51
|
Kasper P, Uno Y, Mauthe R, Asano N, Douglas G, Matthews E, Moore M, Mueller L, Nakajima M, Singer T, Speit G. Follow-up testing of rodent carcinogens not positive in the standard genotoxicity testing battery: IWGT workgroup report. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2007; 627:106-16. [PMID: 17123861 DOI: 10.1016/j.mrgentox.2006.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 07/31/2006] [Accepted: 08/14/2006] [Indexed: 11/28/2022]
Abstract
At the Plymouth Third International Workshop on Genotoxicity Testing in June 2002, a new expert group started a working process to provide guidance on a common strategy for genotoxicity testing beyond the current standard battery. The group identified amongst others "Follow-up testing of tumorigenic agents not positive in the standard genotoxicity test battery" as one subject for further consideration [L. Müller, D. Blakey, K.L. Dearfield, S. Galloway, P. Guzzie, M. Hayashi, P. Kasper, D. Kirkland, J.T. MacGregor, J.M. Parry, L. Schechtman, A. Smith, N. Tanaka, D. Tweats, H. Yamasaki, Strategy for genotoxicity testing and stratification of genotoxicity test results-report on initial activities of the IWGT Expert Group, Mutat. Res. 540 (2003) 177-181]. A workgroup devoted to this topic was formed and met on September 9-10, 2005, in San Francisco. This workgroup was devoted to the discussion of when it would be appropriate to conduct additional genetic toxicology studies, as well as what type of studies, if the initial standard battery of tests was negative, but tumor formation was observed in the rodent carcinogenicity assessment. The important role of the standard genetic toxicology testing to determine the mode of action (MOA) for carcinogenesis (genotoxic versus non-genotoxic) was discussed, but the limitations of the standard testing were also reviewed. The workgroup also acknowledged that the entire toxicological profile (e.g. structure-activity relationships, the nature of the tumor finding and metabolic profiles) of a compound needed to be taken into consideration before the conduct of any additional testing. As part of the meeting, case studies were discussed to understand the practical application of additional testing as well as to form a decision tree. Finally, suitable additional genetic toxicology assays to help determine the carcinogenic MOA or establish a weight of evidence (WOE) argument were discussed and formulated into a decision tree.
Collapse
Affiliation(s)
- Peter Kasper
- Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, D-53175 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Weidman JR, Dolinoy DC, Murphy SK, Jirtle RL. Cancer Susceptibility: Epigenetic Manifestation of Environmental Exposures. Cancer J 2007; 13:9-16. [PMID: 17464241 DOI: 10.1097/ppo.0b013e31803c71f2] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer is a disease that results from both genetic and epigenetic changes. Discordant phenotypes and varying incidences of complex diseases such as cancer in monozygotic twins as well as genetically identical laboratory animals have long been attributed to differences in environmental exposures. Accumulating evidence indicates, however, that disparities in gene expression resulting from variable modifications in DNA methylation and chromatin structure in response to the environment also play a role in differential susceptibility to disease. Despite a growing consensus on the importance of epigenetics in the etiology of chronic human diseases, the genes most prone to epigenetic dysregulation are incompletely defined. Moreover, neither the environmental agents most strongly affecting the epigenome nor the critical windows of vulnerability to environmentally induced epigenetic alterations are adequately characterized. These major deficits in knowledge markedly impair our ability to understand fully the etiology of cancer and the importance of the epigenome in diagnosing and preventing this devastating disease.
Collapse
Affiliation(s)
- Jennifer R Weidman
- Department of Radiation Oncology, Duke University, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
53
|
Affiliation(s)
- Jerrold M. Ward
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| |
Collapse
|
54
|
Abstract
Benzene is a human carcinogen that might act through both genotoxic and nongenotoxic mechanisms to promote tumorigenesis. The genotoxic effects of benzene are well established, however, its potential nongenotoxic roles in carcinogenesis are poorly understood. We find that benzene suppresses somatic apoptosis in C. elegans; this suggests a potential nongenotoxic mechanism by which this chemical might promote tumorigenesis. We find that two other benzenoid chemicals, biphenyl and toluene, also inhibit apoptosis in C. elegans. Notably, these chemicals are suspected carcinogens in mammals; this suggests that a subclass of benzenoid chemicals might promote tumorigenesis by suppressing apoptosis. A benzene metabolite, 1,4-benzoquinone, can directly inhibit the activity of caspase-3; this suggests a general molecular mechanism by which benzenoid chemicals might suppress apoptosis. These findings suggest that C. elegans is an excellent alternative animal model for studying the antiapoptotic activity of tumor-promoting chemicals and for identifying in vivo targets of these chemicals.
