51
|
Gille A, Trautmann A, Posten C, Briviba K. Bioaccessibility of carotenoids from Chlorella vulgaris and Chlamydomonas reinhardtii. Int J Food Sci Nutr 2016; 67:507-13. [PMID: 27146695 DOI: 10.1080/09637486.2016.1181158] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Microalgae can contribute to a balanced diet because of their composition. Beside numerous essential nutrients, carotenoids are in the focus for food applications. The bioavailability of carotenoids from photoautotrophic-cultivated Chlorella vulgaris (C. vulgaris) and Chlamydomonas reinhardtii (C. reinhardtii) was compared. An in vitro digestion model was used to investigate carotenoid bioaccessibility. Furthermore, the effect of sonication on bioaccessibility was assessed. Lutein was the main carotenoid in both species. C. reinhardtii showed higher amounts of lutein and β-carotene than C. vulgaris. In contrast to C. reinhardtii, no β-carotene and only 7% of lutein were bioaccessible in nonsonicated C. vulgaris. Sonication increased the bioaccessibility of carotenoids from C. vulgaris to a level comparable with C. reinhardtii (β-carotene: ≥ 10%; lutein: ≥ 15%). Thus, C. reinhardtii represents a good carotenoid source for potential use in foods without processing, while the application of processing methods, like sonication, is necessary for C. vulgaris.
Collapse
Affiliation(s)
- Andrea Gille
- a Department of Physiology and Biochemistry of Nutrition , Max Rubner-Institute, Federal Research Institute of Nutrition and Food , Karlsruhe , Germany
| | - Andreas Trautmann
- b Institute of Process Engineering in Life Sciences, Section III Bioprocess Engineering, Karlsruher Institute of Technology (KIT) , Karlsruhe , Germany
| | - Clemens Posten
- b Institute of Process Engineering in Life Sciences, Section III Bioprocess Engineering, Karlsruher Institute of Technology (KIT) , Karlsruhe , Germany
| | - Karlis Briviba
- a Department of Physiology and Biochemistry of Nutrition , Max Rubner-Institute, Federal Research Institute of Nutrition and Food , Karlsruhe , Germany
| |
Collapse
|
52
|
Buono S, Langellotti AL, Martello A, Rinna F, Fogliano V. Functional ingredients from microalgae. Food Funct 2015; 5:1669-85. [PMID: 24957182 DOI: 10.1039/c4fo00125g] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A wide variety of natural sources are under investigation to evaluate their possible use for new functional ingredient formulation. Some records attested the traditional and ancient use of wild harvested microalgae as human food but their cultivation for different purposes started about 40 years ago. The most popular species are Arthrospira (traditional name, Spirulina), Chlorella spp., Dunaliella spp. and Haematococcus spp. Microalgae provide a bewildering array of opportunities to develop healthier food products using innovative approaches and a number of different strategies. Compared to other natural sources of bioactive ingredients, microalgae have many advantages such as their huge biodiversity, the possibility to grow in arid land and with limited fresh water consumption and the flexibility of their metabolism, which could be adapted to produce specific molecules. All these factors led to very sustainable production making microalgae eligible as one of the most promising foods for the future, particularly as source of proteins, lipids and phytochemicals. In this work, a revision of the knowledge about the use of microalgae as food and as a source of functional ingredients has been performed. The most interesting results in the field are presented and commented upon, focusing on the different species of microalgae and the activity of the nutritionally relevant compounds. A summary of the health effects obtained together with pros and cons in the adoption of this natural source as functional food ingredients is also proposed.
