51
|
Zhang H, Wang F, Xiao H, Yao Y. The ratio of urinary α1-microglobulin to microalbumin can be used as a diagnostic criterion for tubuloproteinuria. Intractable Rare Dis Res 2018; 7:46-50. [PMID: 29552446 PMCID: PMC5849625 DOI: 10.5582/irdr.2017.01079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Low-molecular-weight proteinuria is one of the characteristic clinical manifestations of renal tubular and interstitial diseases. Low-molecular-weight proteinuria is defined as excessive urinary loss of α1-microglobulin, β2-microglobulin, or other low-molecular-weight plasma proteins. The current study examined the ratio of urinary α1-microglobulin to microalbumin in 24 Chinese pediatric patients with renal tubular and interstitial diseases, including 10 patients with Dent disease, 2 patients with Lowe syndrome, 6 patients with acute tubulointerstitial nephritis (ATIN), 4 patients with acute tubulointerstitial nephritis with uveitis syndrome (TINU), and 2 patients with nephronophthisis (NPHP). Patients with steroid-sensitive nephrotic syndrome, IgA nephropathy, Henoch-Schonlein purpura nephritis, or lupus nephritis served as control groups. In all of the patients with tubular and interstitial disease, urinary α1-microglobin increased 10-300-fold above the upper limit of the normal range, the ratio of urinary α1-microglobulin to microalbumin was greater than 1, and the percentage of low-molecular-weight plasma proteins (LMWP) in urine was greater than 50% according to urine protein electrophoresis. There was close correlation between the ratio of urinary α1-microglobulin to microalbumin and the percentage of LMWP in urine according to urine protein electrophoresis (r = 0.797, p = 0.000). We suggested firstly that the ratio of urinary α1-microglobulin to microalbumin, greater than 1, can be used as a diagnostic criterion for tubuloproteinuria.
Collapse
Affiliation(s)
- Hongwen Zhang
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Fang Wang
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Huijie Xiao
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Yong Yao
- Department of Pediatric, Peking University First Hospital, Beijing, China
- Address correspondence to: Dr. Yong Yao, Department of Pediatric, Peking University First Hospital, No.1 Xi An Men Da Jie, Beijing 100034, China. E-mail:
| |
Collapse
|
52
|
König J, Kranz B, König S, Schlingmann KP, Titieni A, Tönshoff B, Habbig S, Pape L, Häffner K, Hansen M, Büscher A, Bald M, Billing H, Schild R, Walden U, Hampel T, Staude H, Riedl M, Gretz N, Lablans M, Bergmann C, Hildebrandt F, Omran H, Konrad M. Phenotypic Spectrum of Children with Nephronophthisis and Related Ciliopathies. Clin J Am Soc Nephrol 2017; 12:1974-1983. [PMID: 29146700 PMCID: PMC5718263 DOI: 10.2215/cjn.01280217] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/18/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Genetic heterogeneity and phenotypic variability are major challenges in familial nephronophthisis and related ciliopathies. To date, mutations in 20 different genes (NPHP1 to -20) have been identified causing either isolated kidney disease or complex multiorgan disorders. In this study, we provide a comprehensive and detailed characterization of 152 children with a special focus on extrarenal organ involvement and the long-term development of ESRD. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We established an online-based registry (www.nephreg.de) to assess the clinical course of patients with nephronophthisis and related ciliopathies on a yearly base. Cross-sectional and longitudinal data were collected. Mean observation time was 7.5±6.1 years. RESULTS In total, 51% of the children presented with isolated nephronophthisis, whereas the other 49% exhibited related ciliopathies. Monogenetic defects were identified in 97 of 152 patients, 89 affecting NPHP genes. Eight patients carried mutations in other genes related to cystic kidney diseases. A homozygous NPHP1 deletion was, by far, the most frequent genetic defect (n=60). We observed a high prevalence of extrarenal manifestations (23% [14 of 60] for the NPHP1 group and 66% [61 of 92] for children without NPHP1). A homozygous NPHP1 deletion not only led to juvenile nephronophthisis but also was able to present as a predominantly neurologic phenotype. However, irrespective of the initial clinical presentation, the kidney function of all patients carrying NPHP1 mutations declined rapidly between the ages of 8 and 16 years, with ESRD at a mean age of 11.4±2.4 years. In contrast within the non-NPHP1 group, there was no uniform pattern regarding the development of ESRD comprising patients with early onset and others preserving normal kidney function until adulthood. CONCLUSIONS Mutations in NPHP genes cause a wide range of ciliopathies with multiorgan involvement and different clinical outcomes.
