a voxel-by-voxel approach (p=0.05 family wise error corrected, 100-voxel threshold). The subjects consisted of 108 females (mean ± S.D. = 45 ± 10 years) and 126 males (mean ± S.D. = 49 ± 11 years). We showed here that brain activity in the frontal and temporal lobes in both sexes decreased significantly with normal aging. The glucose metabolism in the caudate bilaterally showed a negative correlation with age in males, but not in females. Few regions in males were shown with an increased glucose metabolism with age. Although the mechanisms of brain aging are still unknown, a map of brain areas susceptible to age was described in this report.
Collapse
Affiliation(s)
- Xiaoyan Shen
- State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou, China
| | - Huafeng Liu
- State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou, China
- B. Thomas Golisano College of Computing and Information Sciences, Rochester Institute of Technology, Rochester, New York, United States of America
- * E-mail: (HL); (ZH); (HH)
| | - Zhenghui Hu
- State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou, China
- * E-mail: (HL); (ZH); (HH)
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- * E-mail: (HL); (ZH); (HH)
| | - Pengcheng Shi
- B. Thomas Golisano College of Computing and Information Sciences, Rochester Institute of Technology, Rochester, New York, United States of America
| |
Collapse
|
76
|
Quintessential Risk Factors: Their Role in Promoting Cognitive Dysfunction and Alzheimer’s Disease. Neurochem Res 2012; 37:2627-58. [DOI: 10.1007/s11064-012-0854-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 07/21/2012] [Indexed: 12/13/2022]
|
77
|
Circelli KS, Clark US, Cronin-Golomb A. Visual scanning patterns and executive function in relation to facial emotion recognition in aging. AGING NEUROPSYCHOLOGY AND COGNITION 2012; 20:148-73. [PMID: 22616800 DOI: 10.1080/13825585.2012.675427] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE The ability to perceive facial emotion varies with age. Relative to younger adults (YA), older adults (OA) are less accurate at identifying fear, anger, and sadness, and more accurate at identifying disgust. Because different emotions are conveyed by different parts of the face, changes in visual scanning patterns may account for age-related variability. We investigated the relation between scanning patterns and recognition of facial emotions. Additionally, as frontal-lobe changes with age may affect scanning patterns and emotion recognition, we examined correlations between scanning parameters and performance on executive function tests. METHODS We recorded eye movements from 16 OA (mean age 68.9) and 16 YA (mean age 19.2) while they categorized facial expressions and non-face control images (landscapes), and administered standard tests of executive function. RESULTS OA were less accurate than YA at identifying fear (p < .05, r = .44) and more accurate at identifying disgust (p < .05, r = .39). OA fixated less than YA on the top half of the face for disgust, fearful, happy, neutral, and sad faces (p values < .05, r values ≥ .38), whereas there was no group difference for landscapes. For OA, executive function was correlated with recognition of sad expressions and with scanning patterns for fearful, sad, and surprised expressions. CONCLUSION We report significant age-related differences in visual scanning that are specific to faces. The observed relation between scanning patterns and executive function supports the hypothesis that frontal-lobe changes with age may underlie some changes in emotion recognition.
Collapse
|
78
|
18F-FDG PET uptake in the pre-Huntington disease caudate affects the time-to-onset independently of CAG expansion size. Eur J Nucl Med Mol Imaging 2012; 39:1030-6. [PMID: 22526956 DOI: 10.1007/s00259-012-2114-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 03/11/2012] [Indexed: 01/28/2023]
Abstract
PURPOSE To test in a longitudinal follow-up study whether basal glucose metabolism in subjects with a genetic risk of Huntington disease (HD) may influence the onset of manifest symptoms. METHODS The study group comprised 43 presymptomatic (preHD) subjects carrying the HD mutation. They underwent a (18)F-FDG PET scan and were prospectively followed-up for at least 5 years using the unified HD rating scale to detect clinical changes. Multiple regression analysis included subject's age, CAG mutation size and glucose uptake as variables in a model to predict age at onset. RESULTS Of the 43 preHD subjects who manifested motor symptoms, suggestive of HD, after 5 years from the PET scan, 26 showed a mean brain glucose uptake below the cut-off of 1.0493 in the caudate, significantly lower than the 17 preHD subjects who remained symptom-free (P < 0.0001). This difference was independent of mutation size. Measurement of brain glucose uptake improved the CAG repeat number and age-based model for predicting age at onset by 37 %. CONCLUSION A reduced level of glucose metabolism in the brain caudate may represent a predisposing factor that contributes to the age at onset of HD in preHD subjects, in addition to the mutation size.
