51
|
Hook SE, Wright ADG, McBride BW. Methanogens: methane producers of the rumen and mitigation strategies. ARCHAEA (VANCOUVER, B.C.) 2010; 2010:945785. [PMID: 21253540 PMCID: PMC3021854 DOI: 10.1155/2010/945785] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 11/03/2010] [Accepted: 12/07/2010] [Indexed: 01/01/2023]
Abstract
Methanogens are the only known microorganisms capable of methane production, making them of interest when investigating methane abatement strategies. A number of experiments have been conducted to study the methanogen population in the rumen of cattle and sheep, as well as the relationship that methanogens have with other microorganisms. The rumen methanogen species differ depending on diet and geographical location of the host, as does methanogenesis, which can be reduced by modifying dietary composition, or by supplementation of monensin, lipids, organic acids, or plant compounds within the diet. Other methane abatement strategies that have been investigated are defaunation and vaccines. These mitigation methods target the methanogen population of the rumen directly or indirectly, resulting in varying degrees of efficacy. This paper describes the methanogens identified in the rumens of cattle and sheep, as well as a number of methane mitigation strategies that have been effective in vivo.
Collapse
Affiliation(s)
- Sarah E Hook
- Department of Animal & Poultry Science, University of Guelph, ON, Canada.
| | | | | |
Collapse
|
52
|
Bratlie MS, Johansen J, Sherman BT, Huang DW, Lempicki RA, Drabløs F. Gene duplications in prokaryotes can be associated with environmental adaptation. BMC Genomics 2010; 11:588. [PMID: 20961426 PMCID: PMC3091735 DOI: 10.1186/1471-2164-11-588] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 10/20/2010] [Indexed: 11/24/2022] Open
Abstract
Background Gene duplication is a normal evolutionary process. If there is no selective advantage in keeping the duplicated gene, it is usually reduced to a pseudogene and disappears from the genome. However, some paralogs are retained. These gene products are likely to be beneficial to the organism, e.g. in adaptation to new environmental conditions. The aim of our analysis is to investigate the properties of paralog-forming genes in prokaryotes, and to analyse the role of these retained paralogs by relating gene properties to life style of the corresponding prokaryotes. Results Paralogs were identified in a number of prokaryotes, and these paralogs were compared to singletons of persistent orthologs based on functional classification. This showed that the paralogs were associated with for example energy production, cell motility, ion transport, and defence mechanisms. A statistical overrepresentation analysis of gene and protein annotations was based on paralogs of the 200 prokaryotes with the highest fraction of paralog-forming genes. Biclustering of overrepresented gene ontology terms versus species was used to identify clusters of properties associated with clusters of species. The clusters were classified using similarity scores on properties and species to identify interesting clusters, and a subset of clusters were analysed by comparison to literature data. This analysis showed that paralogs often are associated with properties that are important for survival and proliferation of the specific organisms. This includes processes like ion transport, locomotion, chemotaxis and photosynthesis. However, the analysis also showed that the gene ontology terms sometimes were too general, imprecise or even misleading for automatic analysis. Conclusions Properties described by gene ontology terms identified in the overrepresentation analysis are often consistent with individual prokaryote lifestyles and are likely to give a competitive advantage to the organism. Paralogs and singletons dominate different categories of functional classification, where paralogs in particular seem to be associated with processes involving interaction with the environment.
Collapse
Affiliation(s)
- Marit S Bratlie
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | |
Collapse
|
53
|
Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim Feed Sci Technol 2010. [DOI: 10.1016/j.anifeedsci.2010.07.002] [Citation(s) in RCA: 477] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
54
|
Characterization of variation in rumen methanogenic communities under different dietary and host feed efficiency conditions, as determined by PCR-denaturing gradient gel electrophoresis analysis. Appl Environ Microbiol 2010; 76:3776-86. [PMID: 20418436 DOI: 10.1128/aem.00010-10] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding ruminal methanogens is essential for greenhouse gas mitigation, as well as for improving animal performance in the livestock industry. It has been speculated that ruminal methanogenic diversity affects host feed efficiency and results in differences in methane production. This study examined methanogenic profiles in the rumen using culture-independent PCR-denaturing gradient gel electrophoresis (PCR-DGGE) analysis for 56 beef cattle which differed in feed efficiency, as well as diet (the cattle were fed a low-energy diet or a high-energy diet). The methanogenic PCR-DGGE profiles detected were greatly affected by diet, and the major pattern changed from a community containing predominantly Methanobrevibacter ruminantium NT7 with the low-energy diet to a community containing predominantly Methanobrevibacter smithii, Methanobrevibacter sp. AbM4, and/or M. ruminantium NT7 with the high-energy diet. For each diet, the methanogenic PCR-DGGE pattern was strongly associated with the feed efficiency of the host. Diet-associated bands for Methanobrevibacter sp. AbM4 and M. smithii SM9 and a feed efficiency-related band for M. smithii PS were identified. The abundance of total methanogens was estimated by determining the numbers of copies of the 16S rRNA genes of methanogens. However, the size of the methanogen population did not correlate with differences in feed efficiency, diet, or metabolic measurements. Thus, the structure of the methanogenic community at the species or strain level may be more important for determining host feed efficiency under different dietary conditions.
