51
|
Chen H, Xie H, Huang S, Xiao T, Wang Z, Ni X, Deng S, Lu H, Hu J, Li L, Wen Y, Shang D. Development of mass spectrometry-based relatively quantitative targeted method for amino acids and neurotransmitters: Applications in the diagnosis of major depression. J Pharm Biomed Anal 2020; 194:113773. [PMID: 33279298 DOI: 10.1016/j.jpba.2020.113773] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022]
Abstract
Targeted metabolomics analysis based on triple quadrupole (QQQ) MS coupled with multiple reaction monitoring mode (MRM) is the gold standard for metabolite quantification and it is widely applied in metabolomics. However, standard compounds for each metabolite and the corresponding analogs are necessary for quantitative measurements. To identify the differentially present metabolites in various groups, determining the relative concentration of metabolites would be more efficient than accurate quantification. In this study, a relatively quantitative targeted method was established for metabonomics research, on the basis of hydrophilic interaction liquid chromatography (HILIC)/QQQ MS operated in MRM mode. The quality control-base random forest signal correction algorithm (QC-RFSC algorithm) was applied for quality control instead of the internal standard method. High quality relative quantification was achieved without internal standards, and integrated peak areas were successfully used for statistical and pathway analyses. Amino acids and neurotransmitters (dopamine, kynurenic acid, urocanic acid, tryptophan, kynurenine, tyrosine, valine, threonine, serine, alanine, glycine, glutamine, citrulline, GABA, glutamate, aspartate, arginine, ornithine and histidine) in serum samples were simultaneously determined with the newly developed method. To demonstrate the applicability of this method in large-scale analyses, we analyzed the above metabolites in serum from patients with major depression. The serum levels of glutamate, aspartate, threonine, glycine and alanine were significantly higher, and those of citrulline, kynurenic acid and urocanic acid were significantly lower, in patients with major depression than in controls. This is the first report of the difference in urocanic acid, a compound reported to improve glutamate biosynthesis and release in the central nervous system, between healthy controls and patients with major depression.
Collapse
Affiliation(s)
- Hongzhen Chen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Huanshan Xie
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Shanqing Huang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Tao Xiao
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Zhanzhang Wang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Xiaojiao Ni
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Shuhua Deng
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Haoyang Lu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Jingqin Hu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Lu Li
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Yuguan Wen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders,510370,Guangzhou,China.
| | - Dewei Shang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders,510370,Guangzhou,China.
| |
Collapse
|
52
|
Małgorzata P, Paweł K, Iwona ML, Brzostek T, Andrzej P. Glutamatergic dysregulation in mood disorders: opportunities for the discovery of novel drug targets. Expert Opin Ther Targets 2020; 24:1187-1209. [PMID: 33138678 DOI: 10.1080/14728222.2020.1836160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Recently, a considerable attention has been paid to glutamatergic conception of mood disorders. The development of new treatment strategies targeted at glutamate provides new opportunities for the treatment of mood disorders. It is expected that these novel therapeutic options will provide a fast and sustained antidepressant effect and will be better tolerated by patients than the currently available antidepressants. AREAS COVERED This paper discusses glutamatergic abnormalities in mood disorders and reviews novel glutamate-based drugs developed for the treatment of these disorders. We have searched the PubMed and EMBASE databases, presented the results of relevant clinical studies and also describe novel glutamate-based agents that are under investigation. EXPERT OPINION The glutamatergic system plays many important roles in energy metabolism of the brain and neurotransmission; therefore, any attempt to identify novel therapeutic targets within this system seems justified. The effective development of new glutamate-based drugs requires, among others, a more in-depth exploration and understanding of the anatomy, function, and localization of different glutamatergic receptors in the brain. In our opinion, novel glutamate-based antidepressants will find application in the treatment of mood disorders and present an option will be widely used in clinical practice in the future.
Collapse
Affiliation(s)
- Panek Małgorzata
- Department of Biotechnology and General Technology of Food, Faculty of Food Technology, University of Agriculture , Kraków, Poland
| | - Kawalec Paweł
- Department of Nutrition and Drug Research, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University , Kraków, Poland
| | - Malinowska Lipień Iwona
- Department of Internal Medicine and Community Nursing, Faculty of Health Sciences, Jagiellonian University Medical College , Kraków, Poland
| | - Tomasz Brzostek
- Department of Internal Medicine and Community Nursing, Faculty of Health Sciences, Jagiellonian University Medical College , Kraków, Poland
| | - Pilc Andrzej
- Department of Nutrition and Drug Research, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University , Kraków, Poland.,Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences , Kraków, Poland
| |
Collapse
|
53
|
Jefferson SJ, Feng M, Chon UR, Guo Y, Kim Y, Luscher B. Disinhibition of somatostatin interneurons confers resilience to stress in male but not female mice. Neurobiol Stress 2020; 13:100238. [PMID: 33344694 PMCID: PMC7739040 DOI: 10.1016/j.ynstr.2020.100238] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/22/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic stress represents a vulnerability factor for anxiety and depressive disorders and has been widely used to model aspects of these disorders in rodents. Disinhibition of somatostatin (SST)-positive GABAergic interneurons in mice by deletion of γ2 GABAA receptors selectively from these cells (SSTCre:γ2f/f mice) has been shown to result in behavioral and biochemical changes that mimic the responses to antidepressant doses of ketamine. Here we explored the extent to which SSTCre:γ2f/f mice exhibit resilience to unpredictable chronic mild stress (UCMS). We found that male SSTCre:γ2f/f mice are resilient to UCMS-induced (i) reductions in weight gain, (ii) reductions in SST-immuno-positive cells in medial prefrontal cortex (mPFC), (iii) increases in phosphorylation of eukaryotic elongation factor 2 (eEF2) in mPFC, and (iv) increased anxiety in a novelty suppressed feeding test. Female SSTCre:γ2f/f mice were resilient to UCMS-induced reductions in SST-immuno-positive cells indistinguishably from males. However, in contrast to males, they showed no UCMS effects on weight gain independent of genotype. Moreover, in mPFC of female γ2f/f control mice, UCMS resulted in paradoxically reduced p-EF2 levels without stress effects in the SSTCre:γ2f/f mutants. Lastly, female SSTCre:γ2f/f mice showed increased rather than reduced UCMS induced anxiety compared to γ2f/f controls. Thus, disinhibition of SST interneurons results in behavioral resilience to UCMS selectively in male mice, along with cellular resilience of SST neurons to UCMS independent of sex. Thus, mechanisms underlying vulnerability and resilience to stress are sex specific and map to mPFC rather than hippocampus but appear unrelated to changes in expression of SST as a marker of corresponding interneurons.
Collapse
Affiliation(s)
- Sarah J. Jefferson
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
- Center for Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Mengyang Feng
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
- Center for Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - URee Chon
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Yao Guo
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
- Center for Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Bernhard Luscher
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
- Center for Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
54
|
Lei T, Dong D, Song M, Sun Y, Liu X, Zhao H. Rislenemdaz treatment in the lateral habenula improves despair-like behavior in mice. Neuropsychopharmacology 2020; 45:1717-1724. [PMID: 32147667 PMCID: PMC7419533 DOI: 10.1038/s41386-020-0652-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/03/2020] [Accepted: 03/02/2020] [Indexed: 01/19/2023]
Abstract
The specific GluN2B antagonist rislenemdaz (Ris; a.k.a. MK-0657 and CERC-301) is in phase II clinical trial as an antidepressive drug, but the working mechanism for its antidepressant effects is not clearly understood. Given the important role of the lateral habenula (LHb) in the pathogenesis of depression and the fact that GluN2B-containing N-methyl-D-aspartate receptors and brain-derived neurotrophic factor (BDNF) are expressed in the LHb, we conducted a study to examine whether the LHb mediates Ris' antidepressant effects in a chronic restraint stress (CRS)-induced depressive-like mouse model. In this study, Ris was administered systemically or locally into the LHb. Short hairpin RNAs were used to knockdown BDNF in the LHb. Depressive-like behaviors were assessed with the open field test, forced swimming test, tail suspension test, and sucrose preference test. Expression of GluN2B, BDNF, and c-Fos in the LHb were analyzed with western blotting and immunohistochemistry under condition with Ris administered systemically or with BDNF knockdown in the LHb. We found that both systemic and intra-LHb administration of Ris alleviated CRS-induced despair-like behavior and that systemic Ris reduced LHb expression of GluN2B, BDNF, and c-Fos (a neuronal activity marker). Specific knockdown of BDNF in the LHb prevented CRS-induced despair-like behavior, while preventing CRS-induced increases in BDNF and c-Fos expression in the LHb. Together these results suggest that Ris may exert its antidepressant effects through affecting the LHb such as downregulating BDNF expression in the LHb.
Collapse
Affiliation(s)
- Ting Lei
- grid.430605.40000 0004 1758 4110Neuroscience Research Center, First Hospital of Jilin University, Changchun, 130021 PR China ,grid.64924.3d0000 0004 1760 5735Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021 PR China
| | - Dan Dong
- grid.430605.40000 0004 1758 4110Department of Nephrology, First Hospital of Jilin University, Changchun, 130021 PR China
| | - Meiying Song
- grid.430605.40000 0004 1758 4110Neuroscience Research Center, First Hospital of Jilin University, Changchun, 130021 PR China
| | - Yanfei Sun
- grid.64924.3d0000 0004 1760 5735Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021 PR China
| | - Xiaofeng Liu
- grid.430605.40000 0004 1758 4110Neuroscience Research Center, First Hospital of Jilin University, Changchun, 130021 PR China
| | - Hua Zhao
- Neuroscience Research Center, First Hospital of Jilin University, Changchun, 130021, PR China. .,Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
55
|
Jeng JS, Li CT, Lin HC, Tsai SJ, Bai YM, Su TP, Chang YW, Cheng CM. Antidepressant-resistant depression is characterized by reduced short- and long-interval cortical inhibition. Psychol Med 2020; 50:1285-1291. [PMID: 31155020 DOI: 10.1017/s0033291719001223] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is highly heterogeneous and can be classified as treatment-resistant depression (TRD) or antidepressant-responsive depression (non-TRD) based on patients' responses to antidepressant treatment. Methods for distinguishing between TRD and non-TRD are critical clinical concerns. Deficits of cortical inhibition (CI) have been reported to play an influential role in the pathophysiology of MDD. Whether TRD patients' CI is more impaired than that of non-TRD patients remains unclear. METHODS Paired-pulse transcranial magnetic stimulation (ppTMS) was used to measure cortical inhibitory function including GABAA- and GABAB-receptor-related CI and cortical excitatory function including glutamate-receptor-related intracortical facilitation (ICF). We recruited 36 healthy controls (HC) and 36 patients with MDD (non-TRD, n = 16; TRD, n = 20). All participants received evaluations for depression severity and ppTMS examinations. Non-TRD patients received an additional ppTMS examination after 3 months of treatment with the SSRI escitalopram. RESULTS Patients with TRD exhibited reduced short-interval intracortical inhibition (SICI) and long-interval intracortical inhibition (LICI), as shown by abnormally higher estimates, than those with non-TRD or HC (F = 11.030, p < 0.001; F = 10.309, p < 0.001, respectively). After an adequate trial of escitalopram treatment, the LICI of non-TRD reduced significantly (t = - 3.628, p < 0.001), whereas the ICF remained lower than that of HC and showed no difference from pretreatment non-TRD. CONCLUSIONS TRD was characterized by relatively reduced CI, including both GABAA- and GABAB-receptor-mediated neurons while non-TRD preserved partial CI. In non-TRD, SSRIs may mainly modulate GABAB-receptor-related LICI. Our findings revealed distinguishable features of CI in antidepressant-resistant and responsive major depression.