Collapse
Affiliation(s)
- David Kokel
- Department of MCD Biology, University of Colorado, Boulder, CO 80309, USA
| | | |
Collapse
|
55
|
Kokel D, Li Y, Qin J, Xue D. The nongenotoxic carcinogens naphthalene and para-dichlorobenzene suppress apoptosis in Caenorhabditis elegans. Nat Chem Biol 2006; 2:338-45. [PMID: 16699520 DOI: 10.1038/nchembio791] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 04/13/2006] [Indexed: 11/09/2022]
Abstract
Naphthalene (1) and para-dichlorobenzene (PDCB, 2), which are widely used as moth repellents and air fresheners, cause cancer in rodents and are potential human carcinogens. However, their mechanisms of action remain unclear. Here we describe a novel method for delivering and screening hydrophobic chemicals in C. elegans and apply this technique to investigate the ways in which naphthalene and PDCB may promote tumorigenesis in mammals. We show that naphthalene and PDCB inhibit apoptosis in C. elegans, a result that suggests a cellular mechanism by which these chemicals may promote the survival and proliferation of latent tumor cells. In addition, we find that a naphthalene metabolite directly inactivates caspases by oxidizing the active site cysteine residue; this suggests a molecular mechanism by which these chemicals suppress apoptosis. Naphthalene and PDCB are the first small-molecule apoptosis inhibitors identified in C. elegans. The power of C. elegans molecular genetics, in combination with the possibility of carrying out large-scale chemical screens in this organism, makes C. elegans an attractive and economic animal model for both toxicological studies and drug screens.
Collapse
Affiliation(s)
- David Kokel
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | | | | | |
Collapse
|
56
|
Becker JC, Houben R, Vetter CS, Bröcker EB. The carcinogenic potential of tacrolimus ointment beyond immune suppression: a hypothesis creating case report. BMC Cancer 2006; 6:7. [PMID: 16405733 PMCID: PMC1386691 DOI: 10.1186/1471-2407-6-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 01/11/2006] [Indexed: 11/10/2022] Open
Abstract
Background Since tacrolimus ointment was approved by the U.S. Food and Drug Administration (FDA) as a promising treatment for atopic dermatitis, it has been approved in more than 30 additional countries, including numerous European Union member nations. Moreover, in the current clinical routine the use of this drug is no longer restricted to the approved indication, but has been extended to a wide variety of inflammatory skin diseases including some with the potential of malignant transformation. So far, the side-effects reported from the topical use of tacrolimus have been relatively minor (e.g. burning, pruritus, erythema). Recently, however, the FDA reviewed the safety of topical tacrolimus, which resulted in a warning that the use of calcineurin inhibitors may be associated with an increased risk of cancer. Case presentation Oral lichen planus (OLP) was diagnosed in a 56-year-old women in February 1999. After several ineffective local and systemic therapeutic measures an off-label treatment of this recalcitrant condition using Tacrolimus 0.1% ointment was initiated in May 2002. After a few weeks of treatment most of the lesions ameliorated, with the exception of the plaques on the sides of the tongue. Nevertheless, the patient became free of symptoms which, however, reoccurred once tacrolimus was weaned, as a consequence treatment was maintained. In April 2005, the plaques on the left side of the tongue appeared increasingly compact and a biopsy specimen confirmed the suspected diagnosis of an oral squamous cell carcinoma. Conclusion The suspected causal relationship between topical use of tacrolimus and the development of a squamous cell carcinoma prompted us to test the notion that the carcinogenicity of tacrolimus may go beyond mere immune suppression. To this end, tacrolimus has been shown to have an impact on cancer signalling pathways such as the MAPK and the p53 pathway. In the given case, we were able to demonstrate that these pathways had also been altered subsequent to tacrolimus therapy.
