51
|
Lak A, Cassani M, Mai BT, Winckelmans N, Cabrera D, Sadrollahi E, Marras S, Remmer H, Fiorito S, Cremades-Jimeno L, Litterst FJ, Ludwig F, Manna L, Teran FJ, Bals S, Pellegrino T. Fe 2+ Deficiencies, FeO Subdomains, and Structural Defects Favor Magnetic Hyperthermia Performance of Iron Oxide Nanocubes into Intracellular Environment. NANO LETTERS 2018; 18:6856-6866. [PMID: 30336062 DOI: 10.1021/acs.nanolett.8b02722] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Herein, by studying a stepwise phase transformation of 23 nm FeO-Fe3O4 core-shell nanocubes into Fe3O4, we identify a composition at which the magnetic heating performance of the nanocubes is not affected by the medium viscosity and aggregation. Structural and magnetic characterizations reveal the transformation of the FeO-Fe3O4 nanocubes from having stoichiometric phase compositions into Fe2+-deficient Fe3O4 phases. The resultant nanocubes contain tiny compressed and randomly distributed FeO subdomains as well as structural defects. This phase transformation causes a 10-fold increase in the magnetic losses of the nanocubes, which remain exceptionally insensitive to the medium viscosity as well as aggregation unlike similarly sized single-phase magnetite nanocubes. We observe that the dominant relaxation mechanism switches from Néel in fresh core-shell nanocubes to Brownian in partially oxidized nanocubes and once again to Néel in completely treated nanocubes. The Fe2+ deficiencies and structural defects appear to reduce the magnetic energy barrier and anisotropy field, thereby driving the overall relaxation into Néel process. The magnetic losses of these nanoparticles remain unchanged through a progressive internalization/association to ovarian cancer cells. Moreover, the particles induce a significant cell death after being exposed to hyperthermia treatment. Here, we present the largest heating performance that has been reported to date for 23 nm iron oxide nanoparticles under intracellular conditions. Our findings clearly demonstrate the positive impacts of the Fe2+ deficiencies and structural defects in the Fe3O4 structure on the heating performance into intracellular environment.
Collapse
Affiliation(s)
- Aidin Lak
- Istituto Italiano di Tecnologia , via Morego 30 , 16163 Genoa , Italy
| | - Marco Cassani
- Istituto Italiano di Tecnologia , via Morego 30 , 16163 Genoa , Italy
| | - Binh T Mai
- Istituto Italiano di Tecnologia , via Morego 30 , 16163 Genoa , Italy
| | - Naomi Winckelmans
- EMAT , University of Antwerp , Groenenborgerlaan 171 , B-2020 Antwerp , Belgium
| | - David Cabrera
- iMdea Nanociencia , Campus Universitario de Cantoblanco , 28049 Madrid , Spain
| | - Elaheh Sadrollahi
- Institute for Condensed Matter Physics , Technische Universität Braunschweig , Mendelssohn-Str. 3 , 38106 Braunschweig , Germany
| | - Sergio Marras
- Istituto Italiano di Tecnologia , via Morego 30 , 16163 Genoa , Italy
| | - Hilke Remmer
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering , Technische Universität Braunschweig , Hans-Sommer-Str. 66 , 38106 Braunschweig , Germany
| | - Sergio Fiorito
- Istituto Italiano di Tecnologia , via Morego 30 , 16163 Genoa , Italy
| | | | - Fred Jochen Litterst
- Institute for Condensed Matter Physics , Technische Universität Braunschweig , Mendelssohn-Str. 3 , 38106 Braunschweig , Germany
| | - Frank Ludwig
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering , Technische Universität Braunschweig , Hans-Sommer-Str. 66 , 38106 Braunschweig , Germany
| | - Liberato Manna
- Istituto Italiano di Tecnologia , via Morego 30 , 16163 Genoa , Italy
| | - Francisco J Teran
- iMdea Nanociencia , Campus Universitario de Cantoblanco , 28049 Madrid , Spain
- Nanobiotecnología (iMdea Nanociencia) , Unidad Asociada al Centro Nacional de Biotecnología (CSIC) , 28049 Madrid , Spain
| | - Sara Bals
- EMAT , University of Antwerp , Groenenborgerlaan 171 , B-2020 Antwerp , Belgium
| | - Teresa Pellegrino
- Istituto Italiano di Tecnologia , via Morego 30 , 16163 Genoa , Italy
| |
Collapse
|
52
|
Urbano-Bojorge AL, Casanova-Carvajal O, Félix-González N, Fernández L, Madurga R, Sánchez-Cabezas S, Aznar E, Ramos M, Serrano-Olmedo JJ. Influence of medium viscosity and intracellular environment on the magnetization of superparamagnetic nanoparticles in silk fibroin solutions and 3T3 mouse fibroblast cell cultures. NANOTECHNOLOGY 2018; 29:385705. [PMID: 29947336 DOI: 10.1088/1361-6528/aacf4a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biomedical applications based on the magnetic properties of superparamagnetic iron oxide nanoparticles (SPIONs) may be altered by the mechanical attachment or cellular uptake of these nanoparticles. When nanoparticles interact with living cells, they are captured and internalized into intracellular compartments. Consequently, the magnetic behavior of the nanoparticles is modified. In this paper, we investigated the change in the magnetic response of 14 nm magnetic nanoparticles (Fe3O4) in different solutions, both as a stable liquid suspension (one of them mimicking the cellular cytoplasm) and when associated with cells. The field-dependent magnetization curves from inert fluids and cell cultures were determined by using an alternating gradient magnetometer, MicroMagTM 2900. The equipment was adapted to measure liquid samples because it was originally designed only for solids. In order to achieve this goal, custom sample holders were manufactured. Likewise, the nuclear magnetic relaxation dispersion profiles for the inert fluid were also measured by fast field cycling nuclear magnetic relaxation relaxometry. The results show that SPION magnetization in inert fluids was affected by the carrier liquid viscosity and the concentration. In cell cultures, the mechanical attachment or confinement of the SPIONs inside the cells accounted for the change in the dynamic magnetic behavior of the nanoparticles. Nevertheless, the magnetization value in the cell cultures was slightly lower than that of the fluid simulating the viscosity of cytoplasm, suggesting that magnetization loss was not only due to medium viscosity but also to a reduction in the mechanical degrees of freedom of SPIONs rotation and translation inside cells. The findings presented here provide information on the loss of magnetic properties when nanoparticles are suspended in viscous fluids or internalized in cells. This information could be exploited to improve biomedical applications based on magnetic properties such as magnetic hyperthermia, contrast agents and drug delivery.
Collapse
Affiliation(s)
- Ana Lorena Urbano-Bojorge
- Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain. Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Rivera-Rodriguez A, Chiu-Lam A, Morozov VM, Ishov AM, Rinaldi C. Magnetic nanoparticle hyperthermia potentiates paclitaxel activity in sensitive and resistant breast cancer cells. Int J Nanomedicine 2018; 13:4771-4779. [PMID: 30197514 PMCID: PMC6112810 DOI: 10.2147/ijn.s171130] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Introduction Overcoming resistance to antimitotic drugs, such as paclitaxel (PTX), would represent a major advance in breast cancer treatment. PTX induces mitotic block and sensitive cells exit mitosis dying by mitotic catastrophe. Resistant cells remain in block and continue proliferation after drug decay, denoting one of the PTX resistance mechanisms. Mild hyperthermia (HT) triggers mitotic exit of PTX-pretreated cells, overcoming PTX resistance and suggesting HT-forced mitotic exit as a promising strategy to potentiate PTX. Methods and results Superparamagnetic iron oxide nanoparticles (SPIONs) were used to deliver mild HT at 42°C in PTX-pretreated breast adenocarcinoma MCF-7 cells sensitive and resistant to PTX. To evaluate mechanism of cell death, cells were classified based on nuclear morphology into interphase, mitotic, micronucleated, and apoptotic. The combined PTX→SPION treatment resulted in an increase in the percentage of micronucleated cells, an indication of forced mitotic exit. Importantly, in PTX-resistant cells, the combination therapy using SPION HT helps to overcome resistance by reducing the number of cells relative to the control. Conclusion SPION HT potentiates PTX by significantly reducing cell survival, suggesting potential of combined treatment for future clinical translation.
Collapse
Affiliation(s)
- Angelie Rivera-Rodriguez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA,
| | - Andreina Chiu-Lam
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA,
| | - Viacheslav M Morozov
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA.,UF Health Cancer Center Gainesville, FL, USA,
| | - Alexander M Ishov
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA.,UF Health Cancer Center Gainesville, FL, USA,
| | - Carlos Rinaldi
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA, .,Department of Chemical Engineering, University of Florida, Gainesville, FL, USA, .,UF Health Cancer Center Gainesville, FL, USA,
| |
Collapse
|
54
|
Ramirez-Nuñez AL, Jimenez-Garcia LF, Goya GF, Sanz B, Santoyo-Salazar J. In vitro magnetic hyperthermia using polyphenol-coated Fe 3O 4@γFe 2O 3 nanoparticles from Cinnamomun verum and Vanilla planifolia: the concert of green synthesis and therapeutic possibilities. NANOTECHNOLOGY 2018; 29:074001. [PMID: 29256440 DOI: 10.1088/1361-6528/aaa2c1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- A L Ramirez-Nuñez
- Programa de Doctorado en Nanociencias y Nanotecnología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Av. IPN 2508, Zacatenco, 07360, Mexico
| | | | | | | | | |
Collapse
|
55
|
Nam PH, Lu LT, Linh PH, Manh DH, Thanh Tam LT, Phuc NX, Phong PT, Lee IJ. Polymer-coated cobalt ferrite nanoparticles: synthesis, characterization, and toxicity for hyperthermia applications. NEW J CHEM 2018. [DOI: 10.1039/c8nj01701h] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OA and OLA coated CoFe2O4 nanoparticles encapsulated with PMAO through hydrophobic interactions were developed for hyperthermia applications.