Collapse
|
55
|
Modeling effects of granules on the start-up of anaerobic digestion of dairy wastewater with Langmuir and extended Freundlich equations. Bioprocess Biosyst Eng 2010; 33:833-45. [PMID: 20148268 DOI: 10.1007/s00449-010-0406-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 01/12/2010] [Indexed: 10/19/2022]
Abstract
The effects of granules-inocula on the start-up of anaerobic reactors treating dairy manure were studied in a batch-fed reactor. The effects of start-up period and ratio of granules to feed were analyzed. Results indicated that the effects of start-up period could be described by Langmuir model, while the Extended Freundlich model could be used to model the effects of ratio of granules to feed on cumulative biogas production. In addition, transmission electron microscopes (TEM) and scanning electron microscope analysis were conducted to elucidate the distribution of microbial population and micro-colonies in granules and manure. From the TEM micrographs analyses, the ratios the Syntrophobacter and methanogens in granule and manure were shown to be 1.57 +/- 0.42 and 0.22 +/- 0.20, respectively. These results demonstrated that granules-inocula could reduce the period required for onset of biogas by 25%.
Collapse
|
56
|
Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. Appl Environ Microbiol 2009; 75:6524-33. [PMID: 19717632 DOI: 10.1128/aem.02815-08] [Citation(s) in RCA: 246] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cattle with high feed efficiencies (designated "efficient") produce less methane gas than those with low feed efficiencies (designated "inefficient"); however, the role of the methane producers in such difference is unknown. This study investigated whether the structures and populations of methanogens in the rumen were associated with differences in cattle feed efficiencies by using culture-independent methods. Two 16S rRNA libraries were constructed using approximately 800-bp amplicons generated from pooled total DNA isolated from efficient (n = 29) and inefficient (n = 29) animals. Sequence analysis of up to 490 randomly selected clones from each library showed that the methanogenic composition was variable: less species variation (22 operational taxonomic units [OTUs]) was detected in the rumens of efficient animals, compared to 27 OTUs in inefficient animals. The methanogenic communities in inefficient animals were more diverse than those in efficient ones, as revealed by the diversity indices of 0.84 and 0.42, respectively. Differences at the strain and genotype levels were also observed and found to be associated with feed efficiency in the host. No difference was detected in the total population of methanogens, but the prevalences of Methanosphaera stadtmanae and Methanobrevibacter sp. strain AbM4 were 1.92 (P < 0.05) and 2.26 (P < 0.05) times higher in inefficient animals, while Methanobrevibacter sp. strain AbM4 was reported for the first time to occur in the bovine rumen. Our data indicate that the methanogenic ecology at the species, strain, and/or genotype level in the rumen may play important roles in contributing to the difference in methane gas production between cattle with different feed efficiencies.
Collapse
|
57
|
|
58
|
Differences in hydrogenase gene expression between Methanosarcina acetivorans and Methanosarcina barkeri. J Bacteriol 2009; 191:2826-33. [PMID: 19201801 DOI: 10.1128/jb.00563-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methanosarcina acetivorans C2A encodes three putative hydrogenases, including one cofactor F(420)-linked (frh) and two methanophenazine-linked (vht) enzymes. Comparison of the amino acid sequences of these putative hydrogenases to those of Methanosarcina barkeri and Methanosarcina mazei shows that each predicted subunit contains all the known residues essential for hydrogenase function. The DNA sequences upstream of the genes in M. acetivorans were aligned with those in other Methanosarcina species to identify conserved transcription and translation signals. The M. acetivorans vht promoter region is well conserved among the sequenced Methanosarcina species, while the second vht-type homolog (here called vhx) and frh promoters have only limited similarity. To experimentally determine whether these promoters are functional in vivo, we constructed and characterized both M. acetivorans and M. barkeri strains carrying reporter gene fusions to each of the M. acetivorans and M. barkeri hydrogenase promoters. Generally, the M. acetivorans gene fusions are not expressed in either organism, suggesting that cis-acting mutations inactivated the M. acetivorans promoters. The M. barkeri hydrogenase gene fusions, on the other hand, are expressed in both organisms, indicating that M. acetivorans possesses the machinery to express hydrogenases, although it does not express its own hydrogenases. These data are consistent with specific inactivation of the M. acetivorans hydrogenase promoters and highlight the importance of testing hypotheses generated by using genomic data.
