51
|
Liu C, Li J, Zhang Y, Philip A, Shi E, Chi X, Meng J. Influence of glucose fermentation on CO₂ assimilation to acetate in homoacetogen Blautia coccoides GA-1. J Ind Microbiol Biotechnol 2015; 42:1217-24. [PMID: 26153502 DOI: 10.1007/s10295-015-1646-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/16/2015] [Indexed: 11/28/2022]
Abstract
Fermentation of glucose influences CO2 assimilation to acetate in homoacetogens. Blautia coccoides was investigated for a better understanding of the metabolic characteristics of homoacetogens in mixotrophic cultures. Batch cultures of the strain with H2/CO2 as a sole carbon source reached an acetate yield of 5.32 g/g dry cell weight after 240 h of incubation. Autotrophic metabolism was inhibited as glucose was added into the culture: the higher the glucose concentration the lower the autotrophic ability of the bacterium. Autotrophy was inhibited by high glucose concentration, probably due to the competition for coenzyme A between the Embden-Meyerhof-Parnas pathway and the Wood-Ljungdahl carbon fixation pathway, the energy (adenosine triphosphate) allocation for synthesis of cell carbon and reduction of CO2, in combination with the low pH caused by the accumulation of acetate.
Collapse
Affiliation(s)
- Chong Liu
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | | | | | | | | | | | | |
Collapse
|
52
|
Kracke F, Vassilev I, Krömer JO. Microbial electron transport and energy conservation - the foundation for optimizing bioelectrochemical systems. Front Microbiol 2015; 6:575. [PMID: 26124754 PMCID: PMC4463002 DOI: 10.3389/fmicb.2015.00575] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/25/2015] [Indexed: 12/23/2022] Open
Abstract
Microbial electrochemical techniques describe a variety of emerging technologies that use electrode–bacteria interactions for biotechnology applications including the production of electricity, waste and wastewater treatment, bioremediation and the production of valuable products. Central in each application is the ability of the microbial catalyst to interact with external electron acceptors and/or donors and its metabolic properties that enable the combination of electron transport and carbon metabolism. And here also lies the key challenge. A wide range of microbes has been discovered to be able to exchange electrons with solid surfaces or mediators but only a few have been studied in depth. Especially electron transfer mechanisms from cathodes towards the microbial organism are poorly understood but are essential for many applications such as microbial electrosynthesis. We analyze the different electron transport chains that nature offers for organisms such as metal respiring bacteria and acetogens, but also standard biotechnological organisms currently used in bio-production. Special focus lies on the essential connection of redox and energy metabolism, which is often ignored when studying bioelectrochemical systems. The possibility of extracellular electron exchange at different points in each organism is discussed regarding required redox potentials and effect on cellular redox and energy levels. Key compounds such as electron carriers (e.g., cytochromes, ferredoxin, quinones, flavins) are identified and analyzed regarding their possible role in electrode–microbe interactions. This work summarizes our current knowledge on electron transport processes and uses a theoretical approach to predict the impact of different modes of transfer on the energy metabolism. As such it adds an important piece of fundamental understanding of microbial electron transport possibilities to the research community and will help to optimize and advance bioelectrochemical techniques.
Collapse
Affiliation(s)
- Frauke Kracke
- Centre for Microbial Electrochemical Systems, The University of Queensland, Brisbane QLD, Australia ; Advanced Water Management Centre, The University of Queensland, Brisbane QLD, Australia
| | - Igor Vassilev
- Centre for Microbial Electrochemical Systems, The University of Queensland, Brisbane QLD, Australia ; Advanced Water Management Centre, The University of Queensland, Brisbane QLD, Australia
| | - Jens O Krömer
- Centre for Microbial Electrochemical Systems, The University of Queensland, Brisbane QLD, Australia ; Advanced Water Management Centre, The University of Queensland, Brisbane QLD, Australia
| |
Collapse
|
53
|
Annie Modestra J, Navaneeth B, Venkata Mohan S. Bio-electrocatalytic reduction of CO2: Enrichment of homoacetogens and pH optimization towards enhancement of carboxylic acids biosynthesis. J CO2 UTIL 2015. [DOI: 10.1016/j.jcou.2015.04.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
54
|
Campos CR, Mesquita VA, Silva CF, Schwan RF. Efficiency of physicochemical and biological treatments of vinasse and their influence on indigenous microbiota for disposal into the environment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2014; 34:2036-2046. [PMID: 25022548 DOI: 10.1016/j.wasman.2014.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 06/03/2023]
Abstract
Molasses-based distilleries are one of the most polluting industries generating large volumes of high strength wastewater called vinasse. Different processes covering anaerobic, aerobic as well as physicochemical methods have been employed to treat this effluent. This study evaluated the microbial communities present in the vinasse during different stages of its treatment by traditional and molecular methods. The analysis of the efficiency of each treatment was performed by physicochemical parameters and toxicity analysis. The treatment of vinasse was performed in the following steps: high flow fermentation; filtration; chemical flakes; low-flow fermentation; filtration; and neutralization. The physicochemical analysis in different stages of the vinasse treatment demonstrated that phases of treatment influenced the performance of the evaluated parameters. Among the 37 parameters, 9 were within the limits established by the Commission for Environmental Policy of Minas Gerais, Brazil (COPAM), especially BOD (96.7% of pollution reduction), suspended solids (99.9%), pH, copper (88%), iron (92.9%), and manganese (88%). Some parameters, even after treatment, did not fit the maximum allowed by legislation. The microbial population decreased reaching 3 log CFU/ml present in the steps of the flakes chemical and disinfection treatment of vinasse. Lactobacillus brevis and Pichia kudriavzevii were present in all stages of the treatments, showing that these microorganisms were resistant and demonstrated that they might be important in the treatment of vinasse. The vinasse showed a significant reduction of pollution load after the disinfection treatment however still should not be discarded into water bodies because the high values of tannins and sediment solids, but suggest the use of the effluent in the cooling coil during the distillation process of the beverage.
Collapse
|
55
|
Kuppardt A, Kleinsteuber S, Vogt C, Lüders T, Harms H, Chatzinotas A. Phylogenetic and functional diversity within toluene-degrading, sulphate-reducing consortia enriched from a contaminated aquifer. MICROBIAL ECOLOGY 2014; 68:222-234. [PMID: 24623528 DOI: 10.1007/s00248-014-0403-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 02/25/2014] [Indexed: 06/03/2023]
Abstract
Three toluene-degrading microbial consortia were enriched under sulphate-reducing conditions from different zones of a benzene, toluene, ethylbenzene and xylenes (BTEX) plume of two connected contaminated aquifers. Two cultures were obtained from a weakly contaminated zone of the lower aquifer, while one culture originated from the highly contaminated upper aquifer. We hypothesised that the different habitat characteristics are reflected by distinct degrader populations. Degradation of toluene with concomitant production of sulphide was demonstrated in laboratory microcosms and the enrichment cultures were phylogenetically characterised. The benzylsuccinate synthase alpha-subunit (bssA) marker gene, encoding the enzyme initiating anaerobic toluene degradation, was targeted to characterise the catabolic diversity within the enrichment cultures. It was shown that the hydrogeochemical parameters in the different zones of the plume determined the microbial composition of the enrichment cultures. Both enrichment cultures from the weakly contaminated zone were of a very similar composition, dominated by Deltaproteobacteria with the Desulfobulbaceae (a Desulfopila-related phylotype) as key players. Two different bssA sequence types were found, which were both affiliated to genes from sulphate-reducing Deltaproteobacteria. In contrast, the enrichment culture from the highly contaminated zone was dominated by Clostridia with a Desulfosporosinus-related phylotype as presumed key player. A distinct bssA sequence type with high similarity to other recently detected sequences from clostridial toluene degraders was dominant in this culture. This work contributes to our understanding of the niche partitioning between degrader populations in distinct compartments of BTEX-contaminated aquifers.