Collapse
Affiliation(s)
- P. H. Nam
- Institute of Materials Science
- Vietnam Academy of Science and Technology
- Hanoi
- Vietnam
- Graduate University of Science and Technology
| | - L. T. Lu
- Graduate University of Science and Technology
- Vietnam Academy of Science and Technology
- Hanoi
- Vietnam
- Institute for Tropical Technology
| | - P. H. Linh
- Institute of Materials Science
- Vietnam Academy of Science and Technology
- Hanoi
- Vietnam
| | - D. H. Manh
- Institute of Materials Science
- Vietnam Academy of Science and Technology
- Hanoi
- Vietnam
| | - Le Thi Thanh Tam
- Graduate University of Science and Technology
- Vietnam Academy of Science and Technology
- Hanoi
- Vietnam
| | | | - P. T. Phong
- Theoretical Physics Research Group
- Advanced Institute of Materials Science
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
| | - In-Ja Lee
- Department of Advanced Materials Chemistry
- Dongguk University-Gyeongju
- Gyeongju-Si
- South Korea
| |
Collapse
|
56
|
Tang Y, Jin T, Flesch RCC. Numerical Temperature Analysis of Magnetic Hyperthermia Considering Nanoparticle Clustering and Blood Vessels. IEEE TRANSACTIONS ON MAGNETICS 2017; 53:1-6. [DOI: 10.1109/tmag.2017.2722425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
57
|
A novel approach for rapid green synthesis of nearly mono-disperse iron oxide magnetic nanocubes with remarkable surface magnetic anisotropy density for enhancing hyperthermia performance. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
58
|
Wu K, Schliep K, Zhang X, Liu J, Ma B, Wang JP. Characterizing Physical Properties of Superparamagnetic Nanoparticles in Liquid Phase Using Brownian Relaxation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1604135. [PMID: 28374941 DOI: 10.1002/smll.201604135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/24/2017] [Indexed: 05/21/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively used as bioimaging contrast agents, heating sources for tumor therapy, and carriers for controlled drug delivery and release to target organs and tissues. These applications require elaborate tuning of the physical and magnetic properties of the SPIONs. The authors present here a search-coil-based method to characterize these properties. The nonlinear magnetic response of SPIONs to alternating current magnetic fields induces harmonic signals that contain information of these nanoparticles. By analyzing the phase lag and harmonic ratios in the SPIONs, the authors can predict the saturation magnetization, the average hydrodynamic size, the dominating relaxation processes of SPIONs, and the distinction between single- and multicore particles. The numerical simulations reveal that the harmonic ratios are inversely proportional to saturation magnetizations and core diameters of SPIONs, and that the phase lag is dependent on the hydrodynamic volumes of SPIONs, which corroborate the experimental results. Herein, the authors stress the feasibility of using search coils as a method to characterize physical and magnetic properties of SPIONs, which may be applied as building blocks in nanoparticle characterization devices.
Collapse
Affiliation(s)
- Kai Wu
- The Center for Micromagnetics and Information Technologies (MINT), Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Karl Schliep
- Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Xiaowei Zhang
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jinming Liu
- The Center for Micromagnetics and Information Technologies (MINT), Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Bin Ma
- Department of Optical Science and Engineering, Fudan University, Shanghai, 200433, P. R. China
| | - Jian-Ping Wang
- The Center for Micromagnetics and Information Technologies (MINT), Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
59
|
Elgqvist J. Nanoparticles as Theranostic Vehicles in Experimental and Clinical Applications-Focus on Prostate and Breast Cancer. Int J Mol Sci 2017; 18:E1102. [PMID: 28531102 PMCID: PMC5455010 DOI: 10.3390/ijms18051102] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 12/27/2022] Open
Abstract
Prostate and breast cancer are the second most and most commonly diagnosed cancer in men and women worldwide, respectively. The American Cancer Society estimates that during 2016 in the USA around 430,000 individuals were diagnosed with one of these two types of cancers, and approximately 15% of them will die from the disease. In Europe, the rate of incidences and deaths are similar to those in the USA. Several different more or less successful diagnostic and therapeutic approaches have been developed and evaluated in order to tackle this issue and thereby decrease the death rates. By using nanoparticles as vehicles carrying both diagnostic and therapeutic molecular entities, individualized targeted theranostic nanomedicine has emerged as a promising option to increase the sensitivity and the specificity during diagnosis, as well as the likelihood of survival or prolonged survival after therapy. This article presents and discusses important and promising different kinds of nanoparticles, as well as imaging and therapy options, suitable for theranostic applications. The presentation of different nanoparticles and theranostic applications is quite general, but there is a special focus on prostate cancer. Some references and aspects regarding breast cancer are however also presented and discussed. Finally, the prostate cancer case is presented in more detail regarding diagnosis, staging, recurrence, metastases, and treatment options available today, followed by possible ways to move forward applying theranostics for both prostate and breast cancer based on promising experiments performed until today.
Collapse
Affiliation(s)
- Jörgen Elgqvist
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden.
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden.
| |
Collapse
|
60
|
Belkahla H, Herlem G, Picaud F, Gharbi T, Hémadi M, Ammar S, Micheau O. TRAIL-NP hybrids for cancer therapy: a review. NANOSCALE 2017; 9:5755-5768. [PMID: 28443893 DOI: 10.1039/c7nr01469d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cancer is a worldwide health problem. It is now considered as a leading cause of morbidity and mortality in developed countries. In the last few decades, considerable progress has been made in anti-cancer therapies, allowing the cure of patients suffering from this disease, or at least helping to prolong their lives. Several cancers, such as those of the lung and pancreas, are still devastating in the absence of therapeutic options. In the early 90s, TRAIL (Tumor Necrosis Factor-related apoptosis-inducing ligand), a cytokine belonging to the TNF superfamily, attracted major interest in oncology owing to its selective anti-tumor properties. Clinical trials using soluble TRAIL or antibodies targeting the two main agonist receptors (TRAIL-R1 and TRAIL-R2) have, however, failed to demonstrate their efficacy in the clinic. TRAIL is expressed on the surface of natural killer or CD8+ T activated cells and contributes to tumor surveillance. Nanoparticles functionalized with TRAIL mimic membrane-TRAIL and exhibit stronger antitumoral properties than soluble TRAIL or TRAIL receptor agonist antibodies. This review provides an update on the association and the use of nanoparticles associated with TRAIL for cancer therapy.
Collapse
Affiliation(s)
- H Belkahla
- Nanomedicine Lab, EA 4662, Université de Bourgogne Franche-Comté, Besançon, France
| | | | | | | | | | | | | |
Collapse
|
61
|
Cabrera D, Lak A, Yoshida T, Materia ME, Ortega D, Ludwig F, Guardia P, Sathya A, Pellegrino T, Teran FJ. Unraveling viscosity effects on the hysteresis losses of magnetic nanocubes. NANOSCALE 2017; 9:5094-5101. [PMID: 28397910 DOI: 10.1039/c7nr00810d] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hysteresis losses in magnetic nanoparticles constitute the basis of magnetic hyperthermia for delivering a local thermal stress. Nevertheless, this therapeutic modality is only to be realised through a careful appraisal of the best possible intrinsic and extrinsic conditions to the nanoparticles for which they maximise and preserve their heating capabilities. Low frequency (100 kHz) hysteresis loops accurately probe the dynamical magnetic response of magnetic nanoparticles in a more reliable manner than calorimetry measurements, providing conclusive quantitative data under different experimental conditions. We consider here a set of iron oxide or cobalt ferrite nanocubes of different sizes, through which we experimentally and theoretically study the influence of the viscosity of the medium on the low frequency hysteresis loops of magnetic colloids, and hence their ability to produce and dissipate heat to the surroundings. We analyse the role of nanoparticle size, size distribution, chemical composition, and field intensity in making the magnetisation dynamics sensitive to viscosity. Numerical simulations using the stochastic Landau-Lifshitz-Gilbert equation model the experimental observations in excellent agreement. These results represent an important contribution towards predicting viscosity effects and hence to maximise heat dissipation from magnetic nanoparticles regardless of the environment.
