51
|
Linkermann A, Heller JO, Prókai A, Weinberg JM, De Zen F, Himmerkus N, Szabó AJ, Bräsen JH, Kunzendorf U, Krautwald S. The RIP1-kinase inhibitor necrostatin-1 prevents osmotic nephrosis and contrast-induced AKI in mice. J Am Soc Nephrol 2013; 24:1545-57. [PMID: 23833261 DOI: 10.1681/asn.2012121169] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The pathophysiology of contrast-induced AKI (CIAKI) is incompletely understood due to the lack of an appropriate in vivo model that demonstrates reduced kidney function before administration of radiocontrast media (RCM). Here, we examine the effects of CIAKI in vitro and introduce a murine ischemia/reperfusion injury (IRI)-based approach that allows induction of CIAKI by a single intravenous application of standard RCM after injury for in vivo studies. Whereas murine renal tubular cells and freshly isolated renal tubules rapidly absorbed RCM, plasma membrane integrity and cell viability remained preserved in vitro and ex vivo, indicating that RCM do not induce apoptosis or regulated necrosis of renal tubular cells. In vivo, the IRI-based CIAKI model exhibited typical features of clinical CIAKI, including RCM-induced osmotic nephrosis and increased serum levels of urea and creatinine that were not altered by inhibition of apoptosis. Direct evaluation of renal morphology by intravital microscopy revealed dilation of renal tubules and peritubular capillaries within 20 minutes of RCM application in uninjured mice and similar, but less dramatic, responses after IRI pretreatment. Necrostatin-1 (Nec-1), a specific inhibitor of the receptor-interacting protein 1 (RIP1) kinase domain, prevented osmotic nephrosis and CIAKI, whereas an inactive Nec-1 derivate (Nec-1i) or the pan-caspase inhibitor zVAD did not. In addition, Nec-1 prevented RCM-induced dilation of peritubular capillaries, suggesting a novel role unrelated to cell death for the RIP1 kinase domain in the regulation of microvascular hemodynamics and pathophysiology of CIAKI.
Collapse
Affiliation(s)
- Andreas Linkermann
- Division of Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Sanz AB, Sanchez-Niño MD, Izquierdo MC, Gonzalez-Espinoza L, Ucero AC, Poveda J, Ruiz-Andres O, Ruiz-Ortega M, Selgas R, Egido J, Ortiz A. Macrophages and recently identified forms of cell death. Int Rev Immunol 2013; 33:9-22. [PMID: 23802146 DOI: 10.3109/08830185.2013.771183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent advances in cell death biology have uncovered an ever increasing range of cell death forms. Macrophages have a bidirectional relationship with cell death that modulates the immune response. Thus, macrophages engulf apoptotic cells and secrete cytokines that may promote cell death in parenchymal cells. Furthermore, the presence of apoptotic or necrotic dead cells in the microenvironment elicits differential macrophage responses. Apoptotic cells elicit anti-inflammatory responses in macrophages. By contrast macrophages may undergo a proinflammatory form of cell death (pyroptosis) in response to damage-associated molecular patterns (DAMPs) released from necrotic cells and also in response to pathogen-associated molecular patterns (PAMPs). Pyroptosis is a recently identified form of cell death that occurs predominantly in subsets of inflammatory macrophages and is associated to the release of interleukin-1β (IL-1β) and IL-18. Deregulation of these processes may result in disease. Thus, failure of macrophages to engulf apoptotic cells may be a source of autoantigens in autoimmune diseases, excessive macrophage release of proapoptotic factors or sterile pyroptosis may contribute to tissue injury and failure of pathogen-induced pyroptosis may contribute to pathogen survival. Ongoing research is exploring the therapeutic opportunities resulting this new knowledge.
Collapse
Affiliation(s)
- Ana B Sanz
- 1Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Autheman D, Wyder M, Popoff M, D’Herde K, Christen S, Posthaus H. Clostridium perfringens beta-toxin induces necrostatin-inhibitable, calpain-dependent necrosis in primary porcine endothelial cells. PLoS One 2013; 8:e64644. [PMID: 23734212 PMCID: PMC3667183 DOI: 10.1371/journal.pone.0064644] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/17/2013] [Indexed: 11/30/2022] Open
Abstract
Clostridium perfringens β-toxin (CPB) is a β-barrel pore-forming toxin and an essential virulence factor of C. perfringens type C strains, which cause fatal hemorrhagic enteritis in animals and humans. We have previously shown that CPB is bound to endothelial cells within the intestine of affected pigs and humans, and that CPB is highly toxic to primary porcine endothelial cells (pEC) in vitro. The objective of the present study was to investigate the type of cell death induced by CPB in these cells, and to study potential host cell mechanisms involved in this process. CPB rapidly induced lactate dehydrogenase (LDH) release, propidium iodide uptake, ATP depletion, potassium efflux, a marked rise in intracellular calcium [Ca2+]i, release of high-mobility group protein B1 (HMGB1), and caused ultrastructural changes characteristic of necrotic cell death. Despite a certain level of caspase-3 activation, no appreciable DNA fragmentation was detected. CPB-induced LDH release and propidium iodide uptake were inhibited by necrostatin-1 and the two dissimilar calpain inhibitors PD150606 and calpeptin. Likewise, inhibition of potassium efflux, chelation of intracellular calcium and treatment of pEC with cyclosporin A also significantly inhibited CPB-induced LDH release. Our results demonstrate that rCPB primarily induces necrotic cell death in pEC, and that necrotic cell death is not merely a passive event caused by toxin-induced membrane disruption, but is propagated by host cell-dependent biochemical pathways activated by the rise in intracellular calcium and inhibitable by necrostatin-1, consistent with the emerging concept of programmed necrosis (“necroptosis”).
