51
|
Shenouda M, Zhang AB, Weichert A, Robertson J. Mechanisms Associated with TDP-43 Neurotoxicity in ALS/FTLD. ADVANCES IN NEUROBIOLOGY 2018; 20:239-263. [PMID: 29916022 DOI: 10.1007/978-3-319-89689-2_9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery of TDP-43 as a major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) was first made in 2006. Prior to 2006 there were only 11 publications related to TDP-43, now there are over 2000, indicating the importance of TDP-43 to unraveling the complex molecular mechanisms that underpin the pathogenesis of ALS/FTLD. Subsequent to this discovery, TDP-43 pathology was also found in other neurodegenerative diseases, including Alzheimer's disease, the significance of which is still in the early stages of exploration. TDP-43 is a predominantly nuclear DNA/RNA-binding protein, one of a number of RNA-binding proteins that are now known to be linked with ALS/FTLD, including Fused in Sarcoma (FUS), heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), and heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1). However, what sets TDP-43 apart is the vast number of cases in which TDP-43 pathology is present, providing a point of convergence, the understanding of which could lead to broadly applicable therapeutics. Here we will focus on TDP-43 in ALS/FTLD, its nuclear and cytoplasmic functions, and consequences should these functions go awry.
Collapse
Affiliation(s)
- Marc Shenouda
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Ashley B Zhang
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Anna Weichert
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 2S8, Canada.
| |
Collapse
|
52
|
Abstract
Neurodegeneration is a leading cause of death in the developed world and a natural, albeit unfortunate, consequence of longer-lived populations. Despite great demand for therapeutic intervention, it is often the case that these diseases are insufficiently understood at the basic molecular level. What little is known has prompted much hopeful speculation about a generalized mechanistic thread that ties these disparate conditions together at the subcellular level and can be exploited for broad curative benefit. In this review, we discuss a prominent theory supported by genetic and pathological changes in an array of neurodegenerative diseases: that neurons are particularly vulnerable to disruption of RNA-binding protein dosage and dynamics. Here we synthesize the progress made at the clinical, genetic, and biophysical levels and conclude that this perspective offers the most parsimonious explanation for these mysterious diseases. Where appropriate, we highlight the reciprocal benefits of cross-disciplinary collaboration between disease specialists and RNA biologists as we envision a future in which neurodegeneration declines and our understanding of the broad importance of RNA processing deepens.
Collapse
Affiliation(s)
- Erin G Conlon
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
53
|
Çetin İ, Tezdiğ İ, Tarakçioğlu MC, Kadak MT, Demirel ÖF, Özer ÖF, Erdoğan F, Doğangün B. Do Low Serum UCH-L1 and TDP-43 Levels Indicate Disturbed Ubiquitin-Proteosome System in Autism Spectrum Disorder? ACTA ACUST UNITED AC 2017; 54:267-271. [PMID: 29033641 DOI: 10.5152/npa.2017.14873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/29/2016] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The mechanism of ubiquitination-related abnormalities causing neural development problems is still unclear. We examined the association between autism and serum transactive response DNA-binding protein-43 (TDP-43) and ubiquitin c-terminal hydrolase-L1 (UCH-L1) levels, both of which are members of the ubiquitin-proteosome system. METHODS We measured serum levels of TDP-43 and UCH-L1 in 24 children with autism and 24 healthy children. Childhood Autism Rating Scale (CARS) was used to assess symptom severity at admission. RESULTS The mean serum TDP-43 and UCH-L1 levels in children with autism spectrum disorder (ASD) were found to decrease compared to healthy controls (p<0.001, 506.21±780.97 ng/L and 1245.80±996.76 ng/L, respectively; 3.08±5.44 ng/mL and 8.64±6.67 ng/mL, respectively). A positive correlation between serum TDP-43 levels and UCH-L1 levels was found in the ASD group (r=0.947, n=24, p<0.001). The CARS score of children with ASD was 48.91 points (standard deviation [SD]: 5.82). CONCLUSION Low serum levels of UCH-L1 and TDP-43 may reflect disturbed ubiquitination in autism.
