51
|
MicroRNA-1270 Inhibits Cell Proliferation, Migration, and Invasion via Targeting IRF8 in Osteoblast-like Cell Lines. Curr Issues Mol Biol 2022; 44:1182-1190. [PMID: 35723300 PMCID: PMC8947117 DOI: 10.3390/cimb44030077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis (OP) is the most common bone disease affecting elderly individuals. The diagnosis of this pathology is most commonly made on the basis of bone fractures. Several microRNAs (miRNAs/miRs) have been identified as possible biomarkers for the diagnosis and treatment of OP. miRNAs can regulate gene expression, and determining their functions can provide potential pharmacological targets for treating OP. A previous study showed that miR-1270 was upregulated in monocytes derived from postmenopausal women with OP. Therefore, the present study aimed to uncover the role of miR-1270 in regulating bone metabolism. To reveal the mechanism underlying the regulatory effect of miR-1270 on interferon regulatory factor 8 (IRF8) expression, luciferase assay, reverse transcription-quantitative PCR, and Western blot analysis were performed. The results suggest that miR-1270 could regulate the mRNA and protein expression levels of IRF8 by directly binding to its 3′-untranslated region. The effects of miR-1270 overexpression and IRF8 silencing on cell proliferation, migration, and invasion were also evaluated. To the best of our knowledge, the current study was the first to support the crucial role of miR-1270 in bone metabolism via modulation of IRF8 expression. In addition, miR-1270 overexpression could attenuate human osteoblast-like cells’ proliferation and migration ability.
Collapse
|
52
|
Li Z, Yang Q, Tang X, Chen Y, Wang S, Qi X, Zhang Y, Liu Z, Luo J, Liu H, Ba Y, Guo L, Wu B, Huang F, Cao G, Yin Z. Single-cell RNA-seq and chromatin accessibility profiling decipher the heterogeneity of mouse γδ T cells. Sci Bull (Beijing) 2022; 67:408-426. [PMID: 36546093 DOI: 10.1016/j.scib.2021.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 01/06/2023]
Abstract
The distinct characteristics of γδ T cells determine their vital roles in the formation of local immune responses and contribute to tissue homeostasis. However, the heterogeneity of γδ T cells across tissues remains unclear. By combining transcriptional and chromatin analyses with a truly unbiased fashion, we constructed a single-cell transcriptome and chromatin accessibility landscape of mouse γδ T cells in the lymph, spleen, and thymus. We also revealed the heterogeneity of γδ T1 and γδ T17 cells across these tissues and inferred their potential regulatory mechanisms. In the thymus, we reconstructed the developmental trajectory and gained further insights into the signature genes from the mature stage, intermediate stage, and immature stage of γδ T cells on the basis of single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin sequencing data. Notably, a novel Gzma+ γδ T cell subset was identified with immature properties and only localized to the thymus. Finally, NR1D1, a circadian transcription factor (TF), was validated as a key and negative regulator of γδ T17 cell differentiation by performing a combined analysis of TF motif enrichment, regulon enrichment, and Nr1d1 knockout mice. In summary, our data represent a comprehensive mapping on the transcriptome and chromatin accessibility dynamics of mouse γδ T cells, providing a valuable resource and reference for future studies on γδ T cells.
Collapse
Affiliation(s)
- Zhenhua Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Quanli Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Xin Tang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China; The First Affiliated Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510000, China
| | - Yiming Chen
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Shanshan Wang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Xiaojie Qi
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Yawen Zhang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Zonghua Liu
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Jing Luo
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China; The First Affiliated Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510000, China
| | - Hui Liu
- Emergency Department, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510000, China
| | - Yongbing Ba
- OE Biotech Co., Ltd., Shanghai 201114, China
| | - Lianxia Guo
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou 510700, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou 510700, China
| | - Fang Huang
- Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 519000, China
| | - Guangchao Cao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China.
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
53
|
Luo Q, Yu Y, Lan X. SIGNET: single-cell RNA-seq-based gene regulatory network prediction using multiple-layer perceptron bagging. Brief Bioinform 2022; 23:bbab547. [PMID: 34962260 PMCID: PMC8769917 DOI: 10.1093/bib/bbab547] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/13/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
High-throughput single-cell RNA-seq data have provided unprecedented opportunities for deciphering the regulatory interactions among genes. However, such interactions are complex and often nonlinear or nonmonotonic, which makes their inference using linear models challenging. We present SIGNET, a deep learning-based framework for capturing complex regulatory relationships between genes under the assumption that the expression levels of transcription factors participating in gene regulation are strong predictors of the expression of their target genes. Evaluations based on a variety of real and simulated scRNA-seq datasets showed that SIGNET is more sensitive to ChIP-seq validated regulatory interactions in different types of cells, particularly rare cells. Therefore, this process is more effective for various downstream analyses, such as cell clustering and gene regulatory network inference. We demonstrated that SIGNET is a useful tool for identifying important regulatory modules driving various biological processes.