Collapse
Affiliation(s)
- Jia-Shyun Jeng
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Brain Science and Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Cognitive Neuroscience, National Central University, Jhongli, Taiwan
| | - Hui-Ching Lin
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Brain Science and Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Brain Science and Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Psychiatry, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Yu-Wen Chang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Ming Cheng
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Brain Science and Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Taipei Veterans General Hospital Yuan Shan branch, Yilan, Taiwan
| |
Collapse
|
56
|
Matveychuk D, Thomas RK, Swainson J, Khullar A, MacKay MA, Baker GB, Dursun SM. Ketamine as an antidepressant: overview of its mechanisms of action and potential predictive biomarkers. Ther Adv Psychopharmacol 2020; 10:2045125320916657. [PMID: 32440333 PMCID: PMC7225830 DOI: 10.1177/2045125320916657] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/02/2020] [Indexed: 12/15/2022] Open
Abstract
Ketamine, a drug introduced in the 1960s as an anesthetic agent and still used for that purpose, has garnered marked interest over the past two decades as an emerging treatment for major depressive disorder. With increasing evidence of its efficacy in treatment-resistant depression and its potential anti-suicidal action, a great deal of investigation has been conducted on elucidating ketamine's effects on the brain. Of particular interest and therapeutic potential is the ability of ketamine to exert rapid antidepressant properties as early as several hours after administration. This is in stark contrast to the delayed effects observed with traditional antidepressants, often requiring several weeks of therapy for a clinical response. Furthermore, ketamine appears to have a unique mechanism of action involving glutamate modulation via actions at the N-methyl-D-aspartate (NMDA) and α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, as well as downstream activation of brain-derived neurotrophic factor (BDNF) and mechanistic target of rapamycin (mTOR) signaling pathways to potentiate synaptic plasticity. This paper provides a brief overview of ketamine with regard to pharmacology/pharmacokinetics, toxicology, the current state of clinical trials on depression, postulated antidepressant mechanisms and potential biomarkers (biochemical, inflammatory, metabolic, neuroimaging sleep-related and cognitive) for predicting response to and/or monitoring of therapeutic outcome with ketamine.
Collapse
Affiliation(s)
- Dmitriy Matveychuk
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, Alberta, Canada
| | - Rejish K. Thomas
- Grey Nuns Community Hospital and Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Jennifer Swainson
- Misericordia Community Hospital and Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Atul Khullar
- Grey Nuns Community Hospital and Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Mary-Anne MacKay
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, Alberta, Canada
| | - Glen B. Baker
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, 12-105B Clin Sci Bldg, Edmonton, Alberta T6G 2G3, Canada
| | - Serdar M. Dursun
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, Alberta, Canada
- Grey Nuns Community Hospital, Edmonton, Alberta, Canada
| |
Collapse
|
57
|
Gruenbaum BF, Kutz R, Zlotnik A, Boyko M. Blood glutamate scavenging as a novel glutamate-based therapeutic approach for post-stroke depression. Ther Adv Psychopharmacol 2020; 10:2045125320903951. [PMID: 32110376 PMCID: PMC7026819 DOI: 10.1177/2045125320903951] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/31/2019] [Indexed: 12/16/2022] Open
Abstract
Post-stroke depression (PSD) is a major complication of stroke that significantly impacts functional recovery and quality of life. While the exact mechanism of PSD is unknown, recent attention has focused on the association of the glutamatergic system in its etiology and treatment. Minimizing secondary brain damage and neuropsychiatric consequences associated with excess glutamate concentrations is a vital part of stroke management. The blood glutamate scavengers, oxaloacetate and pyruvate, degrade glutamate in the blood to its inactive metabolite, 2-ketoglutarate, by the coenzymes glutamate-oxaloacetate transaminase (GOT) and glutamate-pyruvate transaminase (GPT), respectively. This reduction in blood glutamate concentrations leads to a subsequent shift of glutamate down its concentration gradient from the blood to the brain, thereby decreasing brain glutamate levels. Although there are not yet any human trials that support blood glutamate scavengers for clinical use, there is increasing evidence from animal research of their efficacy as a promising new therapeutic approach for PSD. In this review, we present recent evidence in the literature of the potential therapeutic benefits of blood glutamate scavengers for reducing PSD and other related neuropsychiatric conditions. The evidence reviewed here should be useful in guiding future clinical trials.
Collapse
Affiliation(s)
- Benjamin F Gruenbaum
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ruslan Kutz
- Division of Anesthesiology and Critical Care, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alexander Zlotnik
- Division of Anesthesiology and Critical Care, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Matthew Boyko
- Division of Anesthesiology and Critical Care, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| |
Collapse
|
58
|
Chen YP, Wang C, Xu JP. Chronic unpredictable mild stress induced depression-like behaviours and glutamate-glutamine cycling dysfunctions in both blood and brain of mice. PHARMACEUTICAL BIOLOGY 2019; 57:280-286. [PMID: 30990732 PMCID: PMC6484485 DOI: 10.1080/13880209.2019.1598445] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/17/2019] [Accepted: 03/18/2019] [Indexed: 05/24/2023]
Abstract
CONTEXT Currently, there is no cure or early preclinical diagnostic assay available for depression. Recently, depression has been observed in association with metabolic abnormalities of the glutamate (Glu)-glutamine (Gln) cycling, which is regulated by Glu, Gln and γ-aminobutyric acid (GABA) amino acids. OBJECTIVE The purpose of this study is to determine the changes of Glu, Gln and GABA in blood and brain of chronic unpredictable mild stress (CUMS) induced mice and to clarify the depression biomarkers in the Glu-Gln cycling. MATERIALS AND METHODS Male Kunming mice were divided into model group and control group randomly (n = 12). The depression model of mice was established by CUMS stimulation for 56 days. The liquid chromatography-fluorescence method was used for simultaneous determination of Glu, Gln and GABA in the plasma and brain of mice. o-Phthalaldehyde and β-mercaptoethanol were used as pre-column derivatization reagents. Neurotransmitters were analysed on high performance liquid chromatography (HPLC) on an HPH C18 column in combination with a fluorescence detector. RESULTS The method was simple, highly sensitive and showed excellent linearity with regression coefficients higher than 0.999, good accuracy (95-108%) and good inter-day precision (RSD <15%) for all analytes. Limit of quantification (LOQ) values were established as 0.01, 0.01 and 0.005 μg/mL for Glu, Gln and GABA. The GABA in the CUMS mouse brain (p < 0.01) was significantly increased and Gln in plasma (p < 0.01) and brain (p < 0.01) were both decreased. CONCLUSIONS Our study demonstrates that the Gln in plasma can be used as a biological marker of depression.
Collapse
Affiliation(s)
- Ya-Ping Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, PR China
| | - Chuang Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, PR China
| | - Jiang-Ping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China
| |
Collapse
|
59
|
Combination of Geniposide and Eleutheroside B Exerts Antidepressant-like Effect on Lipopolysaccharide-Induced Depression Mice Model. Chin J Integr Med 2019; 27:534-541. [PMID: 31784933 DOI: 10.1007/s11655-019-3051-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To study the antidepressant-like effect and action mechanism of geniposide and eleutheroside B combination treatment on the lipopolysaccharide (LPS)-induced depression mice model. METHODS Depression mice model was established by lipopolysaccharide (LPS) injection. Totally 48 mice were randomly divided into 6 groups (8 rats per group) according to a random number table, including normal, model, fluoxetine (20 mg/kg), geniposide (100 mg/kg) + eleutheroside B (100 mg/kg), geniposide + eleutheroside B + WAY 100635 (0.03 mg/kg), geniposide + eleutheroside B+ N-methyl-D-aspartic acid receptor (NMDA, 75 mg/kg) groups, respectively. After continuous administration for 10 days, autonomic activity tests after 30 min of administration were performed on the 10th day. On the 11th day, except for the normal group, the mice in the other groups were intraperitoneally injected with LPS (1 mg/kg), and the behavioral tests were performed 4 h later. Enzyme linked immunosorbent assay was used to detect tumor necrosis factor alpha (TNF- α) and interleukin-1 β (IL-1 β) levels in mice serum. The mRNA expression of indoleamine 2,3-dioxygenase (IDO) and nuclear transcription factor (NF- κB) were detected by real-time quantitative polymerase chain reaction. Western-blot analysis was used to detect IDO and NF- κB protein expressions in hippocampus tissue. RESULTS Compared with the normal group, a single administration of LPS increased the immobility time in the forced swimming test (FST) and tail suspension test (TST, P<0.01), without affecting autonomous activity. Compared with the model group, fluoxetine and geniposide + eleutheroside B administration significantly improved the immobility time of depressed mice in the FST and TST, decreased serum IL-1 β content, inhibited the expression levels of NF- κ B gene and protein in hippocampus tissues (P<0.05 or P<0.01). Compared with the model group, geniposide + eleutheroside B treatment significantly reduced serum TNF-α content and inhibited IDO mRNA and protein expressions in hippocampus (P<0.05 or P<0.01). In addition, NMDA partly prevented the inhibition of IDO mRNA expression by geniposide + eleutheroside B; NMDA and WAY-100635 also partly prevented the reduction of IL-1 ß content induced by geniposide + eleutheroside B treatment (P<0.05 or P<0.01). CONCLUSIONS The combination of geniposide and eleutheroside B showed a certain antidepression-like effect. Its main mechanism of action may be contributed to inhibiting the activation of NF- κB, decreasing the proinflammatory cytokines such as TNF-α, IL-1 β, and inhibiting in the neuroinflammatory reaction. Additionally, it also affects tryptophan metabolism, reduces the expression of a key enzyme of tryptophan metabolism, IDO. And this antidepressant-like effect may be mediated by 5-hydroxytryptamine and glutamate systems.