Collapse
Affiliation(s)
- Anke Kuppardt
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany,
| | | | | | | | | | | |
Collapse
|
56
|
Latif H, Zeidan AA, Nielsen AT, Zengler K. Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms. Curr Opin Biotechnol 2014; 27:79-87. [DOI: 10.1016/j.copbio.2013.12.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 01/01/2023]
|
57
|
Brulé M, Oechsner H, Jungbluth T. Exponential model describing methane production kinetics in batch anaerobic digestion: a tool for evaluation of biochemical methane potential assays. Bioprocess Biosyst Eng 2014; 37:1759-70. [DOI: 10.1007/s00449-014-1150-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
|
58
|
Brulé M, Bolduan R, Seidelt S, Schlagermann P, Bott A. Modified batch anaerobic digestion assay for testing efficiencies of trace metal additives to enhance methane production of energy crops. ENVIRONMENTAL TECHNOLOGY 2013; 34:2047-2058. [PMID: 24350458 DOI: 10.1080/09593330.2013.808251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Batch biochemical methane potential (BMP) assays to evaluate the methane yield of biogas substrates such as energy crops are usually carried out with undiluted inoculum. A BMP assay was performed on two energy crops (green cuttings and grass silage). Anaerobic digestion was performed both with and without supplementation of three commercial additives containing trace metals in liquid, solid or adsorbed form (on clay particles). In order to reveal positive effects of trace metal supplementation on the methane yield, besides undiluted inoculum, 3-fold and 10-fold dilutions of the inoculum were applied for substrate digestion. Diluted inoculum variants were supplemented with both mineral nutrients and pH-buffering substances to prevent a collapse of the digestion process. As expected, commercial additives had no effect on the digestion process performed with undiluted inoculum, while significant increases of methane production through trace element supplementation could be observed on the diluted variants. The effect of inoculum dilution may be twofold: (1) decrease in trace metal supplementation from the inoculum and (2) reduction in the initial number of bacterial cells. Bacteria require higher growth rates for substrate degradation and hence have higher trace element consumption. According to common knowledge of the biogas process, periods with volatile fatty acids accumulation and decreased pH may have occurred in the course ofanaerobic digestion. These effects may have led to inhibition, not only ofmethanogenes and acetogenes involved in the final phases of methane production, but also offibre-degrading bacterial strains involved in polymer hydrolysis. Further research is required to confirm this hypothesis.
Collapse
Affiliation(s)
- Mathieu Brulé
- European Institute for Energy Research (EIFER), Karlsruhe, Germany
| | - Rainer Bolduan
- European Institute for Energy Research (EIFER), Karlsruhe, Germany
| | - Stephan Seidelt
- European Institute for Energy Research (EIFER), Karlsruhe, Germany
| | | | | |
Collapse
|
59
|
Abstract
Extracellular electron transfer has, in one decade, emerged from an environmental phenomenon to an industrial process driver. On the one hand, electron transfer towards anodes leads to production of power or chemicals such as hydrogen, caustic soda and hydrogen peroxide. On the other hand, electron transfer from cathodes enables bioremediation and bioproduction. Although the microbiology of extracellular electron transfer is increasingly being understood, bringing the processes to application requires a number of considerations that are both operational and technical. In the present paper, we investigate the key applied aspects related to electricity-driven bioproduction, including biofilm development, reactor and electrode design, substrate fluxes, surface chemistry, hydrodynamics and electrochemistry, and finally end-product removal/toxicity. Each of these aspects will be critical for the full exploitation of the intriguing physiological feat that extracellular electron transfer is today.
Collapse
|
60
|
Fievez V, Piattoni F, Mbanzamihigo L, Demeyer D. Reductive Acetogenesis in the Hindgut and Attempts to its Induction in the Rumen—A Review. JOURNAL OF APPLIED ANIMAL RESEARCH 2011. [DOI: 10.1080/09712119.1999.9706258] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
61
|
Molecular analysis of the biomass of a fluidized bed reactor treating synthetic vinasse at anaerobic and micro-aerobic conditions. Appl Microbiol Biotechnol 2011; 93:2181-91. [PMID: 21861082 DOI: 10.1007/s00253-011-3529-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/22/2011] [Accepted: 08/03/2011] [Indexed: 10/17/2022]
Abstract
The microbial communities (Bacteria and Archaea) established in an anaerobic fluidized bed reactor used to treat synthetic vinasse (betaine, glucose, acetate, propionate, and butyrate) were characterized by denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis. This study was focused on the competitive and syntrophic interactions between the different microbial groups at varying influent substrate to sulfate ratios of 8, 4, and 2 and anaerobic or micro-aerobic conditions. Acetogens detected along the anaerobic phases at substrate to sulfate ratios of 8 and 4 seemed to be mainly involved in the fermentation of glucose and betaine, but they were substituted by other sugar or betaine degraders after oxygen application. Typical fatty acid degraders that grow in syntrophy with methanogens were not detected during the entire reactor run. Likely, sugar and betaine degraders outnumbered them in the DGGE analysis. The detected sulfate-reducing bacteria (SRB) belonged to the hydrogen-utilizing Desulfovibrio. The introduction of oxygen led to the formation of elemental sulfur (S(0)) and probably other sulfur compounds by sulfide-oxidizing bacteria (γ-Proteobacteria). It is likely that the sulfur intermediates produced from sulfide oxidation were used by SRB and other microorganisms as electron acceptors, as was supported by the detection of the sulfur respiring Wolinella succinogenes. Within the Archaea population, members of Methanomethylovorans and Methanosaeta were detected throughout the entire reactor operation. Hydrogenotrophic methanogens mainly belonging to the genus Methanobacterium were detected at the highest substrate to sulfate ratio but rapidly disappeared by increasing the sulfate concentration.
Collapse
|
62
|
Fu ML, Wang W, Chen F, Dong YC, Liu XJ, Ni H, Chen QH. Production of 8-prenylnaringenin from isoxanthohumol through biotransformation by fungi cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:7419-7426. [PMID: 21634799 DOI: 10.1021/jf2011722] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
8-Prenylnaringenin (8PN), which presents in hop, enjoys fame as the most potential phytoestrogen. Although a number of health effects are attributed to 8PN, few reports are available about the production of it. In this work, screening of fungi to efficiently transform isoxanthohumol (IXN) into 8PN was designed. The biotransformation of IXN was significantly observed in Eupenicillium javanicum, Cunninghamella blakesleana, and Ceriporiopsis subvermispora under five kinds of transformation conditions. As a comparative result of IXN transformation, E. javanicum was the optimal biocatalyst to produce 8PN. Transformation caused by growing precultured fungal mycelia, a process designated as G2, was a favorable condition for IXN transformation in view of the yield of 8PN. The possible transformation pathway of 8PN bioproduction is postulated in this work. The construction of fungus and transformation mode derived from the current work is viable and an alternative procedure for 8PN formation.
Collapse
Affiliation(s)
- Ming-liang Fu
- Department of Food Science and Nutrition, Zhejiang University , Hangzhou 310058, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
63
|
Biegel E, Schmidt S, González JM, Müller V. Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes. Cell Mol Life Sci 2011; 68:613-34. [PMID: 21072677 PMCID: PMC11115008 DOI: 10.1007/s00018-010-0555-8] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 09/30/2010] [Accepted: 10/01/2010] [Indexed: 11/25/2022]
Abstract
Microbes have a fascinating repertoire of bioenergetic enzymes and a huge variety of electron transport chains to cope with very different environmental conditions, such as different oxygen concentrations, different electron acceptors, pH and salinity. However, all these electron transport chains cover the redox span from NADH + H(+) as the most negative donor to oxygen/H(2)O as the most positive acceptor or increments thereof. The redox range more negative than -320 mV has been largely ignored. Here, we have summarized the recent data that unraveled a novel ion-motive electron transport chain, the Rnf complex, that energetically couples the cellular ferredoxin to the pyridine nucleotide pool. The energetics of the complex and its biochemistry, as well as its evolution and cellular function in different microbes, is discussed.
