51
|
Tissue-engineered mesh for pelvic floor reconstruction fabricated from silk fibroin scaffold with adipose-derived mesenchymal stem cells. Cell Tissue Res 2013; 354:471-80. [DOI: 10.1007/s00441-013-1719-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/06/2013] [Indexed: 01/12/2023]
|
52
|
Volk SW, Iqbal SA, Bayat A. Interactions of the Extracellular Matrix and Progenitor Cells in Cutaneous Wound Healing. Adv Wound Care (New Rochelle) 2013; 2:261-272. [PMID: 24527348 DOI: 10.1089/wound.2012.0417] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Indexed: 01/16/2023] Open
Abstract
SIGNIFICANCE Both chronic wounds and excessive scar formation after cutaneous injury create a formidable clinical problem resulting in considerable morbidity and healthcare expenditure. The deposition and remodeling of extracellular matrix (ECM) components are critical processes in cutaneous healing. Understanding the role of the ECM in directing progenitor and reparative cell fate and activities during wound repair is required to improve wound-care strategies. RECENT ADVANCES In addition to providing structural integrity, the ECM is recognized to play critical roles in regulating progenitor and reparative cell behaviors such as migration, differentiation, proliferation, and survival. The ECM dictates these activities through its binding of adhesion receptors as well as its ability to regulate growth factor bioavailability and signaling. More recently, a key role for mechanical control of cell fate through interaction with the ECM has emerged. CRITICAL ISSUES Despite significant advances in understanding the pathophysiology of cutaneous wound repair, problematic wounds remain a significant healthcare challenge. Regenerative medical strategies that either target endogenous stem cells or utilize applications of exogenous stem cell populations have emerged as promising approaches to pathologic wounds. However, the identification of smart biomaterials and matrices may allow for further optimization of such therapies. FUTURE DIRECTIONS An efficient and appropriate healing response in the skin postinjury is regulated by a fine balance of the quantity and quality of ECM proteins. A more complete understanding of ECM regulation of the cell fate and activities during cutaneous wound repair is vital for the development of novel treatment strategies for improvement of cutaneous healing.
Collapse
Affiliation(s)
- Susan W. Volk
- Departments of Clinical Studies and Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Syed Amir Iqbal
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
- Department of Plastic and Reconstructive Surgery, Wythenshawe Hospital, University Hospital South Manchester NHS Foundation Trust, University of Manchester, Manchester, United Kingdom
- Institute of Inflammation and Repair, Manchester Academic Health Science Center, Wythenshawe Hospital, University Hospital South Manchester NHS Foundation Trust, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
53
|
Enhancement of wound closure in diabetic mice by ex vivo expanded cord blood CD34+ cells. Cell Mol Biol Lett 2013; 18:263-83. [PMID: 23666595 PMCID: PMC6275982 DOI: 10.2478/s11658-013-0089-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/18/2013] [Indexed: 12/11/2022] Open
Abstract
Diabetes can impair wound closure, which can give rise to major clinical problems. Most treatments for wound repair in diabetes remain ineffective. This study aimed to investigate the influence on wound closure of treatments using expanded human cord blood CD34+ cells (CB-CD34+ cells), freshly isolated CB-CD34+ cells and a cytokine cocktail. The test subjects were mice with streptozotocin-induced diabetes. Wounds treated with fresh CB-CD34+ cells showed more rapid repair than mice given the PBS control. Injection of expanded CB-CD34+ cells improved wound closure significantly, whereas the injection of the cytokine cocktail alone did not improve wound repair. The results also demonstrated a significant decrease in epithelial gaps and advanced re-epithelialization over the wound bed area after treatment with either expanded CB-CD34+ cells or freshly isolated cells compared with the control. In addition, treatments with both CB-CD34+ cells and the cytokine cocktail were shown to promote recruitment of CD31+-endothelial cells in the wounds. Both the CB-CD34+ cell population and the cytokine treatments also enhanced the recruitment of CD68-positive cells in the early stages (day 3) of treatment compared with PBS control, although the degree of this enhancement was found to decline in the later stages (day 9). These results demonstrated that expanded CB-CD34+ cells or freshly isolated CB-CD34+ cells could accelerate wound repair by increasing the recruitment of macrophages and capillaries and the reepithelialization over the wound bed area. Our data suggest an effective role in wound closure for both ex vivo expanded CB-CD34+ cells and freshly isolated cells, and these may serve as therapeutic options for wound treatment for diabetic patients. Wound closure acceleration by expanded CB-CD34+ cells also breaks the insufficient quantity obstacle of stem cells per unit of cord blood and other stem cell sources, which indicates a broader potential for autologous transplantation.
Collapse
|
54
|
Lee S, Szilagyi E, Chen L, Premanand K, DiPietro LA, Ennis W, Bartholomew AM. Activated mesenchymal stem cells increase wound tensile strength in aged mouse model via macrophages. J Surg Res 2013; 181:20-4. [DOI: 10.1016/j.jss.2012.05.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 05/02/2012] [Accepted: 05/10/2012] [Indexed: 01/09/2023]
|
55
|
Wei F, Song T, Ding G, Xu J, Liu Y, Liu D, Fan Z, Zhang C, Shi S, Wang S. Functional tooth restoration by allogeneic mesenchymal stem cell-based bio-root regeneration in swine. Stem Cells Dev 2013; 22:1752-62. [PMID: 23363023 DOI: 10.1089/scd.2012.0688] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our previous proof-of-concept study showed the feasibility of regenerating the dental stem cell-based bioengineered tooth root (bio-root) structure in a large animal model. Here, we used allogeneic dental mesenchymal stem cells to regenerate bio-root, and then installed a crown on the bio-root to restore tooth function. A root shape hydroxyapatite tricalcium phosphate scaffold containing dental pulp stem cells was covered by a Vc-induced periodontal ligament stem cell sheet and implanted into a newly generated jaw bone implant socket. Six months after implantation, a prefabricated porcelain crown was cemented to the implant and subjected to tooth function. Clinical, radiological, histological, ultrastructural, systemic immunological evaluations and mechanical properties were analyzed for dynamic changes in the bio-root structure. The regenerated bio-root exhibited characteristics of a normal tooth after 6 months of use, including dentinal tubule-like and functional periodontal ligament-like structures. No immunological response to the bio-roots was observed. We developed a standard stem cell procedure for bio-root regeneration to restore adult tooth function. This study is the first to successfully regenerate a functional bio-root structure for artificial crown restoration by using allogeneic dental stem cells and Vc-induced cell sheet, and assess the recipient immune response in a preclinical model.