Collapse
Affiliation(s)
- Qinhuan Luo
- School of Medicine, Tsinghua University, Beijing, China
| | - Yongzhen Yu
- School of Medicine, Tsinghua University, Beijing, China
| | - Xun Lan
- School of Medicine,and the Tsinghua-Peking Center for Life science, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
| |
Collapse
|
54
|
Zhou C, Zhan G, Jin Y, Chen J, Shen Z, Shen Y, Deng H. A novel pyroptosis-related gene signature to predict outcomes in laryngeal squamous cell carcinoma. Aging (Albany NY) 2021; 13:25960-25979. [PMID: 34910689 PMCID: PMC8751611 DOI: 10.18632/aging.203783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/02/2021] [Indexed: 12/09/2022]
Abstract
Pyroptosis, a pro-inflammatory form of programmed cell death, is associated with carcinogenesis and progression. However, there is little information concerning pyroptosis-related genes (PRGs) in laryngeal squamous cell carcinoma (LSCC). Herein, we aim to explore the prognostic value of PRGs in LSCC. The expression and clinical data of 47 PRGs in LSCC patients were obtained from The Cancer Genome Atlas. A novel prognostic PRG signature was constructed using least absolute shrinkage and selection operator analysis. Receiver operating characteristic (ROC) curves were drawn, and Kaplan-Meier survival Cox proportional hazard regression analyses were performed to measure the predictive capacity of the PRG signature. Furthermore, we constructed a six-PRG signature to divide LSCC patients into high- and low-risk groups. Patients in the high-risk group had worse overall survival than the low-risk group. The area under the time-dependent ROC curve was 0.696 for 1 year, 0.784 for 3 years, and 0.738 for 5 years. We proved that the PRGs signature was an independent predictor for LSCC. Functional enrichment analysis indicated that several immune-related pathways were significantly enriched in the low-risk group. Consistent with this, patients with low-risk scores had higher immune scores and better immunotherapeutic responses than the high-risk group. In conclusion, we established a novel PRGs signature that can predict outcome and response to immunotherapy of LSCC, pyroptosis may be a potential target for LSCC.
Collapse
Affiliation(s)
- Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315040, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo 315040, Zhejiang, China
| | - Guowen Zhan
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Yinzhou Second Hospital, Ningbo 315040, Zhejiang, China
| | - Yangli Jin
- Department of Ultrasonography, Ningbo Yinzhou Second Hospital, Ningbo 315040, Zhejiang, China
| | - Jianneng Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Zhenhai Longsai Hospital, Ningbo 315200, Zhejiang, China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315040, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo 315040, Zhejiang, China
| | - Yi Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315040, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo 315040, Zhejiang, China
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315040, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo 315040, Zhejiang, China
| |
Collapse
|
55
|
Zhang K, Hocker JD, Miller M, Hou X, Chiou J, Poirion OB, Qiu Y, Li YE, Gaulton KJ, Wang A, Preissl S, Ren B. A single-cell atlas of chromatin accessibility in the human genome. Cell 2021; 184:5985-6001.e19. [PMID: 34774128 PMCID: PMC8664161 DOI: 10.1016/j.cell.2021.10.024] [Citation(s) in RCA: 254] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/30/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
Current catalogs of regulatory sequences in the human genome are still incomplete and lack cell type resolution. To profile the activity of gene regulatory elements in diverse cell types and tissues in the human body, we applied single-cell chromatin accessibility assays to 30 adult human tissue types from multiple donors. We integrated these datasets with previous single-cell chromatin accessibility data from 15 fetal tissue types to reveal the status of open chromatin for ∼1.2 million candidate cis-regulatory elements (cCREs) in 222 distinct cell types comprised of >1.3 million nuclei. We used these chromatin accessibility maps to delineate cell-type-specificity of fetal and adult human cCREs and to systematically interpret the noncoding variants associated with complex human traits and diseases. This rich resource provides a foundation for the analysis of gene regulatory programs in human cell types across tissues, life stages, and organ systems.
