51
|
Katono T, Kawato T, Tanabe N, Suzuki N, Yamanaka K, Oka H, Motohashi M, Maeno M. Nicotine treatment induces expression of matrix metalloproteinases in human osteoblastic Saos-2 cells. Acta Biochim Biophys Sin (Shanghai) 2006; 38:874-82. [PMID: 17151781 DOI: 10.1111/j.1745-7270.2006.00240.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tobacco smoking is an important risk factor for the development of severe periodontitis. Recently, we showed that nicotine affected mineralized nodule formation, and that nicotine and lipopolysaccharide stimulated the formation of osteoclast-like cells by increasing production of macrophage colony-stimulating factor (M-CSF) and prostaglandin E2 (PGE2) by human osteoblastic Saos-2 cells. In the present study, we examined the effects of nicotine on the expression of matrix metalloproteinases (MMPs), tissue inhibitors of matrix metalloproteinases (TIMPs), the plasminogen activation system including the component of tissue-type plasminogen activator (tPA), urokinase-type PA (uPA), and PA inhibitor type 1 (PAI-1), alpha7 nicotine receptor, and c-fos. We also examined the effect of the nicotine antagonist D-tubocurarine on nicotine-induced expression of MMP-1. Gene expression was examined using real-time polymerase chain reaction (PCR) to estimate mRNA levels. In addition, expression of the MMP, TIMP, uPA, tPA, and PAI-1 proteins was determined by Western blotting analysis. Nicotine treatment caused expression of MMP-1, 2, 3, and 13, but not MMP-14, to increase significantly after 5 or 10 d of culture; MMP-14 expression did not change through day 14. Enhancement of MMP-1 expression by nicotine treatment was eliminated by simultaneous treatment with D-tubocurarine. In the presence of nicotine, expression of uPA, PAI-1, or TIMP-1, 2, 3, or 4 did not change over 14 d of culture, whereas expression of tPA increased significantly by day 7. Nicotine also increased expression of the alpha7 nicotine receptor and c-fos genes. These results suggest that nicotine stimulates bone matrix turnover by increasing production of tPA and MMP-1, 2, 3, and 13, thereby tipping the balance between bone matrix formation and resorption toward the latter process.
Collapse
Affiliation(s)
- Tomoko Katono
- Nihon University Graduate School of Dentistry, 1-8-13, Kanda Surugadai, Tokyo 101-8310, Japan
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Sakakura Y, Hosokawa Y, Tsuruga E, Irie K, Nakamura M, Yajima T. Contributions of matrix metalloproteinases toward Meckel's cartilage resorption in mice: immunohistochemical studies, including comparisons with developing endochondral bones. Cell Tissue Res 2006; 328:137-51. [PMID: 17136358 DOI: 10.1007/s00441-006-0329-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 08/14/2006] [Indexed: 10/23/2022]
Abstract
The middle portion of Meckel's cartilage (one of four portions that disappear with unique fate) degrades via hypertrophy and the cell death of chondrocytes and via the resorption of cartilage by chondroclasts. We have examined the immunolocalization of matrix metalloproteinase-2 (MMP-2), MMP-9, MMP-13, and MMP-14 (members of the MMP activation cascade) and galectin-3 (an endogenous substrate for MMP-9 and an anti-apoptotic factor) during resorption of Meckel's cartilage in embryonic mice and have compared the results with those of developing endochondral bones in hind limbs. MMP immunoreactivity, except for MMP-2, is present in nearly all chondrocytes in the middle portion of Meckel's cartilage. On embryonic day 15 (E15), faint MMP-2-immunoreactive and intense MMP-13-immunoreactive signals occur in the periosteal bone matrix deposited by periosteal osteoblasts on the lateral surface, whereas MMP-9 and MMP-14 are immunolocalized in the peripheral chondrocytes of Meckel's cartilage. The activation cascade of MMPs by face-to-face cross-talk between cells may thus contribute to the initiation of Meckel's cartilage degradation. On E16, immunopositive signaling for MMP-13 is detectable in the ruffled border of chondroclasts at the resorption front, whereas immunostaining for galectin-3 is present at all stages of chondrocyte differentiation, especially in hypertrophic chondrocytes adjacent to chondroclasts. Galectin-3-positive hypertrophic chondrocytes may therefore coordinate the resorption of calcified cartilage through cell-to-cell contact with chondroclasts. In metatarsal specimens from E16, MMPs are detected in osteoblasts, young osteocytes, and the bone matrix of the periosteal envelope, whereas galectin-3 immunoreactivity is intense in young periosteal osteocytes. In addition, intense MMP-9 and MMP-14 immunostaining has been preferentially found in pre-hypertrophic chondrocytes, although galectin-3 immunoreactivity markedly decreases in hypertrophic chondrocytes. These results indicate that the degradation of Meckel's cartilage involves an activation cascade of MMPs that differs from that in endochondral bone formation.