Collapse
Affiliation(s)
- Silvia Buono
- CRIAcq, University of Naples Federico II, Parco Gussone Ed 77, 80055 Portici, Italy.
| | | | | | | | | |
Collapse
|
53
|
Extraction of carotenoids and lipids from algae by supercritical CO2 and subcritical dimethyl ether. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2014.10.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
54
|
Saddique MS, Sultan MT, Akhtar S, Riaz M, Sibt-e-Abass M, Ismail A, Hafeez F. Utilization of Mango Kernel Lipid Fraction to Replace Normal Shortenings in Cereal Baked Products. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2014. [DOI: 10.3136/fstr.20.13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
55
|
Liu J, Chen F. Biology and Industrial Applications of Chlorella: Advances and Prospects. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 153:1-35. [PMID: 25537445 DOI: 10.1007/10_2014_286] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chlorella represents a group of eukaryotic green microalgae that has been receiving increasing scientific and commercial interest. It possesses high photosynthetic ability and is capable of growing robustly under mixotrophic and heterotrophic conditions as well. Chlorella has long been considered as a source of protein and is now industrially produced for human food and animal feed. Chlorella is also rich in oil, an ideal feedstock for biofuels. The exploration of biofuel production by Chlorella is underway. Chlorella has the ability to fix carbon dioxide efficiently and to remove nutrients of nitrogen and phosphorous, making it a good candidate for greenhouse gas biomitigation and wastewater bioremediation. In addition, Chlorella shows potential as an alternative expression host for recombinant protein production, though challenges remain to be addressed. Currently, omics analyses of certain Chlorella strains are being performed, which will help to unravel the biological implications of Chlorella and facilitate the future exploration of industrial applications.
Collapse
Affiliation(s)
- Jin Liu
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing, China. .,Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA. .,Singapore-Peking University Research Centre for a Sustainable Low-Carbon Future, CREATE Tower, Singapore, Singapore.
| | - Feng Chen
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing, China. .,Singapore-Peking University Research Centre for a Sustainable Low-Carbon Future, CREATE Tower, Singapore, Singapore.
| |
Collapse
|
56
|
de Mello-Sampayo C, Corvo ML, Mendes R, Duarte D, Lucas J, Pinto R, Batista AP, Raymundo A, Silva-Lima B, Bandarra NM, Gouveia L. Insights on the safety of carotenogenic Chlorella vulgaris in rodents. ALGAL RES 2013. [DOI: 10.1016/j.algal.2013.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
57
|
Skjånes K, Rebours C, Lindblad P. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol 2013; 33:172-215. [PMID: 22765907 PMCID: PMC3665214 DOI: 10.3109/07388551.2012.681625] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 01/25/2012] [Accepted: 03/29/2012] [Indexed: 12/31/2022]
Abstract
Green microalgae for several decades have been produced for commercial exploitation, with applications ranging from health food for human consumption, aquaculture and animal feed, to coloring agents, cosmetics and others. Several products from green algae which are used today consist of secondary metabolites that can be extracted from the algal biomass. The best known examples are the carotenoids astaxanthin and β-carotene, which are used as coloring agents and for health-promoting purposes. Many species of green algae are able to produce valuable metabolites for different uses; examples are antioxidants, several different carotenoids, polyunsaturated fatty acids, vitamins, anticancer and antiviral drugs. In many cases, these substances are secondary metabolites that are produced when the algae are exposed to stress conditions linked to nutrient deprivation, light intensity, temperature, salinity and pH. In other cases, the metabolites have been detected in algae grown under optimal conditions, and little is known about optimization of the production of each product, or the effects of stress conditions on their production. Some green algae have shown the ability to produce significant amounts of hydrogen gas during sulfur deprivation, a process which is currently studied extensively worldwide. At the moment, the majority of research in this field has focused on the model organism, Chlamydomonas reinhardtii, but other species of green algae also have this ability. Currently there is little information available regarding the possibility for producing hydrogen and other valuable metabolites in the same process. This study aims to explore which stress conditions are known to induce the production of different valuable products in comparison to stress reactions leading to hydrogen production. Wild type species of green microalgae with known ability to produce high amounts of certain valuable metabolites are listed and linked to species with ability to produce hydrogen during general anaerobic conditions, and during sulfur deprivation. Species used today for commercial purposes are also described. This information is analyzed in order to form a basis for selection of wild type species for a future multi-step process, where hydrogen production from solar energy is combined with the production of valuable metabolites and other commercial uses of the algal biomass.