Collapse
Affiliation(s)
- Jürgen C Becker
- Department of Dermatology, Julius-Maximilians-University, Würzburg, Germany
| | - Roland Houben
- Department of Dermatology, Julius-Maximilians-University, Würzburg, Germany
| | - Claudia S Vetter
- Department of Dermatology, Julius-Maximilians-University, Würzburg, Germany
| | - Eva B Bröcker
- Department of Dermatology, Julius-Maximilians-University, Würzburg, Germany
| |
Collapse
|
57
|
Merkulova TI, Kropachev KY, Timofeeva OA, Vasiliev GV, Levashova ZB, Ilnitskaya SI, Kobzev VF, Pakharukova MY, Bryzgalov LO, Kaledin VI. Species-specific effects of the hepatocarcinogens 3'-methyl-4-dimethyl-aminoazobenzene and ortho-aminoazotoluene in mouse and rat liver. Mol Carcinog 2006; 44:223-32. [PMID: 16267830 DOI: 10.1002/mc.20090] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The effects of rat-specific hepatocarcinogen 3'-methyl-4-dimethylaminoazobenzene (3'-MeDAB), mouse-specific hepatocarcinogen ortho-aminoazotoluene (OAT), non-species-specific hepatocarcinogen diethylnitrosamine (DENA), and non-carcinogenic 4'-methyl-4-dimethylaminoazobenzene (4'-MeDAB) on glucocorticoid induction of tyrosine aminotransferase (TAT) and DNA-binding activity of hepatocyte nuclear factor 3 (HNF3) family of transcription factors were investigated with carcinogen-susceptible and -resistant animals. Species-specific hepatocarcinogens 3'-MeDAB and OAT strongly inhibited glucocorticoid induction of TAT in the liver of susceptible but not resistant animals. DENA, which is highly carcinogenic for the liver of both rats and mice inhibited glucocorticoid induction of TAT in both species, while non-carcinogenic 4'-MeDAB was absolutely ineffective both in rats and mice. The inhibition of TAT activity by the carcinogens was due to reduced levels of TAT mRNA, which is most likely to be a result of the reduced rate of transcription initiation of the TAT gene. In all cases, the TAT inhibition was accompanied by significant reduction of DNA-binding activity of the HNF3 transcription factor, which is known to be critical to glucocorticoid regulation of TAT gene. We also demonstrated that the described species-specific effects of OAT and of 3'-MeDAB on HNF3 DNA-binding activity may be initiated not only by administration in vivo, but also by their direct administration to homogenate, intact nuclei or nuclear lysate, but not to nuclear extract fraction, obtained by precipitation with 0.32 g/mL of ammonium sulfate (Fraction I). We showed, that a factor responsible for this effect might be precipitated in 0.32-0.47 g/mL interval of ammonium sulfate concentration. In contrast, non-specific hepatocarcinogen DENA was effective upon being added directly to Fraction I, implying a different mechanism of its action.
Collapse
Affiliation(s)
- Tatyana I Merkulova
- Laboratory of Gene Expression Control, Institute of Cytology and Genetics of the Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Kirkland D, Aardema M, Henderson L, Müller L. Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens I. Sensitivity, specificity and relative predictivity. Mutat Res 2005; 584:1-256. [PMID: 15979392 DOI: 10.1016/j.mrgentox.2005.02.004] [Citation(s) in RCA: 502] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 02/07/2005] [Accepted: 02/25/2005] [Indexed: 12/23/2022]
Abstract
The performance of a battery of three of the most commonly used in vitro genotoxicity tests--Ames+mouse lymphoma assay (MLA)+in vitro micronucleus (MN) or chromosomal aberrations (CA) test--has been evaluated for its ability to discriminate rodent carcinogens and non-carcinogens, from a large database of over 700 chemicals compiled from the CPDB ("Gold"), NTP, IARC and other publications. We re-evaluated many (113 MLA and 30 CA) previously published genotoxicity results in order to categorise the performance of these assays using the response categories we established. The sensitivity of the three-test battery was high. Of the 553 carcinogens for which there were valid genotoxicity data, 93% of the rodent carcinogens evaluated in at least one assay gave positive results in at least one of the three tests. Combinations of two and three test systems had greater sensitivity than individual tests resulting in sensitivities of around 90% or more, depending on test combination. Only 19 carcinogens (out of 206 tested in all three tests, considering CA and MN as alternatives) gave consistently negative results in a full three-test battery. Most were either carcinogenic via a non-genotoxic mechanism (liver enzyme inducers, peroxisome proliferators, hormonal