Collapse
Affiliation(s)
- İhsan Çetin
- Department of Nutrition and Dietetics, Batman University School of Health, Batman, Turkey
| | - İhsan Tezdiğ
- Department of Chemistry, Batman University Institute of Science, Batman, Turkey
| | - Mahmut Cem Tarakçioğlu
- Department of Child and Adolescent Psychiatry, Kanuni Sultan Süleyman Training and Research Hospital, İstanbul, Turkey
| | - Muhammed Tayyib Kadak
- Department of Child and Adolescent Psychiatry, İstanbul University Cerrahpaşa School of Medicine, İstanbul, Turkey
| | - Ömer Faruk Demirel
- Department of Psychiatry, İstanbul University Cerrahpaşa School of Medicine, İstanbul, Turkey
| | - Ömer Faruk Özer
- Department of Biochemistry, Bezmialem Vakif University School of Medicine, İstanbul, Turkey
| | - Fırat Erdoğan
- Department of Pediatrics, Medipol University School of Medicine, İstanbul, Turkey
| | - Burak Doğangün
- Department of Child and Adolescent Psychiatry, İstanbul University Cerrahpaşa School of Medicine, İstanbul, Turkey
| |
Collapse
|
54
|
Zhou RB, Lu XL, Zhang CY, Yin DC. RNA binding motif protein 3: a potential biomarker in cancer and therapeutic target in neuroprotection. Oncotarget 2017; 8:22235-22250. [PMID: 28118608 PMCID: PMC5400660 DOI: 10.18632/oncotarget.14755] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022] Open
Abstract
RNA binding motif 3 (RBM3) is a highly conserved cold-induced RNA binding protein that is transcriptionally up-regulated in response to harsh stresses. Featured as RNA binding protein, RBM3 is involved in mRNA biogenesis as well as stimulating protein synthesis, promoting proliferation and exerting anti-apoptotic functions. Nowadays, accumulating immunohistochemically studies have suggested RBM3 function as a proto-oncogene that is associated with tumor progression and metastasis in various cancers. Moreover, emerging evidences have also indicated that RBM3 is equally effective in neuroprotection. In the present review, we provide an overview of current knowledge concerning the role of RBM3 in various cancers and neuroprotection. Additionally, its potential roles as a promising diagnostic marker for cancer and a possible therapeutic target for neuro-related diseases are discussed.
Collapse
Affiliation(s)
- Ren-Bin Zhou
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, PR China
| | - Xiao-Li Lu
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, PR China
| | - Chen-Yan Zhang
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, PR China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, PR China
| |
Collapse
|
55
|
Appocher C, Mohagheghi F, Cappelli S, Stuani C, Romano M, Feiguin F, Buratti E. Major hnRNP proteins act as general TDP-43 functional modifiers both in Drosophila and human neuronal cells. Nucleic Acids Res 2017; 45:8026-8045. [PMID: 28575377 PMCID: PMC5570092 DOI: 10.1093/nar/gkx477] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 05/16/2017] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor TDP-43 is known to play an important role in several neurodegenerative pathologies. In general, TDP-43 is an abundant protein within the eukaryotic nucleus that binds to many coding and non-coding RNAs and influence their processing. Using Drosophila, we have performed a functional screening to establish the ability of major hnRNP proteins to affect TDP-43 overexpression/depletion phenotypes. Interestingly, we observed that lowering hnRNP and TDP-43 expression has a generally harmful effect on flies locomotor abilities. In parallel, our study has also identified a distinct set of hnRNPs that is capable of powerfully rescuing TDP-43 toxicity in the fly eye (Hrb27c, CG42458, Glo and Syp). Most importantly, removing the human orthologs of Hrb27c (DAZAP1) in human neuronal cell lines can correct several pre-mRNA splicing events altered by TDP-43 depletion. Moreover, using RNA sequencing analysis we show that DAZAP1 and TDP-43 can co-regulate an extensive number of biological processes and molecular functions potentially important for the neuron/motor neuron pathophysiology. Our results suggest that changes in hnRNP expression levels can significantly modulate TDP-43 functions and affect pathological outcomes.