Collapse
Affiliation(s)
- Eva Biegel
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Silke Schmidt
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - José M. González
- Department of Microbiology and Cell Biology, University of La Laguna, 38206 La Laguna, Tenerife Spain
| | - Volker Müller
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
64
|
Massé D, Gilbert Y, Topp E. Pathogen removal in farm-scale psychrophilic anaerobic digesters processing swine manure. BIORESOURCE TECHNOLOGY 2011; 102:641-646. [PMID: 20801022 DOI: 10.1016/j.biortech.2010.08.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/29/2010] [Accepted: 08/05/2010] [Indexed: 05/28/2023]
Abstract
This study assessed the efficiency of commercial-scale psychrophilic anaerobic digestion in sequencing batch reactors (PADSBRs) for pathogen removal from pig manure. The impact of treatment cycle length and of hydraulic flow regimes on pathogen removal efficiency was investigated. Two conventionally operated SBRs (BR1 and BR2) and two SBRs simultaneously fed during the draw step (BR3 and BR4) were monitored over a two-year period. PADSBRs significantly decreased the concentration of coliforms, Salmonella, Campylobacter spp., and Y. enterocolitica, respectively from about 10(6), 10(3) CFU g(-1), 10(3), and 10(4) CFU g(-1) to undetectable levels in most samples. Densities of the gram-positive Clostridium perfringens and Enterococcus spp. remained high (10(5) CFU g(-1)) in the digesters throughout treatment. The PADSBRs maintained the same level of pathogen removal when the treatment cycle length was reduced from 2 to 1 week. Mass balances on volatile fatty acids (VFAs) revealed short-circuits of inlet flow respectively averaging 6.3% and 6.4% for BR3 and BR4, significantly reducing the overall performance of these reactors regarding pathogens removal. The results obtained in this study show the ability of low temperature anaerobic digestion to remove or significantly reduce indicator and pathogen concentration from raw pig manure.
Collapse
Affiliation(s)
- Daniel Massé
- Dairy and Swine Research and Development Centre, Agriculture and Agri-Food Canada, 2000, College Street, Sherbrooke, QC, Canada J1M 0C8.
| | | | | |
Collapse
|
65
|
Kundiyana DK, Huhnke RL, Wilkins MR. Syngas fermentation in a 100-L pilot scale fermentor: Design and process considerations. J Biosci Bioeng 2010; 109:492-8. [DOI: 10.1016/j.jbiosc.2009.10.022] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 10/16/2009] [Accepted: 10/26/2009] [Indexed: 11/25/2022]
|
66
|
Azizian MF, Marshall IPG, Behrens S, Spormann AM, Semprini L. Comparison of lactate, formate, and propionate as hydrogen donors for the reductive dehalogenation of trichloroethene in a continuous-flow column. JOURNAL OF CONTAMINANT HYDROLOGY 2010; 113:77-92. [PMID: 20202715 DOI: 10.1016/j.jconhyd.2010.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 02/04/2010] [Accepted: 02/04/2010] [Indexed: 05/24/2023]
Abstract
A continuous-flow column study was conducted to analyze the reductive dehalogenation of trichloroethene (TCE) with aquifer material with high content of iron oxides. The column was bioaugmented with the Point Mugu (PM) culture, which is a mixed microbial enrichment culture capable of completely transforming TCE to ethene (ETH). We determined whether lactate, formate, or propionate fermentation resulted in more effective dehalogenation. Reductive dehalogenation, fermentation, and sulfate, Fe(III), and Mn(IV) reduction were all exhibited within the column. Different steady-states of dehalogenation were achieved based on the concentration of substrates added, with effective transformation to ETH obtained when ample electron donor equivalents were provided. Most of the metabolic reducing equivalents were channeled to sulfate, Fe(III), and Mn(IV) reduction. When similar electron reducing equivalents were added, the most effective dehalogenation was achieved with formate, with 14% of the electron equivalents going towards dehalogenation reactions, compared to 6.5% for lactate and 9.6% for propionate. Effective dehalogenation was maintained over 1000 days of column operation. Over 90% of electron equivalents added could be accounted for by the different electron accepting processes in the column, with 50% associated with soluble and precipitated Fe(II) and Mn(II). Bulk Fe(III) and Mn(IV) reduction was rather associated with lactate and propionate addition than formate addition. Sulfate reduction was a competing electron acceptor reaction with all three electron donors. DNA was extracted from solid coupon samples obtained during the course of the experiment and analyzed using 16S rRNA gene clone libraries and quantitative PCR. Lactate and propionate addition resulted in a significant increase in Geobacter, Spirochaetes, and Desulfitobacterium phylotypes relative to "Dehalococcoides" when compared to formate addition. Results from the molecular biological analyses support chemical observations that a greater percentage of the electron donor addition was channeled to Fe(III) reduction when lactate and propionate were added compared to formate, and formate was more effective than lactate in supporting dehalogenation. The results demonstrate the importance of electron donor selection and competing electron acceptor reactions when implementing reductive dehalogenation remediation technologies.
Collapse
Affiliation(s)
- Mohammad F Azizian
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 102 Gleeson Hall, Corvallis, OR 97331, USA.
| | | | | | | | | |
Collapse
|
67
|
Biofilm growth kinetics of a monomethylamine producing Alphaproteobacteria strain isolated from an anaerobic reactor. Anaerobe 2010; 16:19-26. [DOI: 10.1016/j.anaerobe.2009.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 04/23/2009] [Accepted: 04/29/2009] [Indexed: 11/17/2022]
|
68
|
Presence of novel, potentially homoacetogenic bacteria in the rumen as determined by analysis of formyltetrahydrofolate synthetase sequences from ruminants. Appl Environ Microbiol 2010; 76:2058-66. [PMID: 20118378 DOI: 10.1128/aem.02580-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homoacetogens produce acetate from H(2) and CO(2) via the Wood-Ljungdahl pathway. Some homoacetogens have been isolated from the rumen, but these organisms are expected to be only part of the full diversity present. To survey the presence of rumen homoacetogens, we analyzed sequences of formyltetrahydrofolate synthetase (FTHFS), a key enzyme of the Wood-Ljungdahl pathway. A total of 275 partial sequences of genes encoding FTHFS were PCR amplified from rumen contents of a cow, two sheep, and a deer. Phylogenetic trees were constructed using these FTHFS gene sequences and the translated amino acid sequences, together with other sequences from public databases and from novel nonhomoacetogenic bacteria isolated from the rumen. Over 90% of the FTHFS sequences fell into 34 clusters defined with good bootstrap support. Few rumen-derived FTHFS sequences clustered with sequences of known homoacetogens. Conserved residues were identified in the deduced FTHFS amino acid sequences from known homoacetogens, and their presence in the other sequences was used to determine a "homoacetogen similarity" (HS) score. A homoacetogen FTHFS profile hidden Markov model (HoF-HMM) was used to assess the homology of rumen and homoacetogen FTHFS sequences. Many clusters had low HS scores and HoF-HMM matches, raising doubts about whether the sequences originated from homoacetogens. In keeping with these findings, FTHFS sequences from nonhomoacetogenic bacterial isolates grouped in these clusters with low scores. However, sequences that formed 10 clusters containing no known isolates but representing 15% of our FTHFS sequences from rumen samples had high HS scores and HoF-HMM matches and so could represent novel homoacetogens.
Collapse
|
69
|
Zhu X, Tan X. Metalloproteins/metalloenzymes for the synthesis of acetyl-CoA in the Wood-Ljungdahl pathway. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11426-009-0082-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
70
|
Nie YQ, Liu H, Du GC, Chen J. Acetate production by a coupled syntrophic acetogenesis with homoacetogenesis process: effect of sludge inoculum concentration. ENVIRONMENTAL TECHNOLOGY 2009; 30:141-150. [PMID: 19278155 DOI: 10.1080/09593330802379540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The effect of sludge inoculum concentration on acetate (Ac) production by a novel coupled system was investigated. The coupled system consisted ofa syntrophic acetogenesis phase and a homoacetogenesis phase. The results showed that the inoculum concentration not only affected the acetate production at the syntrophic acetogenesis phase but also that produced at the homoacetogenesis phase. When the inoculum concentration in the syntrophic acetogenesis phase was 4 g l(-1), the acetate yield of the coupled system was found to be about 0.36 g Ac g(-1) glucose. In addition, when the inoculum concentration in the homoacetogenesis phase was 4 g l(-1), a maximum acetate production of 11.2 g l(-1) was obtained in the syntrophic acetogenesis phase and the yield of acetate was 0.39 g Ac g(-1) glucose. Analysis shows that the variation in acetate yield might be attributed to different metabolic pathways and the imbalance between hydrogen production and hydrogen consumption in the coupled system with different inoculum concentrations.
