51
|
Rassa JC, Parks GD. Highly diverse intergenic regions of the paramyxovirus simian virus 5 cooperate with the gene end U tract in viral transcription termination and can influence reinitiation at a downstream gene. J Virol 1999; 73:3904-12. [PMID: 10196285 PMCID: PMC104168 DOI: 10.1128/jvi.73.5.3904-3912.1999] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A dicistronic minigenome containing the M-F gene junction was used to determine the role of the simian virus 5 (SV5) intergenic regions in transcription. The M-F junction differs from the other SV5 junctions by having a short M gene end U tract of only four residues (U4 tract) and a 22-base M-F intergenic sequence between the M gene end and F gene start site. Replacing the 22-base M-F intergenic region with nonviral sequences resulted in a minigenome template (Rep 22) that was defective in termination at the end of the M gene. Efficient M gene termination could be restored to the mutant Rep 22 template in either of two ways: by increasing the U tract length from four to six residues or by restoring a G residue immediately downstream of the wild-type (WT) U4 tract. In a dicistronic SH-HN minigenome, a U4-G combination was functionally equivalent to the naturally occurring SH U6-A gene end in directing SH transcription termination. In addition to affecting termination, the M-F intergenic region also influenced polymerase reinitiation. In the context of the WT U4-G M gene end, substituting nonviral sequences into the M-F intergenic region had a differential effect on F gene reinitiation, where some but not all nonviral sequences inhibited reinitiation. The inhibition of F gene reinitiation correlated with foreign sequences having a high C content. Deleting 6 bases or inserting 18 additional nucleotides into the middle of the 22-base M-F intergenic segment did not influence M gene termination or F gene reinitiation, indicating that M-F intergenic length per se is not a important factor modulating the SV5 polymerase activity. Our results suggest that the sequence diversity at an SV5 gene junction reflects specific combinations which may differentially affect SV5 gene expression and provide an additional level of transcriptional control beyond that which results from the distance of a gene from the 3' end promoter.
Collapse
Affiliation(s)
- J C Rassa
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1064, USA
| | | |
Collapse
|
52
|
Abstract
Protocols to recover negative-stand RNA viruses entirely from cDNA have been established in recent years, opening up this virus group to the detailed analysis of molecular genetics and virus biology. The unique gene-expression strategy of nonsegmented negative-strand RNA viruses, which involves replication of ribonucleoprotein complexes and sequential synthesis of free mRNAs, has also allowed the use of these viruses to express heterologous sequences. There are advantages in terms of easy manipulation of constructs, high capacity for foreign sequences, genetically stable expression, and the possibility of adjusting expression levels. Fascinating prospects for biomedical applications and transient gene therapy are offered by chimeric virus vectors carrying novel envelope protein genes and targeted to defined host cells.
Collapse
Affiliation(s)
- K K Conzelmann
- Federal Research Centre for Virus Diseases of Animals, Tübingen, Germany.
| |
Collapse
|
53
|
Murphy SK, Parks GD. RNA replication for the paramyxovirus simian virus 5 requires an internal repeated (CGNNNN) sequence motif. J Virol 1999; 73:805-9. [PMID: 9847393 PMCID: PMC103894 DOI: 10.1128/jvi.73.1.805-809.1999] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A functional RNA replication promoter for the paramyxovirus simian virus 5 (SV5) requires two essential and discontinuous elements: 19 bases at the 3' terminus (conserved region I) and an 18-base internal region (conserved region II [CRII]) that is contained within the coding region of the L protein gene. A reverse-genetics system was used to determine the sequence requirements for the internal CRII element to function in RNA replication. A series of copyback defective interfering (DI) RNA analogs were constructed to contain point mutations in the 18 nucleotides composing CRII, and their relative replication levels were analyzed. The results indicated that SV5 DI RNA replication was reduced by substitutions for two CG dinucleotides, which in the nucleocapsid template are in the first two positions of the first two hexamers of CRII nucleotides. Substitutions for other bases within CRII did not reduce RNA synthesis. Thus, two consecutive 5'-CGNNNN-3' hexamers form an important sequence in the SV5 CRII promoter element. The position of the CG dinucleotide within the SV5 leader and antitrailer promoters was highly conserved among other members of the Rubulavirus genus, but this motif differed significantly in both sequence and position from that previously identified for Sendai virus. The possible roles of the CRII internal promoter element in paramyxovirus RNA replication are discussed.