Collapse
|
59
|
Sundset MA, Edwards JE, Cheng YF, Senosiain RS, Fraile MN, Northwood KS, Praesteng KE, Glad T, Mathiesen SD, Wright ADG. Molecular diversity of the rumen microbiome of Norwegian reindeer on natural summer pasture. MICROBIAL ECOLOGY 2009; 57:335-48. [PMID: 18604648 DOI: 10.1007/s00248-008-9414-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 05/21/2008] [Indexed: 05/26/2023]
Abstract
The molecular diversity of the rumen microbiome was investigated in five semi-domesticated adult female Norwegian reindeer (Rangifer tarandus tarandus) grazing on natural summer pastures on the coast of northern Norway (71.00 degrees N, 25.30 degrees E). Mean population densities (numbers per gram wet weight) of methanogenic archaea, rumen bacteria and ciliate protozoa, estimated using quantitative real-time polymerase chain reaction (PCR), were 3.17x10(9), 5.17x10(11) and 4.02x10(7), respectively. Molecular diversity of rumen methanogens was revealed using a 16S rRNA gene library (54 clones) constructed using pooled PCR products from the whole rumen contents of the five individual reindeer. Based upon a similarity criterion of <97%, a total of 19 distinct operational taxonomic units (OTUs) were identified, nine of which are potential new species. The 16S rRNA sequences generated from the reindeer rumen exhibited a high degree of sequence similarity to methanogens affiliated with the families Methanobacteriaceae (14 OTUs) and Methanosarcinaceae (one OTU). Four of the OTUs detected belonged to a group of uncultivated archaea previously found in domestic ruminants and thought to be dominant in the rumen together with Methanobrevibacter spp. Denaturing gradient gel electrophoresis profiling of the rumen bacterial 16S rRNA gene and the protozoal 18S rRNA gene indicated a high degree of animal variation, although some bands were common to all individuals. Automated ribosomal intergenic spacer analysis (ARISA) profiling of the ruminal Neocallimastigales population indicated that the reindeer are likely to contain more than one type of anaerobic fungus. The ARISA profile from one animal was distinct from the other four. This is the first molecular investigation of the ruminal methanogenic archaea in reindeer, revealing higher numbers than expected based on methane emission data available. Also, many of the reindeer archaeal 16S rRNA gene sequences were similar to those reported in domesticated ruminants in Australia, Canada, China, New Zealand and Venezuela, supporting previous findings that there seems to be no host type or geographical effect on the methanogenic archaea community structure in ruminants.
Collapse
Affiliation(s)
- Monica A Sundset
- Department of Arctic Biology and Institute of Medical Biology, University of Tromsø, 9037, Tromsø, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Anderson RC, Krueger NA, Stanton TB, Callaway TR, Edrington TS, Harvey RB, Jung YS, Nisbet DJ. Effects of select nitrocompounds on in vitro ruminal fermentation during conditions of limiting or excess added reductant. BIORESOURCE TECHNOLOGY 2008; 99:8655-8661. [PMID: 18538564 DOI: 10.1016/j.biortech.2008.04.064] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/31/2008] [Accepted: 04/05/2008] [Indexed: 05/26/2023]
Abstract
Ruminal methane (CH(4)) production results in the loss of up to 12% of gross energy intake and contributes nearly 20% of the United States' annual emission of this greenhouse gas. We report the effects of select nitrocompounds on ruminal fermentation after 22 h in vitro incubation (39 degrees C) with or without additions of hydrogen (H(2)), formate or both. In incubations containing no added reductant, CH(4) production was inhibited 41% by 2-nitro-1-propanol (2NPOH) and >97% by 3-nitro-1-propionic acid (3NPA), nitroethane (NE) and 2-nitroethanol (2NEOH) compared to non-treated controls and H(2) did not accumulate. With formate as the sole added reductant, nitro-treatment reduced CH(4) production by >99% and caused 42% to complete inhibition of formate catabolism compared to controls, and the accumulation of H(2) increased slightly. Nitro-treatment decreased CH(4) production 57-98% from that of controls when supplied H(2) or formate plus H(2). Formate catabolism was decreased 42-84% from that in controls by all nitro-treatments except 3NPA with both formate and H(2). Greater than 97% of the added H(2) was catabolized within controls; >84% was catabolized in nitro-treated incubations. Acetate, propionate and butyrate accumulations were unaffected by nitro-treatment irregardless of reductant; however, effects on ammonia and branched chain fatty acid accumulations varied. These results suggest that nitro-treatment inhibited formate dehydrogenase/formate hydrogen lyase and hydrogenase activity.
Collapse
Affiliation(s)
- Robin C Anderson
- United States Department of Agriculture, Agricultural Research Service, College Station, TX 77845, USA.
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Long-term monensin supplementation does not significantly affect the quantity or diversity of methanogens in the rumen of the lactating dairy cow. Appl Environ Microbiol 2008; 75:374-80. [PMID: 19028912 DOI: 10.1128/aem.01672-08] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A long-term monensin supplementation trial involving lactating dairy cattle was conducted to determine the effect of monensin on the quantity and diversity of rumen methanogens in vivo. Fourteen cows were paired on the basis of days in milk and parity and allocated to one of two treatment groups, receiving (i) a control total mixed ration (TMR) or (ii) a TMR with 24 mg of monensin premix/kg of diet dry matter. Rumen fluid was obtained using an ororuminal probe on day -15 (baseline) and days 20, 90, and 180 following treatment. Throughout the 6-month experiment, the quantity of rumen methanogens was not significantly affected by monensin supplementation, as measured by quantitative real-time PCR. The diversity of the rumen methanogen population was investigated using denaturing gradient gel electrophoresis (DGGE) and 16S rRNA clone gene libraries. DGGE analysis at each sampling point indicated that the molecular diversity of rumen methanogens from monensin-treated cattle was not significantly different from that of rumen methanogens from control cattle. 16S rRNA gene libraries were constructed from samples obtained from the rumen fluids of five cows, with a total of 166 clones examined. Eleven unique 16S rRNA sequences or phylotypes were identified, five of which have not been recognized previously. The majority of clones (98.2%) belonged to the genus Methanobrevibacter, with all libraries containing Methanobrevibacter strains M6 and SM9 and a novel phylotype, UG3322.2. Overall, long-term monensin supplementation was not found to significantly alter the quantity or diversity of methanogens in the rumens of lactating dairy cattle in the present study.