Collapse
Affiliation(s)
- Delphine Autheman
- Institute of Infectious Diseases, Medical Faculty, University of Bern, Bern, Switzerland
| | - Marianne Wyder
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Katharina D’Herde
- Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Stephan Christen
- Institute of Infectious Diseases, Medical Faculty, University of Bern, Bern, Switzerland
| | - Horst Posthaus
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
54
|
Abstract
Apoptosis and necrosis are two major forms of cell death observed in normal and disease pathologies. Although there are many assays for detection of apoptosis, relatively few assays are available for measuring necrosis. A key signature for necrotic cells is the permeabilization of the plasma membrane. This event can be quantified in tissue culture settings by measuring the release of the intracellular enzyme lactate dehydrogenase (LDH). When combined with other methods, measuring LDH release is a useful method for the detection of necrosis. In this chapter, we describe the step-by-step procedure for detection of LDH release from necrotic cells using a microtiter plate-based colorimetric absorbance assay.
Collapse
|
55
|
Li Z, Lu N, He X, Zhou Z. Monitoring the clearance of apoptotic and necrotic cells in the nematode Caenorhabditis elegans. Methods Mol Biol 2013; 1004:183-202. [PMID: 23733578 DOI: 10.1007/978-1-62703-383-1_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The nematode Caenorhabditis elegans is an excellent model organism for studying the mechanisms -controlling cell death, including apoptosis, a cell suicide event, and necrosis, pathological cell deaths caused by environmental insults or genetic alterations. C. elegans has also been established as a model for understanding how dying cells are cleared from animal bodies. In particular, the transparent nature of worm bodies and eggshells make C. elegans particularly amenable for live-cell microscopy. Here we describe methods for identifying apoptotic and necrotic cells in living C. elegans embryos, larvae, and adults and for monitoring their clearance during development. We further discuss specific methods to distinguish engulfed from unengulfed apoptotic cells, and methods to monitor cellular and molecular events occurring during phagosome maturation. These methods are based on Differential Interference Contrast (DIC) microscopy or fluorescence microscopy using GFP-based reporters.
Collapse
Affiliation(s)
- Zao Li
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | | | | |
Collapse
|
56
|
Jérusalem A, Dao M. Continuum modeling of a neuronal cell under blast loading. Acta Biomater 2012; 8:3360-71. [PMID: 22562014 DOI: 10.1016/j.actbio.2012.04.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/02/2012] [Accepted: 04/25/2012] [Indexed: 01/07/2023]
Abstract
Traumatic brain injuries have recently been put under the spotlight as one of the most important causes of accidental brain dysfunctions. Significant experimental and modeling efforts are thus underway to study the associated biological, mechanical and physical mechanisms. In the field of cell mechanics, progress is also being made at the experimental and modeling levels to better characterize many of the cell functions, including differentiation, growth, migration and death. The work presented here aims to bridge both efforts by proposing a continuum model of a neuronal cell submitted to blast loading. In this approach, the cytoplasm, nucleus and membrane (plus cortex) are differentiated in a representative cell geometry, and different suitable material constitutive models are chosen for each one. The material parameters are calibrated against published experimental work on cell nanoindentation at multiple rates. The final cell model is ultimately subjected to blast loading within a complete computational framework of fluid-structure interaction. The results are compared to the nanoindentation simulation, and the specific effects of the blast wave on the pressure and shear levels at the interfaces are identified. As a conclusion, the presented model successfully captures some of the intrinsic intracellular phenomena occurring during the cellular deformation under blast loading that potentially lead to cell damage. It suggests, more particularly, that the localization of damage at the nucleus membrane is similar to what has already been observed at the overall cell membrane. This degree of damage is additionally predicted to be worsened by a longer blast positive phase duration. In conclusion, the proposed model ultimately provides a new three-dimensional computational tool to evaluate intracellular damage during blast loading.
Collapse
|
57
|
Zucker SN, Zirnheld J, Bagati A, DiSanto TM, Des Soye B, Wawrzyniak JA, Etemadi K, Nikiforov M, Berezney R. Preferential induction of apoptotic cell death in melanoma cells as compared with normal keratinocytes using a non-thermal plasma torch. Cancer Biol Ther 2012; 13:1299-306. [PMID: 22895073 DOI: 10.4161/cbt.21787] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Selective induction of apoptosis in melanoma cells is optimal for therapeutic development. To achieve this goal, a non-thermal helium plasma torch was modified for use on cultured cells in a temperature-controlled environment. Melanoma cells were targeted with this torch (1) in parallel cultures with keratinocytes, (2) in co-culture with keratinocytes and (3) in a soft agar matrix. Melanoma cells displayed high sensitivity to reactive oxygen species generated by the torch and showed a 6-fold increase in cell death compared with keratinocytes. The extent of cell death was compared between melanoma cells and normal human keratinocytes in both short-term (5 min) co-culture experiments and longer assessments of apoptotic cell death (18-24 h). Following a 10 sec plasma exposure there was a 4.9-fold increase in the cell death of melanoma vs. keratinocytes as measured after 24 h at the target site of the plasma beam. When the treatment time was increased to 30 sec, a 98% cell death was reported for melanoma cells, which was 6-fold greater than the extent of cell death in keratinocytes. Our observations further indicate that this preferential cell death is largely due to apoptosis.. In addition, we report that this non-thermal plasma torch kills melanoma cells growing in soft agar, suggesting that the plasma torch is capable of inducing melanoma cell death in 3D settings. We demonstrate that the presence of gap junctions may increase the area of cell death, likely due to the "bystander effect" of passing apoptotic signals between cells. Our findings provide a basis for further development of this non-invasive plasma torch as a potential treatment for melanoma.