carcinogens) considered not necessarily relevant for humans, or were extremely weak (presumed) genotoxic carcinogens (e.g. N-nitrosodiphenylamine). Two carcinogens (5-chloro-o-toluidine, 1,1,2,2-tetrachloroethane) may have a genotoxic element to their carcinogenicity and may have been expected to produce positive results somewhere in the battery. We identified 183 chemicals that were non-carcinogenic after testing in both male and female rats and mice. There were genotoxicity data on 177 of these. The specificity of the Ames test was reasonable (73.9%), but all mammalian cell tests had very low specificity (i.e. below 45%), and this declined to extremely low levels in combinations of two and three test systems. When all three tests were performed, 75-95% of non-carcinogens gave positive (i.e. false positive) results in at least one test in the battery. The extremely low specificity highlights the importance of understanding the mechanism by which genotoxicity may be induced (whether it is relevant for the whole animal or human) and using weight of evidence approaches to assess the carcinogenic risk from a positive genotoxicity signal. It also highlights deficiencies in the current prediction from and understanding of such in vitro results for the in vivo situation. It may even signal the need for either a reassessment of the conditions and criteria for positive results (cytotoxicity, solubility, etc.) or the development and use of a completely new set of in vitro tests (e.g. mutation in transgenic cell lines, systems with inherent metabolic activity avoiding the use of S9, measurement of genetic changes in more cancer-relevant genes or hotspots of genes, etc.). It was very difficult to assess the performance of the in vitro MN test, particularly in combination with other assays, because the published database for this assay is relatively small at this time. The specificity values for the in vitro MN assay may improve if data from a larger proportion of the known non-carcinogens becomes available, and a larger published database of results with the MN assay is urgently needed if this test is to be appreciated for regulatory use. However, specificity levels of <50% will still be unacceptable. Despite these issues, by adopting a relative predictivity (RP) measure (ratio of real:false results), it was possible to establish that positive results in all three tests indicate the chemical is greater than three times more likely to be a rodent carcinogen than a non-carcinogen. Likewise, negative results in all three tests indicate the chemical is greater than two times more likely to be a rodent non-carcinogen than a carcinogen. This RP measure is considered a useful tool for industry to assess the likelihood of a chemical possessing carcinogenic potential from batteries of positive or negative results.
Collapse
Affiliation(s)
- David Kirkland
- Covance Laboratories Limited, Otley Road, Harrogate HG3 1PY, UK.
| | | | | | | |
Collapse
|
59
|
Vahle JL, Long GG, Sandusky G, Westmore M, Ma YL, Sato M. Bone neoplasms in F344 rats given teriparatide [rhPTH(1-34)] are dependent on duration of treatment and dose. Toxicol Pathol 2005; 32:426-38. [PMID: 15204966 DOI: 10.1080/01926230490462138] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A long-term study was conducted in female F344 rats to determine the relative importance of dose, treatment duration, and age at initiation of treatment on the incidence of teriparatide [rhPTH[1-34)]-induced bone proliferative lesions. Treatment groups consisted of different combinations of dose (0, 5, or 30 microg/kg/d), treatment duration (6, 20, or 24 months) and age at initiation of treatment (2 or 6 months of age). The primary endpoints were the incidence of bone neoplasms and effects on bone mass and structure as evaluated by quantitative computed tomography and histomorphometery. Significant increases in the incidence of bone tumors (osteoma, osteoblastoma, and osteosarcoma) occurred in rats treated with 30 microg/kg for 20 or 24 months. No neoplasms were found when the 5 microg/kg treatment was initiated at 6 months of age and continued for either 6 or 20 months (up to 70% of life span). This treatment regimen defined a "no-effect" dose for neoplasm formation that nevertheless resulted in substantial increases in bone mass. These results demonstrate that treatment duration and administered dose are the most important factors in the teriparatide-induced bone tumors in rats.
Collapse
Affiliation(s)
- John L Vahle
- Lilly Research Laboratories, Greenfield, Indiana, USA.
