51
|
Steven RT, Race AM, Bunch J. para-Nitroaniline is a promising matrix for MALDI-MS imaging on intermediate pressure MS systems. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:801-804. [PMID: 23456890 DOI: 10.1007/s13361-013-0586-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/11/2013] [Accepted: 01/15/2013] [Indexed: 06/01/2023]
Abstract
para-Nitroaniline (PNA) is presented as a promising matrix for matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) on an intermediate-pressure ion source (~1 Torr) QqTOF instrument using an Nd:YVO4 laser operated at 5 kHz. An imaging study was carried out to determine the utility of PNA at this pressure by analyzing 14 tissue sections. We demonstrate acquisition of high-quality imaging data over a 6-h period in the ion source. In this study, comparisons were made between PNA and α-cyano-4-hydroxycinnamic acid (CHCA) in positive ion mode to demonstrate the utility of PNA in these circumstances. PNA performed as well as or better than CHCA in terms of lipid ion intensities, resulting in lower levels of ion fragmentation and in lower incidences of analyte migration at the edges of the tissue sections when using airspray matrix deposition.
Collapse
Affiliation(s)
- Rory T Steven
- PSIBS Centre, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
52
|
Nilsson A, Forngren B, Bjurström S, Goodwin RJA, Basmaci E, Gustafsson I, Annas A, Hellgren D, Svanhagen A, Andrén PE, Lindberg J. In situ mass spectrometry imaging and ex vivo characterization of renal crystalline deposits induced in multiple preclinical drug toxicology studies. PLoS One 2012; 7:e47353. [PMID: 23110069 PMCID: PMC3479109 DOI: 10.1371/journal.pone.0047353] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/11/2012] [Indexed: 11/19/2022] Open
Abstract
Drug toxicity observed in animal studies during drug development accounts for the discontinuation of many drug candidates, with the kidney being a major site of tissue damage. Extensive investigations are often required to reveal the mechanisms underlying such toxicological events and in the case of crystalline deposits the chemical composition can be problematic to determine. In the present study, we have used mass spectrometry imaging combined with a set of advanced analytical techniques to characterize such crystalline deposits in situ. Two potential microsomal prostaglandin E synthase 1 inhibitors, with similar chemical structure, were administered to rats over a seven day period. This resulted in kidney damage with marked tubular degeneration/regeneration and crystal deposits within the tissue that was detected by histopathology. Results from direct tissue section analysis by matrix-assisted laser desorption ionization mass spectrometry imaging were combined with data obtained following manual crystal dissection analyzed by liquid chromatography mass spectrometry and nuclear magnetic resonance spectroscopy. The chemical composition of the crystal deposits was successfully identified as a common metabolite, bisulphonamide, of the two drug candidates. In addition, an un-targeted analysis revealed molecular changes in the kidney that were specifically associated with the area of the tissue defined as pathologically damaged. In the presented study, we show the usefulness of combining mass spectrometry imaging with an array of powerful analytical tools to solve complex toxicological problems occurring during drug development.
Collapse
Affiliation(s)
- Anna Nilsson
- Medical Mass Spectrometry, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Sparvero L, Amoscato A, Dixon C, Long J, Kochanek P, Pitt B, Bayir H, Kagan V. Mapping of phospholipids by MALDI imaging (MALDI-MSI): realities and expectations. Chem Phys Lipids 2012; 165:545-62. [PMID: 22692104 PMCID: PMC3642772 DOI: 10.1016/j.chemphyslip.2012.06.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/30/2012] [Accepted: 06/01/2012] [Indexed: 02/07/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has emerged as a novel powerful MS methodology that has the ability to generate both molecular and spatial information within a tissue section. Application of this technology as a new type of biochemical lipid microscopy may lead to new discoveries of the lipid metabolism and biomarkers associated with area-specific alterations or damage under stress/disease conditions such as traumatic brain injury or acute lung injury, among others. However there are limitations in the range of what it can detect as compared with liquid chromatography-MS (LC-MS) of a lipid extract from a tissue section. The goal of the current work was to critically consider remarkable new opportunities along with the limitations and approaches for further improvements of MALDI-MSI. Based on our experimental data and assessments, improvements of the spectral and spatial resolution, sensitivity and specificity towards low abundance species of lipids are proposed. This is followed by a review of the current literature, including methodologies that other laboratories have used to overcome these challenges.