Collapse
Affiliation(s)
- Shoshanna N Zucker
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Dutta C, Day T, Kopp N, van Bodegom D, Davids MS, Ryan J, Bird L, Kommajosyula N, Weigert O, Yoda A, Fung H, Brown JR, Shapiro GI, Letai A, Weinstock DM. BCL2 suppresses PARP1 function and nonapoptotic cell death. Cancer Res 2012; 72:4193-203. [PMID: 22689920 PMCID: PMC4075432 DOI: 10.1158/0008-5472.can-11-4204] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BCL2 suppresses apoptosis by binding the BH3 domain of proapoptotic factors and thereby regulating outer mitochondrial membrane permeabilization. Many tumor types, including B-cell lymphomas and chronic lymphocytic leukemia, are dependent on BCL2 for survival but become resistant to apoptosis after treatment. Here, we identified a direct interaction between the antiapoptotic protein BCL2 and the enzyme PARP1, which suppresses PARP1 enzymatic activity and inhibits PARP1-dependent DNA repair in diffuse large B-cell lymphoma cells. The BH3 mimetic ABT-737 displaced PARP1 from BCL2 in a dose-dependent manner, reestablishing PARP1 activity and DNA repair and promoting nonapoptotic cell death. This form of cell death was unaffected by resistance to single-agent ABT-737 that results from upregulation of antiapoptotic BCL2 family members. On the basis of the ability of BCL2 to suppress PARP1 function, we hypothesized that ectopic BCL2 expression would kill PARP inhibitor-sensitive cells. Strikingly, BCL2 expression reduced the survival of PARP inhibitor-sensitive breast cancer and lung cancer cells by 90% to 100%, and these effects were reversed by ABT-737. Taken together, our findings show that a novel interaction between BCL2 and PARP1 blocks PARP1 enzymatic activity and suppresses PARP1-dependent repair. Targeted disruption of the BCL2-PARP1 interaction therefore may represent a potential therapeutic approach for BCL2-expressing tumors resistant to apoptosis.
Collapse
MESH Headings
- Animals
- Biphenyl Compounds/pharmacology
- Cell Death/drug effects
- Cell Death/physiology
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Methylnitronitrosoguanidine/pharmacology
- Mice
- Nitrophenols/pharmacology
- Piperazines/pharmacology
- Poly (ADP-Ribose) Polymerase-1
- Poly(ADP-ribose) Polymerase Inhibitors
- Poly(ADP-ribose) Polymerases/metabolism
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sulfonamides/pharmacology
Collapse
Affiliation(s)
- Chaitali Dutta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tovah Day
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nadja Kopp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Diederik van Bodegom
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Matthew S. Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jeremy Ryan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Liat Bird
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Naveen Kommajosyula
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Oliver Weigert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Akinori Yoda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hua Fung
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R. Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Geoffrey I. Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
59
|
Linkermann A, Bräsen JH, De Zen F, Weinlich R, Schwendener RA, Green DR, Kunzendorf U, Krautwald S. Dichotomy between RIP1- and RIP3-mediated necroptosis in tumor necrosis factor-α-induced shock. Mol Med 2012; 18:577-86. [PMID: 22371307 DOI: 10.2119/molmed.2011.00423] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/17/2012] [Indexed: 01/03/2023] Open
Abstract
Tumor necrosis factor receptor (TNFR) signaling may result in survival, apoptosis or programmed necrosis. The latter is called necroptosis if the receptor-interacting protein 1 (RIP1) inhibitor necrostatin-1 (Nec-1) or genetic knockout of RIP3 prevents it. In the lethal mouse model of TNFα-mediated shock, addition of the pan-caspase inhibitor zVAD-fmk (zVAD) accelerates time to death. Here, we demonstrate that RIP3-deficient mice are protected markedly from TNFα-mediated shock in the presence and absence of caspase inhibition. We further show that the fusion protein TAT-crmA, previously demonstrated to inhibit apoptosis, also prevents necroptosis in L929, HT29 and FADD-deficient Jurkat cells. In contrast to RIP3-deficient mice, blocking necroptosis by Nec-1 or TAT-crmA did not protect from TNFα/zVAD-mediated shock, but further accelerated time to death. Even in the absence of caspase inhibition, Nec-1 application led to similar kinetics. Depletion of macrophages, natural killer (NK) cells, granulocytes or genetic deficiency for T lymphocytes did not influence this model. Because RIP3-deficient mice are known to be protected from cerulein-induced pancreatitis (CIP), we applied Nec-1 and TAT-crmA in this model and demonstrated the deterioration of pancreatic damage upon addition of these substances. These data highlight the importance of separating genetic RIP3 deficiency from RIP1 inhibition by Nec-1 application in vivo and challenge the current definition of necroptosis.