Collapse
|
60
|
Abstract
Major depressive disorder (MDD) is a prevalent and heterogeneous disorder. Although there are many treatment options for MDD, patients with treatment-resistant depression (TRD) remain prevalent, wherein delayed time to response results in inferior chances of achieving remission. Recently, therapeutics have been developed that depart from the traditional monoamine hypothesis of depression and focus instead on the glutamatergic, GABAergic, opioidergic, and inflammatory systems. The literature suggests that the foregoing systems are implicated in the pathophysiology of MDD and preclinical trials have informed the development of pharmaceuticals using these systems as therapeutic targets. Pharmaceuticals that target the glutamatergic system include ketamine, esketamine, and rapastinel; brexanolone and SAGE-217 target the GABAergic system; minocycline targets the inflammatory system; and the combinatory agent buprenorphine + samidorphan targets the opioidergic system. The aforementioned agents have shown efficacy in treating MDD in clinical trials. Of particular clinical relevance are those agents targeting the glutamatergic and GABAergic systems as they exhibit rapid response relative to conventional antidepressants. Rapid response pharmaceuticals have the potential to transform the treatment of MDD, demonstrating reduction in depressive symptoms within 24 hours, as opposed to weeks noted with conventional antidepressants. Novel therapeutics have the potential to improve both patient mood symptomatology and economical productivity, reducing the debased human capital costs associated with MDD. Furthermore, a selection of therapeutic targets provides diverse treatment options which may be beneficial to the patient considering the heterogeneity of MDD.
Collapse
|
61
|
The Effect of Combined Patching and Citalopram on Visual Acuity in Adults with Amblyopia: A Randomized, Crossover, Placebo-Controlled Trial. Neural Plast 2019; 2019:5857243. [PMID: 31281343 PMCID: PMC6590556 DOI: 10.1155/2019/5857243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/14/2019] [Indexed: 11/17/2022] Open
Abstract
Nonhuman animal models have demonstrated that selective serotonin reuptake inhibitors (SSRIs) can enhance plasticity within the mature visual cortex and enable recovery from amblyopia. The aim of this study was to test the hypothesis that the SSRI citalopram combined with part-time patching of the fellow fixing eye would improve amblyopic eye visual acuity in adult humans. Following a crossover, randomized, double-blind, placebo-controlled design, participants completed two 2-week blocks of fellow fixing eye patching. One block combined patching with citalopram (20 mg/day) and the other with a placebo tablet. The blocks were separated by a 2-week washout period. The primary outcome was change in amblyopic eye visual acuity. Secondary outcomes included stereoacuity and electrophysiological measures of retinal and cortical function. Seven participants were randomized, fewer than our prespecified sample size of 20. There were no statistically significant differences in amblyopic eye visual acuity change between the active (mean ± SD change = 0.08 ± 0.16 logMAR) and the placebo (mean change = −0.01 ± 0.03 logMAR) blocks. No treatment effects were observed for any secondary outcomes. However, 3 of 7 participants experienced a 0.1 logMAR or greater improvement in amblyopic eye visual acuity in the active but not the placebo blocks. These results from a small sample suggest that larger-scale trials of SSRI treatment for adult amblyopia may be warranted. Considerations for future trials include drug dose, treatment duration, and recruitment challenges. This study was preregistered as a clinical trial (ACTRN12611000669998).
Collapse
|
62
|
Pham TH, Gardier AM. Fast-acting antidepressant activity of ketamine: highlights on brain serotonin, glutamate, and GABA neurotransmission in preclinical studies. Pharmacol Ther 2019; 199:58-90. [DOI: 10.1016/j.pharmthera.2019.02.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/25/2019] [Indexed: 12/13/2022]
|
63
|
Frank D, Kuts R, Tsenter P, Gruenbaum BF, Grinshpun Y, Zvenigorodsky V, Shelef I, Natanel D, Brotfain E, Zlotnik A, Boyko M. The effect of pyruvate on the development and progression of post-stroke depression: A new therapeutic approach. Neuropharmacology 2019; 155:173-184. [PMID: 31153808 DOI: 10.1016/j.neuropharm.2019.05.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/26/2019] [Accepted: 05/30/2019] [Indexed: 12/27/2022]
Abstract
Post-stroke depression (PSD) is a common and serious complication following stroke. Both stroke and depression have independently been associated with pathologically elevated glutamate levels in the brain's extra-cerebral fluid (ECF). Here we evaluate an alternative therapeutic approach to PSD with pyruvate. Rats were randomly assigned into one of 3 groups: Middle Cerebral Artery Occlusion (MCAO) plus pyruvate treatment, MCAO plus placebo treatment, and sham operated rats. Post-MCAO depressive and anxiety-like behavior was assessed, along with neurological status, brain infarct zone, brain edema, blood brain barrier (BBB) breakdown, cerebrospinal fluid and blood glutamate levels. Anxiety-like behavior and levels of blood alanine and α-ketoglutarate were measured in naïve rats treated with pyruvate, as a control. Post-stroke neurological deficit with concurrent elevation in glutamate levels were demonstrated, with peak glutamate levels 24 h after MCAO. Treatment with pyruvate led to reduced glutamate levels 24 h after MCAO and improved neurologic recovery. Pyruvate treatment reduced lesion volume, brain edema and the extent of BBB permeability 24 h post-MCAO. Naïve rats treated with pyruvate showed increased levels of α-ketoglutarate. Rats demonstrated post-stroke depressive behavior that was improved by the administration of pyruvate. There was less anxiety-like behavior in post-stroke rats treated with placebo in comparison to the post-stroke rats treated with pyruvate or sham operated rats. Glutamate scavenging with pyruvate appears to be an effective as a method in providing neuroprotection following stroke and as a therapeutic option for the treatment of PSD by reducing the consequent elevations in CNS glutamate levels.
Collapse
Affiliation(s)
- Dmitry Frank
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ruslan Kuts
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Philip Tsenter
- Division of Internal Medicine, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Benjamin F Gruenbaum
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Yulia Grinshpun
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Vladislav Zvenigorodsky
- Department of Radiology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ilan Shelef
- Department of Radiology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dmitry Natanel
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Evgeny Brotfain
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
64
|
Fogaça MV, Duman RS. Cortical GABAergic Dysfunction in Stress and Depression: New Insights for Therapeutic Interventions. Front Cell Neurosci 2019. [PMID: 30914923 DOI: 10.3389/fncel.2019.00087/full] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Major depressive disorder (MDD) is a debilitating illness characterized by neuroanatomical and functional alterations in limbic structures, notably the prefrontal cortex (PFC), that can be precipitated by exposure to chronic stress. For decades, the monoaminergic deficit hypothesis of depression provided the conceptual framework to understand the pathophysiology of MDD. However, accumulating evidence suggests that MDD and chronic stress are associated with an imbalance of excitation-inhibition (E:I) within the PFC, generated by a deficit of inhibitory synaptic transmission onto principal glutamatergic neurons. MDD patients and chronically stressed animals show a reduction in GABA and GAD67 levels in the brain, decreased expression of GABAergic interneuron markers, and alterations in GABAA and GABAB receptor levels. Moreover, genetically modified animals with deletion of specific GABA receptors subunits or interneuron function show depressive-like behaviors. Here, we provide further evidence supporting the role of cortical GABAergic interneurons, mainly somatostatin- and parvalbumin-expressing cells, required for the optimal E:I balance in the PFC and discuss how the malfunction of these cells can result in depression-related behaviors. Finally, considering the relatively low efficacy of current available medications, we review new fast-acting pharmacological approaches that target the GABAergic system to treat MDD. We conclude that deficits in cortical inhibitory neurotransmission and interneuron function resulting from chronic stress exposure can compromise the integrity of neurocircuits and result in the development of MDD and other stress-related disorders. Drugs that can establish a new E:I balance in the PFC by targeting the glutamatergic and GABAergic systems show promising as fast-acting antidepressants and represent breakthrough strategies for the treatment of depression.
Collapse
Affiliation(s)
- Manoela V Fogaça
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
65
|
Fogaça MV, Duman RS. Cortical GABAergic Dysfunction in Stress and Depression: New Insights for Therapeutic Interventions. Front Cell Neurosci 2019; 13:87. [PMID: 30914923 PMCID: PMC6422907 DOI: 10.3389/fncel.2019.00087] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
Major depressive disorder (MDD) is a debilitating illness characterized by neuroanatomical and functional alterations in limbic structures, notably the prefrontal cortex (PFC), that can be precipitated by exposure to chronic stress. For decades, the monoaminergic deficit hypothesis of depression provided the conceptual framework to understand the pathophysiology of MDD. However, accumulating evidence suggests that MDD and chronic stress are associated with an imbalance of excitation-inhibition (E:I) within the PFC, generated by a deficit of inhibitory synaptic transmission onto principal glutamatergic neurons. MDD patients and chronically stressed animals show a reduction in GABA and GAD67 levels in the brain, decreased expression of GABAergic interneuron markers, and alterations in GABAA and GABAB receptor levels. Moreover, genetically modified animals with deletion of specific GABA receptors subunits or interneuron function show depressive-like behaviors. Here, we provide further evidence supporting the role of cortical GABAergic interneurons, mainly somatostatin- and parvalbumin-expressing cells, required for the optimal E:I balance in the PFC and discuss how the malfunction of these cells can result in depression-related behaviors. Finally, considering the relatively low efficacy of current available medications, we review new fast-acting pharmacological approaches that target the GABAergic system to treat MDD. We conclude that deficits in cortical inhibitory neurotransmission and interneuron function resulting from chronic stress exposure can compromise the integrity of neurocircuits and result in the development of MDD and other stress-related disorders. Drugs that can establish a new E:I balance in the PFC by targeting the glutamatergic and GABAergic systems show promising as fast-acting antidepressants and represent breakthrough strategies for the treatment of depression.
Collapse
Affiliation(s)
- Manoela V Fogaça
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
66
|
Starowicz G, Jarosz M, Frąckiewicz E, Grzechnik N, Ostachowicz B, Nowak G, Mlyniec K. Long-lasting antidepressant-like activity of the GPR39 zinc receptor agonist TC-G 1008. J Affect Disord 2019; 245:325-334. [PMID: 30419533 DOI: 10.1016/j.jad.2018.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/04/2018] [Accepted: 11/01/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND The discovery of the zinc-sensing receptor, has provided new possibilities for explaining the neurobiology of zinc. Recent studies indicate that the GPR39 zinc receptor may play an important role in the pathogenesis of depression as well as in the antidepressant mechanism of action. METHODS In this study we evaluated the time-course of the antidepressant response of the GPR39 agonist (TC-G 1008), imipramine, ZnCl2 and MK-801 in the forced swim test in mice 30 min, 3 h, 6 h and 24 h after acute drug administration as well as after 14-day treatment. Zinc level was measured in serum of mice. BDNF protein level was evaluated in hippocampus following both acute and chronic TC-G 1008 treatment. RESULTS A single administration of the GPR39 agonist caused an antidepressant-like effect lasting up to 24 h following the injection, which is longer than the effect of imipramine, ZnCl2 and MK-801. Chronic treatment with these compounds caused a decrease in immobility time in the FST. Serum zinc concentrations showed an increased level following chronic ZnCl2 administration, but not following administration of TC-G 1008, imipramine or MK-801. We also observed some tendencies for increased BDNF following acute TC-G 1008 treatment. LIMITATIONS TC-G 1008 is new drug designed to study GPR39 therefore additional pharmacodynamic and pharmacokinetic properties in preclinical studies are required. CONCLUSION This study shows for the first time the long-lasting antidepressant effect of the GPR39 agonist in comparison with imipramine, ZnCl2 and MK-801. Our findings suggest that GPR39 should be considered as a target in efforts to develop new antidepressant drugs.