Collapse
Affiliation(s)
- Kai Zhang
- Ludwig Institute for Cancer Research, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - James D Hocker
- Ludwig Institute for Cancer Research, La Jolla, CA, USA; Medical Scientist Training Program, University of California San Diego, La Jolla, CA, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Michael Miller
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
| | - Xiaomeng Hou
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
| | - Joshua Chiou
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA; Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA
| | - Olivier B Poirion
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
| | - Yunjiang Qiu
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Yang E Li
- Ludwig Institute for Cancer Research, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Kyle J Gaulton
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Allen Wang
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
| | - Sebastian Preissl
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, La Jolla, CA, USA; Center for Epigenomics, University of California San Diego, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
56
|
Chen Z, Lan R, Ye K, Chen H, Chen C, Xu Y. Prioritization of Diagnostic and Prognostic Biomarkers for Lupus Nephritis Based on Integrated Bioinformatics Analyses. Front Bioeng Biotechnol 2021; 9:717234. [PMID: 34692653 PMCID: PMC8531593 DOI: 10.3389/fbioe.2021.717234] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/28/2021] [Indexed: 12/28/2022] Open
Abstract
Lupus nephritis (LN) is an important driver of end-stage renal disease (ESRD). However, few biomarkers are available for evaluating the diagnosis and prognosis of LN. For this study, we downloaded microarray data of multiple LN expression profiles from the GEO database. We used the WGCNA and R limma packages to identify LN hub genes and differentially-expressed genes (DEGs). We identified nine co-DEGs in the intersection with LN-related genes from the Genecards database. We found DEGs that are primarily associated with immune-related functions and pathways (including with the complement pathway, primary immunodeficiency markers, and MHC-like protein complexes) through our comprehensive GSEA, GO, and KEGG enrichment analyses. We used other LN and SLE validation datasets and discovered six explicitly expressed co-DEGs: HLA-DMA, HLA-DPA1, HLA-DPB1, HLA-DRA, IL10RA, and IRF8 in the LN set; ROC and Precision-Recall curve analyses revealed that these six genes have a good diagnostic efficacy. The correlation analysis with prognostic data from the Nephroseq database indicates that the differential expression of these co-DEGs is associated with a low glomerular filtration rate in that cohort. Additionally, we used a single-cell LN database of immune cells (for the first time) and discovered these co-DEGs to be predominantly distributed in different types of macrophages and B cells. In conclusion, by integrating multiple approaches for DEGs discovery, we identified six valuable biomarkers that are strongly correlated with the diagnosis and prognosis of LN. These markers can help clarify the pathogenesis and improve the clinical management of LN.
Collapse
Affiliation(s)
- Zhimin Chen
- Department of Nephrology, Blood Purification Research Center, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ruilong Lan
- Central Laboratory, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Keng Ye
- Department of Nephrology, Blood Purification Research Center, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hong Chen
- Department of Pathology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Caiming Chen
- Department of Nephrology, Blood Purification Research Center, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
57
|
Hepatic interferon regulatory factor 8 expression mediates liver ischemia/reperfusion injury in mice. Biochem Pharmacol 2021; 192:114728. [PMID: 34400126 DOI: 10.1016/j.bcp.2021.114728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
Hepatic ischemia/reperfusion (I/R) injury is an inevitable complication of hepatic surgery occasioned by liver transplantation and resection. The progression from liver ischemia to reperfusion injury is accompanied by abnormal metabolism, Kupffer cell activation, neutrophil recruitment and the release of cytokines. Activation of several interferon regulatory factors (IRFs) has been reported to either enhance or restrict I/R progression, but the role of IRF8 in the regulation of I/R injury progression is still unknown. In this study, we explore the IRF8 function in the I/R-mediated liver injury using overexpressed hepatic IRF8 and knockout mice. According to our results, IRF8 knockout mice had significantly lower inflammatory cells infiltration, inflammatory cytokines release and serum aspartate aminotransferase/alanine aminotransferase levels that improved the necrotic injury after I/R, unlike the control mice. Conversely, the overexpression of IRF8 in WT mice markedly aggravated the liver structure damage and its abnormal function. We further showed that IRF8-mediated inflammatory cells infiltration were partly dependent on early autophagy and NF-κΒ signal pathway during I/R. AAV8-IRF8-I/R mice pretreated with autophagy inhibitor hydroxychloroquine and NF-κΒ signal pathway inhibitor secukinumab could drastically reverse the IRF8-mediated increase of neutrophil infiltration and chemokine release at different degrees. This work uncovered a critical role of IRF8 in the modulation of the hepatic microenvironment and as a potential target in the initial treatment of I/R injury.