Collapse
Affiliation(s)
- Andreas Linkermann
- Division of Nephrology and Hypertension, Christian-Albrechts University, Kiel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Kolattukudy PE, Niu J. Inflammation, endoplasmic reticulum stress, autophagy, and the monocyte chemoattractant protein-1/CCR2 pathway. Circ Res 2012; 110:174-89. [PMID: 22223213 DOI: 10.1161/circresaha.111.243212] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Numerous inflammatory cytokines have been implicated in the pathogenesis of cardiovascular diseases. Monocyte chemoattractant protein (MCP)-1/CCL2 is expressed by mainly inflammatory cells and stromal cells such as endothelial cells, and its expression is upregulated after proinflammatory stimuli and tissue injury. MCP-1 can function as a traditional chemotactic cytokine and also regulates gene transcription. The recently discovered novel zinc-finger protein, called MCPIP (MCP-1-induced protein), initiates a series of signaling events that causes oxidative and endoplasmic reticulum (ER) stress, leading to autophagy that can result in cell death or differentiation, depending on the cellular context. After a brief review of the basic processes involved in inflammation, ER stress, and autophagy, the recently elucidated role of MCP-1 and MCPIP in inflammatory diseases is reviewed. MCPIP was found to be able to control inflammatory response by inhibition of nuclear factor-κB activation through its deubiquitinase activity or by degradation of mRNA encoding a set of inflammatory cytokines through its RNase activity. The potential inclusion of such a novel deubiquitinase in the emerging anti-inflammatory strategies for the treatment of inflammation-related diseases such as cardiovascular diseases and type 2 diabetes is briefly discussed.
Collapse
Affiliation(s)
- Pappachan E Kolattukudy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| | | |
Collapse
|
61
|
Abstract
Diseases that cause hemolysis or myonecrosis lead to the leakage of large amounts of heme proteins. Free heme has proinflammatory and cytotoxic effects. Heme induces TLR4-dependent production of tumor necrosis factor (TNF), whereas heme cytotoxicity has been attributed to its ability to intercalate into cell membranes and cause oxidative stress. We show that heme caused early macrophage death characterized by the loss of plasma membrane integrity and morphologic features resembling necrosis. Heme-induced cell death required TNFR1 and TLR4/MyD88-dependent TNF production. Addition of TNF to Tlr4(-/-) or to Myd88(-/-) macrophages restored heme-induced cell death. The use of necrostatin-1, a selective inhibitor of receptor-interacting protein 1 (RIP1, also known as RIPK1), or cells deficient in Rip1 or Rip3 revealed a critical role for RIP proteins in heme-induced cell death. Serum, antioxidants, iron chelation, or inhibition of c-Jun N-terminal kinase (JNK) ameliorated heme-induced oxidative burst and blocked macrophage cell death. Macrophages from heme oxygenase-1 deficient mice (Hmox1(-/-)) had increased oxidative stress and were more sensitive to heme. Taken together, these results revealed that heme induces macrophage necrosis through 2 synergistic mechanisms: TLR4/Myd88-dependent expression of TNF and TLR4-independent generation of ROS.
Collapse
|
62
|
Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney Int 2012; 81:751-61. [PMID: 22237751 DOI: 10.1038/ki.2011.450] [Citation(s) in RCA: 367] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Loss of kidney function in renal ischemia/reperfusion injury is due to programmed cell death, but the contribution of necroptosis, a newly discovered form of programmed necrosis, has not been evaluated. Here, we identified the presence of death receptor-mediated but caspase-independent cell death in murine tubular cells and characterized it as necroptosis by the addition of necrostatin-1, a highly specific receptor-interacting protein kinase 1 inhibitor. The detection of receptor-interacting protein kinase 1 and 3 in whole-kidney lysates and freshly isolated murine proximal tubules led us to investigate the contribution of necroptosis in a mouse model of renal ischemia/reperfusion injury. Treatment with necrostatin-1 reduced organ damage and renal failure, even when administered after reperfusion, resulting in a significant survival benefit in a model of lethal renal ischemia/reperfusion injury. Unexpectedly, specific blockade of apoptosis by zVAD, a pan-caspase inhibitor, did not prevent the organ damage or the increase in urea and creatinine in vivo in renal ischemia/reperfusion injury. Thus, necroptosis is present and has functional relevance in the pathophysiological course of ischemic kidney injury and shows the predominance of necroptosis over apoptosis in this setting. Necrostatin-1 may have therapeutic potential to prevent and treat renal ischemia/reperfusion injury.
Collapse
|
63
|
Mocarski ES, Upton JW, Kaiser WJ. Viral infection and the evolution of caspase 8-regulated apoptotic and necrotic death pathways. Nat Rev Immunol 2011; 12:79-88. [PMID: 22193709 PMCID: PMC4515451 DOI: 10.1038/nri3131] [Citation(s) in RCA: 329] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pathogens specifically target both the caspase 8-dependent apoptotic cell death pathway and the necrotic cell death pathway that is dependent on receptor-interacting protein 1 (RIP1; also known as RIPK1) and RIP3 (also known as RIPK3). The fundamental co-regulation of these two cell death pathways emerged when the midgestational death of mice deficient in FAS-associated death domain protein (FADD) or caspase 8 was reversed by elimination of RIP1 or RIP3, indicating a far more entwined relationship than previously appreciated. Thus, mammals require caspase 8 activity during embryogenesis to suppress the kinases RIP1 and RIP3 as part of the dialogue between two distinct cell death processes that together fulfil reinforcing roles in the host defence against intracellular pathogens such as herpesviruses.