Collapse
Affiliation(s)
- Chiara Appocher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Fatemeh Mohagheghi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Sara Cappelli
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Cristiana Stuani
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio 28, 34127 Trieste, Italy
| | - Fabian Feiguin
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| |
Collapse
|
56
|
Heyburn L, Moussa CEH. TDP-43 in the spectrum of MND-FTLD pathologies. Mol Cell Neurosci 2017; 83:46-54. [PMID: 28687523 DOI: 10.1016/j.mcn.2017.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/28/2017] [Accepted: 07/04/2017] [Indexed: 12/12/2022] Open
Abstract
The relationship between RNA-binding proteins, particularly TAR DNA binding protein 43 (TDP-43), and neurodegeneration is an important area of research. TDP-43 is involved in so many cellular processes that perturbation of protein homeostasis can lead to countless downstream effects. Understanding what leads to this disease-related protein imbalance and the resulting cellular and molecular effects will help to develop targets for disease intervention, whether it be prevention of protein accumulation, or addressing a secondary effect of protein accumulation. Here we review the current literature of TDP-43 and TDP-43 pathologies, the effects of TDP-43 overexpression and disruption of synaptic proteins through its binding of messenger RNA, leading to synaptic dysfunction. This review highlights some of the still-limited knowledge of the protein TDP-43 and how it can contribute to disease.
Collapse
Affiliation(s)
- Lanier Heyburn
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Georgetown University Medical Center, Washington D.C. 20007, USA; Department of Pathology, Georgetown University Medical Center, Washington D.C., USA 20007.
| | - Charbel E-H Moussa
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Georgetown University Medical Center, Washington D.C. 20007, USA
| |
Collapse
|
57
|
|
58
|
Liu YJ, Tsai PY, Chern Y. Energy Homeostasis and Abnormal RNA Metabolism in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2017; 11:126. [PMID: 28522961 PMCID: PMC5415567 DOI: 10.3389/fncel.2017.00126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease that is clinically characterized by progressive muscle weakness and impaired voluntary movement due to the loss of motor neurons in the brain, brain stem and spinal cord. To date, no effective treatment is available. Ample evidence suggests that impaired RNA homeostasis and abnormal energy status are two major pathogenesis pathways in ALS. In the present review article, we focus on recent studies that report molecular insights of both pathways, and discuss the possibility that energy dysfunction might negatively regulate RNA homeostasis via the impairment of cytoplasmic-nuclear shuttling in motor neurons and subsequently contribute to the development of ALS.
Collapse
Affiliation(s)
- Yu-Ju Liu
- Division of Neuroscience, Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Po-Yi Tsai
- Division of Neuroscience, Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Yijuang Chern
- Division of Neuroscience, Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| |
Collapse
|
59
|
Namjoshi SV, Raab-Graham KF. Screening the Molecular Framework Underlying Local Dendritic mRNA Translation. Front Mol Neurosci 2017; 10:45. [PMID: 28286470 PMCID: PMC5323403 DOI: 10.3389/fnmol.2017.00045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022] Open
Abstract
In the last decade, bioinformatic analyses of high-throughput proteomics and transcriptomics data have enabled researchers to gain insight into the molecular networks that may underlie lasting changes in synaptic efficacy. Development and utilization of these techniques have advanced the field of learning and memory significantly. It is now possible to move from the study of activity-dependent changes of a single protein to modeling entire network changes that require local protein synthesis. This data revolution has necessitated the development of alternative computational and statistical techniques to analyze and understand the patterns contained within. Thus, the focus of this review is to provide a synopsis of the journey and evolution toward big data techniques to address still unanswered questions regarding how synapses are modified to strengthen neuronal circuits. We first review the seminal studies that demonstrated the pivotal role played by local mRNA translation as the mechanism underlying the enhancement of enduring synaptic activity. In the interest of those who are new to the field, we provide a brief overview of molecular biology and biochemical techniques utilized for sample preparation to identify locally translated proteins using RNA sequencing and proteomics, as well as the computational approaches used to analyze these data. While many mRNAs have been identified, few have been shown to be locally synthesized. To this end, we review techniques currently being utilized to visualize new protein synthesis, a task that has proven to be the most difficult aspect of the field. Finally, we provide examples of future applications to test the physiological relevance of locally synthesized proteins identified by big data approaches.