Collapse
Affiliation(s)
- Gabriela Starowicz
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Magdalena Jarosz
- Department of Radioligands, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Ewelina Frąckiewicz
- Department of Radioligands, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Natalia Grzechnik
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Beata Ostachowicz
- Faculty of Physics and Applied Computer Sciences, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland; Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Trace Elements Neurobiology, Department of Neurobiology, Smetna Street 12, 31-343 Krakow, Poland
| | - Katarzyna Mlyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland.
| |
Collapse
|
67
|
Langgartner D, Lowry CA, Reber SO. Old Friends, immunoregulation, and stress resilience. Pflugers Arch 2019; 471:237-269. [PMID: 30386921 PMCID: PMC6334733 DOI: 10.1007/s00424-018-2228-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/03/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
Abstract
There is a considerable body of evidence indicating that chronic adverse experience, especially chronic psychosocial stress/trauma, represents a major risk factor for the development of many somatic and affective disorders, including inflammatory bowel disease (IBD) and posttraumatic stress disorder (PTSD). However, the mechanisms underlying the development of chronic stress-associated disorders are still in large part unknown, and current treatment and prevention strategies lack efficacy and reliability. A greater understanding of mechanisms involved in the development and persistence of chronic stress-induced disorders may lead to novel approaches to prevention and treatment of these disorders. In this review, we provide evidence indicating that increases in immune (re-)activity and inflammation, potentially promoted by a reduced exposure to immunoregulatory microorganisms ("Old Friends") in today's modern society, may be causal factors in mediating the vulnerability to development and persistence of stress-related pathologies. Moreover, we discuss strategies to increase immunoregulatory processes and attenuate inflammation, as for instance contact with immunoregulatory Old Friends, which appears to be a promising strategy to promote stress resilience and to prevent/treat chronic stress-related disorders.
Collapse
Affiliation(s)
- Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
- Department of Physical Medicine & Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Denver Veterans Affairs Medical Center (VAMC), Denver, CO, 80220, USA
- Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO, 80220, USA
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany.
| |
Collapse
|
68
|
Losenkov IS, Boiko AS, Levchuk LA, Simutkin GG, Bokhan NA, Ivanova SA. Blood-Serum Glutamate in Patients with Depressive Disorders as a Potential Peripheral Marker of the Prognosis of the Effectiveness of Therapy. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418030066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
69
|
Gómez-Coronado N, Sethi R, Bortolasci CC, Arancini L, Berk M, Dodd S. A review of the neurobiological underpinning of comorbid substance use and mood disorders. J Affect Disord 2018; 241:388-401. [PMID: 30145509 DOI: 10.1016/j.jad.2018.08.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/09/2018] [Accepted: 08/10/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND There is evidence that substance use disorders and other mental disorders may have shared biological mechanisms. However, the neurobiological basis of this comorbidity remains only partially explained. This review describes the historical evolution of the dual disorders concept and approach, and reviews the existing literature on neurobiological findings specifically regarding comorbid substance use and mood disorders. METHODS Searches were conducted using PubMed and Scopus in December 2017. A Boolean search was performed using combinations of "dual diagnosis" or "dual disorder" or "depression" or "bipolar" or "affective disorder" or "mood disorder" and "substance use" or "substance abuse" and "neurobiology" or "functional neuroimaging" or "genetics" or "neurotransmitters" or "neuroendocrinology" in the title or abstract, or as keywords, using no language restriction. RESULTS 32 studies met the inclusion criteria. We found robust evidence for involvement of the neurotransmitters dopamine, GABA and glutamate and their receptors, as well as by the central corticotrophin-releasing hormone, hypothalamic-pituitary-adrenal axis activation, oxidative stress and inflammation. Recent studies focusing on neuroimaging and genetics have not shown consistent results. LIMITATIONS Only two search tools were used; most identified studies excluded the population of interest (comorbid mood and substance abuse disorders). CONCLUSIONS The neurobiological relevance for the occurrence of comorbid mood and substance abuse disorders has not been fully elucidated. Considering the high levels of individuals who experience comorbidity in these areas as well as the negative associated outcomes, this is clearly an area that requires further in-depth investigation. Furthermore, findings from this area can help to inform drug abuse prevention and intervention efforts, and especially how they relate to populations with psychiatric symptoms.
Collapse
Affiliation(s)
- Nieves Gómez-Coronado
- Unidad de Gestión Clínica Salud Mental, Hospital Universitario Virgen del Rocío, Sevilla, Spain; Department of Psychiatry, Hospital San Agustín ORL, Dos Hermanas, Sevilla, Spain
| | - Rickinder Sethi
- London Health Sciences Centre, Western University, London, Canada
| | - Chiara Cristina Bortolasci
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Lauren Arancini
- IMPACT Strategic Research Centre, Deakin University, Geelong, VIC, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, Deakin University, Geelong, VIC, Australia; University Hospital Geelong, Barwon Health, Geelong VIC, Australia; Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia; Orygen, The National Centre for Excellence in Youth Mental Health, Parkville, VIC, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Seetal Dodd
- IMPACT Strategic Research Centre, Deakin University, Geelong, VIC, Australia; University Hospital Geelong, Barwon Health, Geelong VIC, Australia; Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia; Orygen, The National Centre for Excellence in Youth Mental Health, Parkville, VIC, Australia.
| |
Collapse
|
70
|
Godfrey KEM, Gardner AC, Kwon S, Chea W, Muthukumaraswamy SD. Differences in excitatory and inhibitory neurotransmitter levels between depressed patients and healthy controls: A systematic review and meta-analysis. J Psychiatr Res 2018; 105:33-44. [PMID: 30144668 DOI: 10.1016/j.jpsychires.2018.08.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022]
Abstract
Dysfunction of gamma-aminobutyric acid (GABA) and/or glutamate neurotransmitter systems have increasingly been implicated in the aetiology of Major Depressive Disorder (MDD). It has been proposed that alterations in GABA and/or glutamate result in an imbalance of inhibition and excitation. In a review of the current literature, we identified studies using Magnetic Resonance Spectroscopy (MRS) to examine the neurotransmitters GABA, glutamate, and the composite glutamate/glutamine measure Glx in patients diagnosed with MDD and healthy controls. Results showed patients with MDD had significantly lower GABA levels compared to controls (-0.35 [-0.61,-0.10], p = 0.007). No significant difference was found between levels of glutamate. Sub-analyses were performed, including only studies where the Anterior Cingulate Cortex (ACC) was the region of interest. GABA and Glx levels were lower in the ACC of MDD patients (-0.56 [-0.93,-0.18] p = 0.004, and 0.40 [-0.81,0.01] p = 0.05). This review indicates widespread cortical reduction of GABA in MDD, with a trend towards a localised reduction of Glx in the ACC. However, given both GABA and glutamate appear decreased a simple interpretation in terms of an imbalance of overall excitation-inhibition is not feasible.
Collapse
Affiliation(s)
- Kate E M Godfrey
- The University of Auckland, School of Pharmacy, 85 Park Road, Auckland, 1023, New Zealand.
| | - Abby C Gardner
- The University of Auckland, School of Pharmacy, 85 Park Road, Auckland, 1023, New Zealand
| | - Sarah Kwon
- The University of Auckland, School of Pharmacy, 85 Park Road, Auckland, 1023, New Zealand
| | - William Chea
- The University of Auckland, School of Pharmacy, 85 Park Road, Auckland, 1023, New Zealand
| | | |
Collapse
|
71
|
Ryszewska-Pokraśniewicz B, Mach A, Skalski M, Januszko P, Wawrzyniak ZM, Poleszak E, Nowak G, Pilc A, Radziwoń-Zaleska M. Effects of Magnesium Supplementation on Unipolar Depression: A Placebo-Controlled Study and Review of the Importance of Dosing and Magnesium Status in the Therapeutic Response. Nutrients 2018; 10:nu10081014. [PMID: 30081500 PMCID: PMC6115747 DOI: 10.3390/nu10081014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 01/08/2023] Open
Abstract
Animal studies using tests and models have demonstrated that magnesium exerts an antidepressant effect. The literature contains few studies in humans involving attempts to augment antidepressant therapy with magnesium ions. The purpose of our study was to assess the efficacy and safety of antidepressant treatment, in combination with magnesium ions. A total of 37 participants with recurrent depressive disorder who developed a depressive episode were included in this study. As part of this double-blind study, treatment with the antidepressant fluoxetine was accompanied with either magnesium ions (120 mg/day as magnesium aspartate) or placebo. During an 8-week treatment period, each patient was monitored for any clinical abnormalities. Moreover, serum fluoxetine and magnesium levels were measured, and pharmaco-electroencephalography was performed. The fluoxetine + magnesium and fluoxetine + placebo groups showed no significant differences in either Hamilton Depression Rating Scale (HDRS) scores or serum magnesium levels at any stage of treatment. Multivariate statistical analysis of the whole investigated group showed that the following parameters increased the odds of effective treatment: lower baseline HDRS scores, female gender, smoking, and treatment augmentation with magnesium. The parameters that increased the odds of remission were lower baseline HDRS scores, shorter history of disease, the presence of antidepressant-induced changes in the pharmaco-EEG profile at 6 h after treatment, and the fact of receiving treatment augmented with magnesium ions. The limitation of this study is a small sample size.