Collapse
|
58
|
Lack of Interferon Regulatory Factor 8 Associated with Restricted IFN-gamma expression Augmented Japanese Encephalitis Virus Replication in the Mouse Brain. J Virol 2021; 95:e0040621. [PMID: 34379515 PMCID: PMC8513486 DOI: 10.1128/jvi.00406-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interferon Regulatory Factor 8 (IRF8), a myeloid lineage transcription factor, emerges as an essential regulator for microglia activation. However, the precise role of IRF8 during Japanese encephalitis virus (JEV) infection in the brain remains elusive. Here we report that JEV infection enhances IRF8 expression in the infected mice brain. Comparative transcriptional profiling of whole-brain RNA analysis and validation by qRT-PCR reveals an impaired IFNγ and related gene expression in Irf8 knockout (Irf8-/-) infected mice. Further, Ifnγ knockout (Ifnγ-/-) mice exhibit a reduced level of Irf8. Both Ifnγ-/- and Irf8-/- mice exhibit significantly reduced levels of activated (CD11b+CD45hi, CD11b+CD45lo, Cd68, and CD86) and infiltrating immune cells (Ly6C+, CD4, and CD8) in the infected brain as compared to WT mice. However, a higher level of granulocyte cells (Ly6G+) infiltration is evident in Irf8-/- mice and the increased concentration of TNFα, IL6, MCP1 levels in the brain. Interestingly, neither Irf8-/- nor Ifnγ-/- has conferred protection against lethal JEV challenge to mice and exhibits augmentation in JEV replication in the brain. The gain of function of Irf8 by overexpressing functional IRF8 in an IRF8 deficient cell line attenuates viral replication and enhances IFNγ production. Overall, we summarise that in the murine model of JEV encephalitis, IRF8 modulation affects JEV replication. We also evidence that lack of Irf8 affects immune cells abundance in circulation and the infected brain leading to a reduction in IFNγ level and increased viral load in the brain. Importance Microglial cells, the resident macrophages in the brain, play a vital role in Japanese encephalitis virus (JEV) pathogenesis. The deregulated activity of microglia can be lethal for the brain. Therefore, it is crucial to understand the regulators that drive microglia's phenotype changes and induce inflammation in the brain. Interferon regulatory factor 8 (IRF8) is a myeloid lineage transcription factor involved in microglial activation. However, the impact of IRF8 modulation on JEV replication remains elusive. Moreover, the pathways regulated by IRF8 to initiate and amplify pathological neuroinflammation are not well understood. Here, we demonstrated the effect of IRF8 modulation on JEV replication, microglial activation, and immune cells infiltration in the brain.
Collapse
|
59
|
Ilott NE, Neyazi M, Oxford Translational Gastroenterology Unit Investigators, Arancibia-Cárcamo CV, Powrie F, Geremia A. Tissue-dependent transcriptional and bacterial associations in primary sclerosing cholangitis-associated inflammatory bowel disease. Wellcome Open Res 2021; 6:199. [PMID: 36447600 PMCID: PMC9664024 DOI: 10.12688/wellcomeopenres.16901.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 06/30/2024] Open
Abstract
Background: Primary sclerosing cholangitis (PSC) is a disease of the bile duct and liver. However, patients frequently have co-morbidities including inflammatory bowel disease (IBD) and colorectal cancer. Colorectal cancer risk in patients with PSC-associated ulcerative colitis (PSC/UC) is elevated relative to patients with ulcerative colitis (UC) alone, reasons for which remain obscure. Further, clinical and immunological features, and involved intestinal sites differ between PSC/UC and UC. Understanding the molecular and microbial basis for differences in cancer risk between these two patient groups and how these differ across intestinal sites is important for the development of therapies to prevent colorectal cancer development in at-risk individuals. Methods: We employed ribonucleic acid sequencing (RNA-seq) analysis of biopsy samples across three intestinal tissue locations (ileum, caecum and rectum) in patients with PSC/UC (n = 8), UC (n = 10) and healthy controls (n = 12) to determine tissue-dependent transcriptional alterations in PSC/UC. We also performed 16S ribosomal RNA (rRNA) amplicon sequencing to determine bacterial associations with PSC/UC and host-microbiome associations. Results: Tissue-defining transcriptional signatures revealed that the ileum was enriched for genes involved in lipid and drug metabolism, the caecum for activated immune cells and the rectum for enteric neurogenesis. Transcriptional alterations relative to healthy control samples were largely shared between patients with PSC/UC or UC although were distinct across tissue locations. Nevertheless, we observed reduced expression of gamma-glutamyl transferase 1 ( GGT1) specifically in the ileum and caecum of patients with PSC/UC. Analysis of the bacterial component of the microbiome revealed high inter-individual variability of microbiome composition and little evidence for tissue-dependency. We observed a reduction in Parabacteroides relative abundance in the rectum of patients with PSC/UC. Conclusions: The role of gamma-glutamyl transferase in maintaining the redox environment through the glutathione salvage pathway makes our observed alterations a potential pathway to PSC-associated colorectal cancer.