Collapse
Affiliation(s)
- Sanjeev V Namjoshi
- Center for Learning and Memory, The University of Texas at Austin, AustinTX, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, AustinTX, USA
| | - Kimberly F Raab-Graham
- Center for Learning and Memory, The University of Texas at Austin, AustinTX, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, AustinTX, USA; Department of Physiology and Pharmacology, Wake Forest Health Sciences, Medical Center Boulevard, Winston-SalemNC, USA
| |
Collapse
|
60
|
Schieweck R, Popper B, Kiebler MA. Co-Translational Folding: A Novel Modulator of Local Protein Expression in Mammalian Neurons? Trends Genet 2016; 32:788-800. [DOI: 10.1016/j.tig.2016.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 01/15/2023]
|
61
|
Majumder P, Chu JF, Chatterjee B, Swamy KBS, Shen CKJ. Co-regulation of mRNA translation by TDP-43 and Fragile X Syndrome protein FMRP. Acta Neuropathol 2016; 132:721-738. [PMID: 27518042 PMCID: PMC5073124 DOI: 10.1007/s00401-016-1603-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/28/2016] [Accepted: 07/28/2016] [Indexed: 01/15/2023]
Abstract
For proper mammalian brain development and functioning, the translation of many neuronal mRNAs needs to be repressed without neuronal activity stimulations. We have discovered that the expression of a subclass of neuronal proteins essential for neurodevelopment and neuron plasticity is co-regulated at the translational level by TDP-43 and the Fragile X Syndrome protein FMRP. Using molecular, cellular and imaging approaches, we show that these two RNA-binding proteins (RBP) co-repress the translation initiation of Rac1, Map1b and GluR1 mRNAs, and consequently the hippocampal spinogenesis. The co-repression occurs through binding of TDP-43 to mRNA(s) at specific UG/GU sequences and recruitment of the inhibitory CYFIP1-FMRP complex by its glycine-rich domain. This novel regulatory scenario could be utilized to silence a significant portion of around 160 common target mRNAs of the two RBPs. The study establishes a functional/physical partnership between FMRP and TDP-43 that mechanistically links several neurodevelopmental disorders and neurodegenerative diseases.
Collapse
|
62
|
Guerrero EN, Wang H, Mitra J, Hegde PM, Stowell SE, Liachko NF, Kraemer BC, Garruto RM, Rao KS, Hegde ML. TDP-43/FUS in motor neuron disease: Complexity and challenges. Prog Neurobiol 2016; 145-146:78-97. [PMID: 27693252 PMCID: PMC5101148 DOI: 10.1016/j.pneurobio.2016.09.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/19/2016] [Accepted: 09/20/2016] [Indexed: 01/05/2023]
Abstract
Amyotrophic lateral sclerosis (ALS), a common motor neuron disease affecting two per 100,000 people worldwide, encompasses at least five distinct pathological subtypes, including, ALS-SOD1, ALS-C9orf72, ALS-TDP-43, ALS-FUS and Guam-ALS. The etiology of a major subset of ALS involves toxicity of the TAR DNA-binding protein-43 (TDP-43). A second RNA/DNA binding protein, fused in sarcoma/translocated in liposarcoma (FUS/TLS) has been subsequently associated with about 1% of ALS patients. While mutations in TDP-43 and FUS have been linked to ALS, the key contributing molecular mechanism(s) leading to cell death are still unclear. One unique feature of TDP-43 and FUS pathogenesis in ALS is their nuclear clearance and simultaneous cytoplasmic aggregation in affected motor neurons. Since the discoveries in the last decade implicating TDP-43 and FUS toxicity in ALS, a majority of studies have focused on their cytoplasmic aggregation and disruption of their RNA-binding functions. However, TDP-43 and FUS also bind to DNA, although the significance of their DNA binding in disease-affected neurons has been less investigated. A recent observation of accumulated genomic damage in TDP-43 and FUS-linked ALS and association of FUS with neuronal DNA damage repair pathways indicate a possible role of deregulated DNA binding function of TDP-43 and FUS in ALS. In this review, we discuss the different ALS disease subtypes, crosstalk of etiopathologies in disease progression, available animal models and their limitations, and recent advances in understanding the specific involvement of RNA/DNA binding proteins, TDP-43 and FUS, in motor neuron diseases.