Collapse
Affiliation(s)
| | - Anna Mach
- Department of Psychiatry, Medical University of Warsaw, 00-685 Warsaw, Poland.
| | - Michał Skalski
- Department of Psychiatry, Medical University of Warsaw, 00-685 Warsaw, Poland.
| | - Piotr Januszko
- Department of Psychiatry, Medical University of Warsaw, 00-685 Warsaw, Poland.
| | - Zbigniew M Wawrzyniak
- Faculty of Electronics and Information Technology, Warsaw University of Technology, 00-685 Warsaw, Poland.
| | - Ewa Poleszak
- Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland.
| | - Gabriel Nowak
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland.
| | - Andrzej Pilc
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland.
| | | |
Collapse
|
72
|
Hamdy MM, Elbadr MM, Barakat A. Fluoxetine uses in nociceptive pain management: a promising adjuvant to opioid analgesics. Fundam Clin Pharmacol 2018; 32:532-546. [DOI: 10.1111/fcp.12383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/17/2018] [Accepted: 05/04/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Mostafa M. Hamdy
- Department of Medical Pharmacology; Faculty of Medicine; Assiut University; Assiut 71526 Egypt
| | - Mohamed M. Elbadr
- Department of Medical Pharmacology; Faculty of Medicine; Assiut University; Assiut 71526 Egypt
| | - Ahmed Barakat
- Department of Medical Pharmacology; Faculty of Medicine; Assiut University; Assiut 71526 Egypt
| |
Collapse
|
73
|
Bian X, Liu X, Liu J, Zhao Y, Li H, Cai E, Li P, Gao Y. Study on antidepressant activity of chiisanoside in mice. Int Immunopharmacol 2018; 57:33-42. [DOI: 10.1016/j.intimp.2018.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/26/2018] [Accepted: 02/13/2018] [Indexed: 12/21/2022]
|
74
|
Barakat A, Hamdy MM, Elbadr MM. Uses of fluoxetine in nociceptive pain management: A literature overview. Eur J Pharmacol 2018; 829:12-25. [PMID: 29608897 DOI: 10.1016/j.ejphar.2018.03.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/16/2022]
Abstract
Fluoxetine is one of the top ten prescribed antidepressants. Other therapeutic applications were approved for fluoxetine including, anxiety disorders, bulimia nervosa, and premature ejaculation. However, the role of fluoxetine in nociceptive pain management is still unclear. In this review, we discuss an overview of five possible roles of fluoxetine in pain management: intrinsic antinociceptive effect, enhancement of acute opioid analgesia, attenuation of tolerance development to opioid analgesia, attenuation of dependence development and abstinence syndrome, and attenuation of opioid induced hyperalgesia. Conflicting data were reported about fluoxetine intrinsic anti-nociceptive effect in preclinical and clinical studies except for inflammatory pain. Similar controversy was described in preclinical and clinical studies which explored the possible enhancement of opioid analgesia by fluoxetine co-administration. However, fluoxetine was found to have a promising effect on opioid tolerance and dependence in animal and human studies. Regarding opioid induced hyperalgesia, no studies examined fluoxetine effects in this regard. Our literature review revealed that, the most likely beneficial use of fluoxetine in nociceptive pain management is for alleviation of inflammatory pain and attenuation of opioid tolerance and dependence. Non-steroidal anti-inflammatory and corticosteroids carry many adverse effects and toxicities. Effective alleviation of opioid tolerance and dependence represents a huge health burden and growing unmet medical need. Moreover, most agents used to attenuate these phenomena are either experimental or poorly tolerable drugs which limit their transitional value. Fluoxetine offers an effective, safe, and tolerable alternative for management of both inflammatory pain and opioid tolerance and dependence presently available to clinicians.
Collapse
Affiliation(s)
- Ahmed Barakat
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut 71526, Egypt.
| | - Mostafa M Hamdy
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut 71526, Egypt
| | - Mohamed M Elbadr
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
75
|
Wang CC, Kuo JR, Huang SK, Wang SJ. Metabotropic glutamate 7 receptor agonist AMN082 inhibits glutamate release in rat cerebral cortex nerve terminal. Eur J Pharmacol 2018; 823:11-18. [PMID: 29378190 DOI: 10.1016/j.ejphar.2018.01.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 12/21/2022]
Abstract
AMN082 is a selective metabotropic glutamate mGlu7 receptor agonist reported to exhibit antidepressant activity. Considering that excessive glutamate release is involved in the pathogenesis of depression, the effect of N,N'-dibenzyhydryl-ethane-1,2-diamine dihydrochloride (AMN082) on glutamate release in rat cerebrocortical nerve terminals and the possible underlying mechanism were investigated. In this study, we observed here that AMN082 inhibited 4-aminopyridine-evoked glutamate release and this phenomenon was blocked by the metabotropic glutamate mGlu7 receptor antagonist MMPIP. Moreover, western blot analysis and immunocytochemistry confirmed the presence of presynaptic metabotropic glutamate mGlu7 receptor proteins. The effect of AMN082 on the 4-aminopyridine-evoked release of glutamate was prevented by chelating the extracellular Ca2+ ions and the vesicular transporter inhibitor; however, the effect of AMN082 was unaffected by the glutamate transporter inhibitor. AMN082 reduced the elevation of 4-aminopyridine-evoked intrasynaptosomal Ca2+ concentration, but did not alter the synaptosomal membrane potential. In the presence of the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channel blocker, the adenylate cyclase inhibitor, and the protein kinase A inhibitor, the action of AMN082 on the 4-aminopyridine-evoked glutamate release was markedly reduced. These results suggest that the activation of the metabotropic glutamate mGlu7 receptors by AMN082 reduces adenylate cyclase/protein kinase A activation, which subsequently reduces the entry of Ca2+ through voltage-dependent Ca2+ channels and decreases evoked glutamate release. Additionally, fluoxetine, a clinically effective antidepressant, completely occluded the inhibitory effect of AMN082 on glutamate release, thus indicating the existence of a common intracellular mechanism for these two compounds to inhibit glutamate release from the cerebrocortical nerve terminals.
Collapse
Affiliation(s)
- Che Chuan Wang
- Department of Neurology, Chi Mei Medical Center, Tainan, Taiwan, ROC; Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan, ROC
| | - Jinn Rung Kuo
- Department of Neurology, Chi Mei Medical Center, Tainan, Taiwan, ROC; Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan, ROC
| | - Shu Kuei Huang
- Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan, ROC
| | - Su Jane Wang
- School of Medicine, Fu Jen Catholic University, No. 510, Chung-Cheng Rd., Hsin-Chuang, New Taipei 24205, Taiwan, ROC; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan, ROC.
| |
Collapse
|
76
|
Rubio-Casillas A, Fernández-Guasti A. The dose makes the poison: from glutamate-mediated neurogenesis to neuronal atrophy and depression. Rev Neurosci 2018; 27:599-622. [PMID: 27096778 DOI: 10.1515/revneuro-2015-0066] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/04/2016] [Indexed: 12/21/2022]
Abstract
Experimental evidence has demonstrated that glutamate is an essential factor for neurogenesis, whereas another line of research postulates that excessive glutamatergic neurotransmission is associated with the pathogenesis of depression. The present review shows that such paradox can be explained within the framework of hormesis, defined as biphasic dose responses. Low glutamate levels activate adaptive stress responses that include proteins that protect neurons against more severe stress. Conversely, abnormally high levels of glutamate, resulting from increased release and/or decreased removal, cause neuronal atrophy and depression. The dysregulation of the glutamatergic transmission in depression could be underlined by several factors including a decreased inhibition (γ-aminobutyric acid or serotonin) or an increased excitation (primarily within the glutamatergic system). Experimental evidence shows that the activation of N-methyl-D-aspartate receptor (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPAR) can exert two opposite effects on neurogenesis and neuron survival depending on the synaptic or extrasynaptic concentration. Chronic stress, which usually underlies experimental and clinical depression, enhances glutamate release. This overactivates NMDA receptors (NMDAR) and consequently impairs AMPAR activity. Various studies show that treatment with antidepressants decreases plasma glutamate levels in depressed individuals and regulates glutamate receptors by reducing NMDAR function by decreasing the expression of its subunits and by potentiating AMPAR-mediated transmission. Additionally, it has been shown that chronic treatment with antidepressants having divergent mechanisms of action (including tricyclics, selective serotonin reuptake inhibitors, and ketamine) markedly reduced depolarization-evoked glutamate release in the hippocampus. These data, taken together, suggest that the glutamatergic system could be a final common pathway for antidepressant treatments.
Collapse
|
77
|
Inoshita M, Umehara H, Watanabe SY, Nakataki M, Kinoshita M, Tomioka Y, Tajima A, Numata S, Ohmori T. Elevated peripheral blood glutamate levels in major depressive disorder. Neuropsychiatr Dis Treat 2018; 14:945-953. [PMID: 29670355 PMCID: PMC5896673 DOI: 10.2147/ndt.s159855] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE There is growing evidence that glutamatergic signaling may be involved in major depressive disorder (MDD). In regard to peripheral blood glutamate changes in MDD, inconsistent findings have been reported. The purpose of the present study was to evaluate whether blood glutamate levels differed between MDD patients and control participants. MATERIALS AND METHODS We conducted a systematic review and meta-analysis of 12 association studies between blood glutamate levels and MDD in a total of 529 MDD patients and 590 controls. Subsequently, we conducted subgroup analyses and a meta-regression analysis to examine the sources of potential heterogeneity. RESULTS A random effects model showed that blood glutamate levels were significantly higher in MDD patients than in controls (standardized mean difference=0.54, 95% CI=0.27-0.82, p=8.5×10-5) with high heterogeneity (I2=75.0%, p<0.05). Subgroup analyses showed elevated glutamate levels in MDD patients compared with controls in plasma, but not serum studies, and in studies using high-performance liquid chromatography but not with mass spectrometry for glutamate assay. A meta-regression analysis showed no effects of age, gender, medication use, sample size, and published year on blood glutamate levels. CONCLUSION Our findings suggest that altered glutamate levels may be implicated in MDD, which provides further evidence of glutamatergic dysfunction in MDD.
Collapse
Affiliation(s)
- Masatoshi Inoshita
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hidehiro Umehara
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Shin-Ya Watanabe
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Masahito Nakataki
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Makoto Kinoshita
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yukiko Tomioka
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Shusuke Numata
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Tetsuro Ohmori
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
78
|
Spindola LM, Pan PM, Moretti PN, Ota VK, Santoro ML, Cogo-Moreira H, Gadelha A, Salum G, Manfro GG, Mari JJ, Brentani H, Grassi-Oliveira R, Brietzke E, Miguel EC, Rohde LA, Sato JR, Bressan RA, Belangero SI. Gene expression in blood of children and adolescents: Mediation between childhood maltreatment and major depressive disorder. J Psychiatr Res 2017; 92:24-30. [PMID: 28384542 DOI: 10.1016/j.jpsychires.2017.03.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/27/2017] [Accepted: 03/20/2017] [Indexed: 12/14/2022]
Abstract
Investigating major depressive disorder (MDD) in childhood and adolescence can help reveal the relative contributions of genetic and environmental factors to MDD, since early stages of disease have less influence of illness exposure. Thus, we investigated the mRNA expression of 12 genes related to the hypothalamic-pituitary-adrenal (HPA) axis, inflammation, neurodevelopment and neurotransmission in the blood of children and adolescents with MDD and tested whether a history of childhood maltreatment (CM) affects MDD through gene expression. Whole-blood mRNA levels of 12 genes were compared among 20 children and adolescents with MDD diagnosis (MDD group), 49 participants without MDD diagnosis but with high levels of depressive symptoms (DS group), and 61 healthy controls (HC group). The differentially expressed genes were inserted in a mediation model in which CM, MDD, and gene expression were, respectively, the independent variable, outcome, and intermediary variable. NR3C1, TNF, TNFR1 and IL1B were expressed at significantly lower levels in the MDD group than in the other groups. CM history did not exert a significant direct effect on MDD. However, an indirect effect of the aggregate expression of the 4 genes mediated the relationship between CM and MDD. In the largest study investigating gene expression in children with MDD, we demonstrated that NR3C1, TNF, TNFR1 and IL1B expression levels are related to MDD and conjunctly mediate the effect of CM history on the risk of developing MDD. This supports a role of glucocorticoids and inflammation as potential effectors of environmental stress in MDD.