Collapse
Affiliation(s)
- L.J. Sparvero
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - A.A. Amoscato
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - C.E. Dixon
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - J.B. Long
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 21910, USA
| | - P.M. Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - B.R. Pitt
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - H. Bayir
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - V.E. Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
54
|
Pirro V, Eberlin LS, Oliveri P, Cooks RG. Interactive hyperspectral approach for exploring and interpreting DESI-MS images of cancerous and normal tissue sections. Analyst 2012; 137:2374-80. [PMID: 22493773 DOI: 10.1039/c2an35122f] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Desorption electrospray ionization (DESI) is an ambient mass spectrometry (MS) technique that can be operated in an imaging mode. It is known to provide valuable information on disease state and grade based on lipid profiles in tissue sections. Comprehensive exploration of the spatial and chemical information contained in 2D MS images requires further development of methods for data treatment and interpretation in conjunction with multivariate analysis. In this study, we employ an interactive approach based on principal component analysis (PCA) to interpret the chemical and spatial information obtained from MS imaging of human bladder, kidney, germ cell and prostate cancer and adjacent normal tissues. This multivariate strategy facilitated distinction between tumor and normal tissue by correlating the lipid information with pathological evaluation of the same samples. Some common lipid ions, such as those of m/z 885.5 and m/z 788.5, nominally PI(18 : 0/20 : 4) and PS(18 : 0/18 : 1), as well as ions of free fatty acids and their dimers, appeared to be highly characterizing for different types of human cancers, while other ions, such as those of m/z 465.5 (cholesterol sulfate) for prostate cancer tissue and m/z 795.5 (seminolipid 16 : 0/16 : 0) for germ tissue, appeared to be extremely selective for the type of tissue analyzed. These data confirm that lipid profiles can reflect not only the disease/health state of tissue but also are characteristic of tissue type. The manual interactive strategy presented here is particularly useful to visualize the information contained in hyperspectral MS images by automatically connecting regions of PCA score space to pixels of the 2D physical object. The procedures developed in this study consider all the spectral variables and their inter-correlations, and guide subsequent investigations of the mass spectra and single ion images to allow one to maximize characterization between different regions of any DESI-MS image.
Collapse
Affiliation(s)
- Valentina Pirro
- Department of Chemistry, University of Turin, Turin 10125, Italy
| | | | | | | |
Collapse
|
55
|
Farwanah H, Kolter T. Lipidomics of glycosphingolipids. Metabolites 2012; 2:134-64. [PMID: 24957371 PMCID: PMC3901200 DOI: 10.3390/metabo2010134] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/27/2012] [Accepted: 01/30/2012] [Indexed: 01/14/2023] Open
Abstract
Glycosphingolipids (GSLs) contain one or more sugars that are attached to a sphingolipid moiety, usually to a ceramide, but in rare cases also to a sphingoid base. A large structural heterogeneity results from differences in number, identity, linkage, and anomeric configuration of the carbohydrate residues, and also from structural differences within the hydrophobic part. GSLs form complex cell-type specific patterns, which change with the species, the cellular differentiation state, viral transformation, ontogenesis, and oncogenesis. Although GSL structures can be assigned to only a few series with a common carbohydrate core, their structural variety and the complex pattern are challenges for their elucidation and quantification by mass spectrometric techniques. We present a general overview of the application of lipidomics for GSL determination. This includes analytical procedures and instrumentation together with recent correlations of GSL molecular species with human diseases. Difficulties such as the structural complexity and the lack of standard substances for complex GSLs are discussed.
Collapse
Affiliation(s)
- Hany Farwanah
- Life and Medical Sciences Institute (LiMES), Membrane Biology and Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, University of Bonn, Gerhard-Domagk Str. 1, D-53121 Bonn, Germany.
| | - Thomas Kolter
- Life and Medical Sciences Institute (LiMES), Membrane Biology and Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, University of Bonn, Gerhard-Domagk Str. 1, D-53121 Bonn, Germany.
| |
Collapse
|
56
|
Maselli OJ, Gascooke JR, Shoji M, Buntine MA. Translational and rotational energy content of benzene molecules IR-desorbed from an in vacuo liquid surface. Phys Chem Chem Phys 2012; 14:9185-94. [DOI: 10.1039/c2cp40180k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
57
|
Imaging Mass Spectrometry. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/b978-0-12-394297-5.00004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
|
58
|
Berry KAZ, Hankin JA, Barkley RM, Spraggins JM, Caprioli RM, Murphy RC. MALDI imaging of lipid biochemistry in tissues by mass spectrometry. Chem Rev 2011; 111:6491-512. [PMID: 21942646 PMCID: PMC3199966 DOI: 10.1021/cr200280p] [Citation(s) in RCA: 297] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Karin A. Zemski Berry
- Department of Pharmacology, University of Colorado Denver, Mail Stop 8303, 12801 E. 17 Ave., Aurora, CO 80045
| | - Joseph A. Hankin
- Department of Pharmacology, University of Colorado Denver, Mail Stop 8303, 12801 E. 17 Ave., Aurora, CO 80045
| | - Robert M. Barkley
- Department of Pharmacology, University of Colorado Denver, Mail Stop 8303, 12801 E. 17 Ave., Aurora, CO 80045
| | - Jeffrey M. Spraggins
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, 9160 MRB 3, 465 21 Ave. S., Nashville, TN 37232
| | - Richard M. Caprioli
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, 9160 MRB 3, 465 21 Ave. S., Nashville, TN 37232
| | - Robert C. Murphy
- Department of Pharmacology, University of Colorado Denver, Mail Stop 8303, 12801 E. 17 Ave., Aurora, CO 80045
| |
Collapse
|
59
|
Eibisch M, Zellmer S, Gebhardt R, Süss R, Fuchs B, Schiller J. Phosphatidylcholine dimers can be easily misinterpreted as cardiolipins in complex lipid mixtures: a matrix-assisted laser desorption/ionization time-of-flight mass spectrometric study of lipids from hepatocytes. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:2619-2626. [PMID: 23657956 DOI: 10.1002/rcm.5161] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/19/2011] [Accepted: 06/24/2011] [Indexed: 06/02/2023]
Abstract
The liver is an important organ that is particularly involved in the lipid metabolism of the organism. Thus, high interest is nowadays focused on the lipid composition of the liver and particularly the liver parenchymal cells, the hepatocytes. Hepatocytes contain common phospholipids (PL) such as phosphatidylcholines, -ethanolamines and -inositols, for instance, that can be easily analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) even without previous separation of the PL mixture. However, in addition to common PL, hepatocytes possess also significant amounts of cardiolipin (CLP). The MS analysis of this PL is quite challenging because it (a) has a higher mass than common lipids and (b) possesses a higher negative charge. We will show here that caution is required if CLP is analyzed directly from the total lipid extract because PC dimers may be interpreted as cardiolipins if the positive ion MALDI mass spectra are analyzed.