Collapse
|
79
|
Lee MS, Lyoo CH, Ryu YH, Lim HS, Nam CM, Kim HS, Rinne JO. The effect of age on motor deficits and cerebral glucose metabolism of Parkinson's disease. Acta Neurol Scand 2011; 124:196-201. [PMID: 20880270 DOI: 10.1111/j.1600-0404.2010.01446.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND No systematic study has been made to separate age-related clinical deterioration and dysfunctional brain areas from those associated with Parkinson's disease (PD). METHODS This study included 73 de novo patients with PD and 43 age-matched controls. All subjects underwent [(18)F]-fluorodeoxy glucose (FDG) positron emission tomography studies. The severity of parkinsonian motor deficit was measured using unified PD rating scale (UPDRS) motor scores. Multiple linear regression analysis was used to identify those parkinsonian motor deficits for which severity was correlated with the age of the patients and to locate brain areas in which normalized FDG uptake values were inversely correlated with the age of the subjects. RESULTS Patient age was positively correlated with total UPDRS motor scores and with subscores for bradykinesia and axial motor deficits, but not with subscores for tremor and rigidity. In the control group, an age-related decline in glucose uptake was found only in the cingulate cortex. However, in the patient group, an inverse correlation between age and glucose uptake was observed in the prefrontal, cingulate, orbitofrontal, perisylvian areas, caudate, and thalamus. CONCLUSIONS In PD, widespread age-related decline in cerebral function may exaggerate the deterioration associated with bradykinesia and the axial motor deficits associated with nigral neuronal loss.
Collapse
Affiliation(s)
- M S Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
80
|
Representational momentum in older adults. Brain Cogn 2011; 77:106-12. [PMID: 21632162 DOI: 10.1016/j.bandc.2011.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 04/22/2011] [Accepted: 05/06/2011] [Indexed: 11/23/2022]
Abstract
Humans have a tendency to perceive motion even in static images that simply "imply" movement. This tendency is so strong that our memory for actions depicted in static images is distorted in the direction of implied motion - a phenomenon known as representational momentum (RM). In the present study, we created an RM display depicting a pattern of implied (clockwise) rotation of a rectangle. Young adults viewers' memory of the final position of the test rectangle was biased in the direction of continuing rotation, but older adults did not show a similar memory bias. We discuss several possible explanations for this group difference, but argue that the failure of older adults to shown an RM effect most likely reflects age-related changes in areas of the brain involved in processing real and implied motion.
Collapse
|
81
|
Struble RG, Ala T, Patrylo PR, Brewer GJ, Yan XX. Is brain amyloid production a cause or a result of dementia of the Alzheimer's type? J Alzheimers Dis 2011; 22:393-9. [PMID: 20847431 DOI: 10.3233/jad-2010-100846] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The amyloid cascade hypothesis has guided much of the research into Alzheimer's disease (AD) over the last 25 years. We argue that the hypothesis of amyloid-β (Aβ) as the primary cause of dementia may not be fully correct. Rather, we propose that decline in brain metabolic activity, which is tightly linked to synaptic activity, actually underlies both the cognitive decline in AD and the deposition of Aβ. Aβ may further exacerbate metabolic decline and result in a downward spiral of cognitive function, leading to dementia. This novel interpretation can tie the disparate risk factors for dementia to a unifying hypothesis and present a roadmap for interventions to decrease the prevalence of dementia in the elderly population.
Collapse
Affiliation(s)
- Robert G Struble
- Center for Alzheimer's Disease and Related Disorders, Southern Illinois University School of Medicine, Carbondale, IL 62794, USA.