Collapse
Affiliation(s)
- Jens König
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Abstract
INTRODUCTION Polycystic kidney disease (PKD) is clinically and genetically heterogeneous and constitutes the most common heritable kidney disease. Most patients are affected by the autosomal dominant form (ADPKD) which generally is an adult-onset multisystem disorder. By contrast, the rarer recessive form ARPKD usually already manifests perinatally or in childhood. In some patients, however, ADPKD and ARPKD can phenotypically overlap with early manifestation in ADPKD and only late onset in ARPKD. Progressive fibrocystic renal changes are often accompanied by severe hepatobiliary changes or other extrarenal abnormalities. Areas covered: A reduced dosage of disease proteins disturbs cell homeostasis and explains a more severe clinical course in some PKD patients. Cystic kidney disease is also a common feature of other ciliopathies and genetic syndromes. Genetic diagnosis may guide clinical management and helps to avoid invasive measures and to detect renal and extrarenal comorbidities early in the clinical course. Expert Commentary: The broad phenotypic and genetic heterogeneity of cystic and polycystic kidney diseases make NGS a particularly powerful approach. Interpretation of data becomes the challenge and bench and bedside benefit from digitized multidisciplinary interrelationships.
Collapse
Affiliation(s)
- Carsten Bergmann
- a Center for Human Genetics , Bioscientia , Ingelheim , Germany.,b Department of Medicine , University Hospital Freiburg , Freiburg , Germany
| |
Collapse
|
54
|
Jávorszky E, Morinière V, Kerti A, Balogh E, Pikó H, Saunier S, Karcagi V, Antignac C, Tory K. QMPSF is sensitive and specific in the detection of NPHP1 heterozygous deletions. ACTA ACUST UNITED AC 2017; 55:809-816. [DOI: 10.1515/cclm-2016-0819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/08/2016] [Indexed: 11/15/2022]
Abstract
Abstract
Background:
Nephronophthisis, an autosomal recessive nephropathy, is responsible for 10% of childhood chronic renal failure. The deletion of its major gene, NPHP1, with a minor allele frequency of 0.24% in the general population, is the most common mutation leading to a monogenic form of childhood chronic renal failure. It is challenging to detect it in the heterozygous state. We aimed to evaluate the sensitivity and the specificity of the quantitative multiplex PCR of short fluorescent fragments (QMPSF) in its detection.
Methods:
After setting up the protocol of QMPSF, we validated it on 39 individuals diagnosed by multiplex ligation-dependent probe amplification (MLPA) with normal NPHP1 copy number (n=17), with heterozygous deletion (n=13, seven parents and six patients), or with homozygous deletion (n=9). To assess the rate of the deletions that arise from independent events, deleted alleles were haplotyped.
Results:
The results of QMPSF and MLPA correlated perfectly in the identification of 76 heterozygously deleted and 56 homozygously deleted exons. The inter-experimental variability of the dosage quotient obtained by QMPSF was low: control, 1.05 (median; range, 0.86−1.33, n = 102 exons); heterozygous deletion, 0.51 (0.42−0.67, n = 76 exons); homozygous deletion, 0 (0−0, n = 56 exons). All patients harboring a heterozygous deletion were found to carry a hemizygous mutation. At least 15 out of 18 deletions appeared on different haplotypes and one deletion appeared de novo.
Conclusions:
The cost- and time-effective QMPSF has a 100% sensitivity and specificity in the detection of NPHP1 deletion. The potential de novo appearance of NPHP1 deletions makes its segregation analysis highly recommended in clinical practice.
Collapse
|
55
|
Amiri FS, Kariminejad A. Juvenile nephronophthisis and dysthyroidism: a rare association. CEN Case Rep 2017; 6:98-104. [PMID: 28509138 DOI: 10.1007/s13730-017-0252-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/07/2017] [Indexed: 11/28/2022] Open
Abstract
Nephronophthisis, an autosomal recessive kidney disease, represents the most frequent genetic cause of end-stage kidney disease in the first three decades of life. A 27-year-old male was presented with gait imbalance, sever pruritus since 10 days prior time of admission. In past medical history, he had bilateral cataract, torsional nystagmus, and bilateral optic nerve atrophy since 2 years of age. He was also mentioned history of multinodular goiter with dysfunctional thyroid state since 2 years before admission. At admission bilateral blindness, torsional nystagmus, asymmetric thyromegaly with nodularity was found in physical examination. Laboratory tests showed elevated urea and creatinine (200, 10.7 mg/dl), hypomagnesemia (1.1 mEq/l), decreased thyroid stimulating hormone (<0.004 mIU/l). Ophthalmologist consultation confirmed retinitis pigmentosa. Renal sonography showed small-sized kidneys. Brain magnetic resonance imaging did not reveal molar tooth sign. Genetic testing performed and a large homozygous deletion at the NPHP1 gene locus was found. The patient was diagnosed with juvenile nephronophthisis and consideration of dysthyroidism as extrarenal manifestation of nephronophthisis is suggested in this case. Furthermore, loss of function mutation in SLC41A1 gene that leads to magnesium depletion must be noted in patients with suspected to nephronophthisis.