Collapse
Affiliation(s)
- S K Murphy
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1064, USA
| | | |
Collapse
|
54
|
Mühlberger E, Lötfering B, Klenk HD, Becker S. Three of the four nucleocapsid proteins of Marburg virus, NP, VP35, and L, are sufficient to mediate replication and transcription of Marburg virus-specific monocistronic minigenomes. J Virol 1998; 72:8756-64. [PMID: 9765419 PMCID: PMC110291 DOI: 10.1128/jvi.72.11.8756-8764.1998] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This paper describes the first reconstituted replication system established for a member of the Filoviridae, Marburg virus (MBGV). MBGV minigenomes containing the leader and trailer regions of the MBGV genome and the chloramphenicol acetyltransferase (CAT) gene were constructed. In MBGV-infected cells, these minigenomes were replicated and encapsidated and could be passaged. Unlike most other members of the order Mononegavirales, filoviruses possess four proteins presumed to be components of the nucleocapsid (NP, VP35, VP30, and L). To determine the protein requirements for replication and transcription, a reverse genetic system was established for MBGV based on the vaccinia virus T7 expression system. Northern blot analysis of viral RNA revealed that three nucleocapsid proteins (NP, VP35, and L) were essential and sufficient for transcription as well as replication and encapsidation. These data indicate that VP35, rather than VP30, is the functional homologue of rhabdo- and paramyxovirus P proteins. The reconstituted replication system was profoundly affected by the NP-to-VP35 expression ratio. To investigate whether CAT gene expression was achieved entirely by mRNA or in part by full-length plus-strand minigenomes, a copy-back minireplicon containing the CAT gene but lacking MBGV-specific transcriptional start sites was employed in the artificial replication system. This construct was replicated without accompanying CAT activity. It was concluded that the CAT activity reflected MBGV-specific transcription and not replication.
Collapse
Affiliation(s)
- E Mühlberger
- Institut für Virologie, Philipps-Universität Marburg, 35037 Marburg, Germany
| | | | | | | |
Collapse
|
55
|
He B, Leser GP, Paterson RG, Lamb RA. The paramyxovirus SV5 small hydrophobic (SH) protein is not essential for virus growth in tissue culture cells. Virology 1998; 250:30-40. [PMID: 9770417 DOI: 10.1006/viro.1998.9354] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The SH gene of the paramyxovirus SV5 is located between the genes for the glycoproteins, fusion protein (F) and hemagglutinin-neuraminidase (HN), and the SH gene encodes a small 44-residue hydrophobic integral membrane protein (SH). The SH protein is expressed in SV5-infected cells and is oriented in membranes with its N terminus in the cytoplasm. To study the function of the SH protein in the SV5 virus life cycle, the SH gene was deleted from the infectious cDNA clone of the SV5 genome. By using the recently developed reverse genetics system for SV5, it was found that an SH-deleted SV5 (rSV5DeltaSH) could be recovered, indicating the SH protein was not essential for virus viability in tissue culture. Analysis of properties of rSV5DeltaSH indicated that lack of expression of SH protein did not alter the expression level of the other virus proteins, the subcellular localization of F and HN, or fusion competency as measured by lipid mixing assays and a new content mixing assay that did not require the use of vaccinia virus. The growth rate, infectivity, and plaque size of rSV5 and rSV5DeltaSH were found to be very similar. Although SH is shown to be a component of purified virions by immunoblotting, examination of purified rSV5DeltaSH by electron microscopy did not show an altered morphology from SV5. Thus in tissue culture cells the lack of the SV5 SH protein does not confer a recognizable phenotype.