Collapse
Affiliation(s)
- Kari Skjånes
- Bioforsk - Norwegian Institute for Agricultural and Environmental Research, Fredrik A. Dahls vei 20, Ås, Norway.
| | | | | |
Collapse
|
58
|
Batista AP, Gouveia L, Bandarra NM, Franco JM, Raymundo A. Comparison of microalgal biomass profiles as novel functional ingredient for food products. ALGAL RES 2013. [DOI: 10.1016/j.algal.2013.01.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
59
|
Fradique M, Batista AP, Nunes MC, Gouveia L, Bandarra NM, Raymundo A. Isochrysis galbana and Diacronema vlkianum biomass incorporation in pasta products as PUFA’s source. Lebensm Wiss Technol 2013. [DOI: 10.1016/j.lwt.2012.05.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
60
|
Biological activities of dermatological interest by the water extract of the microalga Botryococcus braunii. Arch Dermatol Res 2012; 304:755-64. [PMID: 22684780 DOI: 10.1007/s00403-012-1250-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/14/2012] [Accepted: 05/18/2012] [Indexed: 10/27/2022]
Abstract
The use of microalgae in the skin care market is already established although the scientific rationale for their benefit was not clearly defined. In this work, the biological activities of dermatologic interest of the water extract from the microalga Botryococcus braunii (BBWE) were evaluated by a battery of in vitro assays. At concentrations ranging from 0.1 to 0.001 % (w/v) BBWE promoted adipocytes differentiation by inhibiting hormone-sensitive lipase, thus promoting triglyceride accumulation in the cells. BBWE also induced gene expression of proteins involved in the maintenance of skin cells water balance such as aquaporin-3 (AQP3), filaggrin (FLG) and involucrin (INV). 0.1 % BBWE increased the gene expression of AQP3 of 2.6-folds, that of FLG and INV of 1.5- and 1.9-folds, respectively. Moreover, it induced the biosynthesis of collagen I and collagen III by 80 and 40 %, respectively, compared to the untreated control. BBWE antioxidant activity, evaluated by oxygen radical absorbance capacity (ORAC) assay, was of 43.5 μmol Trolox per gram of extract: a quite high value among those found for other microalgae extracts. BBWE inhibited the inducible nitric oxide synthase (iNOS) gene expression and the consequent nitrite oxide (NO) production under oxidative stress. At a concentration of 0.02 % BBWE reduced by 50 % the expression of iNOS and by about 75 % the NO production. Taken together, the results demonstrated that B. braunii water extract exerted an array of biological activities concurring with the skin health maintenance; therefore, it is a potential bioactive ingredient to be included in cosmetic products.
Collapse
|
61
|
Novel foods with microalgal ingredients – Effect of gel setting conditions on the linear viscoelasticity of Spirulina and Haematococcus gels. J FOOD ENG 2012. [DOI: 10.1016/j.jfoodeng.2011.05.044] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
62
|
Chen J, Jiang Y, Ma KY, Chen F, Chen ZY. Microalga decreases plasma cholesterol by down-regulation of intestinal NPC1L1, hepatic LDL receptor, and HMG-CoA reductase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:6790-6797. [PMID: 21561085 DOI: 10.1021/jf200757h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The present study examined the cholesterol-lowering activity of algal powder (AP), algal lipids (AL), and algal residue (AR) and their interaction with genes of transporters, receptors, and enzymes involved in cholesterol absorption and metabolism. In this experiment, 48 hamsters were fed either control diet or one of the three experimental diets containing 2% AP, 1.0% AL, or 1.0% AR for 6 weeks. Plasma total cholesterol (TC) and non-high-density-lipoprotein-cholesterol (non-HDL-C) were significantly decreased in the AP and AL groups but not in the AR group compared with those in the control hamsters. It was found that the cholesterol-lowering activity of AP and AL was associated with down-regulation of hepatic 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, low-density lipoprotein receptor (LDLR), and intestinal Niemann-Pick C1-like 1 (NPC1L1) transporter. It was concluded that the alga possessed the cholesterol-lowering activity and its lipids were the active ingredients. The mechanisms underlying the cholesterol-lowering activity of algae were mediated most likely by increasing the sterol excretion and decreasing the cholesterol absorption and synthesis.