| | | | | | | | | |
Collapse
|
82
|
Marchand WR, Lee JN, Suchy Y, Garn C, Johnson S, Wood N, Chelune G. Age-related changes of the functional architecture of the cortico-basal ganglia circuitry during motor task execution. Neuroimage 2011; 55:194-203. [DOI: 10.1016/j.neuroimage.2010.12.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/08/2010] [Accepted: 12/09/2010] [Indexed: 10/18/2022] Open
|
83
|
Hsieh TC, Lin WY, Ding HJ, Sun SS, Wu YC, Yen KY, Kao CH. Sex- and age-related differences in brain FDG metabolism of healthy adults: an SPM analysis. J Neuroimaging 2011; 22:21-7. [PMID: 21332873 DOI: 10.1111/j.1552-6569.2010.00543.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE The purpose of our study was aimed to analyze the sex- and age-related differences of brain metabolism in healthy individuals. METHODS Consecutive 100 healthy subjects, 50 males and 50 females, undergoing routine 2-[(18)F]-fluoro-2-deoxy-d-glucose positron emission tomography (FDG PET) for health checkup in our hospital were retrospectively enrolled in this study. Statistical parametric mapping (SPM) was used for analyses of the FDG PET images to disclose the possible effects of age on brain metabolism in males and females as well as the differences of brain metabolism between male and female groups. RESULTS In males and females, decreased brain metabolism with aging is found in bilateral lateral orbital prefrontal and right anterior cingulate cortices. In comparisons between sexes, males are found to have more brain metabolism than females in bilateral visual cortices and cerebellum. CONCLUSIONS Our report discloses different sex- and age-related brain metabolism. Decreased brain metabolism with aging in males and females is similar to findings reported in previous literatures. However, whether declined brain function or volume with aging causing metabolic changes is unknown and should be further evaluated. Nevertheless, the sex-related differences are possibly compatible with the historical observation of better performance in visual-spatial tasks in males than females.
Collapse
Affiliation(s)
- Te-Chun Hsieh
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
84
|
Curiati PK, Tamashiro-Duran JH, Duran FLS, Buchpiguel CA, Squarzoni P, Romano DC, Vallada H, Menezes PR, Scazufca M, Busatto GF, Alves TCTF. Age-related metabolic profiles in cognitively healthy elders: results from a voxel-based [18F]fluorodeoxyglucose-positron-emission tomography study with partial volume effects correction. AJNR Am J Neuroradiol 2011; 32:560-5. [PMID: 21273352 DOI: 10.3174/ajnr.a2321] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Functional brain variability has been scarcely investigated in cognitively healthy elderly subjects, and it is currently debated whether previous findings of regional metabolic variability are artifacts associated with brain atrophy. The primary purpose of this study was to test whether there is regional cerebral age-related hypometabolism specifically in later stages of life. MATERIALS AND METHODS MR imaging and FDG-PET data were acquired from 55 cognitively healthy elderly subjects, and voxel-based linear correlations between age and GM volume or regional cerebral metabolism were conducted by using SPM5 in images with and without correction for PVE. To investigate sex-specific differences in the pattern of brain aging, we repeated the above voxelwise calculations after dividing our sample by sex. RESULTS Our analysis revealed 2 large clusters of age-related metabolic decrease in the overall sample, 1 in the left orbitofrontal cortex and the other in the right temporolimbic region, encompassing the hippocampus, the parahippocampal gyrus, and the amygdala. The division of our sample by sex revealed significant sex-specific age-related metabolic decrease in the left temporolimbic region of men and in the left dorsolateral frontal cortex of women. When we applied atrophy correction to our PET data, none of the above-mentioned correlations remained significant. CONCLUSIONS Our findings suggest that age-related functional brain variability in cognitively healthy elderly individuals is largely secondary to the degree of regional brain atrophy, and the findings provide support to the notion that appropriate PVE correction is a key tool in neuroimaging investigations.