Collapse
Affiliation(s)
- D Cabrera
- iMdea Nanociencia, Campus Universitario de Cantoblanco, 28049 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Barium Hexaferrite Magnetic Fluid: Preparation, Characterization and the In Vitro Identification of Cytotoxicity and Antibacterial Activity. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0527-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
63
|
Multicomponent, Tumor-Homing Chitosan Nanoparticles for Cancer Imaging and Therapy. Int J Mol Sci 2017; 18:ijms18030594. [PMID: 28282891 PMCID: PMC5372610 DOI: 10.3390/ijms18030594] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/06/2017] [Indexed: 01/22/2023] Open
Abstract
Current clinical methods for cancer diagnosis and therapy have limitations, although survival periods are increasing as medical technologies develop. In most cancer cases, patient survival is closely related to cancer stage. Late-stage cancer after metastasis is very challenging to cure because current surgical removal of cancer is not precise enough and significantly affects bystander normal tissues. Moreover, the subsequent chemotherapy and radiation therapy affect not only malignant tumors, but also healthy tissues. Nanotechnologies for cancer treatment have the clear objective of solving these issues. Nanoparticles have been developed to more accurately differentiate early-stage malignant tumors and to treat only the tumors while dramatically minimizing side effects. In this review, we focus on recent chitosan-based nanoparticles developed with the goal of accurate cancer imaging and effective treatment. Regarding imaging applications, we review optical and magnetic resonance cancer imaging in particular. Regarding cancer treatments, we review various therapeutic methods that use chitosan-based nanoparticles, including chemo-, gene, photothermal, photodynamic and magnetic therapies.
Collapse
|
64
|
Ahmad F, Zhou Y. Pitfalls and Challenges in Nanotoxicology: A Case of Cobalt Ferrite (CoFe 2O 4) Nanocomposites. Chem Res Toxicol 2017; 30:492-507. [PMID: 28118545 DOI: 10.1021/acs.chemrestox.6b00377] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nanotechnology is developing at a rapid pace with promises of a brilliant socio-economic future. The apprehensions of vivid future involvement with nanotechnology make nanoobjects ubiquitous in the macroscopic world of humans. Nanotechnology helps us to visualize the new mysterious horizons in engineering, sophisticated electronics, environmental remediation, biosensing, and nanomedicine. In all these hotspots, cobalt ferrite (CoFe) nanoparticles (NPs) are outstanding contestants because of their astonishing controllable physicochemical and magnetic properties with ease of synthesis methods. The extensive use of CoFe NPs may result in CoFe NPs easily penetrating the human body unintentionally by ingestion, inhalation, adsorption, etc. and intentionally being instilled into the human body during biomedical diagnostics and treatment. After being housed in the human body, it might induce oxidative stress, cytotoxicity, genotoxicity, inflammation, apoptosis, and developmental, metabolic and hormonal abnormalities. In this review, we compiled the toxicity knowledge of CoFe NPs aimed to provide the safe usage of this breed of nanomaterials.
Collapse
Affiliation(s)
- Farooq Ahmad
- College of Chemical Engineering, Zhejiang University of Technology , Hangzhou 310032, China.,State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Ying Zhou
- College of Chemical Engineering, Zhejiang University of Technology , Hangzhou 310032, China.,Research Center of Analysis and Measurement, Zhejiang University of Technology , 18 Chaowang Road, Hangzhou 310032, China
| |
Collapse
|
65
|
Sanz B, Calatayud MP, De Biasi E, Lima E, Mansilla MV, Zysler RD, Ibarra MR, Goya GF. In Silico before In Vivo: how to Predict the Heating Efficiency of Magnetic Nanoparticles within the Intracellular Space. Sci Rep 2016; 6:38733. [PMID: 27924942 PMCID: PMC5141417 DOI: 10.1038/srep38733] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/14/2016] [Indexed: 01/08/2023] Open
Abstract
This work aims to demonstrate the need for in silico design via numerical simulation to produce optimal Fe3O4-based magnetic nanoparticles (MNPs) for magnetic hyperthermia by minimizing the impact of intracellular environments on heating efficiency. By including the relevant magnetic parameters, such as magnetic anisotropy and dipolar interactions, into a numerical model, the heating efficiency of as prepared colloids was preserved in the intracellular environment, providing the largest in vitro specific power absorption (SPA) values yet reported. Dipolar interactions due to intracellular agglomeration, which are included in the simulated SPA, were found to be the main cause of changes in the magnetic relaxation dynamics of MNPs under in vitro conditions. These results pave the way for the magnetism-based design of MNPs that can retain their heating efficiency in vivo, thereby improving the outcome of clinical hyperthermia experiments.
Collapse
Affiliation(s)
- Beatriz Sanz
- Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - M. Pilar Calatayud
- Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Emilio De Biasi
- Centro Atómico Bariloche/CONICET, Bariloche, CP 8400, Argentina
| | - Enio Lima
- Centro Atómico Bariloche/CONICET, Bariloche, CP 8400, Argentina
| | | | | | - M. Ricardo Ibarra
- Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Gerardo F. Goya
- Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
66
|
Nakanishi T, Matsuda S, Kaneko K, Zhang H, Osaka T. In VitroInvestigation of the Effect of Intracellular and Extracellular Magnetite Nanoparticles Subjected to Alternating Magnetic Field on MCF-7 Human Breast Cancer Cells. ChemistrySelect 2016. [DOI: 10.1002/slct.201601179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Takuya Nakanishi
- Research Organization for Nano & Life Innovation; Waseda University; 513 Wasedatsurumaki-cho, Shinjuku-ku Tokyo 162-0041 Japan
| | - Shofu Matsuda
- Graduate School of Advanced Science and Engineering; Waseda University; 3-4-1 Okubo, Shunjuku-ku Tokyo 169-8555 Japan
| | - Kisako Kaneko
- Graduate School of Advanced Science and Engineering; Waseda University; 3-4-1 Okubo, Shunjuku-ku Tokyo 169-8555 Japan
| | - Hong Zhang
- Research Organization for Nano & Life Innovation; Waseda University; 513 Wasedatsurumaki-cho, Shinjuku-ku Tokyo 162-0041 Japan
| | - Tetsuya Osaka
- Research Organization for Nano & Life Innovation; Waseda University; 513 Wasedatsurumaki-cho, Shinjuku-ku Tokyo 162-0041 Japan
- Graduate School of Advanced Science and Engineering; Waseda University; 3-4-1 Okubo, Shunjuku-ku Tokyo 169-8555 Japan
| |
Collapse
|
67
|
Qiao J, Mu X, Qi L. Construction of fluorescent polymeric nano-thermometers for intracellular temperature imaging: A review. Biosens Bioelectron 2016; 85:403-413. [DOI: 10.1016/j.bios.2016.04.070] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/14/2016] [Accepted: 04/21/2016] [Indexed: 12/15/2022]
|
68
|
Ansari L, Malaekeh-Nikouei B. Magnetic silica nanocomposites for magnetic hyperthermia applications. Int J Hyperthermia 2016; 33:354-363. [DOI: 10.1080/02656736.2016.1243736] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Legha Ansari
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bizhan Malaekeh-Nikouei
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
69
|
Jeon S, Oberreit DR, Van Schooneveld G, Gao Z, Bischof JC, Haynes CL, Hogan CJ. Ion-Mobility-Based Quantification of Surface-Coating-Dependent Binding of Serum Albumin to Superparamagnetic Iron Oxide Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:24482-24490. [PMID: 27580340 DOI: 10.1021/acsami.6b09070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Protein binding and protein-induced nanoparticle aggregation are known to occur for a variety of nanomaterials, with the extent of binding and aggregation highly dependent on nanoparticle surface properties. However, often lacking are techniques that enable quantification of the extent of protein binding and aggregation, particularly for nanoparticles with polydisperse size distributions. In this study, we adapt ion mobility spectrometry (IMS) to examine the binding of bovine serum albumin to commercially available anionic-surfactant-coated superparamagnetic iron oxide nanoparticles (SPIONs), which are initially ∼21 nm in mean mobility diameter and have a polydisperse size distribution function (geometric standard deviation near 1.4). IMS, carried out with a hydrosol-to-aerosol converting nebulizer, a differential mobility analyzer, and a condensation particle counter, enables measurements of SPION size distribution functions for varying BSA/SPION number concentration ratios. IMS measurements suggest that initially (at BSA concentrations below 50 nM) BSA binds reversibly to SPION surfaces with a binding site density in the 0.05-0.08 nm(-2) range. However, at higher BSA concentrations, BSA induces SPION-SPION aggregation, evidenced by larger shifts in SPION size distribution functions (mean diameters beyond 40 nm for BSA concentrations near 100 nM) and geometric standard deviations (near 1.3) consistent with self-preserving aggregation theories. The onset of BSA aggregation is correlated with a modest but statistically significant decrease in the specific absorption rate (SAR) of SPIONs placed within an alternating magnetic field. The coating of SPIONs with mesoporous silica (MS-SPIONs) as well as PEGylation (MS-SPIONs-PEG) is found to completely mitigate BSA binding and BSA-induced aggregation; IMS-inferred size distribution functions are insensitive to BSA concentration for MS-SPIONs and MS-SPIONs-PEG. The SARs of MS-SPIONs are additionally insensitive to BSA concentration, confirming the SAR decrease is linked to BSA-induced aggregation.