Collapse
Affiliation(s)
- Y Q Nie
- Laboratory of Environmental Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | | | | | | |
Collapse
|
71
|
Schmidt S, Biegel E, Müller V. The ins and outs of Na(+) bioenergetics in Acetobacterium woodii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:691-6. [PMID: 19167341 DOI: 10.1016/j.bbabio.2008.12.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 12/30/2008] [Accepted: 12/30/2008] [Indexed: 12/15/2022]
Abstract
The acetogenic bacterium Acetobacterium woodii uses a transmembrane electrochemical sodium ion potential for bioenergetic reactions. A primary sodium ion potential is established during carbonate (acetogenesis) as well as caffeate respiration. The electrogenic Na(+) pump connected to the Wood-Ljungdahl pathway (acetogenesis) still remains to be identified. The pathway of caffeate reduction with hydrogen as electron donor was investigated and the only membrane-bound activity was found to be a ferredoxin-dependent NAD(+) reduction. This exergonic electron transfer reaction may be catalyzed by the membrane-bound Rnf complex that was discovered recently and is suggested to couple exergonic electron transfer from ferredoxin to NAD(+) to the vectorial transport of Na(+) across the cytoplasmic membrane. Rnf may also be involved in acetogenesis. The electrochemical sodium ion potential thus generated is used to drive endergonic reactions such as flagellar rotation and ATP synthesis. The ATP synthase is a member of the F(1)F(O) class of enzymes but has an unusual and exceptional feature. Its membrane-embedded rotor is a hybrid made of F(O) and V(O)-like subunits in a stoichiometry of 9:1. This stoichiometry is apparently not variable with the growth conditions. The structure and function of the Rnf complex and the Na(+) F(1)F(O) ATP synthase as key elements of the Na(+) cycle in A. woodii are discussed.
Collapse
Affiliation(s)
- Silke Schmidt
- Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | | | | |
Collapse
|
72
|
Ueno Y, Tatara M. Microbial population in a thermophilic packed-bed reactor for methanogenesis from volatile fatty acids. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2008.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
73
|
Müller V, Imkamp F, Biegel E, Schmidt S, Dilling S. Discovery of a ferredoxin:NAD+-oxidoreductase (Rnf) in Acetobacterium woodii: a novel potential coupling site in acetogens. Ann N Y Acad Sci 2008; 1125:137-46. [PMID: 18378592 DOI: 10.1196/annals.1419.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Acetogens use the Wood-Ljungdahl pathway for reduction of carbon dioxide to acetate. This pathway not only allows reoxidation of reducing equivalents during heterotrophic growth but also supports chemolithoautotrophic growth on H(2) + CO(2). The latter argues for this pathway being a source for net energy conservation, but the mechanism involved remains unknown. In addition to CO(2), acetogens can use alternative electron acceptors, such as nitrate or caffeate. Caffeate respiration in the model acetogen Acetobacterium woodii is coupled to energy conservation via a chemiosmotic mechanism, with Na(+) as coupling ion. The pathway and its bioenergetics were solved in some detail very recently. This review focuses on the regulation of caffeate respiration, describes the enyzmes involved, summarizes the evidence for a potential Na(+)-translocating ferredoxin:NAD(+)-oxidoreductase (Rnf complex) as a new coupling site, and hypothesizes on the role of this Rnf complex in the Wood-Ljungdahl pathway.
Collapse
Affiliation(s)
- Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
74
|
Abstract
Acetogens utilize the acetyl-CoA Wood-Ljungdahl pathway as a terminal electron-accepting, energy-conserving, CO(2)-fixing process. The decades of research to resolve the enzymology of this pathway (1) preceded studies demonstrating that acetogens not only harbor a novel CO(2)-fixing pathway, but are also ecologically important, and (2) overshadowed the novel microbiological discoveries of acetogens and acetogenesis. The first acetogen to be isolated, Clostridium aceticum, was reported by Klaas Tammo Wieringa in 1936, but was subsequently lost. The second acetogen to be isolated, Clostridium thermoaceticum, was isolated by Francis Ephraim Fontaine and co-workers in 1942. C. thermoaceticum became the most extensively studied acetogen and was used to resolve the enzymology of the acetyl-CoA pathway in the laboratories of Harland Goff Wood and Lars Gerhard Ljungdahl. Although acetogenesis initially intrigued few scientists, this novel process fostered several scientific milestones, including the first (14)C-tracer studies in biology and the discovery that tungsten is a biologically active metal. The acetyl-CoA pathway is now recognized as a fundamental component of the global carbon cycle and essential to the metabolic potentials of many different prokaryotes. The acetyl-CoA pathway and variants thereof appear to be important to primary production in certain habitats and may have been the first autotrophic process on earth and important to the evolution of life. The purpose of this article is to (1) pay tribute to those who discovered acetogens and acetogenesis, and to those who resolved the acetyl-CoA pathway, and (2) highlight the ecology and physiology of acetogens within the framework of their scientific roots.
Collapse
Affiliation(s)
- Harold L Drake
- Department of Ecological Microbiology, University of Bayreuth, 95440 Bayreuth, Germany.
| | | | | |
Collapse
|
75
|
Degradation of glyoxylate and glycolate with ATP synthesis by a thermophilic anaerobic bacterium, Moorella sp. strain HUC22-1. Appl Environ Microbiol 2007; 74:1447-52. [PMID: 18083850 DOI: 10.1128/aem.01421-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The thermophilic homoacetogenic bacterium Moorella sp. strain HUC22-1 ferments glyoxylate to acetate roughly according to the reaction 2 glyoxylate --> acetate + 2 CO(2). A batch culture with glyoxylate and yeast extract yielded 11.7 g per mol of cells per substrate, which was much higher than that obtained with H(2) plus CO(2). Crude extracts of glyoxylate-grown cells catalyzed the ADP- and NADP-dependent condensation of glyoxylate and acetyl coenzyme A (acetyl-CoA) to pyruvate and CO(2) and converted pyruvate to acetyl-CoA and CO(2), which are the key reactions of the malyl-CoA pathway. ATP generation was also detected during the key enzyme reactions of this pathway. Furthermore, this bacterium consumed l-malate, an intermediate in the malyl-CoA pathway, and produced acetate. These findings suggest that Moorella sp. strain HUC22-1 can generate ATP by substrate-level phosphorylation during glyoxylate catabolism through the malyl-CoA pathway.
Collapse
|
76
|
Ivanova AE, Borzenkov IA, Tarasov AL, Milekhina EI, Belyaev SS. A microbiological study of an underground gas storage in the process of gas injection. Microbiology (Reading) 2007. [DOI: 10.1134/s002626170704011x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
77
|
Breitenstein A, Andreesen JR, Lechner U. Analysis of an Anaerobic Chemostat Population Stably Dechlorinating 2,4,6-Trichlorophenol. Eng Life Sci 2007. [DOI: 10.1002/elsc.200720205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
78
|
Boga HI, Ji R, Ludwig W, Brune A. Sporotalea propionica gen. nov. sp. nov., a hydrogen-oxidizing, oxygen-reducing, propionigenic firmicute from the intestinal tract of a soil-feeding termite. Arch Microbiol 2006; 187:15-27. [PMID: 17031618 DOI: 10.1007/s00203-006-0168-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 07/31/2006] [Accepted: 08/21/2006] [Indexed: 10/24/2022]
Abstract
An unusual propionigenic bacterium was isolated from the intestinal tract of the soil-feeding termite Thoracotermes macrothorax. Strain TmPN3 is a motile, long rod that stains gram-positive, but reacts gram-negative in the KOH test. It forms terminal endospores and ferments lactate, glucose, lactose, fructose, and pyruvate to propionate and acetate via the methyl-malonyl-CoA pathway. Propionate and acetate are formed at a ratio of 2:1, typical of most propionigenic bacteria. Under a H(2)/CO(2) atmosphere, the fermentation product pattern of glucose, fructose, and pyruvate shifts towards propionate formation at the expense of acetate. Cell suspensions reduce oxygen with lactate, glucose, glycerol, or hydrogen as electron donor. In the presence of oxygen, the product pattern of lactate fermentation shifts from propionate to acetate production. 16S rRNA gene sequence analysis showed that strain TmPN3 is a firmicute that clusters among the Acidaminococcaceae, a subgroup of the Clostridiales comprising obligately anaerobic, often endospore-forming bacteria that possess an outer membrane. Based on phenotypic differences and less than 92% sequence similarity to the 16S rRNA gene sequence of its closest relative, the termite hindgut isolate Acetonema longum, strain TmPN3(T) is proposed as the type species of a new genus, Sporotalea propionica gen. nov. sp. nov. (DSM 13327(T), ATCC BAA-626(T)).