Collapse
|
62
|
Distinctive archaebacterial species associated with anaerobic rumen protozoan Entodinium caudatum. Folia Microbiol (Praha) 2008; 53:259-62. [DOI: 10.1007/s12223-008-0039-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/17/2008] [Indexed: 10/21/2022]
|
63
|
Radl V, Gattinger A, Chronáková A, Nemcová A, Cuhel J, Simek M, Munch JC, Schloter M, Elhottová D. Effects of cattle husbandry on abundance and activity of methanogenic archaea in upland soils. ISME JOURNAL 2007; 1:443-52. [PMID: 18043663 DOI: 10.1038/ismej.2007.60] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the present study, we tested the hypothesis that animal treading associated with a high input of organic matter would favour methanogenesis in soils used as overwintering pasture. Hence, methane emissions and methanogen populations were examined at sections with different degree of cattle impact in a Farm in South Bohemia, Czech Republic. In spring, methane emission positively corresponded to the gradient of animal impact. Applying phospholipid etherlipid analysis, the highest archaeal biomass was found in section severe impact (SI), followed by moderate impact (MI) and no impact. The same trend was observed for the methanogens as showed by real-time quantitative PCR analyses of methyl coenzyme M reductase (mcrA) genes. The detection of monounsaturated isoprenoid side chain hydrocarbons (i20:1) indicated the presence of acetoclastic methanogens in the cattle-impacted sites. This result was corroborated by the phylogenetic analysis of mcrA gene sequences obtained from section SI, which showed that 33% of the analysed clones belonged to the genus Methanosarcina. The majority of the sequenced clones (41%) showed close affiliations with uncultured rumen archaeons. This leads to the assumption that a substantial part of the methanogenic community in plot SI derived from the grazing cattle itself. Compared to the spring sampling, in autumn, a significant reduction in archaeal biomass and number of copies of mcrA genes was observed mainly for section MI. It can be concluded that after 5 months without cattle impact, the severely impact section maintained its methane production potential, whereas the methane production potential under moderate impact returned to background values.
Collapse
Affiliation(s)
- Viviane Radl
- Chair of Soil Ecology, Technical University of Munich, Oberschleissheim, Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Nicholson MJ, Evans PN, Joblin KN. Analysis of methanogen diversity in the rumen using temporal temperature gradient gel electrophoresis: identification of uncultured methanogens. MICROBIAL ECOLOGY 2007; 54:141-50. [PMID: 17431710 DOI: 10.1007/s00248-006-9182-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 09/28/2006] [Accepted: 11/06/2006] [Indexed: 05/14/2023]
Abstract
A temporal temperature gradient gel electrophoresis (TTGE) method was developed to determine the diversity of methanogen populations in the rumen. Tests with amplicons from genomic DNA from 12 cultured methanogens showed single bands for all strains, with only two showing apparently comigrating bands. Fingerprints of methanogen populations were analyzed from DNA extracted from rumen contents from two cattle and four sheep grazing pasture. For one sheep, dilution cultures selective for methanogens were grown and the culturable methanogens in each successive dilution examined by TTGE. A total of 66 methanogen sequences were retrieved from bands in fingerprints and analyzed to reveal the presence of methanogens belonging to the Methanobacteriales, the Methanosarcinales, and to an uncultured archaeal lineage. Twenty-four sequences were most similar to Methanobrevibacter ruminantium, five to Methanobrevibacter smithii, four to Methanosphaera stadtmanae, and for three, the nearest match was Methanimicrococcus blatticola. The remaining 30 sequences did not cluster with sequences from cultured archaea, but when combined with published novel sequences from clone libraries formed a monophyletic lineage within the Euryarchaeota, which contained two previously unrecognized clusters. The TTGE bands from this lineage showed that the uncultured methanogens had significant population densities in each of the six rumen samples examined. In cultures of dilutions from one rumen sample, TTGE examination revealed these methanogens at a level of at least 10(5)g(-1). Band intensities from low-dilution cultures indicated that these methanogens were present at similar densities to Methanobrevibacter ruminantium-like methanogens, the sole culturable methanogens in high dilutions (10(6)-10(-10) g(-1)). It is suggested that the uncultured methanogens together with Methanobrevibacter spp. may be the predominant methanogens in the rumen. The TTGE method presented in this article provides a new opportunity for characterizing methanogen populations in the rumen microbial ecosystem.