Collapse
|
70
|
Jeon S, Hurley KR, Bischof JC, Haynes CL, Hogan CJ. Quantifying intra- and extracellular aggregation of iron oxide nanoparticles and its influence on specific absorption rate. NANOSCALE 2016; 8:16053-64. [PMID: 27548050 DOI: 10.1039/c6nr04042j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A promising route to cancer treatment is hyperthermia, facilitated by superparamagnetic iron oxide nanoparticles (SPIONs). After exposure to an alternating external magnetic field, SPIONs generate heat, quantified by their specific absorption rate (SAR, in W g(-1) Fe). However, without surface functionalization, commercially available, high SAR SPIONs (EMG 308, Ferrotec, USA) aggregate in aqueous suspensions; this has been shown to reduce SAR. Further reduction in SAR has been observed for SPIONs in suspensions containing cells, but the origin of this further reduction has not been made clear. Here, we use image analysis methods to quantify the structures of SPION aggregates in the extra- and intracellular milieu of LNCaP cell suspensions. We couple image characterization with nanoparticle tracking analysis and SAR measurements of SPION aggregates in cell-free suspensions, to better quantify the influence of cellular uptake on SPION aggregates and ultimately its influence on SAR. We find that in both the intra- and extracellular milieu, SPION aggregates are well-described by a quasifractal model, with most aggregates having fractal dimensions in the 1.6-2.2 range. Intracellular aggregates are found to be significantly larger than extracellular aggregates and are commonly composed of more than 10(3) primary SPION particles (hence they are "superaggregates"). By using high salt concentrations to generate such superaggregates and measuring the SAR of suspensions, we confirm that it is the formation of superaggregates in the intracellular milieu that negatively impacts SAR, reducing it from above 200 W g(-1) Fe for aggregates composed of fewer than 50 primary particles to below 50 W g(-1) for superaggregates. While the underlying physical mechanism by which aggregation leads to reduction in SAR remains to be determined, the methods developed in this study provide insight into how cellular uptake influences the extent of SPION aggregation, and enable estimation of the reduction of SAR brought about via uptake induced aggregation.
Collapse
Affiliation(s)
- Seongho Jeon
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | | | | | | | | |
Collapse
|
71
|
Farzin A, Fathi M, Emadi R. Multifunctional magnetic nanostructured hardystonite scaffold for hyperthermia, drug delivery and tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 70:21-31. [PMID: 27770883 DOI: 10.1016/j.msec.2016.08.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/21/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
Hyperthermia and local drug delivery have been proposed as potential therapeutic approaches for killing cancer cells. The development of bioactive materials such as Hardystonite (HT) with magnetic and drug delivery properties can potentially meet this target. This new class of magnetic bioceramic can replace the widely used magnetic iron oxide nanoparticles, whose long-term biocompatibility is not clear. Magnetic HT can be potentially employed to develop new ceramic scaffolds for bone surgery and anticancer therapies. With this in mind, a synthesis procedure was developed to prepare multifunctional bioactive scaffold for tissue engineering, hyperthermia and drug delivery applications. To this end, iron (Fe3+)-containing HT scaffolds were prepared. The effect of Fe on biological, magnetic and drug delivery properties of HT scaffolds were investigated. The results showed that obtained Fe-HT is bioactive and magnetic with no magnetite or maghemite as secondary phases. The Fe-HT scaffolds obtained also possessed high specific surface areas and demonstrated sustained drug delivery. These results potentially open new aspects for biomaterials aimed at regeneration of large-bone defects caused by malignant bone tumors through a combination of hyperthermia, local drug delivery and osteoconductivity.
Collapse
Affiliation(s)
- Ali Farzin
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran.
| | - Mohammadhossein Fathi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran; Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rahmatollah Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran
| |
Collapse
|
72
|
Ruggiero MR, Crich SG, Sieni E, Sgarbossa P, Forzan M, Cavallari E, Stefania R, Dughiero F, Aime S. Magnetic hyperthermia efficiency and (1)H-NMR relaxation properties of iron oxide/paclitaxel-loaded PLGA nanoparticles. NANOTECHNOLOGY 2016; 27:285104. [PMID: 27265726 DOI: 10.1088/0957-4484/27/28/285104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Magnetic iron oxide nanoparticles (Fe-NPs) can be exploited in biomedicine as agents for magnetic fluid hyperthermia (MFH) treatments and as contrast enhancers in magnetic resonance imaging. New, oleate-covered, iron oxide particles have been prepared either by co-precipitation or thermal decomposition methods and incorporated into poly(lactic-co-glycolic acid) nanoparticles (PLGA-Fe-NPs) to improve their biocompatibility and in vivo stability. Moreover, the PLGA-Fe-NPs have been loaded with paclitaxel to pursue an MFH-triggered drug release. Remarkably, it has been found that the nanoparticle formulations are characterized by peculiar (1)H nuclear magnetic relaxation dispersion (NMRD) profiles that directly correlate with their heating potential when exposed to an alternating magnetic field. By prolonging the magnetic field exposure to 30 min, a significant drug release was observed for PLGA-Fe-NPs in the case of the larger-sized magnetic nanoparticles. Furthermore, the immobilization of lipophilic Fe-NPs in PLGA-NPs also made it possible to maintain Néel relaxation as the dominant relaxation contribution in the presence of large iron oxide cores (diameters of 15-20 nm), with the advantage of preserving their efficiency when they are entrapped in the intracellular environment. The results reported herein show that NMRD profiles are a useful tool for anticipating the heating capabilities of Fe-NPs designed for MFH applications.
Collapse
Affiliation(s)
- Maria R Ruggiero
- University of Torino, Department of Molecular Biotechnology and Health Sciences, via Nizza 52, Torino, Italy. SAET S.p.A via Torino, 213 10040 Leinì, Torino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Waigh TA. Advances in the microrheology of complex fluids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:074601. [PMID: 27245584 DOI: 10.1088/0034-4885/79/7/074601] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
New developments in the microrheology of complex fluids are considered. Firstly the requirements for a simple modern particle tracking microrheology experiment are introduced, the error analysis methods associated with it and the mathematical techniques required to calculate the linear viscoelasticity. Progress in microrheology instrumentation is then described with respect to detectors, light sources, colloidal probes, magnetic tweezers, optical tweezers, diffusing wave spectroscopy, optical coherence tomography, fluorescence correlation spectroscopy, elastic- and quasi-elastic scattering techniques, 3D tracking, single molecule methods, modern microscopy methods and microfluidics. New theoretical techniques are also reviewed such as Bayesian analysis, oversampling, inversion techniques, alternative statistical tools for tracks (angular correlations, first passage probabilities, the kurtosis, motor protein step segmentation etc), issues in micro/macro rheological agreement and two particle methodologies. Applications where microrheology has begun to make some impact are also considered including semi-flexible polymers, gels, microorganism biofilms, intracellular methods, high frequency viscoelasticity, comb polymers, active motile fluids, blood clots, colloids, granular materials, polymers, liquid crystals and foods. Two large emergent areas of microrheology, non-linear microrheology and surface microrheology are also discussed.
Collapse
Affiliation(s)
- Thomas Andrew Waigh
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK. Photon Science Institute, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK
| |
Collapse
|
74
|
Esmaeili E, Chaydareh RG, Farsad S, Rounaghi SA, Mollayi N. Enhanced Heat Transfer Properties of Magnetite Nanofluids due to Neel and Brownian Relaxation Mechanisms. CHEM ENG COMMUN 2016. [DOI: 10.1080/00986445.2016.1150842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Elaheh Esmaeili
- Nanotechnology Research Center, Birjand University of Technology, Birjand, Iran
| | | | - Saeed Farsad
- Nanotechnology Research Center, Birjand University of Technology, Birjand, Iran
| | | | - Nader Mollayi
- Nanotechnology Research Center, Birjand University of Technology, Birjand, Iran
| |
Collapse
|
75
|
Chung RJ, Ou KL, Chen SP, Liu HL. Preparation of ICG-FePt nanoparticles promising for magnetic resonance imaging contrast agent and hyperthermia applications. ADV POWDER TECHNOL 2016. [DOI: 10.1016/j.apt.2016.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
76
|
Samanta A, Medintz IL. Nanoparticles and DNA - a powerful and growing functional combination in bionanotechnology. NANOSCALE 2016; 8:9037-95. [PMID: 27080924 DOI: 10.1039/c5nr08465b] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Functionally integrating DNA and other nucleic acids with nanoparticles in all their different physicochemical forms has produced a rich variety of composite nanomaterials which, in many cases, display unique or augmented properties due to the synergistic activity of both components. These capabilities, in turn, are attracting greater attention from various research communities in search of new nanoscale tools for diverse applications that include (bio)sensing, labeling, targeted imaging, cellular delivery, diagnostics, therapeutics, theranostics, bioelectronics, and biocomputing to name just a few amongst many others. Here, we review this vibrant and growing research area from the perspective of the materials themselves and their unique capabilities. Inorganic nanocrystals such as quantum dots or those made from gold or other (noble) metals along with metal oxides and carbon allotropes are desired as participants in these hybrid materials since they can provide distinctive optical, physical, magnetic, and electrochemical properties. Beyond this, synthetic polymer-based and proteinaceous or viral nanoparticulate materials are also useful in the same role since they can provide a predefined and biocompatible cargo-carrying and targeting capability. The DNA component typically provides sequence-based addressability for probes along with, more recently, unique architectural properties that directly originate from the burgeoning structural DNA field. Additionally, DNA aptamers can also provide specific recognition capabilities against many diverse non-nucleic acid targets across a range of size scales from ions to full protein and cells. In addition to appending DNA to inorganic or polymeric nanoparticles, purely DNA-based nanoparticles have recently surfaced as an excellent assembly platform and have started finding application in areas like sensing, imaging and immunotherapy. We focus on selected and representative nanoparticle-DNA materials and highlight their myriad applications using examples from the literature. Overall, it is clear that this unique functional combination of nanomaterials has far more to offer than what we have seen to date and as new capabilities for each of these materials are developed, so, too, will new applications emerge.