Collapse
Affiliation(s)
- Edward S Mocarski
- Department of Microbiology and Immunology, Emory Vaccine Center, 1462 Clifton Rd. NE, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Jason W Upton
- Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin 78712, USA
| | - William J Kaiser
- Department of Microbiology and Immunology, Emory Vaccine Center, 1462 Clifton Rd. NE, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
64
|
Varfolomeev E, Vucic D. Inhibitor of apoptosis proteins: fascinating biology leads to attractive tumor therapeutic targets. Future Oncol 2011; 7:633-48. [PMID: 21568679 DOI: 10.2217/fon.11.40] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cell death inhibition is a very successful strategy that cancer cells employ to combat the immune system and various anticancer therapies. Inhibitor of apoptosis (IAP) proteins possess a wide range of biological activities that promote cancer survival and proliferation. One of them, X-chromosome-linked IAP is a direct inhibitor of proapoptotic executioners, caspases. Cellular IAP proteins regulate expression of antiapoptotic molecules and prevent assembly of proapoptotic protein signaling complexes, while survivin regulates cell division. In addition, amplifications, mutations and chromosomal translocations of IAP genes are associated with various malignancies. Several therapeutic strategies have been designed to target IAP proteins, including a small-molecule approach that is based on mimicking the IAP-binding motif of an endogenous IAP antagonist - the second mitochondrial activator of caspases. Other strategies involve antisense nucleotides and transcriptional repression. The main focus of this article is to provide an update on IAP protein biology and perspectives on the development of IAP-targeting therapeutics.
Collapse
Affiliation(s)
- Eugene Varfolomeev
- Department of Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, M/S 40, South San Francisco, CA 94080, USA
| | | |
Collapse
|
65
|
Bonnet MC, Preukschat D, Welz PS, van Loo G, Ermolaeva MA, Bloch W, Haase I, Pasparakis M. The adaptor protein FADD protects epidermal keratinocytes from necroptosis in vivo and prevents skin inflammation. Immunity 2011; 35:572-82. [PMID: 22000287 DOI: 10.1016/j.immuni.2011.08.014] [Citation(s) in RCA: 343] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 07/07/2011] [Accepted: 08/12/2011] [Indexed: 11/30/2022]
Abstract
Epidermal keratinocytes provide an essential structural and immunological barrier forming the first line of defense against potentially pathogenic microorganisms. Mechanisms regulating barrier integrity and innate immune responses in the epidermis are important for the maintenance of skin immune homeostasis and the pathogenesis of inflammatory skin diseases. Here, we show that epidermal keratinocyte-restricted deficiency of the adaptor protein FADD (FADD(E-KO)) induced severe inflammatory skin lesions in mice. The development of skin inflammation in FADD(E-KO) mice was triggered by RIP kinase 3 (RIP3)-mediated programmed necrosis (termed necroptosis) of FADD-deficient keratinocytes, which was partly dependent on the deubiquitinating enzyme CYLD and tumor necrosis factor (TNF)-TNF receptor 1 signaling. Collectively, our findings provide an in vivo experimental paradigm that regulation of necroptosis in keratinocytes is important for the maintenance of immune homeostasis and the prevention of chronic inflammation in the skin.
Collapse
Affiliation(s)
- Marion C Bonnet
- Institute for Genetics, Center for Molecular Medicine, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Almeida CB, Favero ME, Pereira-Cunha FG, Lorand-Metze I, Saad STO, Costa FF, Conran N. Alterations in cell maturity and serum survival factors may modulate neutrophil numbers in sickle cell disease. Exp Biol Med (Maywood) 2011; 236:1239-46. [PMID: 21998130 DOI: 10.1258/ebm.2011.011130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leukocytes are known to exacerbate inflammatory and vaso-occlusive processes in sickle cell disease (SCD). The aim of this study was to determine whether alterations in neutrophil maturity and/or cell-death modulating factors in the circulation contribute to the increased leukocyte counts and leukocyte survival observed in SCD. The maturity of circulating neutrophils from healthy control individuals (CON), SCD and SCD patients on hydroxyurea therapy (SCDHU) was determined immunophenotypically. Serum factors affecting neutrophil apoptosis (determined by annexin V-binding) were analyzed by culturing control neutrophils (CON neutrophils) with pooled serum from CON, SCD and SCDHU individuals. Immunophenotypic characterization of neutrophils suggested a slight, but significant, increase in the circulation of immature neutrophils in SCD. While SCD neutrophils cultured in the presence of CON serum presented delayed apoptosis, unexpectedly, the culture of CON neutrophils with SCD serum significantly augmented apoptosis and caspase-9 activity. Inhibition of the activity of serum interleukin-8, a neutrophil-apoptosis-inhibiting cytokine, significantly increased SCD serum-induced CON neutrophil apoptosis, indicating that SCD serum may have both apoptotic and antiapoptotic properties. The decreased maturity of SCD neutrophils observed is suggestive of an accelerated immigration of leukocytes from the bone marrow to the circulating pool that may contribute to an increase in cell survival, subject to modulation by a complex balance of both anti- and proapoptotic factors contained in the circulation of SCD individuals.