Collapse
Affiliation(s)
- Fulan Wei
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Sericin enhances the bioperformance of collagen-based matrices preseeded with human-adipose derived stem cells (hADSCs). Int J Mol Sci 2013; 14:1870-89. [PMID: 23325052 PMCID: PMC3565353 DOI: 10.3390/ijms14011870] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/23/2012] [Accepted: 12/25/2012] [Indexed: 01/21/2023] Open
Abstract
Current clinical strategies for adipose tissue engineering (ATE), including autologous fat implants or the use of synthetic surrogates, not only are failing in the long term, but also can't face the latest requirements regarding the aesthetic restoration of the resulted imperfections. In this context, modern strategies in current ATE applications are based on the implantation of 3D cell-scaffold bioconstructs, designed for prospective achievement of in situ functional de novo tissue. Thus, in this paper, we reported for the first time the evaluation of a spongious 60% collagen and 40% sericin scaffold preseeded with human adipose-derived stem cells (hADSCs) in terms of biocompatibility and adipogenic potential in vitro. We showed that the addition of the sticky protein sericin in the composition of a classical collagen sponge enhanced the adhesion and also the proliferation rate of the seeded cells, thus improving the biocompatibility of the novel scaffold. In addition, sericin stimulated PPARγ2 overexpression, triggering a subsequent upregulated expression profile of FAS, aP2 and perilipin adipogenic markers. These features, together with the already known sericin stimulatory potential on cellular collagen production, promote collagen-sericin biomatrix as a good candidate for soft tissue reconstruction and wound healing applications.
Collapse
|
57
|
Shin L, Peterson DA. Human mesenchymal stem cell grafts enhance normal and impaired wound healing by recruiting existing endogenous tissue stem/progenitor cells. Stem Cells Transl Med 2012; 2:33-42. [PMID: 23283490 DOI: 10.5966/sctm.2012-0041] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been investigated as a clinical therapy to promote tissue repair. However, the disappearance of grafted cells soon after engraftment suggests a possible role as initiators of repair rather than effectors. We evaluated the relative contribution of grafted human MSCs and host stem/progenitor cells in promoting wound healing by using a novel asymmetric wound model in normal and impaired healing diabetic (db/db) mice to discriminate between the effect of direct engraftment and the subsequent systemic response. Experimental animals received paired wounds, with one wound receiving human mesenchymal stem cells (hMSCs) and the other wound receiving vehicle to assess local and systemic effects, respectively. Control animals received vehicle in both wounds. Grafted hMSCs significantly improved healing in both normal and impaired healing animals; produced significant elevation of signals such as Wnt3a, vascular endothelial growth factor, and platelet-derived growth factor receptor-α; and increased the number of pre-existing host MSCs recruited to the wound bed. Improvement was also seen in both the grafted and nongrafted sides, suggesting a systemic response to hMSC engraftment. Healing was enhanced despite the rapid loss of hMSCs, suggesting that mobilizing the host response is the major outcome of grafting MSCs to tissue repair. We validate that hMSCs evoke a host response that is clinically relevant, and we suggest that therapeutic efforts should focus on maximizing the mobilization of host MSCs.
Collapse
Affiliation(s)
- Laura Shin
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | | |
Collapse
|
58
|
Galateanu B, Dinescu S, Cimpean A, Dinischiotu A, Costache M. Modulation of adipogenic conditions for prospective use of hADSCs in adipose tissue engineering. Int J Mol Sci 2012; 13:15881-900. [PMID: 23443100 PMCID: PMC3546668 DOI: 10.3390/ijms131215881] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/15/2012] [Accepted: 11/08/2012] [Indexed: 01/22/2023] Open
Abstract
Modern strategies in adipose tissue engineering (ATE) take advantage of the easy harvest, abundance and differentiation potential towards mesenchymal lineages of hADSCs. The controlled conversion of hADSCs to committed adipogenic precursors and further mature adipocytes formation is important for good long-term results in soft tissue regeneration. Thus, in this study, we report: (i) the isolation of the processed lipoaspirate (PLA) cells from adipose tissue and sanguine fractions; (ii) the phenotypic characterization of the PLA descendants; (iii) the design of a novel protocol for the modulation of adipogenic conditions in the perspectives of ATE applications. To modulate the differentiation rate through our protocol, we propose to selectively modify the formulation of the adipogenic media in accordance with the evolution of the process. Therefore, we aimed to ensure the long-term proliferation of the precursor cells and to delay the late adipogenic events. The status of differentiation was characterized in terms of intracellular lipid accumulation and reorganization of the cytoskeleton simultaneously with perilipin protein expression. Moreover, we studied the sequential activation of PPARγ2, FAS, aP2 and perilipin genes which influence the kinetics of the adipogenic process. The strategies developed in this work are the prerequisites for prospective 3D regenerative systems.
Collapse
Affiliation(s)
- Bianca Galateanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95, Splaiul Independentei, sect. 5, Bucharest 050095, Romania.
| | | | | | | | | |
Collapse
|
59
|
Xu J, Wu W, Zhang L, Dorset-Martin W, Morris MW, Mitchell ME, Liechty KW. The role of microRNA-146a in the pathogenesis of the diabetic wound-healing impairment: correction with mesenchymal stem cell treatment. Diabetes 2012; 61:2906-12. [PMID: 22851573 PMCID: PMC3478555 DOI: 10.2337/db12-0145] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The impairment in diabetic wound healing represents a significant clinical problem. Chronic inflammation is thought to play a central role in the pathogenesis of this impairment. We have previously shown that treatment of diabetic murine wounds with mesenchymal stem cells (MSCs) can improve healing, but the mechanisms are not completely defined. MicroRNA-146a (miR-146a) has been implicated in regulation of the immune and inflammatory responses. We hypothesized that abnormal miRNA-146a expression may contribute to the chronic inflammation. To test this hypothesis, we examined the expression of miRNA-146a and its target genes in diabetic and nondiabetic mice at baseline and after injury. MiR-146a expression was significantly downregulated in diabetic mouse wounds. Decreased miR-146a levels also closely correlated with increased gene expression of its proinflammatory target genes. Furthermore, the correction of the diabetic wound-healing impairment with MSC treatment was associated with a significant increase in the miR-146a expression level and decreased gene expression of its proinflammatory target genes. These results provide the first evidence that decreased expression of miR-146a in diabetic wounds in response to injury may, in part, be responsible for the abnormal inflammatory response seen in diabetic wounds and may contribute to wound-healing impairment.