Collapse
Affiliation(s)
- Anirban Samanta
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA. and College of Science, George Mason University, Fairfax, Virginia 22030, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| |
Collapse
|
77
|
Darwish MSA, Nguyen NHA, Ševců A, Stibor I, Smoukov SK. Dual-modality self-heating and antibacterial polymer-coated nanoparticles for magnetic hyperthermia. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:88-95. [PMID: 27040199 DOI: 10.1016/j.msec.2016.02.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/28/2016] [Accepted: 02/17/2016] [Indexed: 01/09/2023]
Abstract
Multifunctional nanoparticles for magnetic hyperthermia which simultaneously display antibacterial properties promise to decrease bacterial infections co-localized with cancers. Current methods synthesize such particles by multi-step procedures, and systematic comparisons of antibacterial properties between coatings, as well as measurements of specific absorption rate (SAR) during magnetic hyperthermia are lacking. Here we report the novel simple method for synthesis of magnetic nanoparticles with shells of oleic acid (OA), polyethyleneimine (PEI) and polyethyleneimine-methyl cellulose (PEI-mC). We compare their antibacterial properties against single gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria as well as biofilms. Magnetite nanoparticles (MNPs) with PEI-methyl cellulose were found to be most effective against both S. aureus and E. coli with concentration for 10% growth inhibition (EC10) of <150 mg/l. All the particles have high SAR and are effective for heat-generation in alternating magnetic fields.
Collapse
Affiliation(s)
- Mohamed S A Darwish
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic; Egyptian Petroleum Research Institute, 1 Ahmed El-Zomor Street, El Zohour Region, Nasr City, 11727 Cairo, Egypt; Department of Materials Science and Metallurgy, 27 Charles Babbage Road, University of Cambridge, CB3 0FS, United Kingdom
| | - Nhung H A Nguyen
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic
| | - Alena Ševců
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic
| | - Ivan Stibor
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic
| | - Stoyan K Smoukov
- Department of Materials Science and Metallurgy, 27 Charles Babbage Road, University of Cambridge, CB3 0FS, United Kingdom.
| |
Collapse
|
78
|
Sapir-Lekhovitser Y, Rotenberg MY, Jopp J, Friedman G, Polyak B, Cohen S. Magnetically actuated tissue engineered scaffold: insights into mechanism of physical stimulation. NANOSCALE 2016; 8:3386-3399. [PMID: 26790538 PMCID: PMC4772769 DOI: 10.1039/c5nr05500h] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Providing the right stimulatory conditions resulting in efficient tissue promoting microenvironment in vitro and in vivo is one of the ultimate goals in tissue development for regenerative medicine. It has been shown that in addition to molecular signals (e.g. growth factors) physical cues are also required for generation of functional cell constructs. These cues are particularly relevant to engineering of biological tissues, within which mechanical stress activates mechano-sensitive receptors, initiating biochemical pathways which lead to the production of functionally mature tissue. Uniform magnetic fields coupled with magnetizable nanoparticles embedded within three dimensional (3D) scaffold structures remotely create transient physical forces that can be transferrable to cells present in close proximity to the nanoparticles. This study investigated the hypothesis that magnetically responsive alginate scaffold can undergo reversible shape deformation due to alignment of scaffold's walls in a uniform magnetic field. Using custom made Helmholtz coil setup adapted to an Atomic Force Microscope we monitored changes in matrix dimensions in situ as a function of applied magnetic field, concentration of magnetic particles within the scaffold wall structure and rigidity of the matrix. Our results show that magnetically responsive scaffolds exposed to an externally applied time-varying uniform magnetic field undergo a reversible shape deformation. This indicates on possibility of generating bending/stretching forces that may exert a mechanical effect on cells due to alternating pattern of scaffold wall alignment and relaxation. We suggest that the matrix structure deformation is produced by immobilized magnetic nanoparticles within the matrix walls resulting in a collective alignment of scaffold walls upon magnetization. The estimated mechanical force that can be imparted on cells grown on the scaffold wall at experimental conditions is in the order of 1 pN, which correlates well with reported threshold to induce mechanotransduction effects on cellular level. This work is our next step in understanding of how to accurately create proper stimulatory microenvironment for promotion of cellular organization to form mature tissue engineered constructs.
Collapse
Affiliation(s)
- Yulia Sapir-Lekhovitser
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Menahem Y. Rotenberg
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Juergen Jopp
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Gary Friedman
- Department of Surgery, Drexel University College of Medicine, Philadelphia PA 19102, USA
- Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Boris Polyak
- Department of Surgery, Drexel University College of Medicine, Philadelphia PA 19102, USA
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA 19102, USA
| | - Smadar Cohen
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Center for Regenerative Medicine and Stem Cell (RMSC) Research, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
79
|
Hanini A, Lartigue L, Gavard J, Schmitt A, Kacem K, Wilhelm C, Gazeau F, Chau F, Ammar S. Thermosensitivity profile of malignant glioma U87-MG cells and human endothelial cells following γ-Fe2O3NPs internalization and magnetic field application. RSC Adv 2016. [DOI: 10.1039/c5ra22960j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study the thermosensitivity of malignant glioblastoma cells (U87-MG), incubated with superparamagnetic 10 nm sized polyol-made γ-Fe2O3particles and exposed to an alternating magnetic field (700 kHz, 23.10 kA m−1) for 1 hour, is evidenced.
Collapse
Affiliation(s)
- A. Hanini
- ITODYS
- Université Paris Diderot
- SPC
- CNRS UMR-7086
- Paris
| | - L. Lartigue
- MSC
- Université Paris Diderot
- SPC
- CNRS UMR-7057
- Paris
| | - J. Gavard
- Institut Cochin
- Université Paris Descartes
- SPC
- CNRS UMR-8104
- Paris
| | - A. Schmitt
- Institut Cochin
- Université Paris Descartes
- SPC
- CNRS UMR-8104
- Paris
| | - K. Kacem
- LPI
- Faculté des Sciences de Bizerte
- Université de Carthage
- Zarzouna
- Tunisia
| | - C. Wilhelm
- MSC
- Université Paris Diderot
- SPC
- CNRS UMR-7057
- Paris
| | - F. Gazeau
- MSC
- Université Paris Diderot
- SPC
- CNRS UMR-7057
- Paris
| | - F. Chau
- ITODYS
- Université Paris Diderot
- SPC
- CNRS UMR-7086
- Paris
| | - S. Ammar
- ITODYS
- Université Paris Diderot
- SPC
- CNRS UMR-7086
- Paris
| |
Collapse
|
80
|
Ovejero JG, Cabrera D, Carrey J, Valdivielso T, Salas G, Teran FJ. Effects of inter- and intra-aggregate magnetic dipolar interactions on the magnetic heating efficiency of iron oxide nanoparticles. Phys Chem Chem Phys 2016; 18:10954-63. [DOI: 10.1039/c6cp00468g] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Iron oxide nanoparticles have found biomedical applications as therapeutic and/or diagnostic agents.
Collapse
Affiliation(s)
- J. G. Ovejero
- Instituto de Ciencia de Materiales de Madrid
- ICMM-CSIC
- 28049 Madrid
- Spain
| | | | - J. Carrey
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO)
- Université de Toulouse
- INSA
- UPS
- F-31077 Toulouse
| | | | - G. Salas
- Instituto de Ciencia de Materiales de Madrid
- ICMM-CSIC
- 28049 Madrid
- Spain
- iMdea Nanociencia
| | - F. J. Teran
- iMdea Nanociencia
- 28049 Madrid
- Spain
- Nanobiotecnología (iMdea Nanociencia)
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC)
| |
Collapse
|
81
|
Hauser AK, Wydra RJ, Stocke NA, Anderson KW, Hilt JZ. Magnetic nanoparticles and nanocomposites for remote controlled therapies. J Control Release 2015; 219:76-94. [PMID: 26407670 PMCID: PMC4669063 DOI: 10.1016/j.jconrel.2015.09.039] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/19/2015] [Indexed: 12/17/2022]
Abstract
This review highlights the state-of-the-art in the application of magnetic nanoparticles (MNPs) and their composites for remote controlled therapies. Novel macro- to nano-scale systems that utilize remote controlled drug release due to actuation of MNPs by static or alternating magnetic fields and magnetic field guidance of MNPs for drug delivery applications are summarized. Recent advances in controlled energy release for thermal therapy and nanoscale energy therapy are addressed as well. Additionally, studies that utilize MNP-based thermal therapy in combination with other treatments such as chemotherapy or radiation to enhance the efficacy of the conventional treatment are discussed.