Collapse
MESH Headings
- Adolescent
- Child
- Child Abuse/psychology
- Cohort Studies
- Depressive Disorder, Major/blood
- Depressive Disorder, Major/physiopathology
- Female
- Gene Expression/physiology
- Genetic Testing
- Humans
- Hypothalamo-Hypophyseal System/metabolism
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Male
- Models, Biological
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Pituitary-Adrenal System/metabolism
- RNA, Messenger/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Residence Characteristics
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Leticia Maria Spindola
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP, Brazil; National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Department of Psychiatry, UNIFESP, Brazil
| | - Pedro Mario Pan
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP, Brazil; National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Department of Psychiatry, UNIFESP, Brazil
| | - Patricia Natalia Moretti
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP, Brazil; National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Department of Psychiatry, UNIFESP, Brazil
| | - Vanessa Kiyomi Ota
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP, Brazil; National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Department of Psychiatry, UNIFESP, Brazil
| | - Marcos Leite Santoro
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP, Brazil; National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil
| | - Hugo Cogo-Moreira
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP, Brazil; National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Department of Psychiatry, UNIFESP, Brazil
| | - Ary Gadelha
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP, Brazil; National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Department of Psychiatry, UNIFESP, Brazil
| | - Giovanni Salum
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Brazil
| | - Gisele Gus Manfro
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Brazil
| | - Jair Jesus Mari
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP, Brazil; National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Department of Psychiatry, UNIFESP, Brazil
| | - Helena Brentani
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Department & Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, Brazil
| | - Rodrigo Grassi-Oliveira
- Post-Graduation Program in Psychology, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Brazil; Developmental Cognitive Neuroscience Lab, PUCRS, Brazil
| | | | - Euripedes Constantino Miguel
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Department & Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, Brazil
| | - Luis Augusto Rohde
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Brazil
| | - João Ricardo Sato
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, Brazil
| | - Rodrigo Affonseca Bressan
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP, Brazil; National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Department of Psychiatry, UNIFESP, Brazil
| | - Sintia Iole Belangero
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP, Brazil; National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Department of Psychiatry, UNIFESP, Brazil.
| |
Collapse
|
79
|
Umehara H, Numata S, Watanabe SY, Hatakeyama Y, Kinoshita M, Tomioka Y, Nakahara K, Nikawa T, Ohmori T. Altered KYN/TRP, Gln/Glu, and Met/methionine sulfoxide ratios in the blood plasma of medication-free patients with major depressive disorder. Sci Rep 2017; 7:4855. [PMID: 28687801 PMCID: PMC5501805 DOI: 10.1038/s41598-017-05121-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/24/2017] [Indexed: 12/19/2022] Open
Abstract
Capillary electrophoresis-time-of-flight mass spectrometry (CE-TOFMS) is a comprehensive, quantitative, and high throughput tool used to analyze metabolite profiles. In the present study, we used CE-TOFMS to profile metabolites found in the blood plasma of 33 medication-free patients with major depressive disorder (MDD) and 33 non-psychiatric control subjects. We then investigated changes which occurred in the metabolite levels during an 8-week treatment period. The medication-free MDD patients and control subjects showed significant differences in their mean levels of 33 metabolites, including kynurenine (KYN), glutamate (Glu), glutamine (Gln), methionine sulfoxide, and methionine (Met). In particular, the ratios of KYN to tryptophan (TRP), Gln to Glu, and Met to methionine sulfoxide were all significantly different between the two groups. Among the 33 metabolites with altered levels in MDD patients, the levels of KYN and Gln, as well as the ratio of Gln to Glu, were significantly normalized after treatment. Our findings suggest that imbalances in specific metabolite levels may be involved in the pathogenesis of MDD, and provide insight into the mechanisms by which antidepressant agents work in MDD patients.
Collapse
Affiliation(s)
- Hidehiro Umehara
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Shusuke Numata
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.
| | - Shin-Ya Watanabe
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yutaka Hatakeyama
- Center of Medical Information Science, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Makoto Kinoshita
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yukiko Tomioka
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kiyoshi Nakahara
- Research Institute, Kochi University of Technology, 185 Miyanokuchi, Tosayamada-cho, Kami-shi, Kochi, Japan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Tetsuro Ohmori
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
80
|
Ding XF, Li YH, Chen JX, Sun LJ, Jiao HY, Wang XX, Zhou Y. Involvement of the glutamate/glutamine cycle and glutamate transporter GLT-1 in antidepressant-like effects of Xiao Yao san on chronically stressed mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:326. [PMID: 28629384 PMCID: PMC5477120 DOI: 10.1186/s12906-017-1830-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 06/07/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Xiao Yao San (XYS) is an herbal prescription which is used in the treatment of depression for thousands of years from Song dynasty in China (960-1127 A.D.), and is the bestselling and most popular herb formula for treating major depression. This study aimed to assess the chronic antidepressant effects of XYS and fluoxetine in depressed mice induced by chronic unpredictable mild stress (CUMS) and its association with alterations in glutamate/glutamine cycle and glutamate transporters. METHODS Mice in the control and model group were given 0.5 ml physiological saline by intragastric administration. Mice in two treatment groups were given XYS (0.25 g/kg/d) and fluoxetine (2.6 mg/kg/d), respectively. The depressive-like behaviors such as forced swim test (FST), sucrose preference test (SPT) and novelty-suppressed feeding (NSF) test were measured after mice exposed to CUMS for 21 days. Body weight, contents of glutamate and glutamine, glutamine/glutamate ratio that is usually thought to reflect glutamate/glutamine cycle, and the protein and mRNA expressions of glutamate transporters (excitatory amino acid transporter 1-2,GLAST/EAAT1 and GLT-1/EAAT2) were measured. The immunoreactivities of GLAST and GLT-1 in the hippocampus were also investigated. RESULTS After CUMS exposure, mice exhibited depressive-like behaviors, body weight loss, increased glutamate level, decreased glutamine level, elevated glutamine/glutamate ratio, decreased GLT-1 protein expression and mRNA level, and decreased average optical density (AOD) of GLT-1 in the CA1, CA3 and DG in the hippocampus. These abnormalities could be effectively reversed by XYS or fluoxetine treatment. In addition, the study also found that GLAST expression in the hippocampus could not be altered by 21-d CUMS. CONCLUSION The studies indicated that XYS may have therapeutic actions on depression -like behavior s induced by CUMS in mice possibly mediated by modulation of glutamate/glutamine cycle and glutamate transporter GLT-1 in the hippocampus.
Collapse
Affiliation(s)
- Xiu-Fang Ding
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Yue-Hua Li
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100043 China
| | - Jia-Xu Chen
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Long-Ji Sun
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Hai-Yan Jiao
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Xin-Xin Wang
- School of Basic Medicine, Henan University of TCM, Henan, 450046 Henan China
| | - Yan Zhou
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, 100029 China
| |
Collapse
|
81
|
Millard SJ, Weston-Green K, Newell KA. The effects of maternal antidepressant use on offspring behaviour and brain development: Implications for risk of neurodevelopmental disorders. Neurosci Biobehav Rev 2017. [PMID: 28629713 DOI: 10.1016/j.neubiorev.2017.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Approximately 10% of pregnant women are prescribed antidepressant drugs (ADDs), with selective serotonin reuptake inhibitors (SSRIs) the most widely prescribed. SSRIs bind to the serotonin transporter (SERT), blocking the reabsorption of serotonin by the presynaptic neuron and increasing serotonin levels in the synaptic cleft. The serotonergic system regulates a range of brain development processes including neuronal proliferation, migration, differentiation and synaptogenesis. Given the presence of SERT in early brain development, coupled with the ability of SSRIs to cross the placenta and also enter breast milk, concerns have been raised regarding the effects of SSRI exposure on the developing foetus and newborns. In this review, we evaluate preclinical and clinical studies that have examined the effects of maternal SSRI exposure and the risk for altered neurodevelopment and associated behaviours in offspring. While the current body of evidence suggests that maternal SSRI treatment may cause perturbations to the neurobiology, behaviour and ultimately risk for neurodevelopmental disorders in exposed offspring, conflicting findings do exist and the evidence is not conclusive. However, given the increasing incidence of depression and number of women prescribed ADDs during pregnancy, further investigation into this area is warranted.
Collapse
Affiliation(s)
- Samuel J Millard
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.
| | - Katrina Weston-Green
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.
| | - Kelly A Newell
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.
| |
Collapse
|
82
|
Abdelkader NF, Saad MA, Abdelsalam RM. Neuroprotective effect of nebivolol against cisplatin-associated depressive-like behavior in rats. J Neurochem 2017; 141:449-460. [DOI: 10.1111/jnc.13978] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/18/2017] [Accepted: 02/02/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Noha F. Abdelkader
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Cairo University; Cairo Egypt
| | - Muhammed A. Saad
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Cairo University; Cairo Egypt
| | - Rania M. Abdelsalam
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Cairo University; Cairo Egypt
| |
Collapse
|
83
|
Cui T, Qiu HM, Huang D, Zhou QX, Fu XY, Li HY, Jiang XH. Abnormal levels of seven amino neurotransmitters in depressed rat brain and determination by HPLC-FLD. Biomed Chromatogr 2017; 31. [DOI: 10.1002/bmc.3937] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/09/2017] [Accepted: 01/13/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Ting Cui
- School of Pharmacy; Chongqing Medical University; Chongqing China
| | - Hong-Mei Qiu
- School of Pharmacy; Chongqing Medical University; Chongqing China
| | - Dan Huang
- School of Pharmacy; Chongqing Medical University; Chongqing China
| | - Qi-Xin Zhou
- School of Pharmacy; Chongqing Medical University; Chongqing China
| | - Xiao-Yan Fu
- School of Pharmacy; Chongqing Medical University; Chongqing China
| | - Hai-Yan Li
- School of Pharmacy; Chongqing Medical University; Chongqing China
| | - Xin-Hui Jiang
- School of Pharmacy; Chongqing Medical University; Chongqing China
| |
Collapse
|
84
|
Wang Z, Zhang A, Zhao B, Gan J, Wang G, Gao F, Liu B, Gong T, Liu W, Edden RA. GABA+ levels in postmenopausal women with mild-to-moderate depression: A preliminary study. Medicine (Baltimore) 2016; 95:e4918. [PMID: 27684829 PMCID: PMC5265922 DOI: 10.1097/md.0000000000004918] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND It is increasingly being recognized that alterations of the GABAergic system are implicated in the pathophysiology of depression. This study aimed to explore in vivo gamma-aminobutyric acid (GABA) levels in the anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC) and posterior-cingulate cortex (PCC) of postmenopausal women with depression using magnetic resonance spectroscopy (H-MRS). METHODS Nineteen postmenopausal women with depression and thirteen healthy controls were enrolled in the study. All subjects underwent H-MRS of the ACC/mPFC and PCC using the "MEGA Point Resolved Spectroscopy Sequence" (MEGA-PRESS) technique. The severity of depression was assessed by 17-item Hamilton Depression Scale (HAMD). Quantification of MRS data was performed using Gannet program. Differences of GABA+ levels from patients and controls were tested using one-way analysis of variance. Spearman correlation coefficients were used to evaluate the linear associations between GABA+ levels and HAMD scores, as well as estrogen levels. RESULTS Significantly lower GABA+ levels were detected in the ACC/mPFC of postmenopausal women with depression compared to healthy controls (P = 0.002). No significant correlations were found between 17-HAMD/14-HAMA and GABA+ levels, either in ACC/mPFC (P = 0.486; r = 0.170/P = 0.814; r = -0.058) or PCC (P = 0.887; r = 0.035/ P = 0.987; r = -0.004) in the patients; there is also no significant correlation between GABA+ levels and estrogen levels in patients group (ACC/mPFC: P = 0.629, r = -0.018; PCC: P = 0.861, r = 0.043). CONCLUSION Significantly lower GABA+ levels were found in the ACC/mPFC of postmenopausal women with depression, suggesting that the dysfunction of the GABAergic system may also be involved in the pathogenesis of depression in postmenopausal women.