Collapse
Affiliation(s)
- Junwang Xu
- Nemours Children's Hospital, Orlando, Florida
- Department of Surgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Wenjie Wu
- Department of Surgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Liping Zhang
- Department of Surgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Wanda Dorset-Martin
- Department of Surgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael W. Morris
- Nemours Children's Hospital, Orlando, Florida
- Department of Surgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Marc E. Mitchell
- Department of Surgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kenneth W. Liechty
- Nemours Children's Hospital, Orlando, Florida
- Department of Surgery, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
60
|
Mishra PJ, Mishra PJ, Banerjee D. Cell-free derivatives from mesenchymal stem cells are effective in wound therapy. World J Stem Cells 2012; 4:35-43. [PMID: 22993660 PMCID: PMC3443710 DOI: 10.4252/wjsc.v4.i5.35] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/08/2011] [Accepted: 11/15/2011] [Indexed: 02/06/2023] Open
Abstract
AIM To compare the efficacy of cell-free derivatives from Bone marrow derived human mesenchymal stem cells (hMSCs) in wound therapy. METHODS hMSCs have been shown to play an important role in wound therapy. The present study sought to compare efficacy of hMSCs and cell-free derivatives of hMSCs, which may be clinically more relevant as they are easier to prepare, formulate and transport. hMSCs were isolated from human bone marrow and cultured. Multi lineage differentiation of hMSCs was performed to confirm their identity. The ability of hMSCs to migrate was evaluated using in vitro and in vivo migration assays. Cell lysates and conditioned medium concentrate was prepared from hMSCs (see Methods for details). Wounds were induced in mice and wound areas were measure before and after cell and cell-free derivative treatment. RNA and proteins were extracted from the skin and cytokine levels were measured. RESULTS Co-culture of hMSCs with keratinocytes resulted in increased expression of CXCL-12 (SDF1) and ENA78 (CXCL-5) in the conditioned media indicating that the hMSCs can respond to signals from keratinocytes. Accelerated wound closure was observed when hMSCs were injected near the site of excisional wounds in athymic as well as NOD/SCID mice. Interestingly, cell-free lysates prepared from hMSCs were also effective in inducing accelerated wound closure and increased expression of SDF1 and CXCL-5 at the wound bed. Additionally, concentrated media from hMSCs as well as an emulsion containing lysates prepared from hMSCs was also found to be more effective in rapid re-epithelialization than fibroblasts or vehicle-alone control. Use of cell-free derivatives may help replace expensive wound care approaches including use of growth factors, epidermal/dermal substitutes, synthetic membranes, cytokines, and matrix components, and most importantly avoid transmission of pathogens from human and animal products. CONCLUSION These results encourage development of derivatives of hMSCs for wound care and re-epithelialization applications.
Collapse
Affiliation(s)
- Pravin J Mishra
- Pravin J Mishra, Prasun J Mishra, Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, United States
| | | | | |
Collapse
|
61
|
Cerqueira MT, Marques AP, Reis RL. Using stem cells in skin regeneration: possibilities and reality. Stem Cells Dev 2012; 21:1201-14. [PMID: 22188597 DOI: 10.1089/scd.2011.0539] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tissue-engineered skin has a long history of clinical applications, yet current treatments are not capable of completely regenerating normal, uninjured skin. Nonetheless, the field has experienced a tremendous development in the past 10 years, encountering the summit of tissue engineering (TE) and the arising of stem cell research. Since then, unique features of these cells such as self-renewal capacity, multi-lineage differentiation potential, and wound healing properties have been highlighted. However, a realistic perspective of their outcome in skin regenerative medicine applications is still absent. This review intends to discuss the directions that adult and embryonic stem cells (ESCs) can take, strengthening the skin regeneration field. Distinctively, a critical overview of stem cells' differentiation potential onto skin main lineages, along with a highlight of their participation in wound healing mechanisms, is herein provided. We aim to compile and review significant work to allow a better understanding of the best skin TE approaches, enabling the embodiment of the materialization of a new era in skin regeneration to come, with a conscious overview of the current limitations.
Collapse
Affiliation(s)
- Mariana Teixeira Cerqueira
- 3B's Research Group--Biomaterials, Biodegradables, and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
| | | | | |
Collapse
|
62
|
Gourdie RG, Myers TA, McFadden A, Li YX, Potts JD. Self-organizing tissue-engineered constructs in collagen hydrogels. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:99-106. [PMID: 22214557 PMCID: PMC5152913 DOI: 10.1017/s1431927611012372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A novel self-organizing behavior of cellularized gels composed of collagen type 1 that may have utility for tissue engineering is described. Depending on the starting geometry of the tissue culture well, toroidal rings of cells or hollow spheroids were prompted to form autonomously when cells were seeded onto the top of gels and the gels released from attachment to the culture well 12 to 24 h after seeding. Cells within toroids assumed distinct patterns of alignment not seen in control gels in which cells had been mixed in. In control gels, cells formed complex three-dimensional arrangements and assumed relatively higher levels of heterogeneity in expression of the fibronectin splice variant ED-A--a marker of epithelial mesenchymal transformation. The tissue-like constructs resulting from this novel self-organizing behavior may have uses in wound healing and regenerative medicine, as well as building blocks for the iterative assembly of synthetic biological structures.