Collapse
Affiliation(s)
- Hamadi I Boga
- Lehrstuhl Mikrobielle Okologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | | | | | | |
Collapse
|
79
|
Possemiers S, Bolca S, Grootaert C, Heyerick A, Decroos K, Dhooge W, De Keukeleire D, Rabot S, Verstraete W, Van de Wiele T. The prenylflavonoid isoxanthohumol from hops (Humulus lupulus L.) is activated into the potent phytoestrogen 8-prenylnaringenin in vitro and in the human intestine. J Nutr 2006; 136:1862-7. [PMID: 16772450 DOI: 10.1093/jn/136.7.1862] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hops, an essential beer ingredient, are a source of prenylflavonoids, including 8-prenylnaringenin (8-PN), one of the most potent phytoestrogens. Because 8-PN concentrations in beers are generally low, its health effects after moderate beer consumption were considered negligible. However, human intestinal microbiota may activate up to 4 mg/L isoxanthohumol (IX) in beer into 8-PN. Depending on interindividual differences in the intestinal transformation potential, this conversion could easily increase the 8-PN exposure 10-fold upon beer consumption. Here, we present a further investigation of the process both in vitro and in vivo. In vitro experiments with the dynamic SHIME model showed that hop prenylflavonoids pass unaltered through the stomach and small intestine and that activation of IX into 8-PN (up to 80% conversion) occurs only in the distal colon. In vitro incubations of 51 fecal samples from female volunteers with IX enabled us to separate the fecal microbiota into high (8 of 51), moderate (11 of 51) and slow (32 of 51) 8-PN producers, clearly illustrating an interindividual variability. Three women, selected from the respective groups, received a daily dose of 5.59 mg IX for 4 d. Intestinal IX activation and urinary 8-PN excretion were correlated (R(2) = 0.6417, P < 0.01). These data show that intestinal conversion of IX upon moderate beer consumption can lead to 8-PN exposure values that might fall within the range of human biological activity.
Collapse
Affiliation(s)
- Sam Possemiers
- Unit on Ecology and Physiology of the Digestive Tract (UEPSD), National Institute for Agricultural Research (INRA), F-78352 Jouy-en-Josas Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Possemiers S, Heyerick A, Robbens V, De Keukeleire D, Verstraete W. Activation of proestrogens from hops (Humulus lupulus L.) by intestinal microbiota; conversion of isoxanthohumol into 8-prenylnaringenin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:6281-8. [PMID: 16076107 DOI: 10.1021/jf0509714] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Hop, an essential ingredient in most beers, contains a number of prenylflavonoids, among which 8-prenylnaringenin (8-PN) would be the most potent phytoestrogen currently known. Although a number of health effects are attributed to these compounds, only a few reports are available about the bioavailability of prenylflavonoids and the transformation potency of the intestinal microbial community. To test these transformations, four fecal samples were incubated with xanthohumol, isoxanthohumol (IX), and 8-PN. Upon incubation with IX, present in strong ales up to 4 mg/L, 36% was converted into 8-PN in one fecal sample and the estrogenic properties of the sample drastically increased. In an experiment with 12 fecal cultures, this conversion was observed in one-third of the samples, indicating the importance of interindividual variability in the intestinal microbial community. Eubacterium limosum was identified to be capable of this conversion (O-demethylation) of IX into 8-PN, and after strain selection, a conversion efficiency of 90% was achieved. Finally, strain supplementation to a nonconverting fecal sample led to rapid and high 8-PN production at only 1% (v/v) addition. Up to now, the concentration of 8-PN in beer was considered too low to affect human health. However, these results show that the activity of the intestinal microbial community could more than 10-fold increase the exposure concentration. Because prenylflavonoids are present in many beers with IX being the major constituent, the results raise the question whether moderate beer consumption might contribute to increased in vivo levels of 8-PN and even influence human health.
Collapse
Affiliation(s)
- Sam Possemiers
- Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Gent University-UGent, Coupure Links 653, Gent, Belgium
| | | | | | | | | |
Collapse
|
81
|
Hattori S, Galushko AS, Kamagata Y, Schink B. Operation of the CO dehydrogenase/acetyl coenzyme A pathway in both acetate oxidation and acetate formation by the syntrophically acetate-oxidizing bacterium Thermacetogenium phaeum. J Bacteriol 2005; 187:3471-6. [PMID: 15866934 PMCID: PMC1111993 DOI: 10.1128/jb.187.10.3471-3476.2005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thermacetogenium phaeum is a homoacetogenic bacterium that can grow on various substrates, such as pyruvate, methanol, or H2/CO2. It can also grow on acetate if cocultured with the hydrogen-consuming methanogenic partner Methanothermobacter thermautotrophicus. Enzyme activities of the CO dehydrogenase/acetyl coenzyme A (CoA) pathway (CO dehydrogenase, formate dehydrogenase, formyl tetrahydrofolate synthase, methylene tetrahydrofolate dehydrogenase) were detected in cell extracts of pure cultures and of syntrophic cocultures. Mixed cell suspensions of T. phaeum and M. thermautotrophicus oxidized acetate rapidly and produced acetate after addition of H2/CO2 after a short time lag. CO dehydrogenase activity staining after native polyacrylamide gel electrophoresis exhibited three oxygen-labile bands which were identical in pure culture and coculture. Protein profiles of T. phaeum cells after sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the strain exhibited basically the same protein patterns in both pure and syntrophic culture. These results indicate that T. phaeum operates the CO dehydrogenase/acetyl-CoA pathway reversibly both in acetate oxidation and in reductive acetogenesis by using the same biochemical apparatus, although it has to couple this pathway to ATP synthesis in different ways.
Collapse
Affiliation(s)
- Satoshi Hattori
- Research Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
82
|
Abstract
Moorella thermoacetica (originally isolated as Clostridium thermoaceticum) has served as the primary acetogenic bacterium for the resolution of the acetyl coenzyme A (acetyl-CoA) or Wood-Lijungdahl pathway, a metabolic pathway that (i) autotrophically assimilates CO2 and (ii) is centrally important to the turnover of carbon in many habitats. The purpose of this article is to highlight the diverse physiological features of this model acetogen and to examine some of the consequences of its metabolic capabilities.
Collapse
Affiliation(s)
- Harold L Drake
- Department of Ecological Microbiology, University of Bayreuth, Germany.
| | | |
Collapse
|
83
|
Drake HL, Daniel SL. Physiology of the thermophilic acetogen Moorella thermoacetica. Res Microbiol 2004; 155:422-36. [PMID: 15249059 DOI: 10.1016/j.resmic.2004.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Accepted: 03/12/2004] [Indexed: 10/26/2022]
Abstract
Moorella thermoacetica (originally isolated as Clostridium thermoaceticum) has served as the primary acetogenic bacterium for the resolution of the acetyl coenzyme A (acetyl-CoA) or Wood-Ljungdahl pathway, a metabolic pathway that (i) autotrophically assimilates CO2 and (ii) is centrally important to the turnover of carbon in many habitats. The purpose of this article is to highlight the diverse physiological features of this model acetogen and to examine some of the consequences of its metabolic capabilities.