Collapse
Affiliation(s)
- Erika N. Guerrero
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
- Centre for Neuroscience, Institute for Scientific Research and Technology Services (INDICASAT-AIP), City of Knowledge, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Haibo Wang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Pavana M. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Sara E. Stowell
- Department of Anthropology, Binghamton University, State University of New York, Binghamton, New York
| | - Nicole F Liachko
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Brian C. Kraemer
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Ralph M. Garruto
- Department of Anthropology, Binghamton University, State University of New York, Binghamton, New York
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, New York
| | - K. S. Rao
- Centre for Neuroscience, Institute for Scientific Research and Technology Services (INDICASAT-AIP), City of Knowledge, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
- Houston Methodist Neurological Institute, Houston, Texas 77030 USA
- Weill Medical College of Cornell University, New York
| |
Collapse
|
63
|
Heyburn L, Hebron ML, Smith J, Winston C, Bechara J, Li Z, Lonskaya I, Burns MP, Harris BT, Moussa CEH. Tyrosine kinase inhibition reverses TDP-43 effects on synaptic protein expression, astrocytic function and amino acid dis-homeostasis. J Neurochem 2016; 139:610-623. [PMID: 27507246 DOI: 10.1111/jnc.13763] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/22/2016] [Accepted: 08/02/2016] [Indexed: 01/25/2023]
Abstract
The trans-activating response of DNA/RNA-binding protein (TDP)-43 pathology is associated with many neurodegenerative diseases via unknown mechanisms. Here, we use a transgenic mouse model over-expressing human wild-type neuronal TDP-43 to study the effects of TDP-43 pathology on glutamate metabolism and synaptic function. We found that neuronal TDP-43 over-expression affects synaptic protein expression, including Synapsin I, and alters surrounding astrocytic function. TDP-43 over-expression is associated with an increase in glutamate and γ-amino butyric acid and reduction of glutamine and aspartate levels, indicating impairment of presynaptic terminal. TDP-43 also decreases tricarboxylic acid cycle metabolism and induces oxidative stress via lactate accumulation. Neuronal TDP-43 does not alter microglia activity or significantly changes systemic and brain inflammatory markers compared to control. We previously demonstrated that brain-penetrant tyrosine kinase inhibitors (TKIs), nilotinib and bosutinib, reduce TDP-43-induced cell death in transgenic mice. Here, we show that TKIs reverse the effects of TDP-43 on synaptic proteins, increase astrocytic function and restore glutamate and neurotransmitter balance in TDP-43 mice. Nilotinib, but not bosutinib, reverses mitochondrial impairment and oxidative metabolism. Taken together, these data suggest that TKIs can attenuate TDP-43 toxicity and improve synaptic and astrocytic function, independent of microglial or other inflammatory effects. In conclusion, our data demonstrate novel mechanisms of the effects of neuronal TDP-43 over-expression on synaptic protein expression and alteration of astrocytic function.