Collapse
Affiliation(s)
- Fateme Shamekhi Amiri
- Division of Nephrology, Imam khomeini hospital, Faculty of medicine, National University of Tehran Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
56
|
Srivastava S, Molinari E, Raman S, Sayer JA. Many Genes-One Disease? Genetics of Nephronophthisis (NPHP) and NPHP-Associated Disorders. Front Pediatr 2017; 5:287. [PMID: 29379777 PMCID: PMC5770800 DOI: 10.3389/fped.2017.00287] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
Nephronophthisis (NPHP) is a renal ciliopathy and an autosomal recessive cause of cystic kidney disease, renal fibrosis, and end-stage renal failure, affecting children and young adults. Molecular genetic studies have identified more than 20 genes underlying this disorder, whose protein products are all related to cilia, centrosome, or mitotic spindle function. In around 15% of cases, there are additional features of a ciliopathy syndrome, including retinal defects, liver fibrosis, skeletal abnormalities, and brain developmental disorders. Alongside, gene identification has arisen molecular mechanistic insights into the disease pathogenesis. The genetic causes of NPHP are discussed in terms of how they help us to define treatable disease pathways including the cyclic adenosine monophosphate pathway, the mTOR pathway, Hedgehog signaling pathways, and DNA damage response pathways. While the underlying pathology of the many types of NPHP remains similar, the defined disease mechanisms are diverse, and a personalized medicine approach for therapy in NPHP patients is likely to be required.
Collapse
Affiliation(s)
- Shalabh Srivastava
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Renal Unit, City Hospitals Sunderland and South Tyneside NHS Foundation Trust, Sunderland, United Kingdom
| | - Elisa Molinari
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Shreya Raman
- Department of Histopathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - John A Sayer
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Renal Services, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
57
|
Bergmann C. Genetics of Autosomal Recessive Polycystic Kidney Disease and Its Differential Diagnoses. Front Pediatr 2017; 5:221. [PMID: 29479522 PMCID: PMC5811498 DOI: 10.3389/fped.2017.00221] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 10/02/2017] [Indexed: 01/09/2023] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a hepatorenal fibrocystic disorder that is characterized by enlarged kidneys with progressive loss of renal function and biliary duct dilatation and congenital hepatic fibrosis that leads to portal hypertension in some patients. Mutations in the PKHD1 gene are the primary cause of ARPKD; however, the disease is genetically not as homogeneous as long thought and mutations in several other cystogenes can phenocopy ARPKD. The family history usually is negative, both for recessive, but also often for dominant disease genes due to de novo arisen mutations or recessive inheritance of variants in genes that usually follow dominant patterns such as the main ADPKD genes PKD1 and PKD2. Considerable progress has been made in the understanding of polycystic kidney disease (PKD). A reduced dosage of disease proteins leads to the disruption of signaling pathways underlying key mechanisms involved in cellular homeostasis, which may help to explain the accelerated and severe clinical progression of disease course in some PKD patients. A comprehensive knowledge of disease-causing genes is essential for counseling and to avoid genetic misdiagnosis, which is particularly important in the prenatal setting (e.g., preimplantation genetic diagnosis/PGD). For ARPKD, there is a strong demand for early and reliable prenatal diagnosis, which is only feasible by molecular genetic analysis. A clear genetic diagnosis is helpful for many families and improves the clinical management of patients. Unnecessary and invasive measures can be avoided and renal and extrarenal comorbidities early be detected in the clinical course. The increasing number of genes that have to be considered benefit from the advances of next-generation sequencing (NGS) which allows simultaneous analysis of a large group of genes in a single test at relatively low cost and has become the mainstay for genetic diagnosis. The broad phenotypic and genetic heterogeneity of cystic and polycystic kidney diseases make NGS a particularly powerful approach for these indications. Interpretation of genetic data becomes the challenge and requires deep clinical understanding.