Collapse
Affiliation(s)
- Harold L Drake
- Department of Ecological Microbiology, University of Bayreuth, 95440 Bayreuth, Germany.
| | | |
Collapse
|
84
|
Denef VJ, Park J, Tsoi TV, Rouillard JM, Zhang H, Wibbenmeyer JA, Verstraete W, Gulari E, Hashsham SA, Tiedje JM. Biphenyl and benzoate metabolism in a genomic context: outlining genome-wide metabolic networks in Burkholderia xenovorans LB400. Appl Environ Microbiol 2004; 70:4961-70. [PMID: 15294836 PMCID: PMC492332 DOI: 10.1128/aem.70.8.4961-4970.2004] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We designed and successfully implemented the use of in situ-synthesized 45-mer oligonucleotide DNA microarrays (XeoChips) for genome-wide expression profiling of Burkholderia xenovorans LB400, which is among the best aerobic polychlorinated biphenyl degraders known so far. We conducted differential gene expression profiling during exponential growth on succinate, benzoate, and biphenyl as sole carbon sources and investigated the transcriptome of early-stationary-phase cells grown on biphenyl. Based on these experiments, we outlined metabolic pathways and summarized other cellular functions in the organism relevant for biphenyl and benzoate degradation. All genes previously identified as being directly involved in biphenyl degradation were up-regulated when cells were grown on biphenyl compared to expression in succinate-grown cells. For benzoate degradation, however, genes for an aerobic coenzyme A activation pathway were up-regulated in biphenyl-grown cells, while the pathway for benzoate degradation via hydroxylation was up-regulated in benzoate-grown cells. The early-stationary-phase biphenyl-grown cells showed similar expression of biphenyl pathway genes, but a surprising up-regulation of C(1) metabolic pathway genes was observed. The microarray results were validated by quantitative reverse transcription PCR with a subset of genes of interest. The XeoChips showed a chip-to-chip variation of 13.9%, compared to the 21.6% variation for spotted oligonucleotide microarrays, which is less variation than that typically reported for PCR product microarrays.
Collapse
Affiliation(s)
- V J Denef
- Center for Microbial Ecology, 540 Plant and Soil Sciences Building, East Lansing, MI 48824, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Affiliation(s)
- Volker Müller
- Section of Microbiology, Department of Biology I, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
86
|
Oh SE, Van Ginkel S, Logan BE. The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2003; 37:5186-5190. [PMID: 14655706 DOI: 10.1021/es034291y] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Hydrogen gas can be recovered from the microbial fermentation of organic substrates at high concentrations when interspecies hydrogen transfer to methanogens is prevented. Two techniques that have been used to limit methanogenesis in mixed cultures are heat treatment, to remove nonsporeforming methanogens from an inoculum, and low pH during culture growth. We found that high hydrogen gas concentrations (57-72%) were produced in all tests and that heat treatment (HT) of the inoculum (pH 6.2 or 7.5) produced greater hydrogen yields than low pH (6.2) conditions with a nonheat-treated inoculum (NHT). Conversion efficiencies of glucose to hydrogen (based on a theoretical yield of 4 mol-H2/mol-glucose) were as follows: 24.2% (HT, pH = 6.2), 18.5% (HT, pH = 7.5), 14.9% (NHT, pH = 6.2), and 12.1% (NHT, pH = 7.5). The main products of glucose (3 g-COD/L) utilization (> or = 99%) in batch tests were acetate (3.4-24.1%), butyrate (6.4-29.4%), propionate (0.3-12.8%), ethanol (15.4-28.8%), and hydrogen (4.0-8.1%), with lesser amounts of acetone, propanol, and butanol (COD basis). Hydrogen gas phase concentrations in all batch cultures reached a maximum of 57-72% after 30 h but thereafter rapidly declined to nondetectable levels within 80 h. Separate experiments showed substantial hydrogen losses could occur via acetogenesis and that heat treatment did not prevent acetogenesis. Heat treatment consistently eliminated the production of measurable concentrations of methane. The disappearance of ethanol produced during hydrogen production was likely due to acetic acid production as thermodynamic calculations show that this reaction is spontaneous once hydrogen is depleted. Overall, these results show that low pH was, without heat treatment, sufficient to control hydrogen losses to methanogens in mixed batch cultures and suggest that methods will need to be found to limit acetogenesis in order to increase hydrogen gas yields by batch cultures.
Collapse
Affiliation(s)
- Sang-Eun Oh
- Department of Civil and Environmental Engineering, Penn State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
87
|
Boga HI, Ludwig W, Brune A. Sporomusa aerivorans sp. nov., an oxygen-reducing homoacetogenic bacterium from the gut of a soil-feeding termite. Int J Syst Evol Microbiol 2003; 53:1397-1404. [PMID: 13130024 DOI: 10.1099/ijs.0.02534-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previously undescribed, homoacetogenic bacteria were isolated from gut homogenates of the soil-feeding termite Thoracotermes macrothorax. The isolates were slightly curved, banana-shaped rods (0.6-0.7x1.3-7.0 micro m) and were motile by one or more lateral flagella. In older cultures, cells formed club-like sporangia that developed into terminal, heat-resistant endospores. Cells stained Gram-positive but were Gram-negative in the KOH test. The isolates were mesophilic and grew homoacetogenically on H(2)/CO(2) and L-lactate. Strain TmAO3(T), which was characterized further, also grew homoacetogenically on pyruvate, citrate, L-alanine, D-mannitol, ethanol, formate and methanol. Succinate was decarboxylated to propionate; fumarate, L-malate and oxaloacetate were fermented to propionate and acetate. Hexoses were not used as substrates. Resting cells had a large capacity for hydrogen-dependent oxygen reduction [826 nmol min(-1) (mg protein)(-1)], which enabled them to initiate growth in non-reduced basal medium that originally contained up to 1.5 kPa oxygen in the headspace, although growth commenced only after the medium had been rendered anoxic. Redox difference spectra of cell extracts indicated the presence of membrane-bound b-type cytochrome(s). Comparative 16S rRNA gene sequence analysis revealed that strain TmAO3(T) belongs to a subgroup of the phylum of Gram-positive bacteria that is characterized by low DNA G+C content and a Gram-negative cell wall. It is related most closely to representatives of the genus SPOROMUSA: Based on morphological and physiological properties and on 16S rRNA gene sequence similarity of 94-97 % to other Sporomusa species, the isolates are assigned to Sporomusa aerivorans sp. nov. (type strain, TmAO3(T)=DSM 13326(T)=ATCC BAA-625(T)).
Collapse
Affiliation(s)
- Hamadi I Boga
- Lehrstuhl für Mikrobielle Ökologie, Fachbereich Biologie, Universität Konstanz, Fach M 654, 78457 Konstanz, Germany
| | - Wolfgang Ludwig
- Lehrstuhl für Mikrobiologie, Technische Universität München, Am Hochanger 4, 85350 Freising, Germany
| | - Andreas Brune
- Lehrstuhl für Mikrobielle Ökologie, Fachbereich Biologie, Universität Konstanz, Fach M 654, 78457 Konstanz, Germany
| |
Collapse
|
88
|
Boga HI, Brune A. Hydrogen-dependent oxygen reduction by homoacetogenic bacteria isolated from termite guts. Appl Environ Microbiol 2003; 69:779-86. [PMID: 12570995 PMCID: PMC143608 DOI: 10.1128/aem.69.2.779-786.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although homoacetogenic bacteria are generally considered to be obligate anaerobes, they colonize the intestinal tracts of termites and other environments that are not entirely anoxic in space or time. In this study, we investigated how homoacetogenic bacteria isolated from the hindguts of various termites respond to the presence of molecular oxygen. All strains investigated formed growth bands in oxygen gradient agar tubes under a headspace of H(2)-CO(2). The position of the bands coincided with the oxic-anoxic interface and depended on the O(2) partial pressure in the headspace; the position of the bands relative to the meniscus remained stable for more than 1 month. Experiments with dense cell suspensions, performed with Clark-type O(2) and H(2) electrodes, revealed a large capacity for H(2)-dependent oxygen reduction in Sporomusa termitida and Sporomusa sp. strain TmAO3 (149 and 826 nmol min(-1) mg of protein(-1), respectively). Both strains also reduced O(2) with endogenous reductants, albeit at lower rates. Only in Acetonema longum did the basal rates exceed the H(2)-dependent rates considerably (181 versus 28 nmol min(-1) mg of protein)(-1)). Addition of organic substrates did not stimulate O(2) consumption in any of the strains. Nevertheless, reductive acetogenesis by cell suspensions of strain TmAO3 was inhibited even at the lowest O(2) fluxes, and growth in nonreduced medium occurred only after the bacteria had rendered the medium anoxic. Similar results were obtained with Acetobacterium woodii, suggesting that the results are not unique to the strains isolated from termites. We concluded that because of their tolerance to temporary exposure to O(2) at low partial pressures (up to 1.5 kPa in the case of strain TmAO3) and because of their large capacity for O(2) reduction, homoacetogens can reestablish conditions favorable for growth by actively removing oxygen from their environment.