Collapse
Affiliation(s)
- Camila Bononi Almeida
- Hematology and Hemotherapy Center, Instituto Nacional de Ciência e Tecnologia do Sangue, UNICAMP, Campinas, São Paulo, 13083-970, Brazil
| | | | | | | | | | | | | |
Collapse
|
67
|
Waldeck H, Wang X, Joyce E, Kao WJ. Active leukocyte detachment and apoptosis/necrosis on PEG hydrogels and the implication in the host inflammatory response. Biomaterials 2011; 33:29-37. [PMID: 21963150 DOI: 10.1016/j.biomaterials.2011.09.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/21/2011] [Indexed: 02/07/2023]
Abstract
Monocytes/Macrophages have long been recognized as key players in inflammation and wound healing and are often employed in vitro to gain an understanding of the inflammatory response to biomaterials. Previous work has demonstrated a drastic decrease in primary monocyte adherent density on biomaterial surfaces coupled with a change in monocyte behavior over time. However, the mechanism responsible for this decrease remains unclear. In this study, we explored active detachment and cellular death as possible regulating factors. Specifically, extracellular TNF-α and ROS production were analyzed as potential endogenous stimulators of cell death. MMPs, but not calpains, were found to play a key role in active monocyte detachment. Monocyte death was found to peak at 24 h and occur by both apoptosis and necrosis as opposed to polymorphonuclear leukocyte death which mainly occurred through apoptosis. Finally, TNF-α and ROS production were not found to have a causal relationship with monocyte death on TCPS or PEG surfaces. The occurrence of primary monocyte apoptosis/necrosis as well as active detachment from a material surface has implications not only in in vitro study, but also in the translation of the in vitro inflammatory response of these cells to in vivo applications.
Collapse
Affiliation(s)
- Heather Waldeck
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, WI, USA.
| | | | | | | |
Collapse
|
68
|
Ramirez-Ortiz ZG, Lee CK, Wang JP, Boon L, Specht CA, Levitz SM. A nonredundant role for plasmacytoid dendritic cells in host defense against the human fungal pathogen Aspergillus fumigatus. Cell Host Microbe 2011; 9:415-24. [PMID: 21575912 DOI: 10.1016/j.chom.2011.04.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 03/14/2011] [Accepted: 04/11/2011] [Indexed: 01/22/2023]
Abstract
While plasmacytoid dendritic cells (pDCs), a natural type I interferon (IFN)-producing cell type, are regarded as critical for innate immunity to viruses, their role in defense against fungal infections remains unknown. We examined the interactions of pDCs with hyphae of the invasive human fungal pathogen Aspergillus fumigatus. Human pDCs spread over hyphae and inhibited their growth. Antifungal activity was retained in pDC lysates, did not require direct fungal contact, and was partially reversed by zinc. Incubation with hyphae resulted in pDC cytotoxicity, partly due to fungal gliotoxin secretion. Following hyphal stimulation, pDCs released proinflammatory cytokines via a TLR9-independent mechanism. Pulmonary challenge of mice with A. fumigatus resulted in a substantial influx of pDCs into lungs, and pDC-depleted mice were hypersusceptible to invasive aspergillosis. These data demonstrate the antifungal activity of pDCs against A. fumigatus and establish their nonredundant role in host defenses against invasive aspergillosis in vivo.
Collapse
Affiliation(s)
- Zaida G Ramirez-Ortiz
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | |
Collapse
|
69
|
RIP1-dependent and independent effects of necrostatin-1 in necrosis and T cell activation. PLoS One 2011; 6:e23209. [PMID: 21853090 PMCID: PMC3154273 DOI: 10.1371/journal.pone.0023209] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 07/12/2011] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Programmed necrosis/necroptosis is an emerging form of cell death that plays important roles in mammalian development and the immune system. The pro-necrotic kinases in the receptor interacting protein (RIP) family are crucial mediators of programmed necrosis. Recent advances in necrosis research have been greatly aided by the identification of chemical inhibitors that block programmed necrosis. Necrostatin-1 (Nec-1) and its derivatives were previously shown to target the pro-necrotic kinase RIP1/RIPK1. The protective effect conferred by Nec-1 and its derivatives in many experimental model systems was often attributed to the inhibition of RIP1 function. METHODOLOGY/PRINCIPAL FINDINGS We compared the effect of Nec-1 and siRNA-mediated silencing of RIP1 in the murine fibrosarcoma cell line L929. Treatment of L929 cells with the pan-caspase inhibitor zVAD-fmk or exogenous TNF induces necrosis. Strikingly, we found that siRNA-mediated silencing of RIP1 inhibited zVAD-fmk induced necrosis, but not TNF-induced necrosis. TNF-induced cell death in RIP1 knocked down L929 cells was inhibited by Nec-1, but not the caspase inhibitor zVAD-fmk. We found that PKA-C§ expression, but not Jnk or Erk activation, was moderately inhibited by Nec-1. Moreover, we found that Nec-1 inhibits proximal T cell receptor signaling independent of RIP1, leading to inhibition of T cell proliferation. CONCLUSIONS/SIGNIFICANCE Our results reveal that besides RIP1, Nec-1 also targets other factors crucial for necrosis induction in L929 cells. In addition, high doses of Nec-1 inhibit other signal transduction pathways such as that for T cell receptor activation. These results highlight the importance to independently validate results obtained using Nec-1 with other approaches such as siRNA-mediated gene silencing. We propose that some of the previous published results obtained using Nec-1 should be re-evaluated in light of our findings.