Collapse
Affiliation(s)
- Matthew J Nicholson
- Grasslands Reseach Centre, AgResearch, Private Bag 11008, Palmerston North, New Zealand
| | | | | |
Collapse
|
65
|
Shin EC, Choi BR, Lim WJ, Hong SY, An CL, Cho KM, Kim YK, An JM, Kang JM, Lee SS, Kim H, Yun HD. Phylogenetic analysis of archaea in three fractions of cow rumen based on the 16S rDNA sequence. Anaerobe 2007; 10:313-9. [PMID: 16701533 DOI: 10.1016/j.anaerobe.2004.08.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 07/20/2004] [Accepted: 08/19/2004] [Indexed: 11/25/2022]
Abstract
Phylogenetic analysis of archaea in the rumen ecosystem was analysed by PCR of 16S rDNA from the bovine rumen using archaea-specific primers. The libraries were constructed from rumen fluid (AF), rumen solid (AS), and rumen epithelium (AE) from a rumen-fistulated Korean cow (Hanwoo). The 45 AF clones could be divided into three groups and the largest group was affiliated with the Methanomicrobiaceae family (96% of clones). The AF clones contained a high proportion of unidentifiable clones (67%). The 39 AE clones could be divided into two groups and the largest group was also affiliated with the Methanomicrobiaceae family (95% of clones). The AE clones contained a low proportion of unidentifiable clones (5%). The 20 AS clones could be divided into two groups that were affiliated with either the Methanobacteriaceae family (55%) or the Methanomicrobiaceae family (45%). The AS clones contained a moderate proportion of unidentifiable clones (40%). The predominant family of whole rumen archaea was found to belong to the Methanomicrobiaceae (85%). Methanomicrobiaceae were predominant in the rumen epithelium and the rumen fluid while Methanobacteriaceae were predominant in the rumen solid. One clone from the rumen fluid and two clones from the rumen epithelium contained rDNA sequences of Non-Thermophilic-Crenarchaeota (NTC) and Thermophilic-Crenarchaeota (TC), respectively, which have not previously been described from the rumen.
Collapse
Affiliation(s)
- Eun Chule Shin
- Division of Applied Life Science, Research Institute of Life Science, Gyeongsang National University, Chinju 660-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Deng W, Xi D, Mao H, Wanapat M. The use of molecular techniques based on ribosomal RNA and DNA for rumen microbial ecosystem studies: a review. Mol Biol Rep 2007; 35:265-74. [PMID: 17484038 DOI: 10.1007/s11033-007-9079-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 04/09/2007] [Indexed: 10/22/2022]
Abstract
This paper analyses the research progress in the use of molecular techniques based on ribosomal RNA and DNA (rRNA/rDNA) for rumen microbial ecosystem since first literature by Stahl et al. (1988). Because rumen microbial populations could be under-estimated by adopting the traditional techniques such as roll-tube technique or most-probable-number estimates, modern molecular techniques based on 16S/18S rRNA/rDNA can be used to more accurately provide molecular characterization, microbe populations and classification scheme than traditional methods. Phylogenetic-group-specific probes can be used to hybridize samples for detecting and quantifying of rumen microbes. But, competitive-PCR and real-time PCR can more sensitively quantify rumen microbes than hybridization. Molecular fingerprinting techniques including both denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE) and restriction fragment length polymorphisms (RFLP) can used to explore diversity of bacteria, protozoa and fungi in the rumen ecosystem. By constructing clone libraries of 16S/18S rRNA/rDNA of rumen microbes, more new microbes can be discovered and identified. For fungi, internal transcribed spacers (ITS) of fungi are better than 18S rRNA/rDNA for discriminating operational taxonomic units. In conclusion, 16S/18S rRNA/rDNA procedures have been used with success in rumen microbes and are quickly gaining acceptance for studying rumen microbial ecosystem, and will become useful methods for rumen ecology research. However, molecular techniques based on 16S/18S rRNA/rDNA don't preclude classical and traditional microbiological techniques. It should used together to acquire accurate and satisfactory results.
Collapse
Affiliation(s)
- Weidong Deng
- Yunnan Provincial Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science, Yunnan Agricultural University, Kunming, 650201, P. R. China.
| | | | | | | |
Collapse
|
67
|
Wright ADG, Auckland CH, Lynn DH. Molecular diversity of methanogens in feedlot cattle from Ontario and Prince Edward Island, Canada. Appl Environ Microbiol 2007; 73:4206-10. [PMID: 17483285 PMCID: PMC1932772 DOI: 10.1128/aem.00103-07] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular diversity of rumen methanogens in feedlot cattle and the composition of the methanogen populations in these animals from two geographic locations were investigated using 16S rRNA gene libraries prepared from pooled PCR products from 10 animals in Ontario (127 clones) and 10 animals from Prince Edward Island (114 clones). A total of 241 clones were examined, with Methanobrevibacter ruminantium accounting for more than one-third (85 clones) of the clones identified. From these 241 clones, 23 different 16S rRNA phylotypes were identified. Feedlot cattle from Ontario, which were fed a corn-based diet, revealed 11 phylotypes (38 clones) not found in feedlot cattle from Prince Edward Island, whereas the Prince Edward Island cattle, which were fed potato by-products as a finishing diet, had 7 phylotypes (42 clones) not found in cattle from Ontario. Five sequences, representing the remaining 161 clones (67% of the clones), were common in both herds. Of the 23 different sequences, 10 sequences (136 clones) were 89.8 to 100% similar to those from cultivated methanogens belonging to the orders Methanobacteriales, Methanomicrobiales, and Methanosarcinales, and the remaining 13 sequences (105 clones) were 74.1 to 75.8% similar to those from Thermoplasma volcanium and Thermoplasma acidophilum. Overall, nine possible new species were identified from the two clone libraries, including two new species belonging to the order Methanobacteriales and a new genus/species within the order Methanosarcinales. From the present survey, it is difficult to conclude whether the geographical isolation between these two herds or differences between the two finishing diets directly influenced community structure in the rumen. Further studies are warranted to properly assess the differences between these two finishing diets.