Collapse
Affiliation(s)
- Robert G. Gourdie
- Department of Regenerative Medicine and Cell Biology, Clemson-MUSC Bioengineering Program, MUSC, Charleston, SC 29425, USA
| | - Tereance A. Myers
- Department of Regenerative Medicine and Cell Biology, Clemson-MUSC Bioengineering Program, MUSC, Charleston, SC 29425, USA
| | - Alex McFadden
- Department of Cell Biology and Anatomy, Program in Bioengineering, University of South Carolina, School of Medicine, Columbia, SC 29209, USA
| | - Yin-xiong Li
- South China Institute of Stem Cell & Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jay D. Potts
- Department of Cell Biology and Anatomy, Program in Bioengineering, University of South Carolina, School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
63
|
Balaji S, Vaikunth SS, Lang SA, Sheikh AQ, Lim FY, Crombleholme TM, Narmoneva DA. Tissue-engineered provisional matrix as a novel approach to enhance diabetic wound healing. Wound Repair Regen 2011; 20:15-27. [PMID: 22151855 DOI: 10.1111/j.1524-475x.2011.00750.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 09/08/2011] [Indexed: 01/04/2023]
Abstract
Inherent pathologies associated with diabetic wound microenvironment including increased proteolysis, inflammatory dysregulation, and impaired neovascularization prevent timely resolution of chronic diabetic ulcers. It is hypothesized that augmentation of local wound microenvironment with a stable provisional matrix formed by proteolysis-resistant angiogenic peptide nanofibers (NFs) will create permissive environment for attenuated inflammation, enhanced neovascularization, and improved diabetic wound healing. Using murine excisional wound healing models, full-thickness dorsal skin wounds were treated with either NFs or control solutions (phosphate buffered saline; hyaluronic acid) and analyzed for morphology, inflammatory response, neovascularization, and biomechanical properties. NF treatment of diabetic wounds stimulated formation of a robust pro-angiogenic in situ tissue-engineered provisional matrix leading to a significant decrease in wound inflammatory cell infiltration and proinflammatory interleukin-6 levels, a significant increase in endothelial and endothelial progenitor cell infiltration, vascular endothelial growth factor levels, and neovascularization (day 7), as well as improved wound morphology, accelerated wound closure, and significantly stronger repair tissue (day 28). These results suggest that appropriate design of provisional matrix may compensate for some of the complex disruptions in diabetic wound microenvironment and provide missing cues to cells and direct in situ responses toward improved healing, which is promising for future development of new therapies for diabetic ulcers.
Collapse
Affiliation(s)
- Swathi Balaji
- Biomedical Engineering at School of Energy, Environmental, Biological and Medical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0012, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Bermudez DM, Herdrich BJ, Xu J, Lind R, Beason DP, Mitchell ME, Soslowsky LJ, Liechty KW. Impaired biomechanical properties of diabetic skin implications in pathogenesis of diabetic wound complications. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2215-23. [PMID: 21514435 DOI: 10.1016/j.ajpath.2011.01.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 01/17/2011] [Accepted: 01/25/2011] [Indexed: 12/15/2022]
Abstract
Diabetic skin is known to have deficient wound healing properties, but little is known of its intrinsic biomechanical properties. We hypothesize that diabetic skin possesses inferior biomechanical properties at baseline, rendering it more prone to injury. Skin from diabetic and nondiabetic mice and humans underwent biomechanical testing. Real-time PCR was performed for genes integral to collagen synthesis and degradation. MMP-2 and MMP-9, and TIMP-1 protein levels were assessed by ELISA and zymography. Collagen I and III content was assessed using Western blot analysis. At baseline, both murine and human diabetic skin was biomechanically inferior compared to nondiabetic skin, with decreased maximum stress and decreased modulus (P < 0.001 and < 0.05, respectively). Surprisingly, the expression of genes involved in collagen synthesis were significantly up-regulated, and genes involved in collagen degradation were significantly down-regulated in murine diabetic skin (P < 0.01). In addition, MMP-2 and MMP-9/TIMP-1 protein ratios were significantly lower in murine diabetic skin (P < 0.05). Collagen I levels and I:III ratios were lower in diabetic skin (P < 0.05). These findings suggest that the predisposition of diabetics to wounds may be the result of impaired tissue integrity at baseline, and are due, in part, to a defect in the regulation of collagen protein synthesis at the post-transcriptional level.
Collapse
Affiliation(s)
- Dustin M Bermudez
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
65
|
The Effect of Human Adipose-Derived Stem Cells on Healing of Ischemic Wounds in a Diabetic Nude Mouse Model. Plast Reconstr Surg 2011; 128:387-394. [DOI: 10.1097/prs.0b013e31821e6de2] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
66
|
Cui X, Chopp M, Zacharek A, Ye X, Roberts C, Chen J. Angiopoietin/Tie2 pathway mediates type 2 diabetes induced vascular damage after cerebral stroke. Neurobiol Dis 2011; 43:285-92. [PMID: 21515377 PMCID: PMC3096677 DOI: 10.1016/j.nbd.2011.04.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/21/2011] [Accepted: 04/07/2011] [Indexed: 01/04/2023] Open
Abstract
We investigated the changes and the molecular mechanisms of cerebral vascular damage after stroke in type-2 diabetic (T2DM) mice. Adult male db/db T2DM and wild-type (WT) mice were subjected to transient middle cerebral artery occlusion (MCAo) and sacrificed 24 hours after MCAo. T2DM-mice exhibited significantly increased blood glucose, brain hemorrhagic rate, mortality and cerebrovascular density, but decreased cerebrovascular diameter, arteriolar density and arterial mural cell numbers in the ischemic brain compared with WT mice. The hemorrhagic rate was significantly correlated with the mortality (r = 0.85). T2DM-mice also exhibited increased blood-brain barrier leakage and concomitantly, increased Angiopoietin2, but decreased Angiopoietin1, Tie2 and tight junction protein expression in the ischemic brain. Angiopoietin1 gene expression also significantly decreased in the common carotid artery (CCA) in T2DM-mice compared with WT mice after stroke. To further test the effects of T2DM on cerebrovascular damage, we performed in vitro studies. The capillary-like tube formation of primary cultured mouse brain endothelial cells (MBECs) significantly increased, but artery cell migration in the primary CCA cultures significantly decreased both in Sham and MCAo T2DM-mice compared with the WT mice. Angiopoietin1 treatment significantly increased artery cell migration in T2DM-CCA after MCAo. Tie2-FC, a neutralized Tie2 antibody, significantly decreased artery cell migration in WT-CCA after MCAo. Therefore, decreased Angiopoietin1/Tie2 and increased Angiopoietin2 expression may contribute to diabetes-induced vascular damage after stroke.