Collapse
Affiliation(s)
- B He
- Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois, 60208-3500, USA
| | | | | | | |
Collapse
|
56
|
Rassa JC, Parks GD. Molecular basis for naturally occurring elevated readthrough transcription across the M-F junction of the paramyxovirus SV5. Virology 1998; 247:274-86. [PMID: 9705920 DOI: 10.1006/viro.1998.9266] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcription of the paramyxovirus RNA genome is thought to involve a sequential stop-start mechanism whereby monocistronic mRNAs are produced by polyadenylation and termination of 3' upstream gene followed by reinitiation at the downstream start site. For a number of paramyxoviruses, transcription across the M-F gene junction results in the synthesis of high levels of a dicistronic M-F readthrough RNA. In cells infected with the paramyxovirus SV5, 15% or less of the transcripts from the viral P, M, SH, HN, and L genes were detected as readthrough products with the 3' proximal gene. By contrast, approximately 40% of the SV5 F mRNA was detected as a dicistronic M-F transcript. A comparison of the individual SV5 gene junctions showed that elevated M-F readthrough transcription correlate with the M gene end having the shortest U tract for directing polyadenylation and a gene end sequence that differs from the consensus sequence. We have tested the hypothesis that elevated M-F readthrough transcription results from an inefficient termination signal at the end of the M gene. A reverse genetics system was established whereby SV5 transcription was reconstituted in transfected cells using cDNA-derived polymerase components and dicistronic minigenomes that encoded either the SV5 M-F or the SH-HN gene junction. Chimeric SV5 minigenomes were constructed to contain exchanges of a 10 base gene end sequence and the U tract from the M-F (approximately 40% readthrough) and SH-HN (approximately 15% readthrough) junctions. Northern blot analysis of RNA synthesized from these altered templates showed that, in the context of the M-F intergenic region, increasing the length of the M gene end U tract from four residues to six or eight U residues did not decrease M-F readthrough transcription. In contrast, chimeric minigenomes that contained the 10 base region from the end of the SH gene directed very efficient gene termination and a corresponding decrease in readthrough transcription. Mutational analysis showed that a single G to A substitution located five bases 3' to the M gene U tract was sufficient to convert the M gene end region to an efficient signal for polyadenylation-termination. These results demonstrate a role for the gene end region located immediately 3' to the U tract as a major determinant of transcription termination in the paramyxovirus genome. The possible role of M-F readthrough transcription in the paramyxovirus growth cycle is discussed.
Collapse
Affiliation(s)
- J C Rassa
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1064, USA
| | | |
Collapse
|
57
|
Kolakofsky D, Pelet T, Garcin D, Hausmann S, Curran J, Roux L. Paramyxovirus RNA synthesis and the requirement for hexamer genome length: the rule of six revisited. J Virol 1998; 72:891-9. [PMID: 9444980 PMCID: PMC124558 DOI: 10.1128/jvi.72.2.891-899.1998] [Citation(s) in RCA: 278] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- D Kolakofsky
- Department of Genetics and Microbiology, University of Geneva School of Medicine, Switzerland.