Collapse
Affiliation(s)
- P K Curiati
- Neuroimaging in Psychiatry Laboratory, São Paulo University Medical School, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Cunnane S, Nugent S, Roy M, Courchesne-Loyer A, Croteau E, Tremblay S, Castellano A, Pifferi F, Bocti C, Paquet N, Begdouri H, Bentourkia M, Turcotte E, Allard M, Barberger-Gateau P, Fulop T, Rapoport SI. Brain fuel metabolism, aging, and Alzheimer's disease. Nutrition 2011; 27:3-20. [PMID: 21035308 PMCID: PMC3478067 DOI: 10.1016/j.nut.2010.07.021] [Citation(s) in RCA: 427] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 12/14/2022]
Abstract
Lower brain glucose metabolism is present before the onset of clinically measurable cognitive decline in two groups of people at risk of Alzheimer's disease--carriers of apolipoprotein E4, and in those with a maternal family history of AD. Supported by emerging evidence from in vitro and animal studies, these reports suggest that brain hypometabolism may precede and therefore contribute to the neuropathologic cascade leading to cognitive decline in AD. The reason brain hypometabolism develops is unclear but may include defects in brain glucose transport, disrupted glycolysis, and/or impaired mitochondrial function. Methodologic issues presently preclude knowing with certainty whether or not aging in the absence of cognitive impairment is necessarily associated with lower brain glucose metabolism. Nevertheless, aging appears to increase the risk of deteriorating systemic control of glucose utilization, which, in turn, may increase the risk of declining brain glucose uptake, at least in some brain regions. A contributing role of deteriorating glucose availability to or metabolism by the brain in AD does not exclude the opposite effect, i.e., that neurodegenerative processes in AD further decrease brain glucose metabolism because of reduced synaptic functionality and hence reduced energy needs, thereby completing a vicious cycle. Strategies to reduce the risk of AD by breaking this cycle should aim to (1) improve insulin sensitivity by improving systemic glucose utilization, or (2) bypass deteriorating brain glucose metabolism using approaches that safely induce mild, sustainable ketonemia.
Collapse
Affiliation(s)
- Stephen Cunnane
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Scott Nugent
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Maggie Roy
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alexandre Courchesne-Loyer
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Etienne Croteau
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sébastien Tremblay
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alex Castellano
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Christian Bocti
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nancy Paquet
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Hadi Begdouri
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - M'hamed Bentourkia
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Turcotte
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Michèle Allard
- UMR CNRS 5231 and Ecole Pratique des Hautes Etudes, France
| | - Pascale Barberger-Gateau
- INSERM U897, Bordeaux F-33076, France; Université Victor Segalen Bordeaux 2, Bordeaux F-33076, France
| | - Tamas Fulop
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Stanley I Rapoport
- Brain Physiology and Metabolism Section, National Institute of Aging, Bethesda, MD, USA
| |
Collapse
|
86
|
Chadwick W, Zhou Y, Park SS, Wang L, Mitchell N, Stone MD, Becker KG, Martin B, Maudsley S. Minimal peroxide exposure of neuronal cells induces multifaceted adaptive responses. PLoS One 2010; 5:e14352. [PMID: 21179406 PMCID: PMC3003681 DOI: 10.1371/journal.pone.0014352] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 11/24/2010] [Indexed: 12/20/2022] Open
Abstract
Oxidative exposure of cells occurs naturally and may be associated with cellular damage and dysfunction. Protracted low level oxidative exposure can induce accumulated cell disruption, affecting multiple cellular functions. Accumulated oxidative exposure has also been proposed as one of the potential hallmarks of the physiological/pathophysiological aging process. We investigated the multifactorial effects of long-term minimal peroxide exposure upon SH-SY5Y neural cells to understand how they respond to the continued presence of oxidative stressors. We show that minimal protracted oxidative stresses induce complex molecular and physiological alterations in cell functionality. Upon chronic exposure to minimal doses of hydrogen peroxide, SH-SY5Y cells displayed a multifactorial response to the stressor. To fully appreciate the peroxide-mediated cellular effects, we assessed these adaptive effects at the genomic, proteomic and cellular signal processing level. Combined analyses of these multiple levels of investigation revealed a complex cellular adaptive response to the protracted peroxide exposure. This adaptive response involved changes in cytoskeletal structure, energy metabolic shifts towards glycolysis and selective alterations in transmembrane receptor activity. Our analyses of the global responses to chronic stressor exposure, at multiple biological levels, revealed a viable neural phenotype in-part reminiscent of aged or damaged neural tissue. Our paradigm indicates how cellular physiology can subtly change in different contexts and potentially aid the appreciation of stress response adaptations.