Collapse
Affiliation(s)
- Xu Cui
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Xinchun Ye
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Cynthia Roberts
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| |
Collapse
|
67
|
Bermudez DM, Xu J, Herdrich BJ, Radu A, Mitchell ME, Liechty KW. Inhibition of stromal cell-derived factor-1α further impairs diabetic wound healing. J Vasc Surg 2011; 53:774-84. [PMID: 21211927 PMCID: PMC3058337 DOI: 10.1016/j.jvs.2010.10.056] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Impaired diabetic wound healing is associated with abnormal stromal cell-derived factor (SDF)-1α production, decreased angiogenesis, and chronic inflammation. Lentiviral-mediated overexpression of SDF-1α can correct the impairments in angiogenesis and healing in diabetic wounds. We hypothesized that SDF-1α is a critical component of the normal wound-healing response and that inhibition of SDF-1α would further delay the wound-healing process. METHODS dB/Db diabetic mice and Db/+ nondiabetic mice were wounded with an 8-mm punch biopsy and the wounds treated with a lentiviral vector containing either the green fluorescent protein (GFP) or SDF-1α inhibitor transgene. The inhibitor transgene is a mutant form of SDF-1α that binds, but does not activate, the CXCR4 receptor. Computerized planimetry was used to measure wound size daily. Wounds were analyzed at 3 and 7 days by histology and for production of inflammatory markers using real-time polymerase chain reaction. The effect of the SDF-1α inhibitor on cellular migration was also assessed. RESULTS Inhibition of SDF-1α resulted in a significant decrease in the rate of diabetic wound healing, (3.8 vs 6.5 cm(2)/day in GFP-treated wounds; P = .04), and also impaired the early phase of nondiabetic wound healing. SDF-1α inhibition resulted in fewer small-caliber vessels, less granulation tissue formation, and increased proinflammatory gene expression of interleukin-6 and macrophage inflammatory protein-2 in the diabetic wounds. CONCLUSIONS The relative level of SDF-1α in the wound plays a key role in the wound-healing response. Alterations in the wound level of SDF-1α, as seen in diabetes or by SDF-1α inhibition, impair healing by decreasing cellular migration and angiogenesis, leading to increased production of inflammatory cytokines and inflammation. Inhibition of SDF-1α further impairs diabetic wound healing.
Collapse
Affiliation(s)
- Dustin M. Bermudez
- University of Pennsylvania School of Medicine, Department of Surgery
- Center for Fetal Research at the Children’s Hospital of Philadelphia
| | - Junwang Xu
- University of Mississippi Medical Center, Department of Surgery
| | | | - Antoneta Radu
- Center for Fetal Research at the Children’s Hospital of Philadelphia
| | | | | |
Collapse
|
68
|
Hendrickx B, Vranckx JJ, Luttun A. Cell-Based Vascularization Strategies for Skin Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:13-24. [DOI: 10.1089/ten.teb.2010.0315] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Benoit Hendrickx
- Center for Molecular and Vascular Biology, Katholieke Universiteit Leuven, Leuven, Belgium
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic, Reconstructive, and Aesthetic Surgery, KUL–University Hospitals, Leuven, Belgium
| | - Jan J. Vranckx
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic, Reconstructive, and Aesthetic Surgery, KUL–University Hospitals, Leuven, Belgium
| | - Aernout Luttun
- Center for Molecular and Vascular Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
69
|
Volk SW, Wang Y, Mauldin EA, Liechty KW, Adams SL. Diminished type III collagen promotes myofibroblast differentiation and increases scar deposition in cutaneous wound healing. Cells Tissues Organs 2011; 194:25-37. [PMID: 21252470 DOI: 10.1159/000322399] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2010] [Indexed: 01/19/2023] Open
Abstract
The repair of cutaneous wounds in the postnatal animal is associated with the development of scar tissue. Directing cell activities to efficiently heal wounds while minimizing the development of scar tissue is a major goal of wound management and the focus of intensive research efforts. Type III collagen (Col3), expressed in early granulation tissue, has been proposed to play a prominent role in cutaneous wound repair, although little is known about its role in this process. To establish the role of Col3 in cutaneous wound repair, we examined the healing of excisional wounds in a previously described murine model of Col3 deficiency. Col3 deficiency (Col3+/-) in aged mice resulted in accelerated wound closure with increased wound contraction. In addition, Col3-deficient mice had increased myofibroblast density in the wound granulation tissue as evidenced by an increased expression of the myofibroblast marker, α-smooth muscle actin. In vitro, dermal fibroblasts obtained from Col3-deficient embryos (Col3+/- and -/-) were more efficient at collagen gel contraction and also displayed increased myofibroblast differentiation compared to those harvested from wild-type (Col3+/+) embryos. Finally, wounds from Col3-deficient mice also had significantly more scar tissue area on day 21 post-wounding compared to wild-type mice. The effect of Col3 expression on myofibroblast differentiation and scar formation in this model suggests a previously undefined role for this ECM protein in tissue regeneration and repair.
Collapse
Affiliation(s)
- Susan W Volk
- Department of Clinical Studies and Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | | | |
Collapse
|
70
|
Di Rocco G, Gentile A, Antonini A, Ceradini F, Wu JC, Capogrossi MC, Toietta G. Enhanced healing of diabetic wounds by topical administration of adipose tissue-derived stromal cells overexpressing stromal-derived factor-1: biodistribution and engraftment analysis by bioluminescent imaging. Stem Cells Int 2010; 2011:304562. [PMID: 21234108 PMCID: PMC3014681 DOI: 10.4061/2011/304562] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 11/15/2010] [Indexed: 12/27/2022] Open
Abstract
Chronic ulcers represent a major health problem in diabetic patients resulting in pain and discomfort. Conventional therapy does not guarantee adequate wound repair. In diabetes, impaired healing is partly due to poor endothelial progenitor cells mobilisation and homing, with altered levels of the chemokine stromal-derived factor-1 (SDF-1) at the wound site. Adipose tissue-associated stromal cells (AT-SCs) can provide an accessible source of progenitor cells secreting proangiogenic factors and differentiating into endothelial-like cells. We demonstrated that topical administration of AT-SCs genetically modified ex vivo to overexpress SDF-1, promotes wound healing into diabetic mice. In particular, by in vivo bioluminescent imaging analysis, we monitored biodistribution and survival after transplantation of luciferase-expressing cells. In conclusion, this study indicates the therapeutic potential of AT-SCs administration in wound healing, through cell differentiation, enhanced cellular recruitment at the wound site, and paracrine effects associated with local growth-factors production.