Collapse
Affiliation(s)
- Yasunori Sakakura
- Department of Oral Anatomy, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan.
| | | | | | | | | | | |
Collapse
|
53
|
Barksby HE, Milner JM, Patterson AM, Peake NJ, Hui W, Robson T, Lakey R, Middleton J, Cawston TE, Richards CD, Rowan AD. Matrix metalloproteinase 10 promotion of collagenolysis via procollagenase activation: implications for cartilage degradation in arthritis. ACTA ACUST UNITED AC 2006; 54:3244-53. [PMID: 17009259 DOI: 10.1002/art.22167] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE We have previously reported the up-regulation of matrix metalloproteinase 10 (MMP-10) following treatment with the procatabolic stimulus of interleukin-1 (IL-1) and oncostatin M (OSM) in chondrocytes. Although MMP-10 is closely related to MMP-3, little is known about the role of MMP-10 in cartilage catabolism. The purpose of this study was to determine whether MMP-10 is expressed in connective tissue cells and to assess how it may contribute to cartilage collagenolysis. METHODS MMP gene expression was assessed by real-time polymerase chain reaction using RNA from human articular chondrocytes and synovial fibroblasts stimulated with IL-1 plus OSM or tumor necrosis factor alpha (TNFalpha) plus OSM. Synovial fluid levels of MMP-10 were determined by specific immunoassay. Recombinant procollagenases were used in activation studies. Immunohistochemistry assessed MMP-10 expression in diseased joint tissues. RESULTS MMP-10 expression was confirmed in both chondrocytes and synovial fibroblasts following stimulation with either IL-1 plus OSM or TNFalpha plus OSM, and MMP-10 was detected in synovial fluid samples from patients with various arthropathies. Exogenous MMP-10 significantly enhanced collagenolysis from IL-1 plus OSM-stimulated cartilage, and MMP-10 activated proMMP-1, proMMP-8, and proMMP-13. Immunohistochemistry revealed the presence of MMP-10 in the synovium and cartilage of an IL-1 plus OSM-induced model of arthritis as well as in samples of diseased human tissues. CONCLUSION We confirm that both synovial fibroblasts and articular chondrocytes express MMP-10 following treatment with procatabolic stimuli. Furthermore, the detectable levels of synovial fluid MMP-10 and the histologic detection of this proteinase in diseased joint tissues strongly implicate MMP-10 in the cartilage degradome during arthritis. The ability of MMP-10 to superactivate procollagenases that are relevant to cartilage degradation suggests that this activation represents an important mechanism by which this MMP contributes to tissue destruction in arthritis.