Collapse
Affiliation(s)
- Hamadi I Boga
- Fachbereich Biologie, Mikrobielle Okologie, Universität Konstanz, D-78457 Konstanz, Germany
| | | |
Collapse
|
89
|
Deppenmeier U. The unique biochemistry of methanogenesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 71:223-83. [PMID: 12102556 DOI: 10.1016/s0079-6603(02)71045-3] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Methanogenic archaea have an unusual type of metabolism because they use H2 + CO2, formate, methylated C1 compounds, or acetate as energy and carbon sources for growth. The methanogens produce methane as the major end product of their metabolism in a unique energy-generating process. The organisms received much attention because they catalyze the terminal step in the anaerobic breakdown of organic matter under sulfate-limiting conditions and are essential for both the recycling of carbon compounds and the maintenance of the global carbon flux on Earth. Furthermore, methane is an important greenhouse gas that directly contributes to climate changes and global warming. Hence, the understanding of the biochemical processes leading to methane formation are of major interest. This review focuses on the metabolic pathways of methanogenesis that are rather unique and involve a number of unusual enzymes and coenzymes. It will be shown how the previously mentioned substrates are converted to CH4 via the CO2-reducing, methylotrophic, or aceticlastic pathway. All catabolic processes finally lead to the formation of a mixed disulfide from coenzyme M and coenzyme B that functions as an electron acceptor of certain anaerobic respiratory chains. Molecular hydrogen, reduced coenzyme F420, or reduced ferredoxin are used as electron donors. The redox reactions as catalyzed by the membrane-bound electron transport chains are coupled to proton translocation across the cytoplasmic membrane. The resulting electrochemical proton gradient is the driving force for ATP synthesis as catalyzed by an A1A0-type ATP synthase. Other energy-transducing enzymes involved in methanogenesis are the membrane-integral methyltransferase and the formylmethanofuran dehydrogenase complex. The former enzyme is a unique, reversible sodium ion pump that couples methyl-group transfer with the transport of Na+ across the membrane. The formylmethanofuran dehydrogenase is a reversible ion pump that catalyzes formylation and deformylation of methanofuran. Furthermore, the review addresses questions related to the biochemical and genetic characteristics of the energy-transducing enzymes and to the mechanisms of ion translocation.
Collapse
Affiliation(s)
- Uwe Deppenmeier
- Department of Microbiology and Genetics, Universität Göttingen, Germany
| |
Collapse
|
90
|
Meyer RL, Larsen LH, Revsbech NP. Microscale biosensor for measurement of volatile fatty acids in anoxic environments. Appl Environ Microbiol 2002; 68:1204-10. [PMID: 11872469 PMCID: PMC123769 DOI: 10.1128/aem.68.3.1204-1210.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A microscale biosensor for acetate, propionate, isobutyrate, and lactate is described. The sensor is based on the bacterial respiration of low-molecular-weight, negatively charged species with a concomitant reduction of NO(-)(3) to N(2)O. A culture of denitrifying bacteria deficient in N(2)O reductase was immobilized in front of the tip of an electrochemical N(2)O microsensor. The bacteria were separated from the outside environment by an ion-permeable membrane and supplied with nutrients (except for electron donors) from a medium reservoir behind the N(2)O sensor. The signal of the sensor, which corresponded to the rate of N(2)O production, was proportional to the supply of the electron donor to the bacterial mass. The selectivity for volatile fatty acids compared to other organic compounds was increased by selectively enhancing the transport of negatively charged compounds into the sensor by electrophoretic migration (electrophoretic sensitivity control). The sensor was susceptible to interference from O(2), N(2)O, NO(2)(-), H(2)S, and NO(-)(3). Interference from NO(-)(3) was low and could be quantified and accounted for. The detection limit was equivalent to about 1 microM acetate, and the 90% response time was 30 to 90 s. The response of the sensor was not affected by changes in pH between 5.5 and 9 and was also unaffected by changes in salinity in the range of 2 to 32 per thousand. The functioning of the sensor over a temperature span of 7 to 30 degrees C was investigated. The concentration range for a linear response was increased five times by increasing the temperature from 7 to 19.5 degrees C. The life span of the biosensor varied between 1 and 3 weeks after manufacturing.
Collapse
Affiliation(s)
- Rikke Louise Meyer
- Department of Microbial Ecology, University of Aarhus, Bd. 540, Ny Munkegade, 8000 Aarhus C, Denmark.
| | | | | |
Collapse
|
91
|
Ravinder T, Swamy MV, Seenayya G, Reddy G. Clostridium lentocellum SG6--a potential organism for fermentation of cellulose to acetic acid. BIORESOURCE TECHNOLOGY 2001; 80:171-177. [PMID: 11601540 DOI: 10.1016/s0960-8524(01)00094-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A cellulolytic, acetic acid producing anaerobic bacterial isolate, Gram negative, rod-shaped, motile, terminal oval shaped endospore forming bacterium identified as Clostridium lentocellum SG6 based on physiological and biochemical characteristics. It produced acetic acid as a major end product from cellulose fermentation at 37 degrees C and pH 7.2. Acetic acid production was 0.67 g/g cellulose substrate utilized in cellulose mineral salt (CMS) medium. Yeast extract (0.4%) was the best nitrogen source among the various nitrogenous nutrients tested in production medium containing 0.8% cellulose as substrate. No additional vitamins or trace elemental solution were required for acetic acid fermentation. This is the highest acetic acid fermentation yield in monoculture fermentation for direct conversion of cellulose to acetic acid.
Collapse
Affiliation(s)
- T Ravinder
- Department of Microbiology, Osmania University, Hyderabad, AP, India
| | | | | | | |
Collapse
|
92
|
Chang IS, Kim BH, Lovitt RW, Bang JS. Effect of CO partial pressure on cell-recycled continuous CO fermentation by Eubacterium limosum KIST612. Process Biochem 2001. [DOI: 10.1016/s0032-9592(01)00227-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
93
|
van de Pas BA, Jansen S, Dijkema C, Schraa G, de Vos WM, Stams AJ. Energy yield of respiration on chloroaromatic compounds in Desulfitobacterium dehalogenans. Appl Environ Microbiol 2001; 67:3958-63. [PMID: 11525991 PMCID: PMC93115 DOI: 10.1128/aem.67.9.3958-3963.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The amount of energy that can be conserved via halorespiration by Desulfitobacterium dehalogenans JW/IU-DC1 was determined by comparison of the growth yields of cells grown with 3-chloro-4-hydroxyphenyl acetate (Cl-OHPA) and different electron donors. Cultures that were grown with lactate, pyruvate, formate, or hydrogen as an electron donor and Cl-OHPA as an electron acceptor yielded 3.1, 6.6, 1.6, and 1.6 g (dry weight) per mol of reduction equivalents, respectively. Fermentative growth on pyruvate yielded 14 g (dry weight) per mol of pyruvate oxidized. Pyruvate was not fermented stoichiometrically to acetate and lactate, but an excess of acetate was produced. Experiments with 13C-labeled bicarbonate showed that during pyruvate fermentation, approximately 9% of the acetate was formed from the reduction of CO2. Comparison of the growth yields suggests that 1 mol of ATP is produced per mol of acetate produced by substrate-level phosphorylation and that there is no contribution of electron transport phosphorylation when D. dehalogenans grows on lactate plus Cl-OHPA or pyruvate plus Cl-OHPA. Furthermore, the growth yields indicate that approximately 1/3 mol of ATP is conserved per mol of Cl-OHPA reduced in cultures grown in formate plus Cl-OHPA and hydrogen plus Cl-OHPA. Because neither formate nor hydrogen nor Cl-OHPA supports substrate-level phosphorylation, energy must be conserved through the establishment of a proton motive force. Pyruvate ferredoxin oxidoreductase, lactate dehydrogenase, formate dehydrogenase, and hydrogenase were localized by in vitro assays with membrane-impermeable electron acceptors and donors. The orientation of chlorophenol-reductive dehalogenase in the cytoplasmic membrane, however, could not be determined. A model is proposed, which may explain the topology analyses as well as the results obtained in the yield study.