Collapse
Affiliation(s)
- Wayne Chadwick
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Yu Zhou
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Sung-Soo Park
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Liyun Wang
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Nicholas Mitchell
- Department of Biology, Saint Bonaventure University, Saint Bonaventure, New York, United States of America
| | - Matthew D. Stone
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Kevin G. Becker
- Gene Expression and Genomics Unit, Research Resources Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Bronwen Martin
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Stuart Maudsley
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
87
|
|
88
|
Tremblay-Mercier J, Tessier D, Plourde M, Fortier M, Lorrain D, Cunnane SC. Bezafibrate mildly stimulates ketogenesis and fatty acid metabolism in hypertriglyceridemic subjects. J Pharmacol Exp Ther 2010; 334:341-6. [PMID: 20404010 DOI: 10.1124/jpet.110.166504] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Our objective was to determine whether bezafibrate, a hypotriglyceridemic drug and peroxisome proliferator-activated receptor (PPAR)-alpha agonist, is ketogenic and increases fatty acid oxidation in humans. We measured fatty acid metabolism and ketone levels in 13 mildly hypertriglycemic adults (67 +/- 11 years old) during 2 metabolic study days lasting 6 h, 1 day before and 1 day after bezafibrate (400 mg of bezafibrate per day for 12 weeks). beta-Hydroxybutyrate, triglycerides, free fatty acids, fatty acid profiles, insulin, and glucose were measured in plasma, and fatty acid beta-oxidation was measured in breath after an oral 50-mg dose of the fatty acid tracer [U-(13)C]linoleic acid. As expected, 12 weeks on bezafibrate decreased plasma triglycerides by 35%. Bezafibrate tended to raise postprandial beta-hydroxybutyrate, an effect that was significant after normalization to the fasting baseline values (p = 0.03). beta-Oxidation of [U-(13)C]linoleic acid increased by 30% (p = 0.03) after treatment. On the metabolic study day after bezafibrate treatment, postprandial insulin decreased by 26% (p = 0.01), and glucose concentrations were lower 2 to 5 h postprandially. Thus, in hypertriglyceridemic individuals, bezafibrate is mildly ketogenic and significantly changes fatty acid metabolism, effects that may be linked to PPARalpha stimulation and to moderately improved glucose metabolism.
Collapse
Affiliation(s)
- Jennifer Tremblay-Mercier
- Research Center on Aging, University Institute of Geriatrics of Sherbrooke, Sherbrooke, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
89
|
Iseki E, Murayama N, Yamamoto R, Fujishiro H, Suzuki M, Kawano M, Miki S, Sato K. Construction of a (18)F-FDG PET normative database of Japanese healthy elderly subjects and its application to demented and mild cognitive impairment patients. Int J Geriatr Psychiatry 2010; 25:352-61. [PMID: 19693778 DOI: 10.1002/gps.2346] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To construct a (18)F-FDG PET normative database of Japanese healthy elderly subjects and to apply it to demented and mild cognitive impairment (MCI) patients. METHODS Seventy-seven Japanese normal volunteers from 41 to 84 years of age (36 males and 41 females) who underwent clinical, neuropsychological, and MRI examinations were selected. In these subjects, (18)F-FDG PET/CT scans were performed, (18)F-FDG PET images were analyzed using the 3D-SSP program, and a normative database for cerebral glucose metabolism was constructed. Then, (18)F-FDG PET images from 14 demented and MCI patients were evaluated based on the normative database. RESULTS The 77 healthy elderly subjects were divided into three groups according to their age. In these subjects, the difference in glucose metabolism between males and females was minimal in contrast, glucose metabolism showed a weak reciprocal correlation with aging in several cerebral regions. The 3D-SSP images of 14 demented and MCI patients based on the age-matched (18)F-FDG PET normative database showed decreased patterns of glucose metabolism similar to those of previous studies on dementia diseases and MCI. CONCLUSIONS An age-matched normative database can be applied to the evaluation of single subjects, and the application of a mixed database of males and females is viable. Normative databases are useful for detecting dementia diseases and their MCI.