Collapse
Affiliation(s)
- Jingnan Chen
- Kwong Living Trust Food Safety and Analysis Laboratory and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | | | | | | | | |
Collapse
|
63
|
Chacón-Lee TL, González-Mariño GE. Microalgae for "Healthy" Foods-Possibilities and Challenges. Compr Rev Food Sci Food Saf 2010; 9:655-675. [PMID: 33467820 DOI: 10.1111/j.1541-4337.2010.00132.x] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microalgae have the potential to become a novel source of bioactive molecules, especially for those who might wish to enhance the nutritional and functional quality of foods. Spirulina, one of the most popular microalgae, has been described by the World Health Organization as one of the greatest superfoods on earth serving as an example of the potential of microalgae. This review provides background on current and future uses of microalgae in the human diet, lists the most common species of microalgae used to this end, and describes some production methods used in research and industrial production and recovery. The review also discusses some of the difficulties so far encountered such as low productivities and recovery rates, as well as challenges in the production of compounds of interest. Many scientists and engineers in research centers around the globe are currently dedicated to solve these problems as the various capabilities of microalgae have caught the attention of the energy, environmental, and agricultural industries, we propose that the food industry should as well evaluate the potential of microalgae as a novel source of "health promoting" compounds.
Collapse
Affiliation(s)
- T L Chacón-Lee
- Authors are with the Grupo de Procesos Agroindustriales at the Faculty of Engineering at the Univ. de La Sabana, Campus Univ. Puente del Común, Km 7 Autopista Norte de Bogotá, Chía-Cundinamarca, Colombia. Direct inquiries to author González-Mariño (E-mail: )
| | - G E González-Mariño
- Authors are with the Grupo de Procesos Agroindustriales at the Faculty of Engineering at the Univ. de La Sabana, Campus Univ. Puente del Común, Km 7 Autopista Norte de Bogotá, Chía-Cundinamarca, Colombia. Direct inquiries to author González-Mariño (E-mail: )
| |
Collapse
|
64
|
Fradique M, Batista AP, Nunes MC, Gouveia L, Bandarra NM, Raymundo A. Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2010; 90:1656-64. [PMID: 20564448 DOI: 10.1002/jsfa.3999] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Microalgae are able to enhance the nutritional content of conventional foods and hence to positively affect human health, due to their original chemical composition. The aim of the present study was to prepare fresh spaghetti enriched with different amounts of microalgae biomass (Chlorella vulgaris and Spirulina maxima) and to compare the quality parameters (optimal cooking time, cooking losses, swelling index and water absorption), chemical composition, instrumental texture and colour of the raw and cooked pasta enriched with microalgae biomass with standard semolina spaghetti. RESULTS The incorporation of microalgae results in an increase of quality parameters when compared to the control sample. The colour of microalgae pastas remained relatively stable after cooking. The addition of microalgae resulted in an increase in the raw pasta firmness when compared to the control sample. Of all the microalgae studied, an increase in the biomass concentration (0.5-2.0%) resulted in a general tendency of an increase in the pasta firmness. Sensory analysis revealed that microalgae pastas had higher acceptance scores by the panellists than the control pasta. CONCLUSION Microalgae pastas presented very appellative colours, such as orange and green, similar to pastas produced with vegetables, with nutritional advantages, showing energetic values similar to commercial pastas. The use of microalgae biomass can enhance the nutritional and sensorial quality of pasta, without affecting its cooking and textural properties.