Collapse
Affiliation(s)
- Zhensong Wang
- Shandong Medical Imaging Research Institute Affiliated to Shandong University
- No. 2 Affiliated Hospital of Shandong Traditional Chinese Medicine University
| | - Aiying Zhang
- Affiliated Eye Hospital of Shandong Traditional Chinese Medicine University
| | - Bin Zhao
- Shandong Medical Imaging Research Institute Affiliated to Shandong University
| | - Jie Gan
- No. 2 Affiliated Hospital of Shandong Traditional Chinese Medicine University
| | - Guangbin Wang
- Shandong Medical Imaging Research Institute Affiliated to Shandong University
- Correspondence: Guangbin Wang, Shandong Medical Imaging Research Institute Affiliated to Shandong University, No. 324, Jing-Wu Road, Jinan, China (e-mail: )
| | - Fei Gao
- Shandong Medical Imaging Research Institute Affiliated to Shandong University
| | - Bo Liu
- Qi Lu Hospital of Shandong University, Jinan, China
| | - Tao Gong
- Shandong Medical Imaging Research Institute Affiliated to Shandong University
| | - Wen Liu
- Shandong Medical Imaging Research Institute Affiliated to Shandong University
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine
- FM Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| |
Collapse
|
85
|
Villa RF, Ferrari F, Gorini A, Brunello N, Tascedda F. Effect of desipramine and fluoxetine on energy metabolism of cerebral mitochondria. Neuroscience 2016; 330:326-34. [DOI: 10.1016/j.neuroscience.2016.05.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 12/14/2022]
|
86
|
Diniz CR, Casarotto PC, Joca SR. NMDA-NO signaling in the dorsal and ventral hippocampus time-dependently modulates the behavioral responses to forced swimming stress. Behav Brain Res 2016; 307:126-36. [DOI: 10.1016/j.bbr.2016.03.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 12/17/2022]
|
87
|
Wang HY, Lu CW, Lin TY, Kuo JR, Wang SJ. WAY208466 inhibits glutamate release at hippocampal nerve terminals. Eur J Pharmacol 2016; 781:117-27. [DOI: 10.1016/j.ejphar.2016.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/09/2016] [Accepted: 04/07/2016] [Indexed: 01/09/2023]
|
88
|
Gururajan A, Clarke G, Dinan TG, Cryan JF. Molecular biomarkers of depression. Neurosci Biobehav Rev 2016; 64:101-33. [DOI: 10.1016/j.neubiorev.2016.02.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/11/2016] [Accepted: 02/12/2016] [Indexed: 12/22/2022]
|
89
|
Ludka FK, Dal-Cim T, Binder LB, Constantino LC, Massari C, Tasca CI. Atorvastatin and Fluoxetine Prevent Oxidative Stress and Mitochondrial Dysfunction Evoked by Glutamate Toxicity in Hippocampal Slices. Mol Neurobiol 2016; 54:3149-3161. [DOI: 10.1007/s12035-016-9882-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 03/21/2016] [Indexed: 01/04/2023]
|
90
|
Chen F, du Jardin KG, Waller JA, Sanchez C, Nyengaard JR, Wegener G. Vortioxetine promotes early changes in dendritic morphology compared to fluoxetine in rat hippocampus. Eur Neuropsychopharmacol 2016; 26:234-245. [PMID: 26711685 DOI: 10.1016/j.euroneuro.2015.12.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/20/2015] [Accepted: 12/01/2015] [Indexed: 12/28/2022]
Abstract
Preclinical studies reveal that the multimodal antidepressant vortioxetine enhances long-term potentiation and dendritic branching compared to a selective serotonin reuptake inhibitor (SSRI). In the present study, we investigated vortioxetine׳s effects on spines and dendritic morphology in rat hippocampus at two time points compared to the SSRI, fluoxetine. Rats were dosed for 1 and 4 weeks with vortioxetine and fluoxetine at doses relevant for antidepressant activity. Dendritic morphology of pyramidal neurons (i.e., dendritic length, dendritic branch, spine number and density, and Sholl analysis) was examined in Golgi-stained sections from hippocampal CA1. After 1 week of treatment, vortioxetine significantly increased spine number (apical and basal dendrites), spine density (only basal), dendritic length (only apical), and dendritic branch number (apical and basal), whereas fluoxetine had no effect. After 4 weeks of treatment, vortioxetine significantly increased all measures of dendritic spine morphology as did fluoxetine except for spine density of basal dendrites. The number of intersections in the apical and basal dendrites was also significantly increased for both treatments after 4 weeks compared to control. In addition, 4 weeks of vortioxetine treatment, but not fluoxetine, promoted a decrease in spine neck length. In conclusion, 1-week vortioxetine treatment induced changes in spine number and density and dendritic morphology, whereas an equivalent dose of fluoxetine had no effects. Decreased spine neck length following 4-week vortioxetine treatment suggests a transition to mature spine morphology. This implies that vortioxetine׳s effects on spine and dendritic morphology are mediated by mechanisms that go beyond serotonin reuptake inhibition.
Collapse
Affiliation(s)
- Fenghua Chen
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, DK-8000 Aarhus C, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, DK-8240 Risskov, Denmark.
| | - Kristian Gaarn du Jardin
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, DK-8240 Risskov, Denmark
| | - Jessica A Waller
- Sourcing and Scientific Excellence at Lundbeck Research USA, Inc., Paramus, NJ 07652-1431, USA
| | - Connie Sanchez
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, DK-8240 Risskov, Denmark; Sourcing and Scientific Excellence at Lundbeck Research USA, Inc., Paramus, NJ 07652-1431, USA
| | - Jens R Nyengaard
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, DK-8000 Aarhus C, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, DK-8240 Risskov, Denmark; Centre for Pharmaceutical Excellence, School of Pharmacy, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
91
|
Deutschenbaur L, Beck J, Kiyhankhadiv A, Mühlhauser M, Borgwardt S, Walter M, Hasler G, Sollberger D, Lang UE. Role of calcium, glutamate and NMDA in major depression and therapeutic application. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:325-33. [PMID: 25747801 DOI: 10.1016/j.pnpbp.2015.02.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/04/2015] [Accepted: 02/20/2015] [Indexed: 01/17/2023]
Abstract
Major depression is a common, recurrent mental illness that affects millions of people worldwide. Recently, a unique fast neuroprotective and antidepressant treatment effect has been observed by ketamine, which acts via the glutamatergic system. Hence, a steady accumulation of evidence supporting a role for the excitatory amino acid neurotransmitter (EAA) glutamate in the treatment of depression has been observed in the last years. Emerging evidence indicates that N-methyl-D-aspartate (NMDA), group 1 metabotropic glutamate receptor antagonists and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) agonists have antidepressant properties. Indeed, treatment with NMDA receptor antagonists has shown the ability to sprout new synaptic connections and reverse stress-induced neuronal changes. Based on glutamatergic signaling, a number of therapeutic drugs might gain interest in the future. Several compounds such as ketamine, memantine, amantadine, tianeptine, pioglitazone, riluzole, lamotrigine, AZD6765, magnesium, zinc, guanosine, adenosine aniracetam, traxoprodil (CP-101,606), MK-0657, GLYX-13, NRX-1047, Ro25-6981, LY392098, LY341495, D-cycloserine, D-serine, dextromethorphan, sarcosine, scopolamine, pomaglumetad methionil, LY2140023, LY404039, MGS0039, MPEP, 1-aminocyclopropanecarboxylic acid, all of which target this system, have already been brought up, some of them recently. Drugs targeting the glutamatergic system might open up a promising new territory for the development of drugs to meet the needs of patients with major depression.
Collapse
Affiliation(s)
- Lorenz Deutschenbaur
- Department of Psychiatry and Psychotherapy (UPK), University Hospital of Basel, Basel, Switzerland
| | - Johannes Beck
- Department of Psychiatry and Psychotherapy (UPK), University Hospital of Basel, Basel, Switzerland
| | - Anna Kiyhankhadiv
- Department of Psychiatry and Psychotherapy (UPK), University Hospital of Basel, Basel, Switzerland
| | - Markus Mühlhauser
- Department of Psychiatry and Psychotherapy (UPK), University Hospital of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry and Psychotherapy (UPK), University Hospital of Basel, Basel, Switzerland
| | - Marc Walter
- Department of Psychiatry and Psychotherapy (UPK), University Hospital of Basel, Basel, Switzerland
| | - Gregor Hasler
- Department of Psychiatry and Psychotherapy (UPK), University Hospital of Basel, Basel, Switzerland
| | - Daniel Sollberger
- Department of Psychiatry and Psychotherapy (UPK), University Hospital of Basel, Basel, Switzerland
| | - Undine E Lang
- Department of Psychiatry and Psychotherapy (UPK), University Hospital of Basel, Basel, Switzerland.
| |
Collapse
|
92
|
Verkhratsky A, Steardo L, Peng L, Parpura V. Astroglia, Glutamatergic Transmission and Psychiatric Diseases. ADVANCES IN NEUROBIOLOGY 2016; 13:307-326. [PMID: 27885635 DOI: 10.1007/978-3-319-45096-4_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Astrocytes are primary homeostatic cells of the central nervous system. They regulate glutamatergic transmission through the removal of glutamate from the extracellular space and by supplying neurons with glutamine. Glutamatergic transmission is generally believed to be significantly impaired in the contexts of all major neuropsychiatric diseases. In most of these neuropsychiatric diseases, astrocytes show signs of degeneration and atrophy, which is likely to be translated into reduced homeostatic capabilities. Astroglial glutamate uptake/release and glutamate homeostasis are affected in all forms of major psychiatric disorders and represent a common mechanism underlying neurotransmission disbalance, aberrant connectome and overall failure on information processing by neuronal networks, which underlie pathogenesis of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, 48011, Spain.