Collapse
Affiliation(s)
- Eizo Iseki
- PET/CT Dementia Research Center, Juntendo Tokyo Koto Geriatric Medical Center, Juntendo University School of Medicine, 3-3-20 Shinsuna, Koto-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Yap LP, Garcia JV, Han D, Cadenas E. The energy-redox axis in aging and age-related neurodegeneration. Adv Drug Deliv Rev 2009; 61:1283-98. [PMID: 19716388 PMCID: PMC2784280 DOI: 10.1016/j.addr.2009.07.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 07/23/2009] [Indexed: 02/07/2023]
Abstract
Decrease in mitochondrial energy-transducing capacity is a feature of the aging process that accompanies redox alterations, such as increased generation of mitochondrial oxidants, altered GSH status, and increased protein oxidation. The decrease in mitochondrial energy-transducing capacity and altered redox status should be viewed as a concerted process that embodies the mitochondrial energy-redox axis and is linked through various mechanisms including: (a) an inter-convertible reducing equivalents pool (i.e., NAD(P)(+)/NAD(P)H) and (b) redox-mediated protein post-translational modifications involved in energy metabolism. The energy-redox axis provides the rationale for therapeutic approaches targeted to each or both component(s) of the axis that effectively preserves or improve mitochondrial function and that have implications for aging and age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Li-Peng Yap
- Department of Molecular Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089-9121, USA
| | - Jerome V. Garcia
- Department of Molecular Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089-9121, USA
- University of LaVerne, Natural Science Division, Department of Biology, 1950 3 Street, LaVerne, CA 91750, USA
| | - Derick Han
- Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90089-9121, USA
| | - Enrique Cadenas
- Department of Molecular Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089-9121, USA
| |
Collapse
|
91
|
Functional neuroimaging studies of aging and emotion: fronto-amygdalar differences during emotional perception and episodic memory. J Int Neuropsychol Soc 2009; 15:819-25. [PMID: 19703320 PMCID: PMC3633489 DOI: 10.1017/s1355617709990439] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Emotional processes are enhanced in aging, such that aging is characterized by superior emotional regulation. This article provides a brief review of the neural bases supporting this effect with a focus on functional neuroimaging studies of perception and episodic memory. The most consistent finding across these studies is that older adults show an alteration in the recruitment of the amygdala, but greater recruitment of the frontal cortex. These Fronto-amygdalar Age-related Differences in Emotion (FADE) may reflect emotional regulation strategies mediated by frontal brain regions that dampen emotion-related activations in the amygdala.
Collapse
|
92
|
Kalpouzos G, Chételat G, Baron JC, Landeau B, Mevel K, Godeau C, Barré L, Constans JM, Viader F, Eustache F, Desgranges B. Voxel-based mapping of brain gray matter volume and glucose metabolism profiles in normal aging. Neurobiol Aging 2009; 30:112-24. [PMID: 17630048 DOI: 10.1016/j.neurobiolaging.2007.05.019] [Citation(s) in RCA: 275] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 05/04/2007] [Accepted: 05/21/2007] [Indexed: 11/26/2022]
Abstract
With age, the brain undergoes both structural and functional alterations, probably resulting in reported cognitive declines. Relatively few investigations have sought to identify those areas that remain intact with aging, or undergo the least deterioration, which might underlie cognitive preservations. Our aim here was to establish a comprehensive profile of both structural and functional changes in the aging brain, using up-to-date voxel-based methodology (i.e. optimized voxel-based morphometry (VBM) procedure; resting-state (18)FDG-PET with correction for partial volume effects (PVE)) in 45 optimally healthy subjects aged 20-83 years. Negative and positive correlations between age and both gray matter (GM) volume and (18)FDG uptake were assessed. The frontal cortex manifested the greatest deterioration, both structurally and functionally, whereas the anterior hippocampus, the thalamus and (functionally) the posterior cingulate cortex were the least affected. Our results support the developmental theory which postulates that the first regions to emerge phylogenetically and ontogenetically are the most resistant to age effects, and the last ones the most vulnerable. Furthermore, the lesser affected anterior hippocampal region, together with the lesser functional alteration of the posterior cingulate cortex, appear to mark the parting of the ways between normal aging and Alzheimer's disease, which is characterized by early and prominent deterioration of both structures.
Collapse
Affiliation(s)
- Grégoria Kalpouzos
- Inserm-EPHE-Université de Caen/Basse-Normandie, Unité de Recherche E0218, GIP Cyceron, Caen, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Changes in glucose metabolism due to aging and gender-related differences in the healthy human brain. Psychiatry Res 2008; 164:58-72. [PMID: 18804967 DOI: 10.1016/j.pscychresns.2006.12.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 11/20/2006] [Accepted: 12/23/2006] [Indexed: 11/20/2022]
Abstract
Using [(18)F]fluoro-deoxy-glucose-PET, we studied relative metabolic changes due to age- and gender-related differences in the brain of 126 healthy subjects from their twenties to seventies. We used a data-extraction technique, the three-dimensional stereotactic surface projections (3D-SSP) method, to measure metabolic changes with fewer effects of regional anatomic variances. Simple regression analysis revealed significant age-related increases in relative metabolic values in the parahippocampal and amygdala regions in both sexes in their twenties to forties, and significant age-related decreases in both sexes in their fifties to seventies. Relative values in the frontal lobe showed significant age-related decreases in both sexes in their twenties to forties, but these effects were not seen in subjects in their fifties to seventies. Significant gender differences in correlation coefficients of relative values with age were shown in the parahippocampal, primary sensorimotor, temporal, thalamus and vermis regions in subjects in their 20s to 40s, but disappeared in subjects in their twenties to forties, but were not apparent in subjects in their fifties to seventies except in the vermis. Males in their twenties to sixties and females in their fifties showed significant laterality in relative values in the temporal lobes. Our study demonstrated age- and gender-related differences in glucose metabolism in healthy subjects.