Collapse
Affiliation(s)
- Mónica Fradique
- Núcleo de Investigação em Engenharia Alimentar e Biotecnologia, Instituto Piaget-ISEIT de Almada, Quinta da Arreinela de Cima, Almada, Portugal.
| | | | | | | | | | | |
Collapse
|
65
|
Santoyo S, Plaza M, Jaime L, Ibañez E, Reglero G, Señorans FJ. Pressurized liquid extraction as an alternative process to obtain antiviral agents from the edible microalga Chlorella vulgaris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:8522-8527. [PMID: 20617828 DOI: 10.1021/jf100369h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The antiviral properties of pressurized liquid extracts (PLE) (acetone, ethanol, and water) obtained from the edible microalga Chlorella vulgaris were evaluated against herpes simplex virus type 1 (HSV-1). None of the extracts tested showed extracellular direct virucidal activity against the virus, although a pretreatment of Vero cells with 75 microg/mL of water and ethanol extracts before virus addition inhibited 70% of the virus infection. Moreover, water and ethanol extracts were able to significantly inhibit the in vitro virus replication, showing IC(50%) values of 61.05 and 80.23 microg/mL respectively. To identify the type of compounds responsible for the antiviral activity found in the water extract, the polysaccharide fraction was isolated. This activity was found to correlate with polysaccharides, because the polysaccharide-rich fraction (46% concentrated) showed higher antiviral activity than the complete water extract. A concentration of 75 microg/mL of this fraction inhibited 90% virus infection when added as a pretreatment and showed an IC(50%) value of 33.93 microg/mL for intracellular virus replication. GC-MS characterization of the ethanol extract showed that the antiviral activity of this extract could be partially related with the presence of phytol, although other compounds could be involved in this activity.
Collapse
Affiliation(s)
- Susana Santoyo
- Sección Departamental Ciencias de la Alimentación, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
66
|
Gouveia L, Marques AE, Sousa JM, Moura P, Bandarra NM. Microalgae – source of natural bioactive molecules as functional ingredients. ACTA ACUST UNITED AC 2010. [DOI: 10.1616/1476-2137.15884] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
67
|
Plaza M, Herrero M, Cifuentes A, Ibáñez E. Innovative natural functional ingredients from microalgae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:7159-70. [PMID: 19650628 DOI: 10.1021/jf901070g] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nowadays, a wide variety of compounds such as polyphenols, polyunsaturated fatty acids (PUFA), or phytosterols obtained, for example, from wine, fish byproducts, or plants are employed to prepare new functional foods. However, unexplored natural sources of bioactive ingredients are gaining much attention since they can lead to the discovery of new compounds or bioactivities. Microalgae have been proposed as an interesting, almost unlimited, natural source in the search for novel natural functional ingredients, and several works have shown the possibility to find bioactive compounds in these organisms. Some advantages can be associated with the study of microalgae such as their huge diversity, the possibility of being used as natural reactors at controlled conditions, and their ability to produce active secondary metabolites to defend themselves from adverse or extreme conditions. In this contribution, an exhaustive revision is presented involving the research for innovative functional food ingredients from microalgae. The most interesting results in this promising field are discussed including new species composition and bioactivity and new processing and extraction methods. Moreover, the future research trends are critically commented.
Collapse
Affiliation(s)
- Merichel Plaza
- Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, Madrid, Spain
| | | | | | | |
Collapse
|
68
|
Gouveia L, Batista AP, Raymundo A, Bandarra N. Spirulina maximaandDiacronema vlkianummicroalgae in vegetable gelled desserts. ACTA ACUST UNITED AC 2008. [DOI: 10.1108/00346650810907010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
69
|
Gouveia L, Batista AP, Miranda A, Empis J, Raymundo A. Chlorella vulgaris biomass used as colouring source in traditional butter cookies. INNOV FOOD SCI EMERG 2007. [DOI: 10.1016/j.ifset.2007.03.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
70
|
Gouveia L, Nobre B, Marcelo F, Mrejen S, Cardoso M, Palavra A, Mendes R. Functional food oil coloured by pigments extracted from microalgae with supercritical CO2. Food Chem 2007. [DOI: 10.1016/j.foodchem.2006.02.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|