Collapse
Affiliation(s)
- Giuliana Di Rocco
- Laboratorio di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Fondazione Monzino - IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Antonietta Gentile
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata - IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy
| | - Annalisa Antonini
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata - IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy
| | - Francesca Ceradini
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata - IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy
| | - Joseph C. Wu
- Department of Medicine and Radiology, Division of Cardiology, Stanford University School of Medicine, 300 Pasteur Drive, Grant S140B, Stanford, CA 94305-5111, USA
| | - Maurizio C. Capogrossi
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata - IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy
| | - Gabriele Toietta
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata - IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy
| |
Collapse
|
71
|
Alexeev V, Uitto J, Igoucheva O. Gene expression signatures of mouse bone marrow-derived mesenchymal stem cells in the cutaneous environment and therapeutic implications for blistering skin disorder. Cytotherapy 2010; 13:30-45. [PMID: 20854215 DOI: 10.3109/14653249.2010.518609] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND AIMS Multiple studies have demonstrated that mesenchymal stromal cells (MSC) can be utilized therapeutically for various congenital and acquired disorders. The involvement of MSC in the maintenance of skin homeostasis and their curative application for the treatment of skin wounds have also been documented. However, it is not known whether MSC can commit to cutaneous lineages, produce structural proteins essential for the skin integrity or be used for hereditary skin disorders. METHODS To address these questions, we conducted a comparative expression analysis between MSC and potentially adjacent cutaneous cells, fibroblasts and keratinocytes, with specific emphasis on extracellular matrix encoding and related genes. RESULTS Our data demonstrated that MSC share many features with cutaneous fibroblasts. We also observed that under direct influence of cutaneous fibroblasts in vitro and fibroblast-derived matrix in vivo, MSC acquired a fibroblastic phenotype, suggesting that specific cell-cell interactions play a key regulatory role in the differentiation of MSC. Additionally, the observed fibroblastic transition of MSC was underlined by a significant up-regulation of several cutaneous-specific genes encoding lumican, decorin, type VII collagen, laminin and other structural proteins. As many of the identified genes have considerable therapeutic value for dermatologic afflictions, particularly type VII collagen, we evaluated further the therapeutic potential of congenic MSC in the skin of Col7a1-null mice recapitulating human recessive dystrophic epidermolysis bullosa (RDEB). Remarkably, MSC-derived type VII collagen was sufficient for restoration of the damaged dermal-epidermal junction and partial reversal of the RDEB phenotype. CONCLUSIONS Collectively, our results suggest that MSC may offer promising therapeutics for the treatment of RDEB and potentially other genodermatoses.
Collapse
Affiliation(s)
- Vitali Alexeev
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
72
|
Hendrickx B, Verdonck K, Van den Berge S, Dickens S, Eriksson E, Vranckx JJ, Luttun A. Integration of blood outgrowth endothelial cells in dermal fibroblast sheets promotes full thickness wound healing. Stem Cells 2010; 28:1165-77. [PMID: 20506500 DOI: 10.1002/stem.445] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Vascularization is the cornerstone of wound healing. We introduced human blood outgrowth endothelial cells (hBOEC) in a self-assembled human dermal fibroblast sheet (hDFS), intended as a tissue-engineered dermal substitute with inherent vascular potential. hBOEC were functionally and molecularly different from early endothelial progenitor cells and human umbilical vein endothelial cells (HUVEC). hBOEC alone, unlike HUVEC, efficiently revascularized and re-oxygenated the wound bed, both by active incorporation into new vessels and by trophic stimulation of host angiogenesis in a dose-dependent manner. Furthermore, hBOEC alone, but not HUVEC, accelerated epithelial coverage and matrix organization of the wound bed. In addition, integration of hBOEC in hDFS not only further improved vascularization, epithelial coverage and matrix organization but also prevented excessive wound contraction. In vitro analyses with hBOEC, fibroblasts and keratinocytes revealed that these effects were both due to growth factor crosstalk and to short cutting hypoxia. Among multiple growth factors secreted by hBOEC, placental growth factor mediated at least in part the beneficial effects on keratinocyte migration and proliferation. Overall, this combined tissue engineering approach paves the way for clinical development of a fully autologous vascularized dermal substitute for patients with large skin defects that do not heal properly.
Collapse
Affiliation(s)
- Benoit Hendrickx
- Center for Molecular and Vascular Biology, KULeuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
73
|
Dieckmann C, Renner R, Milkova L, Simon JC. Regenerative medicine in dermatology: biomaterials, tissue engineering, stem cells, gene transfer and beyond. Exp Dermatol 2010; 19:697-706. [DOI: 10.1111/j.1600-0625.2010.01087.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
74
|
Boyd NL, Robbins KR, Dhara SK, West FD, Stice SL. Human embryonic stem cell-derived mesoderm-like epithelium transitions to mesenchymal progenitor cells. Tissue Eng Part A 2009; 15:1897-907. [PMID: 19196144 DOI: 10.1089/ten.tea.2008.0351] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human embryonic stem cells (hESC) have the potential to produce all of the cells in the body. They are able to self-renew indefinitely, potentially making them a source for large-scale production of therapeutic cell lines. Here, we developed a monolayer differentiation culture that induces hESC (WA09 and BG01) to form epithelial sheets with mesodermal gene expression patterns (BMP4, RUNX1, and GATA4). These E-cadherin+ CD90low cells then undergo apparent epithelial-mesenchymal transition for the derivation of mesenchymal progenitor cells (hESC-derived mesenchymal cells [hES-MC]) that by flow cytometry are negative for hematopoietic (CD34, CD45, and CD133) and endothelial (CD31 and CD146) markers, but positive for markers associated with mesenchymal stem cells (CD73, CD90, CD105, and CD166). To determine their functionality, we tested their capacity to produce the three lineages associated with mesenchymal stem cells and found they could form osteogenic and chondrogenic, but not adipogenic lineages. The derived hES-MC were able to remodel and contract collagen I lattice constructs to an equivalent degree as keloid fibroblasts and were induced to express alpha-smooth muscle actin when exposed to transforming growth factor (TGF)-beta1, but not platelet derived growth factor-B (PDGF-B). These data suggest that the derived hES-MC are multipotent cells with potential uses in tissue engineering and regenerative medicine and for providing a highly reproducible cell source for adult-like progenitor cells.
Collapse
Affiliation(s)
- Nolan L Boyd
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
75
|
Peura M, Bizik J, Salmenperä P, Noro A, Korhonen M, Pätilä T, Vento A, Vaheri A, Alitalo R, Vuola J, Harjula A, Kankuri E. Bone marrow mesenchymal stem cells undergo nemosis and induce keratinocyte wound healing utilizing the HGF/c-Met/PI3K pathway. Wound Repair Regen 2009; 17:569-77. [PMID: 19614922 DOI: 10.1111/j.1524-475x.2009.00507.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We previously showed cell-cell contacts of human dermal fibroblasts to induce expression of the hepatocyte growth factor/scatter factor (HGF) in a process designated as nemosis. Now we report on nemosis initiation in bone marrow mesenchymal stem cells (BMSCs). Because BMSCs are being used increasingly in cell transplantation therapy we aimed to demonstrate a functional effect and benefit of BMSC nemosis for wound healing. Nemotic and monolayer cells were used to stimulate HaCaT keratinocyte migration in a scratch-wound healing assay. Both indicators of nemosis, HGF production and cyclooxygenase-2 expression, were induced in BMSC spheroids. When compared with a similar amount of cells as monolayer, nemotic cells induced keratinocyte in vitro scratch-wound healing in a concentration-dependent manner. The HGF receptor, c-Met, was rapidly phosphorylated in the nemosis-stimulated keratinocytes. Nemosis-induced in vitro scratch-wound healing was inhibited by an HGF-neutralizing antibody as well as the small molecule c-Met inhibitor, SU11274. HGF-induced in vitro scratch-wound healing was inhibited by PI3K inhibitors, wortmannin and LY294002, while LY303511, an inactive structural analogue of LY294002, had no effect. Inhibitors of the mitogen-activated protein kinases MEK/ERK1/2 (PD98059 and U0126), and p38 (SB203580) attenuated HGF-induced keratinocyte in vitro scratch-wound healing. We conclude that nemosis of BMSCs can induce keratinocyte in vitro scratch-wound healing, and that in this effect signaling via HGF/c-Met is involved.