Collapse
Affiliation(s)
- H E Barksby
- School of Clinical Medical Sciences, University of Newcastle, Newcastle-upon-Tyne, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Mitsui N, Suzuki N, Koyama Y, Yanagisawa M, Otsuka K, Shimizu N, Maeno M. Effect of compressive force on the expression of MMPs, PAs, and their inhibitors in osteoblastic Saos-2 cells. Life Sci 2006; 79:575-83. [PMID: 16516240 DOI: 10.1016/j.lfs.2006.01.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 01/19/2006] [Accepted: 01/31/2006] [Indexed: 11/26/2022]
Abstract
Bone matrix turnover is regulated by matrix metalloproteinases (MMPs), tissue inhibitors of matrix metalloproteinases (TIMPs), and the plasminogen activation system, including tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA), and plasminogen activator inhibitor type-1 (PAI-1). We previously demonstrated that 1.0g/cm(2) of compressive force was an optimal condition for inducing bone formation by osteoblastic Saos-2 cells. Here, we examined the effect of mechanical stress on the expression of MMPs, TIMPs, tPA, uPA, and PAI-1 in Saos-2 cells. The cells were cultured in Dulbecco's modified Eagle's medium containing 10% fetal bovine serum and with or without continuously compressive force (0.5-3.0g/cm(2)) for up to 24h. The levels of MMPs, TIMPs, uPA, tPA, and PAI-1 gene expression were estimated by determining the mRNA levels using real-time PCR, and the protein levels were determined using ELISA. The expression levels of MMP-1, MMP-2, MMP-14, and TIMP-1 markedly exceeded the control levels at 1.0g/cm(2) of compressive force, whereas the expression levels of MMP-3, MMP-13, TIMP-2, TIMP-3, TIMP-4, tPA, uPA, and PAI-1 markedly exceeded the control levels at 3.0g/cm(2). These results suggest that mechanical stress stimulates bone matrix turnover by increasing these proteinases and inhibitors, and that the mechanism for the proteolytic degradation of bone matrix proteins differs with the strength of the mechanical stress.
Collapse
Affiliation(s)
- Narihiro Mitsui
- Department of Orthodontics, Nihon University School of Dentistry, 1-8-13 Kanda, Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | | | | | | | | | | | | |
Collapse
|
55
|
Kakudo N, Kusumoto K, Wang YB, Iguchi Y, Ogawa Y. Immunolocalization of vascular endothelial growth factor on intramuscular ectopic osteoinduction by bone morphogenetic protein-2. Life Sci 2006; 79:1847-55. [PMID: 16857215 DOI: 10.1016/j.lfs.2006.06.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2005] [Revised: 04/25/2006] [Accepted: 06/13/2006] [Indexed: 11/19/2022]
Abstract
When recombinant human bone morphogenetic protein-2 (rhBMP-2) is implanted in soft tissues, bony tissue is induced during the course of endochondral ossification. The relationship between endochondral ossification and vascularization is important in bone formation, and vascular endothelial growth factor (VEGF) is considered to play an important role in this process. In this study, the immunohistological localization of VEGF was investigated in rhBMP-2-induced ectopic endochondral ossification in the calf muscle of rats. In addition, the characteristics of anti-VEGF antibody-reactive cells were histologically investigated using electron microscopy to examine the cause of endochondral ossification induced by recombinant human bone morphogenetic protein-2. The role of VEGF in rhBMP-2-induced osteoinduction and vascular induction was studied by observing the relationship between the localizations of anti-VEGF antibody-reactive cells and vascularization. During the process of rhBMP-2-induced ectopic endochondral ossification, fibroblast-like cells, which were located at the margin of the implant and reactive to BMP-2 at 5 days, were positive for VEGF immunostaining. Hypertrophic chondrocytes appeared 9 days and osteoblasts appeared 14 to 21 days after implantation, and all these cells were reactive with anti-VEGF antibody. Bony trabeculae subsequently appeared in the muscle, and new blood vessels were formed alongside the trabeculae. When VEGF was added to rhBMP, more new blood vessels and bone were formed in the induced bone. These findings suggested that rhBMP-2 induced the differentiation of undifferentiated mesenchymal cells to chondrocytes and osteoblasts, and these differentiated cells expressed VEGF, creating an advantageous environment for vascularization in bony tissue.
Collapse
Affiliation(s)
- Natsuko Kakudo
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 10-15 Fumizono, Moriguchi, Osaka, Japan.