Collapse
Affiliation(s)
- Nicholas E. Ilott
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY, UK
| | - Mastura Neyazi
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, and NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Oxford Translational Gastroenterology Unit Investigators
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY, UK
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, and NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Carolina V. Arancibia-Cárcamo
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, and NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Fiona Powrie
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY, UK
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, and NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Alessandra Geremia
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, and NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
60
|
Lu RJ, Taylor S, Contrepois K, Kim M, Bravo JI, Ellenberger M, Sampathkumar NK, Benayoun BA. Multi-omic profiling of primary mouse neutrophils predicts a pattern of sex and age-related functional regulation. NATURE AGING 2021; 1:715-733. [PMID: 34514433 PMCID: PMC8425468 DOI: 10.1038/s43587-021-00086-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 06/10/2021] [Indexed: 12/18/2022]
Abstract
Neutrophils are the most abundant human white blood cell and constitute a first line of defense in the innate immune response. Neutrophils are short-lived cells, and thus the impact of organismal aging on neutrophil biology, especially as a function of biological sex, remains poorly understood. Here, we describe a multi-omic resource of mouse primary bone marrow neutrophils from young and old female and male mice, at the transcriptomic, metabolomic and lipidomic levels. We identify widespread regulation of neutrophil 'omics' landscapes with organismal aging and biological sex. In addition, we leverage our resource to predict functional differences, including changes in neutrophil responses to activation signals. To date, this dataset represents the largest multi-omics resource for neutrophils across sex and ages. This resource identifies neutrophil characteristics which could be targeted to improve immune responses as a function of sex and/or age.
Collapse
Affiliation(s)
- Ryan J. Lu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Graduate program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089, USA
| | - Shalina Taylor
- Departments of Pediatrics and of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kévin Contrepois
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Minhoo Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Juan I. Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Graduate program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Nirmal K. Sampathkumar
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Present Address: UK-Dementia Research Institute, Institute of Psychiatry, Psychology and Neuroscience, Basic and Clinical Neuroscience Institute, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, UK
| | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089, USA
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA 90089
- USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
61
|
Lin Y, Yao X, Yan M, Zhou L, Huang W, Xiao Y, Wu D, Chen J. Integrated analysis of transcriptomics to identify hub genes in primary Sjögren's syndrome. Oral Dis 2021; 28:1831-1845. [PMID: 34145926 DOI: 10.1111/odi.13943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The treatment of patients with primary Sjögren's syndrome is a clinical challenge. Gene expression profile analysis and comprehensive network methods for complex diseases can provide insight into molecular characteristics in the clinical context. MATERIALS AND METHODS We downloaded gene expression datasets from the Gene Expression Omnibus (GEO) database. We screened differentially expressed genes (DEG) between the pSS patients and the controls by the robust rank aggregation (RRA) method. We explored DEGs' potential function using gene function annotation and PPI network analysis. RESULTS GSE23117 GSE40611 GSE80805 and GSE127952were included, including 38 patients and 30 controls. The RRA integrated analysis determined 294 significant DEGs (241 upregulated and 53 downregulated), and the most significant gene aberrantly expressed in SS was CXCL9 (p = 6.39E-15), followed by CXCL13 (p = 1.53E-13). Immune response (GO:0006955; p = 4.29E-32) was the most significantly enriched biological process in GO (gene ontology) analysis. KEGG pathway enrichment analysis showed that cytokine-cytokine receptor interaction (hsa04060; p = 6.46E-10) and chemokine signaling pathway (hsa04062; p = 9.54E-09) were significantly enriched. We defined PTPRC, CD86, and LCP2 as the hub genes based on the PPI results. CONCLUSION Our integrated analysis identified gene signatures and helped understand molecular changes in pSS.