Collapse
Affiliation(s)
- Matti Peura
- Institute of Biomedicine, Pharmacology, Biomedicum, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Landry Y, Lê O, Mace KA, Restivo TE, Beauséjour CM. Secretion of SDF-1alpha by bone marrow-derived stromal cells enhances skin wound healing of C57BL/6 mice exposed to ionizing radiation. J Cell Mol Med 2009; 14:1594-604. [PMID: 19725920 PMCID: PMC3829023 DOI: 10.1111/j.1582-4934.2009.00887.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Patients treated for cancer therapy using ionizing radiation (IR) have delayed tissue repair and regeneration. The mechanisms mediating these defects remain largely unknown at present, thus limiting the development of therapeutic approaches. Using a wound healing model, we here investigate the mechanisms by which IR exposure limits skin regeneration. Our data show that induction of the stromal cell-derived growth factor 1α (SDF-1α) is severely impaired in the wounded skin of irradiated, compared to non-irradiated, mice. Hence, we evaluated the potential of bone marrow-derived multipotent stromal cells (MSCs), which secrete high levels of SDF-1α, to improve skin regeneration in irradiated mice. Injection of MSCs into the wound margin led to remarkable enhancement of skin healing in mice exposed to IR. Injection of irradiated MSCs into the wound periphery of non-irradiated mice delayed wound closure, also suggesting an important role for the stromal microenvironment in skin repair. The beneficial actions of MSCs were mainly paracrine, as the cells did not differentiate into keratinocytes. Specific knockdown of SDF-1α expression led to drastically reduced efficiency of MSCs in improving wound closure, indicating that SDF-1α secretion by MSCs is largely responsible for their beneficial action. We also found that one mechanism by which SDF-1α enhances wound closure likely involves increased skin vascularization. Our findings collectively indicate that SDF-1α is an important deregulated cytokine in irradiated wounded skin, and that the decline in tissue regeneration potential following IR can be reversed, given adequate microenvironmental support
Collapse
Affiliation(s)
- Yannick Landry
- CHU Ste-Justine and Département de pharmacologie, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
77
|
Lau K, Paus R, Tiede S, Day P, Bayat A. Exploring the role of stem cells in cutaneous wound healing. Exp Dermatol 2009; 18:921-33. [PMID: 19719838 DOI: 10.1111/j.1600-0625.2009.00942.x] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The skin offers a perfect model system for studying the wound healing cascade, which involves a finely tuned interplay between several cell types, pathways and processes. The dysregulation of these factors may lead to wound healing disorders resulting in chronic wounds, as well as abnormal scars such as hypertrophic and keloid scars. As the contribution of stem cells towards tissue regeneration and wound healing is increasingly appreciated, a rising number of stem cell therapies for cutaneous wounds are currently under development, encouraged by emerging preliminary findings in both animal models and human studies. However, we still lack an in-depth understanding of the underlying mechanisms through which stem cells contribute to cutaneous wound healing. The aim of this review is, therefore, to present a critical synthesis of our current understanding of the role of stem cells in normal cutaneous wound healing. In addition to summarizing wound healing principles and related key molecular and cellular players, we discuss the potential participation of different cutaneous stem cell populations in wound healing, and list corresponding stem cells markers. In summary, this review delineates current strategies, future applications, and limitations of stem cell-based or stem cell-targeted therapy in the management of acute and chronic skin wounds.
Collapse
Affiliation(s)
- Katherine Lau
- Proteomics Department, Institute of Analytical Sciences, Dortmund, Germany
| | | | | | | | | |
Collapse
|
78
|
Barcelos LS, Duplaa C, Kränkel N, Graiani G, Invernici G, Katare R, Siragusa M, Meloni M, Campesi I, Monica M, Simm A, Campagnolo P, Mangialardi G, Stevanato L, Alessandri G, Emanueli C, Madeddu P. Human CD133+ progenitor cells promote the healing of diabetic ischemic ulcers by paracrine stimulation of angiogenesis and activation of Wnt signaling. Circ Res 2009; 104:1095-102. [PMID: 19342601 PMCID: PMC2821014 DOI: 10.1161/circresaha.108.192138] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We evaluated the healing potential of human fetal aorta-derived CD133(+) progenitor cells and their conditioned medium (CD133(+) CCM) in a new model of ischemic diabetic ulcer. Streptozotocin-induced diabetic mice underwent bilateral limb ischemia and wounding. One wound was covered with collagen containing 2x10(4) CD133(+) or CD133(-) cells or vehicle. The contralateral wound, covered with only collagen, served as control. Fetal CD133(+) cells expressed high levels of wingless (Wnt) genes, which were downregulated following differentiation into CD133(-) cells along with upregulation of Wnt antagonists secreted frizzled-related protein (sFRP)-1, -3, and -4. CD133(+) cells accelerated wound closure as compared with CD133(-) or vehicle and promoted angiogenesis through stimulation of endothelial cell proliferation, migration, and survival by paracrine effects. CD133(+) cells secreted high levels of vascular endothelial growth factor (VEGF)-A and interleukin (IL)-8. Consistently, CD133(+) CCM accelerated wound closure and reparative angiogenesis, with this action abrogated by co-administering the Wnt antagonist sFRP-1 or neutralizing antibodies against VEGF-A or IL-8. In vitro, these effects were recapitulated following exposure of high-glucose-primed human umbilical vein endothelial cells to CD133(+) CCM, resulting in stimulation of migration, angiogenesis-like network formation and induction of Wnt expression. The promigratory and proangiogenic effect of CD133(+) CCM was blunted by sFRP-1, as well as antibodies against VEGF-A or IL-8. CD133(+) cells stimulate wound healing by paracrine mechanisms that activate Wnt signaling pathway in recipients. These preclinical findings open new perspectives for the cure of diabetic ulcers.