| | | | | | | | | |
Collapse
|
56
|
Laitala-Leinonen T, Rinne R, Saukko P, Väänänen HK, Rinne A. Cystatin B as an intracellular modulator of bone resorption. Matrix Biol 2006; 25:149-57. [PMID: 16321512 DOI: 10.1016/j.matbio.2005.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 10/21/2005] [Indexed: 10/25/2022]
Abstract
Degradation of organic bone matrix requires proteinase activity. Cathepsin K is a major osteoclast proteinase needed for bone resorption, although osteoclasts also express a variety of other cysteine- and matrix metalloproteinases that are involved in bone remodellation. Cystatin B, an intracellular cysteine proteinase inhibitor, exhibits a lysosomal distribution preferentially in osteoclasts but it's role in osteoclast physiology has remained unknown. The current paper describes a novel regulatory function for cystatin B in bone-resorbing osteoclasts in vitro. Rat osteoclasts were cultured on bovine bone and spleen-derived cystatin B was added to the cultures. Nuclear morphology was evaluated and the number of actively resorbing osteoclasts and resorption pits was counted. Intracellular cathepsin K and tartrate-resistant acid phosphatase (TRACP) activities were monitored using fluorescent enzyme substrates and immunohistology was used to evaluate distribution of cystatin B in rat metaphyseal bone. Microscopical evaluation showed that cystatin B inactivated osteoclasts, thus resulting in impaired bone resorption. Cathepsin K and TRACP positive vesicles disappeared dose-dependently from the cystatin B-treated osteoclasts, indicating a decreased intracellular trafficking of bone degradation products. At the same time, cystatin B protected osteoclasts from experimentally induced apoptosis. These data show for the first time that, in addition to regulating cysteine proteinase activity and promoting cell survival in the nervous system, cystatin B inhibits bone resorption by down-regulating intracellular cathepsin K activity despite increased osteoclast survival.
Collapse
Affiliation(s)
- Tiina Laitala-Leinonen
- Bone Biology Research Consortium, Department of Anatomy, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland.
| | | | | | | | | |
Collapse
|
57
|
Fujisaki K, Tanabe N, Suzuki N, Mitsui N, Oka H, Ito K, Maeno M. The effect of IL-1α on the expression of matrix metalloproteinases, plasminogen activators, and their inhibitors in osteoblastic ROS 17/2.8 cells. Life Sci 2006; 78:1975-82. [PMID: 16313928 DOI: 10.1016/j.lfs.2005.08.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 08/30/2005] [Indexed: 10/25/2022]
Abstract
Interleukin-1 (IL-1) plays key roles in altering bone matrix turnover. This turnover is regulated by matrix metalloproteinases (MMPs), tissue inhibitor of matrix metalloproteinases (TIMPs), and the plasminogen activation system, including tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA) , and plasminogen activator inhibitor type-1 (PAI-1). In this study, we examined the effect of IL-1alpha on the expression of the MMPs, TIMPs, tPA, uPA, and PAI-1 genes in osteoblasts derived from the rat osteosarcoma cell line ROS 17/2.8. The cells were cultured in alpha-minimum essential medium containing 10% fetal bovine serum with 0 or 100 U/ml of IL-1alpha for up to 14 days. The levels of MMPs, TIMPs, uPA, tPA, and PAI-1 expression were estimated by determining the mRNA levels using real-time RT-PCR and by determining protein levels using ELISA. In IL-1alpha cultures, the expression levels of MMP-1, -2, -3, -13, and -14 exceeded that of the control through day 14 of culture, and the expression of MMPs increased markedly from the proliferative to the later stages of culture. The TIMP-1, -2, and -3 expression levels increased from the initial to the proliferative stages of culture. The expression of tPA increased greatly during the proliferative stage of culture, and uPA expression increased throughout the culture period, increasing markedly from the proliferative to the later stages of culture. In contrast, PAI-1 expression decreased in the presence of IL-1alpha through day 14. These results suggest that IL-1alpha stimulate bone matrix turnover by increasing MMPs, tPA, and uPA production and decreasing PAI-1 production by osteoblasts, and incline the turnover to the resolution.