Collapse
Affiliation(s)
- Yanjun Lin
- Fujian Key Laboratory of Oral Diseases, Fujian Medical University, Fuzhou, Fujian, China.,Fujian Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, China.,Stomatological Key Lab of Fujian College and University, Fuzhou, Fujian, China.,Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiu Yao
- Fujian Key Laboratory of Oral Diseases, Fujian Medical University, Fuzhou, Fujian, China.,Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, Fuzhou, Fujian, China
| | - Mingdong Yan
- Fujian Key Laboratory of Oral Diseases, Fujian Medical University, Fuzhou, Fujian, China.,Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China.,Laboratory of Oral Tissue Engineering, Fujian Medical University, Fuzhou, Fujian, China
| | - Lin Zhou
- Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China.,Research Center of Dental and Craniofacial Implants, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenxiu Huang
- Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China.,Research Center of Dental and Craniofacial Implants, Fujian Medical University, Fuzhou, Fujian, China
| | - Yanjun Xiao
- Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China.,Research Center of Dental and Craniofacial Implants, Fujian Medical University, Fuzhou, Fujian, China
| | - Dong Wu
- Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China.,Research Center of Dental and Craniofacial Implants, Fujian Medical University, Fuzhou, Fujian, China
| | - Jiang Chen
- Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China.,Research Center of Dental and Craniofacial Implants, Fujian Medical University, Fuzhou, Fujian, China.,Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
62
|
Differential mRNA and miRNA Profiles Reveal the Potential Roles of Genes and miRNAs Involved in LPS Infection in Chicken Macrophages. Genes (Basel) 2021; 12:genes12050760. [PMID: 34067819 PMCID: PMC8155903 DOI: 10.3390/genes12050760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Lipopolysaccharide (LPS) is a component of the cell wall of Gram-negative bacteria, and triggers an inflammatory response both in vitro and in vivo. Here, we used LPS from Escherichia coli serotype enteritidis to stimulate chicken macrophages (HD11) and conducted the transcriptome analysis using a bioinformatics approach to explore the functions of immune-related genes and miRNAs. In total, 1759 differentially expressed genes (DEGs) and 18 differentially expressed (DE)-miRNAs were detected during LPS infection. At 6 h post infection, 1025 DEGs and 10 miRNAs were up-regulated, and 734 DEGs and 8 DE-miRNAs were down-regulated. Based on both RNA hybrid and miRanda systems, 55 DEGs could be targeted by 14 DE-miRNAs. The target genes were related to the immune response, such as IRF8, STAT3, TRAF7, and other potential candidate genes. The DE-miRNAs miR146a-3p, miR6583-5p, and miR30c-2-3p were investigated further. They were predicted to target 34 genes that may also be candidates for immune-related miRNAs and genes. Our results enhanced our understanding of the pathogenic mechanisms of Gram-negative bacteria in chickens.
Collapse
|
63
|
Dong X, Hu X, Bao Y, Li G, Yang XD, Slauch JM, Chen LF. Brd4 regulates NLRC4 inflammasome activation by facilitating IRF8-mediated transcription of Naips. J Cell Biol 2021; 220:e202005148. [PMID: 33535228 PMCID: PMC7863722 DOI: 10.1083/jcb.202005148] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/13/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
NLRC4 inflammasome activation and the subsequent maturation of IL-1β and IL-18 are critical for protection against infection by bacterial pathogens. The epigenetic regulator Brd4 has emerged as a key player in inflammation by regulating the expression of inflammatory cytokines. However, whether Brd4 has any role in inflammasome activation remains undetermined. Here, we demonstrated that Brd4 is an important regulator of NLRC4 inflammasome activation in response to Salmonella typhimurium infection. Brd4-deficient bone marrow-derived macrophages (BMDMs) displayed impaired caspase-1 activation, ASC oligomerization, IL-1β maturation, gasdermin-D cleavage, and pyroptosis in response to S.typhimurium infection. RNA sequencing and RT-PCR results revealed that the transcription of Naips was decreased in Brd4-deficient BMDMs. Brd4 formed a complex with IRF8/PU.1 and bound to the IRF8 and PU.1 binding motifs on the promoters of Naips to maintain the expression of Naips. Furthermore, myeloid lineage-specific Brd4 conditional knockout mice were more susceptible to S.typhimurium infection with increased mortality, bacterial loads, and tissue damage; impaired inflammasome-dependent cytokine production; and pyroptosis. Our studies identify a novel function of Brd4 in innate immunity by controlling inflammasome-mediated cytokine release and pyroptosis to effectively battle S.typhimurium infection.