Collapse
Affiliation(s)
- Mandy Eibisch
- University of Leipzig, Faculty of Medicine, Institute of Medical Physics and Biophysics, Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
60
|
Hutchins PM, Moore EE, Murphy RC. Electrospray MS/MS reveals extensive and nonspecific oxidation of cholesterol esters in human peripheral vascular lesions. J Lipid Res 2011; 52:2070-83. [PMID: 21885431 DOI: 10.1194/jlr.m019174] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although LDL is rendered proatherogenic by various experimental treatments (e.g., acetylation), the exact structural changes that drive LDL transformation in vivo remain enigmatic. Among the many hypothesized targets of oxidative modification are cholesterol esters (CE). This family of neutral lipids, which carries a highly unsaturated pool of fatty acyl groups, is the main component of both LDL particles and atherosclerotic plaques. Tandem mass spectrometry (MS/MS) was employed to reveal abundant and diverse oxidized CEs (oxCE), including novel oxidation products, within human peripheral vascular lesions. These oxCE species composed up to 40% of the total CE pool, with cholesteryl linoleate being oxidized to the greatest extent. Imaging mass spectrometry studies showed that oxCE was entirely confined within the plaque, along with unmodified CE and triacylglyceride (TAG). Interestingly, we found no evidence for TAG oxidation, although polyunsaturated species were abundant. Enzymatic oxidation of cholesteryl linoleate by 15-lipoxygenase (15-LO), an enzyme often invoked in CE oxidation, initially results in a regio- and stereospecific product. Analysis of intact cholesteryl hydroxyoctadecadienoate isomers in human atheromata revealed no regio- or stereospecificity, indicating 15-LO was either not a major source of oxCE or nonenzymatic processes had eroded any product specificity.
Collapse
Affiliation(s)
- Patrick M Hutchins
- Department of Pharmacology, University of Colorado at Denver, Aurora, CO 80045, USA
| | | | | |
Collapse
|
61
|
MALDI imaging mass spectrometry for direct tissue analysis: technological advancements and recent applications. Histochem Cell Biol 2011; 136:227-44. [PMID: 21805154 DOI: 10.1007/s00418-011-0843-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2011] [Indexed: 12/29/2022]
Abstract
Matrix assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) is a method that allows the investigation of the molecular content of tissues within its morphological context. Since it is able to measure the distribution of hundreds of analytes at once, while being label free, this method has great potential which has been increasingly recognized in the field of tissue-based research. In the last few years, MALDI-IMS has been successfully used for the molecular assessment of tissue samples mainly in biomedical research and also in other scientific fields. The present article will give an update on the application of MALDI-IMS in clinical and preclinical research. It will also give an overview of the multitude of technical advancements of this method in recent years. This includes developments in instrumentation, sample preparation, computational data analysis and protein identification. It will also highlight a number of emerging fields for application of MALDI-IMS like drug imaging where MALDI-IMS is used for studying the spatial distribution of drugs in tissues.
Collapse
|
62
|
Touboul D, Laprévote O, Brunelle A. Micrometric molecular histology of lipids by mass spectrometry imaging. Curr Opin Chem Biol 2011; 15:725-32. [PMID: 21612973 DOI: 10.1016/j.cbpa.2011.04.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 04/22/2011] [Accepted: 04/28/2011] [Indexed: 01/20/2023]
Abstract
Time-Of-Flight Secondary Ion Mass Spectrometry is compared to other mass spectrometry imaging techniques, and recent improvements of the experimental methods, driven by biological and biomedical applications, are described and discussed. This review shows that this method that can be considered as a micrometric molecular histology is particularly efficient for obtaining images of various lipid species at the surface of a tissue sample, without sample preparation, and with a routine spatial resolution of 1μm or less.
Collapse
Affiliation(s)
- David Touboul
- Centre de recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | |
Collapse
|