| | | | | | | | | | | |
Collapse
|
58
|
Murphy SK, Ito Y, Parks GD. A functional antigenomic promoter for the paramyxovirus simian virus 5 requires proper spacing between an essential internal segment and the 3' terminus. J Virol 1998; 72:10-9. [PMID: 9420195 PMCID: PMC109344 DOI: 10.1128/jvi.72.1.10-19.1998] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/1997] [Accepted: 09/26/1997] [Indexed: 02/05/2023] Open
Abstract
A previous analysis of naturally occurring defective interfering (DI) RNA genomes of the prototypic paramyxovirus simian virus 5 (SV5) indicated that 113 bases at the 3' terminus of the antigenome were sufficient to direct RNA encapsidation and replication. A nucleotide sequence alignment of the antigenomic 3'-terminal 113 bases of members of the Rubulavirus genus of the Paramyxoviridae family identified two regions of sequence identity: bases 1 to 19 at the 3' terminus (conserved region I [CRI]) and a more distal region consisting of antigenome bases 73 to 90 (CRII) that was contained within the 3' coding region of the L protein gene. To determine whether these regions of the antigenome were essential for SV5 RNA replication, a reverse genetics system was used to analyze the replication of copyback DI RNA analogs that contained a foreign gene (GL, encoding green fluorescence protein) flanked by 113 5'-terminal bases and various amounts of SV5 3'-terminal antigenomic sequences. Results from a deletion analysis showed that efficient encapsidation and replication of SV5-GL DI RNA analogs occurred when the 90 3'-terminal bases of the SV5 antigenomic RNA were retained, but replication was reduced approximately 5- to 14-fold in the case of truncated antigenomes that lacked the 3'-end CRII sequences. A chimeric copyback DI RNA containing the 3'-terminal 98 bases including the CRI and CRII sequences from the human parainfluenza virus type 2 (HPIV2) antigenome in place of the corresponding SV5 sequences was efficiently replicated by SV5 cDNA-derived components. However, replication was reduced approximately 20-fold for a truncated SV5-HPIV2 chimeric RNA that lacked the HPIV2 CRII sequences between antigenome bases 72 and 90. Progressive deletions of 6 to 18 bases in the region located between the SV5 antigenomic CRI and CRII segments (3'-end nucleotides 21 to 38) resulted in a approximately 25-fold decrease in SV5-GL RNA synthesis. Surprisingly, replication was restored to wild-type levels when these length alterations between CRI and CRII were corrected by replacing the deleted bases with nonviral sequences. Together, these data suggest that a functional SV5 antigenomic promoter requires proper spacing between an essential internal region and the 3' terminus. A model is presented for the structure of the 3' end of the SV5 antigenome which proposes that positioning of CRI and CRII along the same face of the helical nucleocapsid is an essential feature of a functional antigenomic promoter.
Collapse
Affiliation(s)
- S K Murphy
- Department of Microbiology and Immunology, Wake Forest University Medical Center, Winston-Salem, North Carolina 27157-1064, USA
| | | | | |
Collapse
|
59
|
He B, Paterson RG, Ward CD, Lamb RA. Recovery of infectious SV5 from cloned DNA and expression of a foreign gene. Virology 1997; 237:249-60. [PMID: 9356337 DOI: 10.1006/viro.1997.8801] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A complete cDNA clone of the genome (15,246 nucleotides) of the paramyxovirus SV5 was constructed from cDNAs such that an anti-genome RNA could be transcribed by T7 RNA polymerase and the correct 3' end generated by cleavage using hepatitis delta virus ribozyme. The plasmid encoding the antigenome sequence was transfected into cells previously infected with recombinant vaccinia virus that expressed T7 RNA polymerase, together with helper plasmids that expressed the viral replication proteins, NP, P, and L, under the control of the T7 polymerase promoter. Rescue of the RNA genome from DNA was demonstrated by recovering SV5 with the tag restriction sites introduced into the DNA clone, using RT-PCR of the genome RNA and nucleotide sequencing. Rescue of SV5 from DNA did not require expression of the viral V protein as a helper plasmid, suggesting that V protein is not essential for initial replication. The infectious cDNA of SV5 was also manipulated to express green fluorescent protein (GFP) under the control of SV5 transcriptional start and stop signals introduced between the HN and L genes. The amount of GFP that was expressed varied depending on the nature of the newly introduced transcription signals.
Collapse
Affiliation(s)
- B He
- Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | | | | | |
Collapse
|