Collapse
Affiliation(s)
- André-Denis G Wright
- CSIRO Livestock Industries, Queensland Bioscience Precinct, St Lucia, Queensland, Australia.
| | | | | |
Collapse
|
68
|
Skillman LC, Evans PN, Strömpl C, Joblin KN. 16S rDNA directed PCR primers and detection of methanogens in the bovine rumen. Lett Appl Microbiol 2006; 42:222-8. [PMID: 16478508 DOI: 10.1111/j.1472-765x.2005.01833.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To assess the diversity of ruminal methanogens in a grazing cow, and develop PCR primers targeting the predominant methanogens. METHODS AND RESULTS DNA was extracted from rumen contents collected from a cow grazing pasture. Archaeal 16S rRNA genes were amplified by PCR using two pairs of archaea-specific primers, and clone libraries prepared. Selected clones were sequenced. Phylogenetic analysis revealed that for one primer pair, most sequences clustered with Methanobrevibacter spp. whereas with the other primer pair most clustered with Methanosphaera stadtmanae. One sequence belonged to the Crenarcheota. PCR primers were designed to detect Msp. stadtmanae and differentiate between Mbb. ruminantium and Mbb. smithii and successfully tested. CONCLUSIONS The ruminal methanogens included Mbb. ruminantium, Mbb. smithii, Mbb. thaueri and methanogens similar to Msp.stadtmanae. The study showed that apparent methanogen diversity can be affected by selectivity from the archaea-specific primers used to create clone libraries. SIGNIFICANCE AND IMPACT OF THE STUDY This study revealed a greater diversity of ruminal methanogens in grazing cows than previously recognized. It also shows the need for care in interpreting methanogen diversity using PCR-based analyses. The new PCR primers will enable more information to be obtained on Msp. stadtmanae and Methanobrevibacter spp. in the rumen.
Collapse
Affiliation(s)
- L C Skillman
- Grasslands Research Centre, AgResearch, Palmerston North, New Zealand
| | | | | | | |
Collapse
|
69
|
Culley DE, Kovacik WP, Brockman FJ, Zhang W. Optimization of RNA isolation from the archaebacterium Methanosarcina barkeri and validation for oligonucleotide microarray analysis. J Microbiol Methods 2006; 67:36-43. [PMID: 16631263 DOI: 10.1016/j.mimet.2006.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
The recent completion of a draft genome sequence for Methanosarcina barkeri has allowed the application of various high throughput post-genomics technologies, such as nucleic acid microarrays and mass spectrometry of proteins to detect global changes in transcription and translation that occur in response to experimental treatments. However, due to the production of a thick heteropolysaccharide outer layer, M. barkeri usually grows in large aggregates of cells rather than as individual, planktonic cells. Complete disruption of these aggregates and lysis of the released cells presents technical difficulties in ensuring the isolation of intact RNA from the entire population of cells. Initial attempts at isolating RNA from M. barkeri using several standard extraction protocols gave incomplete lysis of cells and resulted in low yields of poor quality RNA. In this study, we tested several chemical and mechanical disruption modifications of standard RNA extraction methods to optimize the extraction efficiency and minimize the number of unlysed cells remaining after extraction. As a further test of the quality of the resulting RNAs, their performance in replicate microarray analyses were determined. The results showed that inclusion of a liquid nitrogen grinding step prior to Trizol extraction, combined with moderate bead beating, yielded the most complete cell lysis, the highest yield of RNA and the most reproducible microarray results for M. barkeri. From these results it is clear that the methods used to isolate RNA can have a significant impact on the variability, trend and, presumably, the accuracy of microarray data. In addition, functional analysis of the microarray results obtained with RNA from the optimized protocol showed that, as expected, the genes involved in methanogenesis were among the most highly expressed genes in M. barkeri.