Collapse
|
70
|
Uimari A, Merentie M, Sironen R, Pirnes-Karhu S, Peräniemi S, Alhonen L. Overexpression of spermidine/spermine N1-acetyltransferase or treatment with N1-N11-diethylnorspermine attenuates the severity of zinc-induced pancreatitis in mouse. Amino Acids 2011; 42:461-71. [PMID: 21814793 DOI: 10.1007/s00726-011-1025-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 04/22/2011] [Indexed: 12/15/2022]
Abstract
Depletion of pancreatic intracellular polyamine pools has been observed in acute pancreatitis both in the animal models and in humans. In this study, the wild-type mice, polyamine catabolic enzyme spermidine/spermine N(1)-acetyltransferase overexpressing (SSAT mice) and SSAT-deficient mice were used to characterize the new zinc-induced acute pancreatitis mouse model and study the role of polyamines and polyamine catabolism in this model. Intraperitoneal zinc injection induced acute necrotizing pancreatitis in wild-type mice as well as in SSAT-overexpressing and SSAT-deficient mice. Serum α-amylase activity was significantly increased in all zinc-treated mice compared with the untreated controls. However, the α-amylase activities in SSAT mice were constantly lower than those in the other groups. Histopathological examination of pancreatic tissue revealed edema, acinar cell necrosis and necrotizing inflammation, typical for acute pancreatitis. Compared with the other zinc-treated mice less damage according to the histopathological analysis was observed in the pancreatic tissue of SSAT mice. Levels of intracellular spermidine, and occasionally spermine, were significantly decreased in pancreases of all zinc-treated animals and SSAT enzyme activity was enhanced both in wild-type and SSAT mice. Interestingly, a spermine analog, N(1), N(11)-diethylnorspermine (DENSpm), enhanced the proliferation of pancreatic cells and reduced the severity of zinc-induced pancreatitis in wild-type mice. The results show that in mice a single intraperitoneal zinc injection causes acute necrotizing pancreatitis accompanied by decrease of intracellular polyamine pools. The study supports the important role of polyamines for the integrity and function of the pancreas. In addition, the study suggests that whole body overexpression of SSAT obtained in SSAT mice reduces inflammatory pancreatic cell injury.
Collapse
Affiliation(s)
- Anne Uimari
- Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
71
|
Abstract
Cell death has a central role in innate immune responses in both plants and animals. Besides sharing striking convergences and similarities in the overall evolutionary organization of their innate immune systems, both plants and animals can respond to infection and pathogen recognition with programmed cell death. The fact that plant and animal pathogens have evolved strategies to subvert specific cell death modalities emphasizes the essential role of cell death during immune responses. The hypersensitive response (HR) cell death in plants displays morphological features, molecular architectures and mechanisms reminiscent of different inflammatory cell death types in animals (pyroptosis and necroptosis). In this review, we describe the molecular pathways leading to cell death during innate immune responses. Additionally, we present recently discovered caspase and caspase-like networks regulating cell death that have revealed fascinating analogies between cell death control across both kingdoms.
Collapse
Affiliation(s)
- N S Coll
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
72
|
Baarine M, Thandapilly SJ, Louis XL, Mazué F, Yu L, Delmas D, Netticadan T, Lizard G, Latruffe N. Pro-apoptotic versus anti-apoptotic properties of dietary resveratrol on tumoral and normal cardiac cells. GENES AND NUTRITION 2011; 6:161-9. [PMID: 21541654 DOI: 10.1007/s12263-011-0232-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 04/21/2011] [Indexed: 12/20/2022]
Abstract
Resveratrol is a natural dietary polyphenol found in grape skin, red wine, and various other food products. Resveratrol has proved to be an effective chemopreventive agent for different malignant tumors. It has also been shown to prevent vascular alterations such as atherosclerosis and inflammatory-associated events. In view of these observations, we investigated the anti-proliferative and pro-apoptotic activities of resveratrol on a tumoral cardiac cell line (HL-1 NB) derived from mouse tumoral atrial cardiac myocytes. These effects were compared with those found on normal neonatal mouse cardiomyocytes. HL-1 NB cells and neonatal cardiomyocytes were treated with resveratrol (5, 30, and/or 100 μM) for different times of culture (24, 48, and/or 72 h). Resveratrol effects were determined by various microscopical and flow cytometric methods. After resveratrol treatment, a strong inhibition of tumoral cardiac HL1-NB cell growth associated with a loss of cell adhesion was observed. This cell proliferation arrest was associated with an apoptotic process revealed by an increased percentage of cells with fragmented and/or condensed nuclei (characteristic of apoptotic cells) identified after staining with Hoechst 33342 and by the presence of cells in subG1. At the opposite, on normal cardiomyocytes, no cytotoxic effects of resveratrol were observed, and a protective effect of resveratrol against norepinephrine-induced apoptosis was found on normal cardiomyocytes. Altogether, the present data demonstrate that resveratrol (1) induces apoptosis of tumoral cardiac HL1-NB cells, (2) does not induce cell death on normal cardiomyocytes, and (3) prevents norepinephrine-induced apoptosis on normal cardiomyocytes.