Collapse
Affiliation(s)
- Anastasia K Hauser
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Robert J Wydra
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Nathanael A Stocke
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Kimberly W Anderson
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - J Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
82
|
Hohlbein N, Shaaban A, Schmidt A. Remote-controlled activation of self-healing behavior in magneto-responsive ionomeric composites. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.04.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
83
|
Shi D, Sadat ME, Dunn AW, Mast DB. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications. NANOSCALE 2015; 7:8209-32. [PMID: 25899408 DOI: 10.1039/c5nr01538c] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Iron oxide exhibits fascinating physical properties especially in the nanometer range, not only from the standpoint of basic science, but also for a variety of engineering, particularly biomedical applications. For instance, Fe3O4 behaves as superparamagnetic as the particle size is reduced to a few nanometers in the single-domain region depending on the type of the material. The superparamagnetism is an important property for biomedical applications such as magnetic hyperthermia therapy of cancer. In this review article, we report on some of the most recent experimental and theoretical studies on magnetic heating mechanisms under an alternating (AC) magnetic field. The heating mechanisms are interpreted based on Néel and Brownian relaxations, and hysteresis loss. We also report on the recently discovered photoluminescence of Fe3O4 and explain the emission mechanisms in terms of the electronic band structures. Both optical and magnetic properties are correlated to the materials parameters of particle size, distribution, and physical confinement. By adjusting these parameters, both optical and magnetic properties are optimized. An important motivation to study iron oxide is due to its high potential in biomedical applications. Iron oxide nanoparticles can be used for MRI/optical multimodal imaging as well as the therapeutic mediator in cancer treatment. Both magnetic hyperthermia and photothermal effect has been utilized to kill cancer cells and inhibit tumor growth. Once the iron oxide nanoparticles are up taken by the tumor with sufficient concentration, greater localization provides enhanced effects over disseminated delivery while simultaneously requiring less therapeutic mass to elicit an equal response. Multi-modality provides highly beneficial co-localization. For magnetite (Fe3O4) nanoparticles the co-localization of diagnostics and therapeutics is achieved through magnetic based imaging and local hyperthermia generation through magnetic field or photon application. Here, Fe3O4 nanoparticles are shown to provide excellent conjugation bases for entrapment of therapeutic molecules, fluorescent agents, and targeting ligands; enhancement of solid tumor treatment is achieved through co-application of local hyperthermia with chemotherapeutic agents.
Collapse
Affiliation(s)
- Donglu Shi
- The Materials Science and Engineering Program, Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA.
| | | | | | | |
Collapse
|
84
|
Liu XL, Yang Y, Ng CT, Zhao LY, Zhang Y, Bay BH, Fan HM, Ding J. Magnetic vortex nanorings: a new class of hyperthermia agent for highly efficient in vivo regression of tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:1939-44. [PMID: 25655680 DOI: 10.1002/adma.201405036] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/16/2015] [Indexed: 05/20/2023]
Affiliation(s)
- Xiao Li Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; Department of Materials Science & Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, 117574, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Andreu I, Natividad E, Solozábal L, Roubeau O. Nano-objects for addressing the control of nanoparticle arrangement and performance in magnetic hyperthermia. ACS NANO 2015; 9:1408-19. [PMID: 25658023 DOI: 10.1021/nn505781f] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
One current challenge of magnetic hyperthermia is achieving therapeutic effects with a minimal amount of nanoparticles, for which improved heating abilities are continuously pursued. However, it is demonstrated here that the performance of magnetite nanocubes in a colloidal solution is reduced by 84% when they are densely packed in three-dimensional arrangements similar to those found in cell vesicles after nanoparticle internalization. This result highlights the essential role played by the nanoparticle arrangement in heating performance, uncontrolled in applications. A strategy based on the elaboration of nano-objects able to confine nanocubes in a fixed arrangement is thus considered here to improve the level of control. The obtained specific absorption rate results show that nanoworms and nanospheres with fixed one- and two-dimensional nanocube arrangements, respectively, succeed in reducing the loss of heating power upon agglomeration, suggesting a change in the kind of nano-object to be used in magnetic hyperthermia.
Collapse
Affiliation(s)
- Irene Andreu
- Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza , Campus Río Ebro, María de Luna 3, 50018 Zaragoza, Spain
| | | | | | | |
Collapse
|
86
|
Stanley SA, Sauer J, Kane RS, Dordick JS, Friedman JM. Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nat Med 2015; 21:92-98. [PMID: 25501906 PMCID: PMC4894538 DOI: 10.1038/nm.3730] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 08/11/2014] [Indexed: 12/15/2022]
Abstract
Means for temporally regulating gene expression and cellular activity are invaluable for elucidating underlying physiological processes and would have therapeutic implications. Here we report the development of a genetically encoded system for remote regulation of gene expression by low-frequency radio waves (RFs) or a magnetic field. Iron oxide nanoparticles are synthesized intracellularly as a GFP-tagged ferritin heavy and light chain fusion. The ferritin nanoparticles associate with a camelid anti-GFP-transient receptor potential vanilloid 1 fusion protein, αGFP-TRPV1, and can transduce noninvasive RF or magnetic fields into channel activation, also showing that TRPV1 can transduce a mechanical stimulus. This, in turn, initiates calcium-dependent transgene expression. In mice with stem cell or viral expression of these genetically encoded components, remote stimulation of insulin transgene expression with RF or a magnet lowers blood glucose. This robust, repeatable method for remote regulation in vivo may ultimately have applications in basic science, technology and therapeutics.
Collapse
Affiliation(s)
- Sarah A Stanley
- Laboratory of Molecular Genetics, Rockefeller University, New York, New York, USA
| | - Jeremy Sauer
- Department of Chemical and Biological Engineering, Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Ravi S Kane
- Department of Chemical and Biological Engineering, Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, New York, New York, USA
| |
Collapse
|
87
|
Kulkarni VM, Bodas D, Paknikar KM. Lanthanum strontium manganese oxide (LSMO) nanoparticles: a versatile platform for anticancer therapy. RSC Adv 2015. [DOI: 10.1039/c5ra02731d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multiple uses of LSMO nanoparticles in anticancer therapy.
Collapse
Affiliation(s)
| | - Dhananjay Bodas
- Center for Nanobioscience
- Agharkar Research Institute
- Pune 411004
- India
| | | |
Collapse
|
88
|
Ludwig R, Stapf M, Dutz S, Müller R, Teichgräber U, Hilger I. Structural properties of magnetic nanoparticles determine their heating behavior - an estimation of the in vivo heating potential. NANOSCALE RESEARCH LETTERS 2014; 9:602. [PMID: 25404872 PMCID: PMC4230907 DOI: 10.1186/1556-276x-9-602] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/24/2014] [Indexed: 05/25/2023]
Abstract
Magnetically induced heating of magnetic nanoparticles (MNP) in an alternating magnetic field (AMF) is a promising minimally invasive tool for localized tumor treatment by sensitizing or killing tumor cells with the help of thermal stress. Therefore, the selection of MNP exhibiting a sufficient heating capacity (specific absorption rate, SAR) to achieve satisfactory temperatures in vivo is necessary. Up to now, the SAR of MNP is mainly determined using ferrofluidic suspensions and may distinctly differ from the SAR in vivo due to immobilization of MNP in tissues and cells. The aim of our investigations was to study the correlation between the SAR and the degree of MNP immobilization in dependence of their physicochemical features. In this study, the included MNP exhibited varying physicochemical properties and were either made up of single cores or multicores. Whereas the single core MNP exhibited a core size of approximately 15 nm, the multicore MNP consisted of multiple smaller single cores (5 to 15 nm) with 65 to 175 nm diameter in total. Furthermore, different MNP coatings, including dimercaptosuccinic acid (DMSA), polyacrylic acid (PAA), polyethylenglycol (PEG), and starch, wereinvestigated. SAR values were determined after the suspension of MNP in water. MNP immobilization in tissues was simulated with 1% agarose gels and 10% polyvinyl alcohol (PVA) hydrogels. The highest SAR values were observed in ferrofluidic suspensions, whereas a strong reduction of the SAR after the immobilization of MNP with PVA was found. Generally, PVA embedment led to a higher immobilization of MNP compared to immobilization in agarose gels. The investigated single core MNP exhibited higher SAR values than the multicore MNP of the same core size within the used magnetic field parameters. Multicore MNP manufactured via different synthesis routes (fluidMAG-D, fluidMAG/12-D) showed different SAR although they exhibited comparable core and hydrodynamic sizes. Additionally, no correlation between ζ-potential and SAR values after immobilization was observed. Our data show that immobilization of MNP, independent of their physicochemical properties, can distinctly affect their SAR. Similar processes are supposed to take place in vivo, particularly when MNP are immobilized in cells and tissues. This aspect should be adequately considered when determining the SAR of MNP for magnetic hyperthermia.