Collapse
Affiliation(s)
- David E Culley
- Microbiology Group, Pacific Northwest National Laboratory, P.O. Box 999, Mail Stop: P7-50, Richland, WA 99352, USA
| | | | | | | |
Collapse
|
70
|
Singh N, Kendall MM, Liu Y, Boone DR. Isolation and characterization of methylotrophic methanogens from anoxic marine sediments in Skan Bay, Alaska: description of Methanococcoides alaskense sp. nov., and emended description of Methanosarcina baltica. Int J Syst Evol Microbiol 2006; 55:2531-2538. [PMID: 16280522 DOI: 10.1099/ijs.0.63886-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three novel strains of methylotrophic methanogens were isolated from Skan Bay, Alaska, by using anaerobic cultivation techniques. The water was 65 m deep at the sampling site. Strains AK-4 (=OCM 774), AK-5T (=OCM 775T=DSM 17273T) and AK-9 (=OCM 793) were isolated from the sulfate-reducing zone of the sediments. Each of the strains was a non-motile coccus and occurred singly. Cells grew with trimethylamine as a catabolic substrate and strain AK-4 could also catabolize methanol. Yeast extract and trypticase peptones were not required for growth, but their addition to the culture medium slightly stimulated growth. Each of the strains grew at temperatures of 5-28 degrees C; they were slight halophiles and grew fastest in the neutral pH range. Analysis of the 16S rRNA gene sequences indicated that strain AK-4 was most closely related to Methanosarcina baltica. DNA-DNA hybridization studies showed 88 % relatedness, suggesting that strain AK-4 represents a novel strain within this species. Strains AK-5T and AK-9 had identical 16S rRNA gene sequences that were most closely related to the sequence of Methanococcoides burtonii (99.8 % sequence similarity). DNA-DNA hybridization studies showed that strains AK-5T and AK-9 are members of the same species (88 % relatedness value), but strain AK-5T had a DNA-DNA relatedness value of only 55 % to Methanococcoides burtonii. This indicates that strains AK-5T and AK-9 should be considered as members of a novel species in the genus Methanococcoides. We propose the name Methanococcoides alaskense sp. nov., with strain AK-5T (=OCM 775T=DSM 17273T) as the type strain.
Collapse
Affiliation(s)
- Neha Singh
- Biology Department, Portland State University, PO Box 751, Portland, OR 97207-0751, USA
| | - Melissa M Kendall
- Biology Department, Portland State University, PO Box 751, Portland, OR 97207-0751, USA
| | - Yitai Liu
- Biology Department, Portland State University, PO Box 751, Portland, OR 97207-0751, USA
| | - David R Boone
- Biology Department, Portland State University, PO Box 751, Portland, OR 97207-0751, USA
| |
Collapse
|
71
|
Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim Feed Sci Technol 2005. [DOI: 10.1016/j.anifeedsci.2005.04.037] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
72
|
Ahel D, Slade D, Mocibob M, Söll D, Weygand-Durasevic I. Selective inhibition of divergent seryl-tRNA synthetases by serine analogues. FEBS Lett 2005; 579:4344-8. [PMID: 16054140 DOI: 10.1016/j.febslet.2005.06.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 06/23/2005] [Accepted: 06/29/2005] [Indexed: 10/25/2022]
Abstract
Seryl-tRNA synthetases (SerRSs) fall into two distinct evolutionary groups of enzymes, bacterial and methanogenic. These two types of SerRSs display only minimal sequence similarity, primarily within the class II conserved motifs, and possess distinct modes of tRNA(Ser) recognition. In order to determine whether the two types of SerRSs also differ in their recognition of the serine substrate, we compared the sensitivity of the representative methanogenic and bacterial-type SerRSs to serine hydroxamate and two previously unidentified inhibitors, serinamide and serine methyl ester. Our kinetic data showed selective inhibition of the methanogenic SerRS by serinamide, suggesting a lack of mechanistic uniformity in serine recognition between the evolutionarily distinct SerRSs.
Collapse
Affiliation(s)
- Dragana Ahel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|
73
|
Ungerfeld EM, Rust SR, Boone DR, Liu Y. Effects of several inhibitors on pure cultures of ruminal methanogens. J Appl Microbiol 2005; 97:520-6. [PMID: 15281932 DOI: 10.1111/j.1365-2672.2004.02330.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To examine the effects of five inhibitors of methanogenesis, 2-bromoethanesulphonate (BES), 3-bromopropanesulphonate (BPS), lumazine, propynoic acid and ethyl 2-butynoate, on CH4 production of the ruminal methanogens Methanobrevibacter ruminantium, Methanosarcina mazei and Methanomicrobium mobile. METHODS AND RESULTS Methanogens were grown in MS medium including 25% (v/v) clarified ruminal fluid. Methane production was measured after 4 and 6 days of incubation. Methanobrevibacter ruminantium was the most sensitive species to BES, propynoic acid and ethyl 2-butynoate. Methanosarcina mazei was the least sensitive species to those chemical additives, and Mm. mobile was intermediate. BPS failed to inhibit any of the methanogens. All three species were almost completely inhibited by 50- and 100%-lumazine saturated media, but the inhibition was somewhat lower with a 25%-lumazine saturated media. CONCLUSIONS There were important differences among species of methanogens regarding their sensitivity to the different inhibitors. In general, Ms. mazei was the most resistant to inhibitors, Mb. ruminantium the least resistant, and Mm. mobile was intermediate. SIGNIFICANCE AND IMPACT OF THE STUDY Differences among methanogens regarding their resistance to chemical inhibitors should be considered when designing strategies of inhibition of ruminal methanogenesis, as selection of resistant species may result.