Collapse
Affiliation(s)
- Lanier Heyburn
- Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington, District of Columbia, USA.,Department of Pathology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Michaeline L Hebron
- Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Jacqueline Smith
- Drug Discovery Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Charisse Winston
- Trauma and Dementia Laboratory, Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - John Bechara
- Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Zhaoxia Li
- Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington, District of Columbia, USA.,School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing, China
| | - Irina Lonskaya
- Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Mark P Burns
- Trauma and Dementia Laboratory, Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Brent T Harris
- Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington, District of Columbia, USA.,Department of Pathology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Charbel E-H Moussa
- Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington, District of Columbia, USA
| |
Collapse
|
64
|
De Conti L, Baralle M, Buratti E. Neurodegeneration and RNA-binding proteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27659427 DOI: 10.1002/wrna.1394] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/06/2016] [Accepted: 08/18/2016] [Indexed: 12/12/2022]
Abstract
In the eukaryotic nucleus, RNA-binding proteins (RBPs) play a very important role in the life cycle of both coding and noncoding RNAs. As soon as they are transcribed, in fact, all RNA molecules within a cell are bound by distinct sets of RBPs that have the task of regulating its correct processing, transport, stability, and function/translation up to its final degradation. These tasks are particularly important in cells that have a complex RNA metabolism, such as neurons. Not surprisingly, therefore, recent findings have shown that the misregulation of genes involved in RNA metabolism or the autophagy/proteasome pathway plays an important role in the onset and progression of several neurodegenerative diseases. In this article, we aim to review the recent advances that link neurodegenerative processes and RBP proteins. WIREs RNA 2017, 8:e1394. doi: 10.1002/wrna.1394 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Laura De Conti
- Biotechnology Development Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Marco Baralle
- Biotechnology Development Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Emanuele Buratti
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
65
|
Ratti A, Buratti E. Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins. J Neurochem 2016; 138 Suppl 1:95-111. [PMID: 27015757 DOI: 10.1111/jnc.13625] [Citation(s) in RCA: 272] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/19/2016] [Accepted: 03/22/2016] [Indexed: 12/12/2022]
Abstract
The multiple roles played by RNA binding proteins in neurodegeneration have become apparent following the discovery of TAR DNA binding protein 43 kDa (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS/TLS) involvement in amyotrophic lateral sclerosis and frontotemporal lobar dementia. In these two diseases, the majority of patients display the presence of aggregated forms of one of these proteins in their brains. The study of their functional properties currently represents a very promising target for developing the effective therapeutic options that are still lacking. This aim, however, must be preceded by an accurate evaluation of TDP-43 and FUS/TLS biological functions, both in physiological and disease conditions. Recent findings have uncovered several aspects of RNA metabolism that can be affected by misregulation of these two proteins. Progress has also been made in starting to understand how the aggregation of these proteins occurs and spreads from cell to cell. The aim of this review will be to provide a general overview of TDP-43 and FUS/TLS proteins and to highlight their physiological functions. At present, the emerging picture is that TDP-43 and FUS/TLS control several aspects of an mRNA's life, but they can also participate in DNA repair processes and in non-coding RNA metabolism. Although their regulatory activities are similar, they regulate mainly distinct RNA targets and show different pathogenetic mechanisms in amyotrophic lateral sclerosis/frontotemporal lobar dementia diseases. The identification of key events in these processes represents today the best chance of finding targetable options for therapeutic approaches that might actually make a difference at the clinical level. The two major RNA Binding Proteins involved in Amyotrophic Lateral Sclerosisi and Frontotemporal Dementia are TDP-43 and FUST/TLS. Both proteins are involved in regulating all aspects of RNA and RNA life cycle within neurons, from transcription, processing, and transport/stability to the formation of cytoplasmic and nuclear stress granules. For this reason, the aberrant aggregation of these factors during disease can impair multiple RNA metabolic pathways and eventually lead to neuronal death/inactivation. The purpose of this review is to provide an up-to-date perspective on what we know about this issue at the molecular level. This article is part of the Frontotemporal Dementia special issue.