Collapse
|
94
|
Paradiso S, Vaidya JG, McCormick LM, Jones A, Robinson RG. Aging and alexithymia: association with reduced right rostral cingulate volume. Am J Geriatr Psychiatry 2008; 16:760-9. [PMID: 18697882 PMCID: PMC2925448 DOI: 10.1097/jgp.0b013e31817e73b0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Previous studies have linked alexithymia to an inability to process emotions appropriately. Older persons show changes in emotion processing and have higher alexithymia scores. Because the anterior cingulate cortex (ACC) is one of the regions showing earlier decline in late-life, and alexithymia seems to be related to a dysfunction in right hemisphere regions including the ACC subserving affective processes, the present study sought to test the hypothesis that reduced ACC volume accounts for the association between older age and alexithymia. DESIGN Correlation analyses between functionally distinct ACC subregions, age and alexithymia features. SETTING University of Iowa. PARTICIPANTS Twenty-four healthy volunteers aged between 24 and 79 years. MEASUREMENTS Psychiatric and neuropsychological assessment and assessment of alexithymia using the 20-item Toronto Alexithymia Scale. High-resolution magnetic resonance imaging, and in-house developed methods for ACC parcellation. RESULTS Older age directly correlated with higher overall alexithymia and reduced bilateral rostral and right dorsal ACC gray matter volume. Furthermore, higher alexithymia scores correlated with reduced right rostral ACC volume. This correlation seems to be influenced primarily by Factor 3 of the alexithymia scale measuring diversion of attention to external details in place of internal feelings. CONCLUSIONS These results suggest that alexithymia in older age may be a result of structural changes in the right rostral ACC.
Collapse
Affiliation(s)
- Sergio Paradiso
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
95
|
Hirao K, Hanyu H, Kanetaka H, Shimizu S, Sato T, Iwamoto T. [Regional cerebral blood flow patterns in extremely elderly patients with Alzheimer's disease]. Nihon Ronen Igakkai Zasshi 2008; 45:408-413. [PMID: 18753716 DOI: 10.3143/geriatrics.45.408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
AIM Clinical and pathologic features in Alzheimer's disease (AD) patients differ depending on the age of onset. The aim of our study was to compare the regional cerebral blood flow (rCBF) patterns of younger, elderly, and extremely elderly patients with AD with that of controls to characterize the rCBF patterns in extremely elderly patients with AD. METHODS Single photon emission CT (SPECT) was performed in 113 patients with probable AD, including 34 younger (<70 years), 41 elderly (70-84 years), and 38 extremely elderly (>or=85 years) patients divided according to age at examination. The SPECT data were analyzed using three-dimensional stereotactic surface projection (3D-SSP). RESULTS No significant differences regarding gender, duration of disease, education, and Mini-Mental State Examination score were found among the groups. As compared with controls, younger and elderly AD demonstrated significant reduction of rCBF in the temporo-parietal areas, posterior cingulate cortices and precunei, which is considered to be a characteristic rCBF pattern in AD. On the other hand, the extremely elderly AD group demonstrated significant reduction of rCBF in the frontal and medial temporal areas, in addition to the temporo-parietal areas, posterior cingulate cortices and precunei, but the reductions were milder than in those in younger and elderly AD groups. CONCLUSION The extremely elderly patients with AD showed atypical rCBF patterns in AD compared to younger and elderly patients with AD. Our data suggest that pathological features in extremely elderly AD may be different from those in younger and elderly AD and that diseases different from AD, such as senile dementia of the neurofibrillary tangle type may be clinically diagnosed as extremely elderly AD.