Collapse
Affiliation(s)
- Lucíola S Barcelos
- Bristol Heart Institute, University of Bristol, Upper Maudlin Street, Bristol, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Blagosklonny MV. Aging, stem cells, and mammalian target of rapamycin: a prospect of pharmacologic rejuvenation of aging stem cells. Rejuvenation Res 2008; 11:801-8. [PMID: 18729812 DOI: 10.1089/rej.2008.0722] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
What is the relationship between stem cell aging and organismal aging? Does stem cell aging cause organismal aging or vice versa? Will stem cell aging aggravate age-related diseases? And what is stem cell aging? As suggested herein, hyperstimulation of signal transduction pathways can render cells compensatorily irresponsive. And the hallmark of stem cell aging is poor responsiveness to activating stimuli. On the basis of the hypothesis that insensitivity to stimuli is in part due to hyperactivation of the target of rapamycin (TOR), this article suggests a means of pharmacologic rejuvenation of stem cells and wound-healing cells.
Collapse
Affiliation(s)
- Mikhail V Blagosklonny
- Cancer Center, Ordway Research Institute, 150 New Scotland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
80
|
Inoue H, Murakami T, Ajiki T, Hara M, Hoshino Y, Kobayashi E. Bioimaging assessment and effect of skin wound healing using bone-marrow-derived mesenchymal stromal cells with the artificial dermis in diabetic rats. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:064036. [PMID: 19123682 DOI: 10.1117/1.3042266] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We investigate the relationship between the fate and healing effect of transplanted mesenchymal stromal cells (MSCs) in a rat diabetic skin wound model. Rats are treated with streptozotocin to induce diabetic conditions. A full-thickness skin defect is surgically made on the head of diabetic rats, and covered with an artificial dermis impregnated with either bone marrow cells (BMCs) or bone-marrow-derived MSCs from firefly luciferase (luc) transgenic (Tg) rats. Wound healing is evaluated using planimetry and immunohistochemistry, and the fate of transplanted MSCs is determined using in-vivo luminescent imaging. The diabetic wound treated with MSCs-impregnated artificial dermis is significantly smaller than that treated with artificial dermis alone at 1 week postoperation. Photons of luc+ MSCs are detected at the transplanted site during healing (3 weeks), whereas those of luc+ MSCs are depleted only after 1 week postimplantation. Immunohistochemistry at the healing site treated with MSCs demonstrates that CD31+ vessels increase with expression of vascular endothelial growth factor, suggesting that MSCs accelerate angiogenesis. These findings suggest that transplanted MSCs could be retained at wound sites during the healing process in a diabetic rat model, and subsequently promote wound healing through angiogenesis.
Collapse
Affiliation(s)
- Hirokazu Inoue
- Jichi Medical University, Division of Organ Replacement Research, Center for Molecular Medicine and Department of Orthopedics, Tochigi 329-0498, Japan
| | | | | | | | | | | |
Collapse
|
81
|
Stromal progenitor cells promote leukocyte migration through production of stromal-derived growth factor 1alpha: a potential mechanism for stromal progenitor cell-mediated enhancement of cellular recruitment to wounds. J Pediatr Surg 2008; 43:1128-33. [PMID: 18558195 DOI: 10.1016/j.jpedsurg.2008.02.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 02/09/2008] [Indexed: 11/23/2022]
Abstract
BACKGROUND/PURPOSE Stromal progenitor cells (SPC) enhance tissue repair in a variety of injury models. However, the mechanisms by which SPCs facilitate tissue repair remain poorly understood. We hypothesized that SPC-enhanced tissue repair is, in part, because of SPC-mediated recruitment of circulating cells to areas of tissue injury. To test this, we examined the migration of leukocytes in response to SPC in vitro. METHODS Leukocyte migration was assessed in response to SPC, SPC + transforming growth factor (TGF)-beta1, or SPC + AMD3100 using a Transwell assay system (Corning, distributed by Fisher Scientific, Pittsburgh, PA). Supernatants were collected from lower chambers and analyzed for leukocyte content, leukocyte viability, and stromal-derived growth factor (SDF)-1alpha concentration. RESULTS Stromal progenitor cells increased leukocyte migration compared to media alone (450 +/- 70 vs 112 +/- 17 cells/microL; P < .05). SPC treatment with TGF-beta1 resulted in a 36% increase in leukocyte migration and correlated with an increase in SDF-1alpha production. Treatment with AMD3100 resulted in inhibition of leukocyte migration. CONCLUSIONS Stromal progenitor cells promote leukocyte migration, and this appears to be mediated through SDF-1alpha production. The SPC production of SDF-1alpha may be modulated by other cytokines present in the microenvironment during wound healing. Together, these observations provide a potential mechanism by which SPC may augment healing through enhanced recruitment of inflammatory cells and tissue progenitor cells to areas of tissue injury.
Collapse
|
82
|
Quinn C, Flake AW. In vivo Differentiation Potential of Mesenchymal Stem Cells: Prenatal and Postnatal Model Systems. ACTA ACUST UNITED AC 2008; 35:239-247. [PMID: 21547121 DOI: 10.1159/000129129] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 03/31/2008] [Indexed: 01/28/2023]
Abstract
SUMMARY: Most of our knowledge of mesenchymal stem cell (MSC) biology is derived from in vitro systems that are often highly contrived to favor culture expansion or specific differentiation events. However, any conclusions drawn from in vitro studies regarding MSC differentiation capacity, immune properties, or therapeutic potential must be validated by in vivo studies to ultimately be meaningful. At the present time, there are relatively few in vivo studies demonstrating differentiation and functional integration of MSCs into host tissues after transplantation. There is a need for in vivo model systems to assay MSC biology and to move potential therapeutic strategies forward. Here, we review prenatal model systems as potentially advantageous for the in vivo characterization of MSCs, and we critically review the results of in vivo studies of MSC transplantation in prenatal and postnatal model systems with an emphasis on proven engraftment and differentiation.
Collapse
Affiliation(s)
- Courtney Quinn
- The Children's Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | |
Collapse
|
83
|
Herdrich B, Lind R, Liechty K. Multipotent adult progenitor cells: their role in wound healing and the treatment of dermal wounds. Cytotherapy 2008; 10:543-50. [DOI: 10.1080/14653240802345820] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|