Collapse
Affiliation(s)
- Antonia Ratti
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center - Università degli Studi di Milano, Milan, Italy.,Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
66
|
Hagihara K. [What do RNAs chat about when they gather at granules?]. Nihon Yakurigaku Zasshi 2016; 147:370. [PMID: 27301313 DOI: 10.1254/fpj.147.370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
67
|
Talman V, Pascale A, Jäntti M, Amadio M, Tuominen RK. Protein Kinase C Activation as a Potential Therapeutic Strategy in Alzheimer's Disease: Is there a Role for Embryonic Lethal Abnormal Vision-like Proteins? Basic Clin Pharmacol Toxicol 2016; 119:149-60. [PMID: 27001133 DOI: 10.1111/bcpt.12581] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/04/2016] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is an irreversible and progressive neurodegenerative disorder. It affects predominantly brain areas that are critical for memory and learning and is characterized by two main pathological hallmarks: extracellular amyloid plaques and intracellular neurofibrillary tangles. Protein kinase C (PKC) has been classified as one of the cognitive kinases controlling memory and learning. By regulating several signalling pathways involved in amyloid and tau pathologies, it also plays an inhibitory role in AD pathophysiology. Among downstream targets of PKC are the embryonic lethal abnormal vision (ELAV)-like RNA-binding proteins that modulate the stability and the translation of specific target mRNAs involved in synaptic remodelling linked to cognitive processes. This MiniReview summarizes the current evidence on the role of PKC and ELAV-like proteins in learning and memory, highlighting how their derangement can contribute to AD pathophysiology. This last aspect emphasizes the potential of pharmacological activation of PKC as a promising therapeutic strategy for the treatment of AD.
Collapse
Affiliation(s)
- Virpi Talman
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alessia Pascale
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Maria Jäntti
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Marialaura Amadio
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Raimo K Tuominen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
68
|
Zappulli V, Friis KP, Fitzpatrick Z, Maguire CA, Breakefield XO. Extracellular vesicles and intercellular communication within the nervous system. J Clin Invest 2016; 126:1198-207. [PMID: 27035811 DOI: 10.1172/jci81134] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs, including exosomes) are implicated in many aspects of nervous system development and function, including regulation of synaptic communication, synaptic strength, and nerve regeneration. They mediate the transfer of packets of information in the form of nonsecreted proteins and DNA/RNA protected within a membrane compartment. EVs are essential for the packaging and transport of many cell-fate proteins during development as well as many neurotoxic misfolded proteins during pathogenesis. This form of communication provides another dimension of cellular crosstalk, with the ability to assemble a "kit" of directional instructions made up of different molecular entities and address it to specific recipient cells. This multidimensional form of communication has special significance in the nervous system. How EVs help to orchestrate the wiring of the brain while allowing for plasticity associated with learning and memory and contribute to regeneration and degeneration are all under investigation. Because they carry specific disease-related RNAs and proteins, practical applications of EVs include potential uses as biomarkers and therapeutics. This Review describes our current understanding of EVs and serves as a springboard for future advances, which may reveal new important mechanisms by which EVs in coordinate brain and body function and dysfunction.
Collapse
|
69
|
Finnen RL, Banfield BW. Alphaherpesvirus Subversion of Stress-Induced Translational Arrest. Viruses 2016; 8:81. [PMID: 26999187 PMCID: PMC4810271 DOI: 10.3390/v8030081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/14/2022] Open
Abstract
In this article, we provide an overview of translational arrest in eukaryotic cells in response to stress and the tactics used specifically by alphaherpesviruses to overcome translational arrest. One consequence of translational arrest is the formation of cytoplasmic compartments called stress granules (SGs). Many viruses target SGs for disruption and/or modification, including the alphaherpesvirus herpes simplex virus type 2 (HSV-2). Recently, it was discovered that HSV-2 disrupts SG formation early after infection via virion host shutoff protein (vhs), an endoribonuclease that is packaged within the HSV-2 virion. We review this discovery and discuss the insights it has provided into SG biology as well as its potential significance in HSV-2 infection. A model for vhs-mediated disruption of SG formation is presented.