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, 48940, Spain.
| | - Luca Steardo
- Department of Psychiatry, University of Naples SUN, Largo Madonna delle Grazie, Naples, Italy
| | - Liang Peng
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, Atomic Force Microscopy & Nanotechnology Laboratories, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL, 35294, USA
| |
Collapse
|
93
|
Yu X, Qiao S, Wang D, Dai J, Wang J, Zhang R, Wang L, Li L. A metabolomics-based approach for ranking the depressive level in a chronic unpredictable mild stress rat model. RSC Adv 2016. [DOI: 10.1039/c6ra00665e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An untargeted metabolomics study to investigate the metabolome change in plasma, hippocampus and prefrontal cortex (PFC) in an animal model with a major depressive disorder (MDD) had been conducted.
Collapse
Affiliation(s)
- Xinyu Yu
- Department of Hygiene Analysis and Detection
- School of Public Health
- Nanjing Medical University
- Nanjing
- P. R. China
| | - Shanlei Qiao
- Department of Hygiene Analysis and Detection
- School of Public Health
- Nanjing Medical University
- Nanjing
- P. R. China
| | - Di Wang
- Department of Hygiene Analysis and Detection
- School of Public Health
- Nanjing Medical University
- Nanjing
- P. R. China
| | - Jiayong Dai
- Department of Hygiene Analysis and Detection
- School of Public Health
- Nanjing Medical University
- Nanjing
- P. R. China
| | - Jun Wang
- The Key Laboratory of Modern Toxicology
- Ministry of Education
- School of Public Health
- Nanjing Medical University
- Nanjing 211166
| | - Rutan Zhang
- Department of Hygiene Analysis and Detection
- School of Public Health
- Nanjing Medical University
- Nanjing
- P. R. China
| | - Li Wang
- Department of Hygiene Analysis and Detection
- School of Public Health
- Nanjing Medical University
- Nanjing
- P. R. China
| | - Lei Li
- Department of Hygiene Analysis and Detection
- School of Public Health
- Nanjing Medical University
- Nanjing
- P. R. China
| |
Collapse
|
94
|
Tyurenkova IN, Bagmetova VV, Robertus AI, Vasil’eva EV, Kovalev GI. A study of the GABAergic mechanisms of the neuropsychotropic action of neuroglutam. NEUROCHEM J+ 2015. [DOI: 10.1134/s1819712415010134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
95
|
Kudryashova IV. Neurodegenerative changes in depression: Excitotoxicity or a deficit of trophic factors? NEUROCHEM J+ 2015. [DOI: 10.1134/s1819712415010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
96
|
Zhao L, Zheng S, Su G, Lu X, Yang J, Xiong Z, Wu C. In vivo study on the neurotransmitters and their metabolites change in depressive disorder rat plasma by ultra high performance liquid chromatography coupled to tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 988:59-65. [PMID: 25746753 DOI: 10.1016/j.jchromb.2015.02.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/30/2015] [Accepted: 02/22/2015] [Indexed: 12/21/2022]
Abstract
A sensitive and versatile, ultra-high performance, liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method coupled to pre-column derivatization for the simultaneous determination of 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), dopamine (DA), norepinephrine (NE), homovanillic acid (HVA), γ-aminobutyric acid (GABA) and glutamic acid (Glu) was developed and validated in rat plasma. The analytes were dansylated under strong alkaline conditions after protein precipitation extraction, which were analyzed on a BEH C18 column using a gradient elution. The lower limit of quantification (LLOQ) values for 5-HT, 5-HIAA, DA, NE, HVA, GABA and Glu were 1.00, 1.00, 0.991, 0.992, 1.02, 1000, and 5030 pmol/mL, respectively. Good linearity was obtained (r > 0.99) and the intra- and inter-day precisions of the method (relative standard deviation, RSD%) were lower than 12%. The method was novel, sensitive and specific which can provide an alternative method for the quantification of neurotransmitters and their metabolites in plasma samples.
Collapse
Affiliation(s)
- Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuning Zheng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guangyue Su
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, China
| | - Xiumei Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, China.
| |
Collapse
|
97
|
Hillhouse TM, Porter JH. A brief history of the development of antidepressant drugs: from monoamines to glutamate. Exp Clin Psychopharmacol 2015; 23:1-21. [PMID: 25643025 PMCID: PMC4428540 DOI: 10.1037/a0038550] [Citation(s) in RCA: 325] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Major depressive disorder (MDD) is a chronic, recurring, and debilitating mental illness that is the most common mood disorder in the United States. It has been almost 50 years since the monoamine hypothesis of depression was articulated, and just over 50 years since the first pharmacological treatment for MDD was discovered. Several monoamine-based pharmacological drug classes have been developed and approved for the treatment of MDD; however, remission rates are low (often less than 60%) and there is a delayed onset before remission of depressive symptoms is achieved. As a result of a "proof-of-concept" study in 2000 with the noncompetitive NMDA antagonist ketamine, a number of studies have examined the glutamatergic systems as viable targets for the treatment of MDD. This review will provide a brief history on the development of clinically available antidepressant drugs, and then review the possible role of glutamatergic systems in the pathophysiology of MDD. Specifically, the glutamatergic review will focus on the N-methyl-D-aspartate (NMDA) receptor and the efficacy of drugs that target the NMDA receptor for the treatment of MDD. The noncompetitive NMDA receptor antagonist ketamine, which has consistently produced rapid and sustained antidepressant effects in MDD patients in a number of clinical studies, has shown the most promise as a novel glutamatergic-based treatment for MDD. However, compounds that target other glutamatergic mechanisms, such as GLYX-13 (a glycine-site partial agonist at NMDA receptors) appear promising in early clinical trials. Thus, the clinical findings to date are encouraging and support the continued search for and the development of novel compounds that target glutamatergic mechanisms.
Collapse
Affiliation(s)
- Todd M. Hillhouse
- the Department of Psychology at Virginia Commonwealth University at the time this review was written and is now at the University of Michigan in the Department of Pharmacology
| | - Joseph H. Porter
- the Department of Psychology at Virginia Commonwealth University
| |
Collapse
|
98
|
Luscher B, Fuchs T. GABAergic control of depression-related brain states. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 73:97-144. [PMID: 25637439 DOI: 10.1016/bs.apha.2014.11.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The GABAergic deficit hypothesis of major depressive disorders (MDDs) posits that reduced γ-aminobutyric acid (GABA) concentration in brain, impaired function of GABAergic interneurons, altered expression and function of GABA(A) receptors, and changes in GABAergic transmission dictated by altered chloride homeostasis can contribute to the etiology of MDD. Conversely, the hypothesis posits that the efficacy of currently used antidepressants is determined by their ability to enhance GABAergic neurotransmission. We here provide an update for corresponding evidence from studies of patients and preclinical animal models of depression. In addition, we propose an explanation for the continued lack of genetic evidence that explains the considerable heritability of MDD. Lastly, we discuss how alterations in GABAergic transmission are integral to other hypotheses of MDD that emphasize (i) the role of monoaminergic deficits, (ii) stress-based etiologies, (iii) neurotrophic deficits, and (iv) the neurotoxic and neural circuit-impairing consequences of chronic excesses of glutamate. We propose that altered GABAergic transmission serves as a common denominator of MDD that can account for all these other hypotheses and that plays a causal and common role in diverse mechanistic etiologies of depressive brain states and in the mechanism of action of current antidepressant drug therapies.
Collapse
Affiliation(s)
- Bernhard Luscher
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Center for Molecular Investigation of Neurological Disorders, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Thomas Fuchs
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Center for Molecular Investigation of Neurological Disorders, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
99
|
Schmidt U, Willmund GD, Holsboer F, Wotjak CT, Gallinat J, Kowalski JT, Zimmermann P. Searching for non-genetic molecular and imaging PTSD risk and resilience markers: Systematic review of literature and design of the German Armed Forces PTSD biomarker study. Psychoneuroendocrinology 2015; 51:444-58. [PMID: 25236294 DOI: 10.1016/j.psyneuen.2014.08.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/16/2014] [Accepted: 08/17/2014] [Indexed: 12/13/2022]
Abstract
Biomarkers allowing the identification of individuals with an above average vulnerability or resilience for posttraumatic stress disorder (PTSD) would especially serve populations at high risk for trauma exposure like firefighters, police officers and combat soldiers. Aiming to identify the most promising putative PTSD vulnerability markers, we conducted the first systematic review on potential imaging and non-genetic molecular markers for PTSD risk and resilience. Following the PRISMA guidelines, we systematically screened the PubMed database for prospective longitudinal clinical studies and twin studies reporting on pre-trauma and post-trauma PTSD risk and resilience biomarkers. Using 25 different combinations of search terms, we retrieved 8151 articles of which we finally included and evaluated 9 imaging and 27 molecular studies. In addition, we briefly illustrate the design of the ongoing prospective German Armed Forces (Bundeswehr) PTSD biomarker study (Bw-BioPTSD) which not only aims to validate these previous findings but also to identify novel and clinically applicable molecular, psychological and imaging risk, resilience and disease markers for deployment-related psychopathology in a cohort of German soldiers who served in Afghanistan.
Collapse
Affiliation(s)
- Ulrike Schmidt
- Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 München, Germany.
| | - Gerd-Dieter Willmund
- German Armed Forces Center of Military Mental Health, Scharnhorststrasse 13, 10115 Berlin, Germany
| | - Florian Holsboer
- Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 München, Germany
| | - Carsten T Wotjak
- Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 München, Germany
| | - Jürgen Gallinat
- Clinic for Psychiatry and Psychotherapy, University of Hamburg, Martinistrasse 52, 20246 Hamburg, Germany
| | - Jens T Kowalski
- German Armed Forces Center of Military Mental Health, Scharnhorststrasse 13, 10115 Berlin, Germany
| | - Peter Zimmermann
- German Armed Forces Center of Military Mental Health, Scharnhorststrasse 13, 10115 Berlin, Germany
| |
Collapse
|
100
|
Réus GZ, Nacif MP, Abelaira HM, Tomaz DB, dos Santos MAB, Carlessi AS, da Luz JR, Gonçalves RC, Vuolo F, Dal-Pizzol F, Carvalho AF, Quevedo J. Ketamine ameliorates depressive-like behaviors and immune alterations in adult rats following maternal deprivation. Neurosci Lett 2015; 584:83-7. [DOI: 10.1016/j.neulet.2014.10.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 12/12/2022]
|