Collapse
|
58
|
Tchetina EV, Antoniou J, Tanzer M, Zukor DJ, Poole AR. Transforming growth factor-beta2 suppresses collagen cleavage in cultured human osteoarthritic cartilage, reduces expression of genes associated with chondrocyte hypertrophy and degradation, and increases prostaglandin E(2) production. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:131-40. [PMID: 16400016 PMCID: PMC1592655 DOI: 10.2353/ajpath.2006.050369] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/14/2005] [Indexed: 11/20/2022]
Abstract
Articular cartilage degeneration in osteoarthritis (OA) involves type II collagen degradation and chondrocyte differentiation (hypertrophy). Because these changes resemble growth plate remodeling, we hypothesized that collagen degradation may be inhibitable by growth factors known to suppress growth plate hypertrophy, namely transforming growth factor (TGF)-beta2, fibroblast growth factor (FGF)-2, and insulin. Full-depth explants of human OA knee articular cartilage from arthroplasty were cultured with TGF-beta2, FGF-2, and insulin in combination (growth factors) or individually. In cultured explants from five OA patients, collagenase-mediated type II collagen cleavage was significantly down-regulated by combined growth factors as measured by enzyme-linked immunosorbent assay. Individually, FGF-2 and insulin failed to inhibit collagen cleavage in some OA explants whereas TGF-beta2 reduced collagen cleavage in these 5 explants and in 19 additional explants. Moreover, TGF-beta2 effectively suppressed cleavage at low concentrations. Together or individually these growth factors did not inhibit glycosaminoglycan (primarily aggrecan) degradation while TGF-beta2 occasionally did. Semiquantitative reverse transcriptase-polymerase chain reaction of articular cartilage from six OA patients revealed that TGF-beta2 suppressed expression of matrix metalloproteinase-13 and matrix metalloproteinase-9, early (PTHrP) and late (COL10A1) differentiation-related genes, and proinflammatory cytokines (interleukin-1beta, tumor necrosis factor-alpha). In contrast, TGF-beta2 up-regulated PGES-1 expression and prostaglandin E(2) release. These observations show that TGF-beta2 can suppress collagen resorption and chondrocyte differentiation in OA cartilage and that this may be mediated by prostaglandin E(2). Therefore TGF-beta2 could provide therapeutic control of type II collagen degeneration in OA.
Collapse
Affiliation(s)
- Elena V Tchetina
- Joint Diseases Laboratory, Shriners Hospitals for Children, 1529 Cedar Ave., Quebec H3G 1A6, Canada.
| | | | | | | | | |
Collapse
|
59
|
Tagariello A, Schlaubitz S, Hankeln T, Mohrmann G, Stelzer C, Schweizer A, Hermanns P, Lee B, Schmidt ER, Winterpacht A, Zabel B. Expression profiling of human fetal growth plate cartilage by EST sequencing. Matrix Biol 2005; 24:530-8. [PMID: 16176871 DOI: 10.1016/j.matbio.2005.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 07/23/2005] [Accepted: 08/09/2005] [Indexed: 11/15/2022]
Abstract
The differentiation of mesenchymal stem cells into hypertrophic chondrocytes is an integral and multistep process important in pattern formation, endochondral ossification, and postnatal growth of the skeleton. In recent years, novel genes involved in these processes have been identified, but still only little is known about the large-scale gene expression profile during skeletal development. We initiated an expressed sequence tag (EST) project aiming at the identification of genes and pathways involved in this complex process. Candidate genes are expected to be of value for diagnosis and treatment of monogenic and multigenic heritable disorders of the skeleton. Here, we describe the sequences of 4,748 clones from a human growth plate cartilage cDNA library generated from 20 weeks prenatal-2 years postnatal specimens. In silico analysis of these sequences revealed 1,688 individual transcription units, corresponding to known (1,274) and to novel, yet uncharacterised potential genes (414). The tissue specificity of the library was reflected by its corresponding EST profile representing a total of approximately 10% proteins already shown to be involved in cartilage/bone development or homeostasis. The EST profile also reflects the developmental stage of the tissue with significant differences in the expression of matrix proteins compared to corresponding EST profiles from 8-12 and 12-20 week human fetal cartilage. Calculation of the relative frequency of transcripts in our cDNA library, as compared to their abundance in other EST datasets, revealed a set of approximately 200 genes, including 81 novel, yet uncharacterised genes, showing increased expression. These genes represent candidates for the large number of osteochondrodysplasias for which the causative gene defects have not yet been identified.
Collapse
Affiliation(s)
- Andreas Tagariello
- Institute of Human Genetics, Friedrich Alexander University, Erlangen-Nuremberg, Schwabachanlage 10, D-91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|