Collapse
Affiliation(s)
- Mauhamad Baarine
- Centre de Recherche Inserm UMR 866 (Lipides, Nutrition, Cancer), Université de Bourgogne, Equipe Biochimie Métabolique et Nutritionnelle-6, Bd Gabriel, Dijon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Copland IB, Galipeau J. Death and inflammation following somatic cell transplantation. Semin Immunopathol 2011; 33:535-50. [DOI: 10.1007/s00281-011-0274-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 04/14/2011] [Indexed: 12/13/2022]
|
74
|
Helicobacter pylori VacA induces programmed necrosis in gastric epithelial cells. Infect Immun 2011; 79:2535-43. [PMID: 21482684 DOI: 10.1128/iai.01370-10] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Helicobacter pylori is a Gram-negative bacterium that colonizes the human stomach and contributes to the development of peptic ulcer disease and gastric cancer. The secreted pore-forming toxin VacA is one of the major virulence factors of H. pylori. In the current study, we show that AZ-521 human gastric epithelial cells are highly susceptible to VacA-induced cell death. Wild-type VacA causes death of these cells, whereas mutant VacA proteins defective in membrane channel formation do not. Incubation of AZ-521 cells with wild-type VacA results in cell swelling, poly(ADP-ribose) polymerase (PARP) activation, decreased intracellular ATP concentration, and lactate dehydrogenase (LDH) release. VacA-induced death of these cells is a caspase-independent process that results in cellular release of histone-binding protein high mobility group box 1 (HMGB1), a proinflammatory protein. These features are consistent with the occurrence of cell death through a programmed necrosis pathway and suggest that VacA can be included among the growing number of bacterial pore-forming toxins that induce cell death through programmed necrosis. We propose that VacA augments H. pylori-induced mucosal inflammation in the human stomach by causing programmed necrosis of gastric epithelial cells and subsequent release of proinflammatory proteins and may thereby contribute to the pathogenesis of gastric cancer and peptic ulceration.
Collapse
|
75
|
Coll NS, Epple P, Dangl JL. Programmed cell death in the plant immune system. Cell Death Differ 2011; 18:1247-56. [PMID: 21475301 DOI: 10.1038/cdd.2011.37] [Citation(s) in RCA: 591] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cell death has a central role in innate immune responses in both plants and animals. Besides sharing striking convergences and similarities in the overall evolutionary organization of their innate immune systems, both plants and animals can respond to infection and pathogen recognition with programmed cell death. The fact that plant and animal pathogens have evolved strategies to subvert specific cell death modalities emphasizes the essential role of cell death during immune responses. The hypersensitive response (HR) cell death in plants displays morphological features, molecular architectures and mechanisms reminiscent of different inflammatory cell death types in animals (pyroptosis and necroptosis). In this review, we describe the molecular pathways leading to cell death during innate immune responses. Additionally, we present recently discovered caspase and caspase-like networks regulating cell death that have revealed fascinating analogies between cell death control across both kingdoms.
Collapse
Affiliation(s)
- N S Coll
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
76
|
McCall K. Genetic control of necrosis - another type of programmed cell death. Curr Opin Cell Biol 2011; 22:882-8. [PMID: 20889324 DOI: 10.1016/j.ceb.2010.09.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 09/02/2010] [Accepted: 09/06/2010] [Indexed: 01/24/2023]
Abstract
Necrosis has been thought to be an accidental or uncontrolled type of cell death rather than programmed. Recent studies from diverse organisms show that necrosis follows a stereotypical series of cellular and molecular events: swelling of organelles, increases in reactive oxygen species and cytoplasmic calcium, a decrease in ATP, activation of calpain and cathepsin proteases, and finally rupture of organelles and plasma membrane. Genetic and chemical manipulations demonstrate that necrosis can be inhibited, indicating that necrosis can indeed be controlled and follows a specific 'program.' This review highlights recent findings from C. elegans, yeast, Dictyostelium, Drosophila, and mammals that collectively provide evidence for conserved mechanisms of necrosis.
Collapse
Affiliation(s)
- Kimberly McCall
- Department of Biology, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
77
|
Viral cell death inhibitor MC159 enhances innate immunity against vaccinia virus infection. J Virol 2010; 84:10467-76. [PMID: 20702623 DOI: 10.1128/jvi.00983-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Viral inhibitors of host programmed cell death (PCD) are widely believed to promote viral replication by preventing or delaying host cell death. Viral FLIPs (Fas-linked ICE-like protease [FLICE; caspase-8]-like inhibitor proteins) are potent inhibitors of death receptor-induced apoptosis and programmed necrosis. Surprisingly, transgenic expression of the viral FLIP MC159 from molluscum contagiosum virus (MCV) in mice enhanced rather than inhibited the innate immune control of vaccinia virus (VV) replication. This effect of MC159 was specifically manifested in peripheral tissues such as the visceral fat pad, but not in the spleen. VV-infected MC159 transgenic mice mounted an enhanced innate inflammatory reaction characterized by increased expression of the chemokine CCL-2/MCP-1 and infiltration of γδ T cells into peripheral tissues. Radiation chimeras revealed that MC159 expression in the parenchyma, but not in the hematopoietic compartment, is responsible for the enhanced innate inflammatory responses. The increased inflammation in peripheral tissues was not due to resistance of lymphocytes to cell death. Rather, we found that MC159 facilitated Toll-like receptor 4 (TLR4)- and tumor necrosis factor (TNF)-induced NF-κB activation. The increased NF-κB responses were mediated in part through increased binding of RIP1 to TNFRSF1A-associated via death domain (TRADD), two crucial signal adaptors for NF-κB activation. These results show that MC159 is a dual-function immune modulator that regulates host cell death as well as NF-κB responses by innate immune signaling receptors.
Collapse
|