Collapse
Affiliation(s)
- B A van de Pas
- Laboratory of Microbiology, Wageningen University, 6703 CT Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
94
|
Scholten JC, Conrad R, Stams AJ. Effect of 2-bromo-ethane sulfonate, molybdate and chloroform on acetate consumption by methanogenic and sulfate-reducing populations in freshwater sediment. FEMS Microbiol Ecol 2000; 32:35-42. [PMID: 10779617 DOI: 10.1111/j.1574-6941.2000.tb00696.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The relative importance of methanogenesis and sulfate reduction in freshwater sediment supplemented with acetate was investigated. Addition of acetate stimulated both methane formation and sulfate reduction, indicating that an active aceticlastic population of methanogens and sulfate reducers was present in the sediment. Sulfate reducers were most important in the consumption of acetate. However, when sulfate reducers were inhibited, acetate was metabolised at a similar rate by methanogens. Acetate, propionate and valerate accumulated only when both processes were inhibited by the combined addition of 2-bromo-ethane sulfonate and molybdate. The relative amounts of acetate, propionate and valerate were 93, 6 and 1 mol%, respectively. These results demonstrate the role of acetate as a key intermediate in the terminal step of organic matter mineralisation in the sediment. Addition of chloroform inhibited both methanogenesis and sulfate reduction. We studied the inhibitory effect of CHCl(3) on homoacetogenic bacteria, sulfate-reducing bacteria and methanogens. The results showed that inhibition by CHCl(3) correlates with microorganisms, which operate the acetyl-CoA cleavage pathway. We propose that chloroform can be used to elucidate the role of different metabolic types of sulfate reducers to sulfate reduction in natural environments.
Collapse
Affiliation(s)
- JC Scholten
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Str., D-35043, Marburg, Germany
| | | | | |
Collapse
|
95
|
Bainotti AE, Nishio N. Growth kinetics of Acetobacterium sp. on methanol-formate in continuous culture. J Appl Microbiol 2000; 88:191-201. [PMID: 10735986 DOI: 10.1046/j.1365-2672.2000.00854.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The fermentative metabolism of Acetobacterium sp. grown on methanol-formate in continuous culture is described. The reaction stoichiometry of methanol-formate, including cells, were as follows: CH3OH + 1.13HCOOH --> 0.87CH3COOH + 0.47 cell C. Formate enhanced growth yields by approximately 60% compared with methanol-CO2-grown cultures. Comparison of yields on methanol-formate allowed calculation of an energy yield of 1.3 mol ATP per mol acetate formed during homoacetate fermentation. The magnitudes of YEG,the theoretical maximum yield of YE, and m, the maintenance coefficient, were determined by growing the organism in methanol-formate and resulted in 16.5 g cell (mol methanol catabolized)-1 and 0.674 mmol methanol catabolized (g cell)-1 h-1, respectively. It is concluded that formate might replace CO2 as a source of carboxyl donor.
Collapse
Affiliation(s)
- A E Bainotti
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Japan
| | | |
Collapse
|
96
|
Menon S, Ragsdale SW. The role of an iron-sulfur cluster in an enzymatic methylation reaction. Methylation of CO dehydrogenase/acetyl-CoA synthase by the methylated corrinoid iron-sulfur protein. J Biol Chem 1999; 274:11513-8. [PMID: 10206956 DOI: 10.1074/jbc.274.17.11513] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This paper focuses on how a methyl group is transferred from a methyl-cobalt(III) species on one protein (the corrinoid iron-sulfur protein (CFeSP)) to a nickel iron-sulfur cluster on another protein (carbon monoxide dehydrogenase/acetyl-CoA synthase). This is an essential step in the Wood-Ljungdahl pathway of anaerobic CO and CO2 fixation. The results described here strongly indicate that transfer of methyl group to carbon monoxide dehydrogenase/acetyl-CoA synthase occurs by an SN2 pathway. They also provide convincing evidence that oxidative inactivation of Co(I) competes with methylation. Under the conditions of our anaerobic assay, Co(I) escapes from the catalytic cycle one in every 100 turnover cycles. Reductive activation of the CFeSP is required to regenerate Co(I) and recruit the protein back into the catalytic cycle. Our results strongly indicate that the [4Fe-4S] cluster of the CFeSP is required for reductive activation. They support the hypothesis that the [4Fe-4S] cluster of the CFeSP does not participate directly in the methyl transfer step but provides a conduit for electron flow from physiological reductants to the cobalt center.
Collapse
Affiliation(s)
- S Menon
- Department of Biochemistry, Beadle Center, University of Nebraska, Lincoln, Nebraska 68588-0664, USA
| | | |
Collapse
|
97
|
Chang IS, Kim BH, Kim DH, Lovitt RW, Sung HC. Formulation of defined media for carbon monoxide fermentation by Eubacterium limosum KIST612 and the growth characteristics of the bacterium. J Biosci Bioeng 1999; 88:682-5. [PMID: 16232686 DOI: 10.1016/s1389-1723(00)87102-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/1999] [Accepted: 08/23/1999] [Indexed: 11/21/2022]
Abstract
Phosphate-buffered (PBBM) and carbonate-buffered (CBBM) basal media were used in the formulation of defined media for the cultivation of Eubacterium limosum KIST612 with carbon monoxide (CO) as the sole energy source. The bacterium was adapted to the minimal media by sequential passage in media containing casamino acids and those containing ammonium chloride in the place of yeast extract. Biological growth was slower with a lower growth yield in the defined minimal media than in PBBM or CBBM. More butyrate was produced in phosphate-buffered media than in carbonate-buffered media. The bacteria grew without any organic nitrogen in the presence of trace quantities of biotin and pantothenic acid. Anaerobic digester fluid stimulated bacterial growth.
Collapse
Affiliation(s)
- I S Chang
- Water Environment Research Center, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | | | | | | | | |
Collapse
|
98
|
Piattoni F, Mbanzamihigo L, Demeyer D, Nollet L, Maertens L. Effects of bromoethansulphonic acid and monensin on in vitro fermentation pattern of non-fasted rabbits. Anim Feed Sci Technol 1998. [DOI: 10.1016/s0377-8401(98)00144-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
99
|
Bainotti AE, Yamaguchi K, Nakashimada Y, Nishio N. Kinetics and energetics of Acetobacterium sp. in chemostat culture on methanol-CO2. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0922-338x(97)86772-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
100
|
Das A, Ljungdahl LG. Composition and primary structure of the F1F0 ATP synthase from the obligately anaerobic bacterium Clostridium thermoaceticum. J Bacteriol 1997; 179:3746-55. [PMID: 9171425 PMCID: PMC179173 DOI: 10.1128/jb.179.11.3746-3755.1997] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The subunit composition and primary structure of the proton-translocating F1F0 ATP synthase have been determined in Clostridium thermoaceticum. The isolated enzyme has a subunit composition identical to that of the F1F0 ATP synthase purified from Clostridium thermoautotrophicum (A. Das, D. M. Ivey, and L. G. Ljungdahl, J. Bacteriol. 179:1714-1720, 1997), both having six different polypeptides. The molecular masses of the six subunits were 60, 50, 32, 17, 19, and 8 kDa, and they were identified as alpha, beta, gamma, delta, epsilon, and c, respectively, based on their reactivity with antibodies against the F1 ATPase purified from C. thermoautotrophicum and by comparing their N-terminal amino acid sequences with that deduced from the cloned genes of the C. thermoaceticum atp operon. The subunits a and b found in many bacterial ATP synthases could not be detected either in the purified ATP synthase or crude membranes of C. thermoaceticum. The C. thermoaceticum atp operon contained nine genes arranged in the order atpI (i), atpB (a), atpE (c), atpF (b), atpH (delta), atpA (alpha), atpG (gamma), atpD (beta), and atpC (epsilon). The deduced protein sequences of the C. thermoaceticum ATP synthase subunits were comparable with those of the corresponding subunits from Escherichia coli, thermophilic Bacillus strain PS3, Rhodospirillum rubrum, spinach chloroplasts, and the cyanobacterium Synechococcus strain PCC 6716. The analysis of total RNA by Northern hybridization experiments reveals the presence of transcripts (mRNA) of the genes i, a, and b subunits not found in the isolated enzyme. Analysis of the nucleotide sequence of the atp genes reveals overlap of the structural genes for the i and a subunits and the presence of secondary structures (in the b gene) which could influence the posttranscriptional regulation of the corresponding genes.
Collapse
Affiliation(s)
- A Das
- Center for Biological Resource Recovery and Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602, USA
| | | |
Collapse
|