| | | | | | | | | | | |
Collapse
|
60
|
Lutz RW, Stahel WA, Lutz WK. Statistical procedures to test for linearity and estimate threshold doses for tumor induction with nonlinear dose-response relationships in bioassays for carcinogenicity. Regul Toxicol Pharmacol 2002; 36:331-7. [PMID: 12473418 DOI: 10.1006/rtph.2002.1583] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sublinear shapes of the dose-response curve in the low-dose range of toxicity testing are often postulated to be indicative of a no-effect threshold. We present statistical procedures to test sublinear dose responses in bioassays for carcinogenicity against the hypothesis of linearity and estimate a lower confidence limit for the dose at the postulated breakpoint. First, a control tumor incidence of 0 is assumed. Tumor incidence at dose 1 is allowed to range from 0 to 4 tumor-bearing animals (TBAs) in groups of 50 animals, dose 2 is assumed to result in a tumor incidence of 5-25 TBAs. The null hypothesis of a linear dose response is tested by (i) the likelihood ratio (LR) test and (ii) the minimum chi(2) (MC) method. Validation by simulation showed the MC method to be more conservative than the LR test. At the 5% level with MC, the following observed numbers of TBAs for the dose sequence 0-1-2 resulted in rejection of the hypothesis of linearity: 0-0-6, 0-1-10, 0-2-13, 0-3-16, 0-4-18. Second, the analysis was adapted to allow for a control tumor incidence of 0-4 TBAs/50 and a tumor incidence of 0-10 TBAs/50 at dose 1, and the minimum number of TBAs at dose 2 to reject linearity at the 5% level was calculated. Third, a program is made available to analyze data derived from protocols that include nonstandard dose span and group size. Internet access to the respective statistics software and source file is provided. Examples for nasal tumor induction by formaldehyde and for the induction of renal adenocarcinoma by ochratoxin A are shown. The proposed analysis may be useful to test sublinear sections of the dose response for the possibility of a threshold for carcinogens and to define dose levels that could be used as a starting point for setting exposure standards.
Collapse
Affiliation(s)
- Roman W Lutz
- Seminar for Statistics, Swiss Federal Institute of Technology, CH-8092 Zürich, Switzerland.
| | | | | |
Collapse
|
61
|
Tashjian AH, Chabner BA. Commentary on clinical safety of recombinant human parathyroid hormone 1-34 in the treatment of osteoporosis in men and postmenopausal women. J Bone Miner Res 2002; 17:1151-61. [PMID: 12096828 DOI: 10.1359/jbmr.2002.17.7.1151] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Armen H Tashjian
- Department of Cancer Cell Biology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
62
|
Abstract
Currently, the majority of substances tested in lifetime bioassays in rodents are not mutagenic and, therefore, at the most weakly carcinogenic, generally by epigenetic mechanisms. It thus appears obvious that only marginal increases of tumour incidences can be expected in lifetime bioassays and that, therefore, every aspect of a potential carcinogenic effect must be thoroughly evaluated. This paper describes a series of key factors, which should be looked at in order to exclude that the lifetime bioassay in question is flawed for design, technical or qualification reasons. It also provides some hints whether there is indeed a real effect and not just a variation of the spontaneous tumour incidences. Tumour findings must be seen in the context of the animal model, the pharmcokinetics and pharmcodynamics of the test substance, as well as any other observation in the present or other studies with the test substance, including non-tumour findings and--in particular--potential precursor lesions and effects on feed intake and survival. The possibility that the observed carcinogenic effects may be species-specific and not relevant for man is discussed. It is also important to check what findings are reported with similar substances or substances with the same pharmacological effect. Data from additional investigations on material of the same study and/or mechanistic studies are often needed to support the final risk assessment.
Collapse
Affiliation(s)
- R A Ettlin
- Novartis Pharma AG, WKL-125.1514, CH-4002 Basel, Switzerland.
| | | |
Collapse
|
63
|
van der Laan J, Lima BS, Snodin D. Alternatives models in carcinogenicity testing--a European perspective. Toxicol Pathol 2002; 30:157-9. [PMID: 11890470 DOI: 10.1080/01926230252824879] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Transgenic mouse strains offer the prospect of significant benefits in the in vivo assessment of carcinogenic potential. The European Regulatory Authorities have been supportive of their inclusion as one of the second-test options in the International Conference on Harmonization of Technical Requirements for the Registration of Pharmaceuticals for Human use (ICH). However, there is a concern regarding premature systematic use of these models. At present, the information from the International Life Sciences Institute (ILSI) project suggests that the transgenic models under study are similarly sensitive to genotoxic pharmaceuticals. There are apparently some false negatives and false positives. For regulatory purposes, it is not yet possible to differentiate the models with respect to hazard identification and risk assessment. The evaluation of the models has reached an interesting but, at certain points, equivocal stage. Based on the weight of evidence gathered thus far, regulatory authorities cannot neglect the outcome of such studies but need to be cautious in their interpretation of data from such models, and the application in risk assessment procedures.
Collapse
Affiliation(s)
- JanWillem van der Laan
- Laboratory for Medicines and Medical Devices, National Institute of Public Health and the Environment, Bilthoven, The Netherlands.
| | | | | |
Collapse
|