Collapse
Affiliation(s)
- Kentaro Hirao
- Department of Geriatric Medicine, Tokyo Medical University
| | | | | | | | | | | |
Collapse
|
96
|
Inoue K, Ito H, Uchida S, Taki Y, Kinomura S, Tsuji I, Sato S, Horie K, Kawashima R, Ito M, Fukuda H. Decrease in glucose metabolism in frontal cortex associated with deterioration of microstructure of corpus callosum measured by diffusion tensor imaging in healthy elderly. Hum Brain Mapp 2008; 29:375-84. [PMID: 17450581 PMCID: PMC6870624 DOI: 10.1002/hbm.20394] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The neural functions of signaling are carried out by the interconnection of neurons via neuronal fibers. Diffusion tensor imaging has recently become an established technique that enables the in vivo visualization of white matter (WM) fibers. Studies of normal aging have suggested the disruption of WM fiber microstructures with anterior-posterior gradient. Because neuronal activity is tightly coupled with glucose metabolism, neuronal death or a decrease in synaptic activity with aging may cause a decrease in glucose metabolism in the brain. We examined whether the disruption of callosal fiber microstructures in the healthy elderly is accompanied by changes in regional glucose metabolism (rMGlu) in the brain. Fifteen healthy volunteers in their seventies participated. Fractional anisotropies (FAs) of the genu and splenium of the corpus callosum (CC) were measured for each subject, and their correlations with rMGlu were analyzed using SPM2 software. We found a statistically significant positive correlation of rMGlu in the bilateral frontal cortices with the FA of the genu of the CC, whereas there was no correlation of the FA of the splenium of the CC and rMGlu. By voxel-based morphometry, we found no decrease in gray matter concentration associated with FA. The results indicate that neuronal activity in the frontal cortices may decrease with the disruption of the microstructures of the CC without corresponding gray matter atrophy.
Collapse
Affiliation(s)
- Kentaro Inoue
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Desgranges B, Kalpouzos G, Eustache F. Imagerie cérébrale du vieillissement normal : contraste avec la maladie d’Alzheimer. Rev Neurol (Paris) 2008; 164 Suppl 3:S102-7. [DOI: 10.1016/s0035-3787(08)73299-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
98
|
Ruffman T, Henry JD, Livingstone V, Phillips LH. A meta-analytic review of emotion recognition and aging: implications for neuropsychological models of aging. Neurosci Biobehav Rev 2008; 32:863-81. [PMID: 18276008 DOI: 10.1016/j.neubiorev.2008.01.001] [Citation(s) in RCA: 507] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/23/2007] [Accepted: 01/07/2008] [Indexed: 12/24/2022]
Abstract
This meta-analysis of 28 data sets (N=705 older adults, N=962 younger adults) examined age differences in emotion recognition across four modalities: faces, voices, bodies/contexts, and matching of faces to voices. The results indicate that older adults have increased difficulty recognising at least some of the basic emotions (anger, sadness, fear, disgust, surprise, happiness) in each modality, with some emotions (anger and sadness) and some modalities (face-voice matching) creating particular difficulties. The predominant pattern across all emotions and modalities was of age-related decline with the exception that there was a trend for older adults to be better than young adults at recognising disgusted facial expressions. These age-related changes are examined in the context of three theoretical perspectives-positivity effects, general cognitive decline, and more specific neuropsychological change in the social brain. We argue that the pattern of age-related change observed is most consistent with a neuropsychological model of adult aging stemming from changes in frontal and temporal volume, and/or changes in neurotransmitters.
Collapse
Affiliation(s)
- Ted Ruffman
- Department of Psychology, University of Otago, Box 56, Dunedin 9054, New Zealand.
| | | | | | | |
Collapse
|
99
|
Henry JD, Ruffman T, McDonald S, O’Leary MAP, Phillips LH, Brodaty H, Rendell PG. Recognition of disgust is selectively preserved in Alzheimer's disease. Neuropsychologia 2008; 46:1363-70. [DOI: 10.1016/j.neuropsychologia.2007.12.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Revised: 11/16/2007] [Accepted: 12/14/2007] [Indexed: 11/30/2022]
|
100
|
Orgeta V, Phillips LH. Effects of Age and Emotional Intensity on the Recognition of Facial Emotion. Exp Aging Res 2007; 34:63-79. [DOI: 10.1080/03610730701762047] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|