Collapse
Affiliation(s)
- Robert Ludwig
- Department of Experimental Radiology, Division of Diagnostic and Interventional Radiology, University Hospital Jena - Friedrich Schiller University Jena, Forschungszentrum Lobeda, Erlanger Allee 101, D-07747 Jena, Germany
| | - Marcus Stapf
- Department of Experimental Radiology, Division of Diagnostic and Interventional Radiology, University Hospital Jena - Friedrich Schiller University Jena, Forschungszentrum Lobeda, Erlanger Allee 101, D-07747 Jena, Germany
| | - Silvio Dutz
- Institute of Biomedical Engineering and Informatics, University of Technology Ilmenau, D-98684 Ilmenau, Germany
| | - Robert Müller
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology, D-07745 Jena, Germany
| | - Ulf Teichgräber
- Department of Experimental Radiology, Division of Diagnostic and Interventional Radiology, University Hospital Jena - Friedrich Schiller University Jena, Forschungszentrum Lobeda, Erlanger Allee 101, D-07747 Jena, Germany
| | - Ingrid Hilger
- Department of Experimental Radiology, Division of Diagnostic and Interventional Radiology, University Hospital Jena - Friedrich Schiller University Jena, Forschungszentrum Lobeda, Erlanger Allee 101, D-07747 Jena, Germany
| |
Collapse
|
89
|
Hervault A, Thanh NTK. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. NANOSCALE 2014; 6:11553-73. [PMID: 25212238 DOI: 10.1039/c4nr03482a] [Citation(s) in RCA: 330] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Magnetic nanoparticles have been widely investigated for their great potential as mediators of heat for localised hyperthermia therapy. Nanocarriers have also attracted increasing attention due to the possibility of delivering drugs at specific locations, therefore limiting systematic effects. The enhancement of the anti-cancer effect of chemotherapy with application of concurrent hyperthermia was noticed more than thirty years ago. However, combining magnetic nanoparticles with molecules of drugs in the same nanoformulation has only recently emerged as a promising tool for the application of hyperthermia with combined chemotherapy in the treatment of cancer. The main feature of this review is to present the recent advances in the development of multifunctional therapeutic nanosystems incorporating both magnetic nanoparticles and drugs, and their superior efficacy in treating cancer compared to either hyperthermia or chemotherapy as standalone therapies. The principle of magnetic fluid hyperthermia is also presented.
Collapse
Affiliation(s)
- Aziliz Hervault
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albermarle Street, London W1S 4BS, UK.
| | | |
Collapse
|
90
|
Zhang J, Zhao S, Zhu M, Zhu Y, Zhang Y, Liu Z, Zhang C. 3D-printed magnetic Fe 3O 4/MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia. J Mater Chem B 2014; 2:7583-7595. [PMID: 32261896 DOI: 10.1039/c4tb01063a] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, three-dimensional (3D) magnetic Fe3O4 nanoparticles containing mesoporous bioactive glass/polycaprolactone (Fe3O4/MBG/PCL) composite scaffolds have been fabricated by the 3D-printing technique. The physiochemical properties, in vitro bioactivity, anticancer drug delivery, mechanical strength, magnetic heating ability and cell response of Fe3O4/MBG/PCL scaffolds were systematically investigated. The results showed that Fe3O4/MBG/PCL scaffolds had uniform macropores of 400 μm, high porosity of 60% and excellent compressive strength of 13-16 MPa. The incorporation of magnetic Fe3O4 nanoparticles into MBG/PCL scaffolds did not influence their apatite mineralization ability but endowed excellent magnetic heating ability and significantly stimulated proliferation, alkaline phosphatase (ALP) activity, osteogenesis-related gene expression (RUNX2, OCN, BSP, BMP-2 and Col-1) and extra-cellular matrix (ECM) mineralization of human bone marrow-derived mesenchymal stem cells (h-BMSCs). Moreover, using doxorubicin (DOX) as a model anticancer drug, Fe3O4/MBG/PCL scaffolds exhibited a sustained drug release for use in local drug delivery therapy. Therefore, the 3D-printed Fe3O4/MBG/PCL scaffolds showed the potential multifunctionality of enhanced osteogenic activity, local anticancer drug delivery and magnetic hyperthermia.
Collapse
Affiliation(s)
- Jianhua Zhang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
91
|
Mohammad F, Yusof NA. Doxorubicin-loaded magnetic gold nanoshells for a combination therapy of hyperthermia and drug delivery. J Colloid Interface Sci 2014; 434:89-97. [PMID: 25170601 DOI: 10.1016/j.jcis.2014.07.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 10/24/2022]
Abstract
In the present work, nanohybrid of an anticancer drug, doxorubicin (Dox) loaded gold-coated superparamagnetic iron oxide nanoparticles (SPIONs@Au) were prepared for a combination therapy of cancer by means of both hyperthermia and drug delivery. The Dox molecules were conjugated to SPIONs@Au nanoparticles with the help of cysteamine (Cyst) as a non-covalent space linker and the Dox loading efficiency was investigated to be as high as 0.32 mg/mg. Thus synthesized particles were characterized by HRTEM, UV-Vis, FT-IR, SQUID magnetic studies and further tested for heat and drug release at low frequency oscillatory magnetic fields. The hyperthermia studies investigated to be strongly influenced by the applied frequency and the solvents used. The Dox delivery studies indicated that the drug release efficacy is strongly improved by maintaining the acidic pH conditions and the oscillatory magnetic fields, i.e. an enhancement in the Dox release was observed from the oscillation of particles due to the applied frequency, and is not effected by heating of the solution. Finally, the in vitro cell viability and proliferation studies were conducted using two different immortalized cell lines containing a cancerous (MCF-7 breast cancer) and non-cancerous H9c2 cardiac cell type.
Collapse
Affiliation(s)
- Faruq Mohammad
- Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA 70813, USA.
| | - Nor Azah Yusof
- Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| |
Collapse
|
92
|
Magnetoresistive performance and comparison of supermagnetic nanoparticles on giant magnetoresistive sensor-based detection system. Sci Rep 2014; 4:5716. [PMID: 25043673 PMCID: PMC4104391 DOI: 10.1038/srep05716] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/12/2014] [Indexed: 11/20/2022] Open
Abstract
Giant magnetoresistive (GMR) biosensors have emerged as powerful tools for ultrasensitive, multiplexed, real-time electrical readout, and rapid biological/chemical detection while combining with magnetic particles. Finding appropriate magnetic nanoparticles (MNPs) and its influences on the detection signal is a vital aspect to the GMR bio-sensing technology. Here, we report a GMR sensor based detection system capable of stable and convenient connection, and real-time measurement. Five different types of MNPs with sizes ranging from 10 to 100 nm were investigated for GMR biosensing. The experiments were accomplished with the aid of DNA hybridization and detection architecture on GMR sensor surface. We found that different MNPs markedly affected the final detection signal, depending on their characteristics of magnetic moment, size, and surface-based binding ability, etc. This work may provide a useful guidance in selecting or preparing MNPs to enhance the sensitivity of GMR biosensors, and eventually lead to a versatile and portable device for molecular diagnostics.
Collapse
|
93
|
Nguyen DT, Kim KS. Functionalization of magnetic nanoparticles for biomedical applications. KOREAN J CHEM ENG 2014. [DOI: 10.1007/s11814-014-0156-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
94
|
Castellanos-Rubio I, Insausti M, Garaio E, Gil de Muro I, Plazaola F, Rojo T, Lezama L. Fe3O4 nanoparticles prepared by the seeded-growth route for hyperthermia: electron magnetic resonance as a key tool to evaluate size distribution in magnetic nanoparticles. NANOSCALE 2014; 6:7542-52. [PMID: 24890223 DOI: 10.1039/c4nr00646a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Monodispersed Fe3O4 nanoparticles have been synthesized by a thermal decomposition method based on the seeded-growth technique, achieving size tunable nanoparticles with high crystallinity and high saturation magnetization. EMR spectroscopy becomes a very efficient complementary tool to determine the fine details of size distributions of MNPs and even to estimate directly the size in a system composed of a given type of magnetic nanoparticles. The size and size dispersity affect directly the efficiency of MNPs for hyperthermia and EMR provides a direct evaluation of these characteristics almost exactly in the same preparation and with the same concentration as used in hyperthermia experiments. The correlation observed between the Specific Absorption Rate (SAR) and the effective gyromagnetic factor (geff) is extremely remarkable and renders a way to assess directly the heating capacity of a MNP system.
Collapse
Affiliation(s)
- Idoia Castellanos-Rubio
- Dpto. de Química Inorgánica, Universidad del País Vasco UPV/EHU, P.O. Box. 644, E-48080, Bilbao, Spain.
| | | | | | | | | | | | | |
Collapse
|
95
|
Andreu I, Natividad E, Ravagli C, Castro M, Baldi G. Heating ability of cobalt ferrite nanoparticles showing dynamic and interaction effects. RSC Adv 2014. [DOI: 10.1039/c4ra02586e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
96
|
Petryk AA, Giustini AJ, Gottesman RE, Trembly BS, Hoopes PJ. Comparison of magnetic nanoparticle and microwave hyperthermia cancer treatment methodology and treatment effect in a rodent breast cancer model. Int J Hyperthermia 2014; 29:819-27. [PMID: 24219799 DOI: 10.3109/02656736.2013.845801] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The purpose of this study was to compare the efficacy of iron oxide/magnetic nanoparticle hyperthermia (mNPH) and 915 MHz microwave hyperthermia at the same thermal dose in a mouse mammary adenocarcinoma model. MATERIALS AND METHODS A thermal dose equivalent to 60 min at 43 °C (CEM60) was delivered to a syngeneic mouse mammary adenocarcinoma flank tumour (MTGB) via mNPH or locally delivered 915 MHz microwaves. mNPH was generated with ferromagnetic, hydroxyethyl starch-coated magnetic nanoparticles. Following mNP delivery, the mouse/tumour was exposed to an alternating magnetic field (AMF). The microwave hyperthermia treatment was delivered by a 915 MHz microwave surface applicator. Time required for the tumour to reach three times the treatment volume was used as the primary study endpoint. Acute pathological effects of the treatments were determined using conventional histopathological techniques. RESULTS Locally delivered mNPH resulted in a modest improvement in treatment efficacy as compared to microwave hyperthermia (p = 0.09) when prescribed to the same thermal dose. Tumours treated with mNPH also demonstrated reduced peritumoral normal tissue damage. CONCLUSIONS Our results demonstrate similar tumour treatment efficacy when tumour heating is delivered by locally delivered mNPs and 915 MHz microwaves at the same measured thermal dose. However, mNPH treatments did not result in the same type or level of peritumoral damage seen with the microwave hyperthermia treatments. These data suggest that mNP hyperthermia is capable of improving the therapeutic ratio for locally delivered tumour hyperthermia. These results further indicate that this improvement is due to improved heat localisation in the tumour.