Collapse
Affiliation(s)
- Xingchen Dong
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Xiangming Hu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yan Bao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Guo Li
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiao-dong Yang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - James M. Slauch
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Lin-Feng Chen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
64
|
Liss F, Frech M, Wang Y, Giel G, Fischer S, Simon C, Weber LM, Nist A, Stiewe T, Neubauer A, Burchert A, Liefke R. IRF8 Is an AML-Specific Susceptibility Factor That Regulates Signaling Pathways and Proliferation of AML Cells. Cancers (Basel) 2021; 13:cancers13040764. [PMID: 33673123 PMCID: PMC7917770 DOI: 10.3390/cancers13040764] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Despite progress, acute myeloid leukemia (AML) remains one of the deadliest cancer diseases. The identification of novel molecular targets may allow developing innovative and alternative treatment options for AML. Using public data from genome-edited cancer cells, we identified factors that are specifically essential for AML cell growth. We validated the critical role of the transcription factor IRF8 and demonstrated that it modulates the function of the cells by regulating important signaling molecules. These results support that IRF8 may be a suitable molecular target for the treatment of AML. Abstract Personalized treatment of acute myeloid leukemia (AML) that target individual aberrations strongly improved the survival of AML patients. However, AML is still one of the most lethal cancer diseases of the 21st century, demonstrating the need to find novel drug targets and to explore alternative treatment strategies. Upon investigation of public perturbation data, we identified the transcription factor IRF8 as a novel AML-specific susceptibility gene in humans. IRF8 is upregulated in a subset of AML cells and its deletion leads to impaired proliferation in those cells. Consistently, high IRF8 expression is associated with poorer patients’ prognoses. Combining gene expression changes upon IRF8 deletion and the genome-wide localization of IRF8 in the AML cell line MV4-11, we demonstrate that IRF8 directly regulates key signaling molecules, such as the kinases SRC and FAK, the transcription factors RUNX1 and IRF5, and the cell cycle regulator Cyclin D1. IRF8 loss impairs AML-driving signaling pathways, including the WNT, Chemokine, and VEGF signaling pathways. Additionally, many members of the focal adhesion pathway showed reduced expression, providing a putative link between high IRF8 expression and poor prognosis. Thus, this study suggests that IRF8 could serve as a biomarker and potential molecular target in a subset of human AMLs.
Collapse
Affiliation(s)
- Franziska Liss
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany; (F.L.); (S.F.); (C.S.); (L.M.W.)
| | - Miriam Frech
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, 35037 Marburg, Germany; (M.F.); (Y.W.); (G.G.); (A.N.); (A.B.)
| | - Ying Wang
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, 35037 Marburg, Germany; (M.F.); (Y.W.); (G.G.); (A.N.); (A.B.)
| | - Gavin Giel
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, 35037 Marburg, Germany; (M.F.); (Y.W.); (G.G.); (A.N.); (A.B.)
| | - Sabrina Fischer
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany; (F.L.); (S.F.); (C.S.); (L.M.W.)
| | - Clara Simon
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany; (F.L.); (S.F.); (C.S.); (L.M.W.)
| | - Lisa Marie Weber
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany; (F.L.); (S.F.); (C.S.); (L.M.W.)
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University of Marburg, 35043 Marburg, Germany; (A.N.); (T.S.)
| | - Thorsten Stiewe
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University of Marburg, 35043 Marburg, Germany; (A.N.); (T.S.)
| | - Andreas Neubauer
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, 35037 Marburg, Germany; (M.F.); (Y.W.); (G.G.); (A.N.); (A.B.)
| | - Andreas Burchert
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, 35037 Marburg, Germany; (M.F.); (Y.W.); (G.G.); (A.N.); (A.B.)
| | - Robert Liefke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany; (F.L.); (S.F.); (C.S.); (L.M.W.)
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, 35037 Marburg, Germany; (M.F.); (Y.W.); (G.G.); (A.N.); (A.B.)
- Correspondence: ; Tel.: +49-6421-28-66697
| |
Collapse
|
65
|
Hazlewood JE, Dumenil T, Le TT, Slonchak A, Kazakoff SH, Patch AM, Gray LA, Howley PM, Liu L, Hayball JD, Yan K, Rawle DJ, Prow NA, Suhrbier A. Injection site vaccinology of a recombinant vaccinia-based vector reveals diverse innate immune signatures. PLoS Pathog 2021; 17:e1009215. [PMID: 33439897 PMCID: PMC7837487 DOI: 10.1371/journal.ppat.1009215] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/26/2021] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
Poxvirus systems have been extensively used as vaccine vectors. Herein a RNA-Seq analysis of intramuscular injection sites provided detailed insights into host innate immune responses, as well as expression of vector and recombinant immunogen genes, after vaccination with a new multiplication defective, vaccinia-based vector, Sementis Copenhagen Vector. Chikungunya and Zika virus immunogen mRNA and protein expression was associated with necrosing skeletal muscle cells surrounded by mixed cellular infiltrates. The multiple adjuvant signatures at 12 hours post-vaccination were dominated by TLR3, 4 and 9, STING, MAVS, PKR and the inflammasome. Th1 cytokine signatures were dominated by IFNγ, TNF and IL1β, and chemokine signatures by CCL5 and CXCL12. Multiple signatures associated with dendritic cell stimulation were evident. By day seven, vaccine transcripts were absent, and cell death, neutrophil, macrophage and inflammation annotations had abated. No compelling arthritis signatures were identified. Such injection site vaccinology approaches should inform refinements in poxvirus-based vector design. Poxvirus vector systems have been widely developed for vaccine applications. Despite considerable progress, so far only one recombinant poxvirus vectored vaccine has to date been licensed for human use, with ongoing efforts seeking to enhance immunogenicity whilst minimizing reactogenicity. The latter two characteristics are often determined by early post-vaccination events at the injection site. We therefore undertook an injection site vaccinology approach to analyzing gene expression at the vaccination site after intramuscular inoculation with a recombinant, multiplication defective, vaccinia-based vaccine. This provided detailed insights into inter alia expression of vector-encoded immunoregulatory genes, as well as host innate and adaptive immune responses. We propose that such injection site vaccinology can inform rational vaccine vector design, and we discuss how the information and approach elucidated herein might be used to improve immunogenicity and limit reactogenicity of poxvirus-based vaccine vector systems.