Collapse
Affiliation(s)
- E M Ungerfeld
- Department of Animal Science, Michigan State University, East Lansing, MI, USA.
| | | | | | | |
Collapse
|
74
|
Lange M, Westermann P, Ahring BK. Archaea in protozoa and metazoa. Appl Microbiol Biotechnol 2004; 66:465-74. [PMID: 15630514 DOI: 10.1007/s00253-004-1790-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 09/20/2004] [Accepted: 10/02/2004] [Indexed: 10/26/2022]
Abstract
The presence of Archaea is currently being explored in various environments, including extreme geographic positions and eukaryotic habitats. Methanogens are the dominating archaeal organisms found in most animals, from unicellular protozoa to humans. Many methanogens can contribute to the removal of hydrogen, thereby improving the efficiency of fermentation or the reductive capacity of energy-yielding reactions. They may also be involved in tissue damage in periodontal patients. Recent molecular studies demonstrated the presence of Archaea other than methanogens in some animals-but so far, not in humans. The roles of these microorganisms have not yet been established. In the present review, we present the state of the art regarding the archaeal microflora in animals.
Collapse
Affiliation(s)
- Marianne Lange
- BioCentrum, Technical University of Denmark, BioCentrum, Building 227, Lyngby, 2800, Denmark
| | | | | |
Collapse
|
75
|
Skillman LC, Evans PN, Naylor GE, Morvan B, Jarvis GN, Joblin KN. 16S ribosomal DNA-directed PCR primers for ruminal methanogens and identification of methanogens colonising young lambs. Anaerobe 2004; 10:277-85. [PMID: 16701528 DOI: 10.1016/j.anaerobe.2004.05.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 05/18/2004] [Accepted: 05/19/2004] [Indexed: 10/26/2022]
Abstract
The population densities and identities of methanogens colonising new-born lambs in a grazing flock were determined from rumen samples collected at regular intervals after birth. Methanogen colonisation was found at the first sampling (1-3 days after birth) and population densities reached around 10(4) methanogens per gram at 1 week of age. Population densities increased in an exponential manner to a maximum of 10(8)-10(9) per gram at 3 weeks of age. To identify methanogens, PCR primers specific for each of the Archaea; a grouping of the orders Methanomicrobiales, Methanosarcinales and Methanococcales; the order Methanobacteriales; the order Methanococcales; the order Methanosarcinales; the genus Methanobacterium; and the genus Methanobrevibacter were designed. Primer-pair specificities were confirmed in tests with target and non-target micro-organisms. PCR analysis of DNA extracts revealed that all the detectable ruminal methanogens belonged to the order Methanobacteriales, with no methanogens belonging to the Methanomicrobiales, the Methanosarcinales, or the Methanococcales being detected. In 3 lambs, the initial colonising methanogens were Methanobrevibacter spp. and in 2 lambs were a mixture of Methanobrevibacter and Methanobacterium spp. In the latter case, the initial colonising Methanobacterium spp. subsequently disappeared and were not detectable 12-19 days after birth. Seven weeks after birth, lambs contained only Methanobrevibacter spp. This study, the first to provide information on the identities of methanogens colonising pre-ruminants, suggests that the predominant methanogens found in the mature rumen establish very soon after birth and well before a functioning rumen develops.
Collapse
Affiliation(s)
- Lucy C Skillman
- Rumen Biotechnology, AgResearch, Grasslands Research Centre, Private Bag 11008, Palmerston North, New Zealand
| | | | | | | | | | | |
Collapse
|
76
|
Chan OC, Wolf M, Hepperle D, Casper P. Methanogenic archaeal community in the sediment of an artificially partitioned acidic bog lake. FEMS Microbiol Ecol 2002; 42:119-29. [DOI: 10.1111/j.1574-6941.2002.tb01001.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
77
|
Whitford MF, Teather RM, Forster RJ. Phylogenetic analysis of methanogens from the bovine rumen. BMC Microbiol 2001; 1:5. [PMID: 11384509 PMCID: PMC32158 DOI: 10.1186/1471-2180-1-5] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2001] [Accepted: 05/16/2001] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Interest in methanogens from ruminants has resulted from the role of methane in global warming and from the fact that cattle typically lose 6 % of ingested energy as methane. Several species of methanogens have been isolated from ruminants. However they are difficult to culture, few have been consistently found in high numbers, and it is likely that major species of rumen methanogens are yet to be identified. RESULTS Total DNA from clarified bovine rumen fluid was amplified using primers specific for Archaeal 16S rRNA gene sequences (rDNA). Phylogenetic analysis of 41 rDNA sequences identified three clusters of methanogens. The largest cluster contained two distinct subclusters with rDNA sequences similar to Methanobrevibacter ruminantium 16S rDNA. A second cluster contained sequences related to 16S rDNA from Methanosphaera stadtmanae, an organism not previously described in the rumen. The third cluster contained rDNA sequences that may form a novel group of rumen methanogens. CONCLUSIONS The current set of 16S rRNA hybridization probes targeting methanogenic Archaea does not cover the phylogenetic diversity present in the rumen and possibly other gastro-intestinal tract environments. New probes and quantitative PCR assays are needed to determine the distribution of the newly identified methanogen clusters in rumen microbial communities.
Collapse
Affiliation(s)
- Marc F Whitford
- Lethbridge Research Centre, Research Branch, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, CANADA
| | - Ronald M Teather
- Lethbridge Research Centre, Research Branch, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, CANADA
| | - Robert J Forster
- Lethbridge Research Centre, Research Branch, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, CANADA
| |
Collapse
|