Collapse
Affiliation(s)
- Renée L Finnen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Bruce W Banfield
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
70
|
Kovacs GG. Molecular Pathological Classification of Neurodegenerative Diseases: Turning towards Precision Medicine. Int J Mol Sci 2016; 17:ijms17020189. [PMID: 26848654 PMCID: PMC4783923 DOI: 10.3390/ijms17020189] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/21/2016] [Accepted: 01/26/2016] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are characterized by selective dysfunction and loss of neurons associated with pathologically altered proteins that deposit in the human brain but also in peripheral organs. These proteins and their biochemical modifications can be potentially targeted for therapy or used as biomarkers. Despite a plethora of modifications demonstrated for different neurodegeneration-related proteins, such as amyloid-β, prion protein, tau, α-synuclein, TAR DNA-binding protein 43 (TDP-43), or fused in sarcoma protein (FUS), molecular classification of NDDs relies on detailed morphological evaluation of protein deposits, their distribution in the brain, and their correlation to clinical symptoms together with specific genetic alterations. A further facet of the neuropathology-based classification is the fact that many protein deposits show a hierarchical involvement of brain regions. This has been shown for Alzheimer and Parkinson disease and some forms of tauopathies and TDP-43 proteinopathies. The present paper aims to summarize current molecular classification of NDDs, focusing on the most relevant biochemical and morphological aspects. Since the combination of proteinopathies is frequent, definition of novel clusters of patients with NDDs needs to be considered in the era of precision medicine. Optimally, neuropathological categorizing of NDDs should be translated into in vivo detectable biomarkers to support better prediction of prognosis and stratification of patients for therapy trials.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, AKH 4J, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
71
|
Krieger C, Wang SJH, Yoo SH, Harden N. Adducin at the Neuromuscular Junction in Amyotrophic Lateral Sclerosis: Hanging on for Dear Life. Front Cell Neurosci 2016; 10:11. [PMID: 26858605 PMCID: PMC4731495 DOI: 10.3389/fncel.2016.00011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/13/2016] [Indexed: 12/11/2022] Open
Abstract
The neurological dysfunction in amyotrophic lateral sclerosis (ALS)/motor neurone disease (MND) is associated with defective nerve-muscle contacts early in the disease suggesting that perturbations of cell adhesion molecules (CAMs) linking the pre- and post-synaptic components of the neuromuscular junction (NMJ) are involved. To search for candidate proteins implicated in this degenerative process, researchers have studied the Drosophila larval NMJ and find that the cytoskeleton-associated protein, adducin, is ideally placed to regulate synaptic contacts. By controlling the levels of synaptic proteins, adducin can de-stabilize synaptic contacts. Interestingly, elevated levels of phosphorylated adducin have been reported in ALS patients and in a mouse model of the disease. Adducin is regulated by phosphorylation through protein kinase C (PKC), some isoforms of which exhibit Ca2+-dependence, raising the possibility that changes in intracellular Ca2+ might alter PKC activation and secondarily influence adducin phosphorylation. Furthermore, adducin has interactions with the alpha subunit of the Na+/K+-ATPase. Thus, the phosphorylation of adducin may secondarily influence synaptic stability at the NMJ and so influence pre- and post-synaptic integrity at the NMJ in ALS.
Collapse
Affiliation(s)
- Charles Krieger
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University Burnaby, BC, Canada
| | - Simon Ji Hau Wang
- Department of Biomedical Physiology and Kinesiology, Simon Fraser UniversityBurnaby, BC, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser UniversityBurnaby, BC, Canada
| | - Soo Hyun Yoo
- Department of Biomedical Physiology and Kinesiology, Simon Fraser UniversityBurnaby, BC, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser UniversityBurnaby, BC, Canada
| | - Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University Burnaby, BC, Canada
| |
Collapse
|