Collapse
Affiliation(s)
- Alicia A Petryk
- Thayer School of Engineering, Dartmouth College , Hanover, New Hampshire and
| | | | | | | | | |
Collapse
|
97
|
High therapeutic efficiency of magnetic hyperthermia in xenograft models achieved with moderate temperature dosages in the tumor area. Pharm Res 2014; 31:3274-88. [PMID: 24890197 PMCID: PMC4224751 DOI: 10.1007/s11095-014-1417-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/12/2014] [Indexed: 12/02/2022]
Abstract
Purpose Tumor cells can be effectively inactivated by heating mediated by magnetic nanoparticles. However, optimized nanomaterials to supply thermal stress inside the tumor remain to be identified. The present study investigates the therapeutic effects of magnetic hyperthermia induced by superparamagnetic iron oxide nanoparticles on breast (MDA-MB-231) and pancreatic cancer (BxPC-3) xenografts in mice in vivo. Methods Superparamagnetic iron oxide nanoparticles, synthesized either via an aqueous (MF66; average core size 12 nm) or an organic route (OD15; average core size 15 nm) are analyzed in terms of their specific absorption rate (SAR), cell uptake and their effectivity in in vivo hyperthermia treatment. Results Exceptionally high SAR values ranging from 658 ± 53 W*gFe−1 for OD15 up to 900 ± 22 W*gFe−1 for MF66 were determined in an alternating magnetic field (AMF, H = 15.4 kA*m−1 (19 mT), f = 435 kHz). Conversion of SAR values into system-independent intrinsic loss power (ILP, 6.4 ± 0.5 nH*m2*kg−1 (OD15) and 8.7 ± 0.2 nH*m2*kg−1 (MF66)) confirmed the markedly high heating potential compared to recently published data. Magnetic hyperthermia after intratumoral nanoparticle injection results in dramatically reduced tumor volume in both cancer models, although the applied temperature dosages measured as CEM43T90 (cumulative equivalent minutes at 43°C) are only between 1 and 24 min. Histological analysis of magnetic hyperthermia treated tumor tissue exhibit alterations in cell viability (apoptosis and necrosis) and show a decreased cell proliferation. Conclusions Concluding, the studied magnetic nanoparticles lead to extensive cell death in human tumor xenografts and are considered suitable platforms for future hyperthermic studies. Electronic supplementary material The online version of this article (doi:10.1007/s11095-014-1417-0) contains supplementary material, which is available to authorized users.
Collapse
|
98
|
Kolosnjaj-Tabi J, Di Corato R, Lartigue L, Marangon I, Guardia P, Silva AKA, Luciani N, Clément O, Flaud P, Singh JV, Decuzzi P, Pellegrino T, Wilhelm C, Gazeau F. Heat-generating iron oxide nanocubes: subtle "destructurators" of the tumoral microenvironment. ACS NANO 2014; 8:4268-83. [PMID: 24738788 DOI: 10.1021/nn405356r] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Several studies propose nanoparticles for tumor treatment, yet little is known about the fate of nanoparticles and intimate interactions with the heterogeneous and ever-evolving tumor environment. The latter, rich in extracellular matrix, is responsible for poor penetration of therapeutics and represents a paramount issue in cancer therapy. Hence new strategies start aiming to modulate the neoplastic stroma. From this perspective, we assessed the efficacy of 19 nm PEG-coated iron oxide nanocubes with optimized magnetic properties to mediate mild tumor magnetic hyperthermia treatment. After injection of a low dose of nanocubes (700 μg of iron) into epidermoid carcinoma xenografts in mice, we monitored the effect of heating nanocubes on tumor environment. In comparison with the long-term fate after intravenous administration, we investigated spatiotemporal patterns of nanocube distribution, evaluated the evolution of cubes magnetic properties, and examined nanoparticle clearance and degradation processes. While inside tumors nanocubes retained their magnetic properties and heating capacity throughout the treatment due to a mainly interstitial extracellular location, the particles became inefficient heaters after cell internalization and transfer to spleen and liver. Our multiscale analysis reveals that collagen-rich tumor extracellular matrix confines the majority of nanocubes. However, nanocube-mediated hyperthermia has the potential to "destructure" this matrix and improve nanoparticle and drug penetration into neoplastic tissue. This study provides insight into dynamic interactions between nanoparticles and tumor components under physical stimulation and suggests that nanoparticle-mediated hyperthermia could be used to locally modify tumor stroma and thus improve drug penetration.
Collapse
Affiliation(s)
- Jelena Kolosnjaj-Tabi
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS/ Université Paris Diderot , 10 rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Sadat ME, Patel R, Sookoor J, Bud'ko SL, Ewing RC, Zhang J, Xu H, Wang Y, Pauletti GM, Mast DB, Shi D. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:52-63. [PMID: 25063092 DOI: 10.1016/j.msec.2014.04.064] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/26/2014] [Indexed: 11/24/2022]
Abstract
In this work, the effect of nanoparticle confinement on the magnetic relaxation of iron oxide (Fe3O4) nanoparticles (NP) was investigated by measuring the hyperthermia heating behavior in high frequency alternating magnetic field. Three different Fe3O4 nanoparticle systems having distinct nanoparticle configurations were studied in terms of magnetic hyperthermia heating rate and DC magnetization. All magnetic nanoparticle (MNP) systems were constructed using equivalent ~10nm diameter NP that were structured differently in terms of configuration, physical confinement, and interparticle spacing. The spatial confinement was achieved by embedding the Fe3O4 nanoparticles in the matrices of the polystyrene spheres of 100 nm, while the unconfined was the free Fe3O4 nanoparticles well-dispersed in the liquid via PAA surface coating. Assuming the identical core MNPs in each system, the heating behavior was analyzed in terms of particle freedom (or confinement), interparticle spacing, and magnetic coupling (or dipole-dipole interaction). DC magnetization data were correlated to the heating behavior with different material properties. Analysis of DC magnetization measurements showed deviation from classical Langevin behavior near saturation due to dipole interaction modification of the MNPs resulting in a high magnetic anisotropy. It was found that the Specific Absorption Rate (SAR) of the unconfined nanoparticle systems were significantly higher than those of confined (the MNPs embedded in the polystyrene matrix). This increase of SAR was found to be attributable to high Néel relaxation rate and hysteresis loss of the unconfined MNPs. It was also found that the dipole-dipole interactions can significantly reduce the global magnetic response of the MNPs and thereby decrease the SAR of the nanoparticle systems.
Collapse
Affiliation(s)
- M E Sadat
- Department of Physics, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Ronak Patel
- The Materials Science and Engineering Program, Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jason Sookoor
- Department of Neuroscience, University of Cincinnati, OH 45221, USA
| | - Sergey L Bud'ko
- Ames Laboratory, Iowa State University, Ames, IA 50011, USA; Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Rodney C Ewing
- Department of Geological & Environmental Sciences, Stanford University, Stanford, CA 94305-2115, USA
| | - Jiaming Zhang
- Department of Geological & Environmental Sciences, Stanford University, Stanford, CA 94305-2115, USA
| | - Hong Xu
- Med-X Institute, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Yilong Wang
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Giovanni M Pauletti
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - David B Mast
- Department of Physics, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Donglu Shi
- The Materials Science and Engineering Program, Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA; Med-X Institute, Shanghai Jiao Tong University, Shanghai 200030, PR China; Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
100
|
Castillo M, Ebensperger R, Wirtz D, Walczak M, Hurtado DE, Celedon A. Local mechanical response of cells to the controlled rotation of magnetic nanorods. J Biomed Mater Res B Appl Biomater 2014; 102:1779-85. [PMID: 24700696 DOI: 10.1002/jbm.b.33167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/07/2014] [Accepted: 03/19/2014] [Indexed: 11/08/2022]
Abstract
The mechanical response of the cytoplasm was investigated by the intracellular implantation of magnetic nanorods and exposure to low-frequency rotatory magnetic fields. Nanorods (Pt-Ni, ∼200 nm diameter) fabricated by electrodeposition in templates of porous alumina with lengths of approximately 2 and 5 µm were inserted into NIH/3T3 fibroblasts and manipulated with a rotational magnetic field. Nanorod rotation was observed only for torques greater than 3.0 × 10(-16) Nm, suggesting a Bingham-type behavior of the cytoplasm. Higher torques produced considerable deformation of the intracellular material. The cell nucleus and cell membrane were significantly deformed by nanorods actuated by 4.5 × 10(-15) Nm torques. Our results demonstrate that nanorods under magnetic fields are an effective tool to mechanically probe the intracellular environment. We envision that our findings may contribute to the noninvasive and direct mechanical characterization of the cytoplasm.
Collapse
Affiliation(s)
- Matias Castillo
- Department of Mechanical and Metallurgical Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna, 4860, Macul, Santiago, Chile
| | | | | | | | | | | |
Collapse
|