Collapse
Affiliation(s)
- Jessamine E. Hazlewood
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Troy Dumenil
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Thuy T. Le
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Australia
| | - Stephen H. Kazakoff
- Clinical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ann-Marie Patch
- Clinical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Lesley-Ann Gray
- Australian Genome Research Facility Ltd., Melbourne, Australia
| | | | - Liang Liu
- Experimental Therapeutics Laboratory, University of South Australia Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - John D. Hayball
- Sementis Ltd., Hackney, Australia
- Experimental Therapeutics Laboratory, University of South Australia Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Daniel J. Rawle
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Natalie A. Prow
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Experimental Therapeutics Laboratory, University of South Australia Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Australian Infectious Disease Research Centre, Brisbane, Australia
- * E-mail:
| |
Collapse
|
66
|
Li JY, Xiao J, Gao M, Zhou HF, Fan H, Sun F, Cui DD. IRF/Type I IFN signaling serves as a valuable therapeutic target in the pathogenesis of inflammatory bowel disease. Int Immunopharmacol 2021; 92:107350. [PMID: 33444921 DOI: 10.1016/j.intimp.2020.107350] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/03/2023]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disease characterized by unresolved colitis and epithelial injury. Intestinal microbiota and its interaction with immune system are critical etiologic factors. In response to gut virome and bacteria derived nucleic acid, interferon regulatory factors (IRFs) are activated to promote the production of cytokines, including type I interferons (IFN-Is), to help maintain intestinal homeostasis under both physiological and pathophysiological conditions. However, derailed IRF/IFN-I pathway other-wisely contributes to the progression of IBD with distinct IRF member exerting differential regulatory effect. Here, we summarize the recent advances regarding the role of IRF/IFN-I pathway in the development of IBD. We emphasize that IFN-I is a double-edged sword in IBD pathogenesis, as IFN-Is are protective in acute colitis while becoming pro-inflammatory during the chronic recovery phase. Besides, the functional outcome of IRFs is diverse and complex, which hinges on the cell types affected and the presence of other immune mediators. All in all, IRF/IFN-I pathway serves as a versatile regulator in IBD pathogenesis and holds the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Jun-Yi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Gao
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai-Feng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Sun
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dan-Dan Cui
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
67
|
Casanova JL, Abel L. The human genetic determinism of life-threatening infectious diseases: genetic heterogeneity and physiological homogeneity? Hum Genet 2020; 139:681-694. [PMID: 32462426 PMCID: PMC7251220 DOI: 10.1007/s00439-020-02184-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multicellular eukaryotes emerged late in evolution from an ocean of viruses, bacteria, archaea, and unicellular eukaryotes. These macroorganisms are exposed to and infected by a tremendous diversity of microorganisms. Those that are large enough can even be infected by multicellular fungi and parasites. Each interaction is unique, if only because it operates between two unique living organisms, in an infinite diversity of circumstances. This is neatly illustrated by the extraordinarily high level of interindividual clinical variability in human infections, even for a given pathogen, ranging from a total absence of clinical manifestations to death. We discuss here the idea that the determinism of human life-threatening infectious diseases can be governed by single-gene inborn errors of immunity, which are rarely Mendelian and frequently display incomplete penetrance. We briefly review the evidence in support of this notion obtained over the last two decades, referring to a number of focused and thorough reviews published by eminent colleagues in this issue of Human Genetics. It seems that almost any life-threatening infectious disease can be driven by at least one, and, perhaps, a great many diverse monogenic inborn errors, which may nonetheless be immunologically related. While the proportions of monogenic cases remain unknown, a picture in which genetic heterogeneity is combined with physiological homogeneity is emerging from these studies. A preliminary sketch of the human genetic architecture of severe infectious diseases is perhaps in sight.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.
- Paris University, Imagine Institute, Paris, France.
- Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, Paris, France.
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris University, Imagine Institute, Paris, France
| |
Collapse
|