Collapse
Affiliation(s)
- Carsten Bergmann
- Center for Human Genetics, Bioscientia, Ingelheim, Germany.,Department of Medicine, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
58
|
Oud MM, Lamers IJC, Arts HH. Ciliopathies: Genetics in Pediatric Medicine. J Pediatr Genet 2016; 6:18-29. [PMID: 28180024 DOI: 10.1055/s-0036-1593841] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/08/2016] [Indexed: 12/15/2022]
Abstract
Ciliary disorders, which are also referred to as ciliopathies, are a group of hereditary disorders that result from dysfunctional cilia. The latter are cellular organelles that stick up from the apical plasma membrane. Cilia have important roles in signal transduction and facilitate communications between cells and their surroundings. Ciliary disruption can result in a wide variety of clinically and genetically heterogeneous disorders with overlapping phenotypes. Because cilia occur widespread in our bodies many organs and sensory systems can be affected when they are dysfunctional. Ciliary disorders may be isolated or syndromic, and common features are cystic liver and/or kidney disease, blindness, neural tube defects, brain anomalies and intellectual disability, skeletal abnormalities ranging from polydactyly to abnormally short ribs and limbs, ectodermal defects, obesity, situs inversus, infertility, and recurrent respiratory tract infections. In this review, we summarize the features, frequency, morbidity, and mortality of each of the different ciliopathies that occur in pediatrics. The importance of genetics and the occurrence of genotype-phenotype correlations are indicated, and advances in gene identification are discussed. The use of next-generation sequencing by which a gene panel or all genes can be screened in a single experiment is highlighted as this technology significantly lowered costs and time of the mutation detection process in the past. We discuss the challenges of this new technology and briefly touch upon the use of whole-exome sequencing as a diagnostic test for ciliary disorders. Finally, a perspective on the future of genetics in the context of ciliary disorders is provided.
Collapse
Affiliation(s)
- Machteld M Oud
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ideke J C Lamers
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heleen H Arts
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
59
|
Chan SC, Rayat J, Sauvé Y, MacDonald IM. Brothers with ocular motor apraxia, juvenile nephronophthisis, and mild cerebellar defects. Can J Ophthalmol 2016; 51:e85-8. [DOI: 10.1016/j.jcjo.2016.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/20/2016] [Accepted: 01/24/2016] [Indexed: 11/30/2022]
|
60
|
Clinical and genetic characteristics of Japanese nephronophthisis patients. Clin Exp Nephrol 2015; 20:637-649. [PMID: 26499951 DOI: 10.1007/s10157-015-1180-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 10/04/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Nephronophthisis (NPH) accounts for 4-5 % of end-stage renal disease occurring in childhood. METHOD We investigated the clinical context and characteristics of renal and extrarenal symptoms, as well as the NPHP genes, in 35 Japanese patients with clinical and histologic features suggesting NPH. RESULTS NPH occurred fairly uniformly throughout Japan irrespective of region or gender. In three families, NPH affected siblings. The median age of patients was 12.5 years. Renal abnormalities attributable to NPH discovered through mass screening, such as urine tests in school. However, NPH accounted for less than 50 % of children with abnormal findings, including incidentally discovered renal dysfunction during evaluation of extrarenal symptoms or during routine check-ups. Typical extrarenal manifestations leaded to discovery including anemia and delayed physical development. The urine often showed low gravity specific density and low molecular weight proteinuria. Frequent renal histologic findings included cystic dilation of tubules, mainly in the medulla, and irregularity of tubular basement membranes. Genetically abnormalities of NPHP1 were not common, with large deletions frequently noted. Compound heterozygotes showing single abnormalities in each of NPHP1, NPHP3, and NPHP4 were observed. CONCLUSIONS Our findings resemble those reported in Western populations.
Collapse
|
61
|
Bizet AA, Becker-Heck A, Ryan R, Weber K, Filhol E, Krug P, Halbritter J, Delous M, Lasbennes MC, Linghu B, Oakeley EJ, Zarhrate M, Nitschké P, Garfa-Traore M, Serluca F, Yang F, Bouwmeester T, Pinson L, Cassuto E, Dubot P, Elshakhs NAS, Sahel JA, Salomon R, Drummond IA, Gubler MC, Antignac C, Chibout S, Szustakowski JD, Hildebrandt F, Lorentzen E, Sailer AW, Benmerah A, Saint-Mezard P, Saunier S. Mutations in TRAF3IP1/IFT54 reveal a new role for IFT proteins in microtubule stabilization. Nat Commun 2015; 6:8666. [PMID: 26487268 PMCID: PMC4617596 DOI: 10.1038/ncomms9666] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 09/17/2015] [Indexed: 01/20/2023] Open
Abstract
Ciliopathies are a large group of clinically and genetically heterogeneous disorders caused by defects in primary cilia. Here we identified mutations in TRAF3IP1 (TNF Receptor-Associated Factor Interacting Protein 1) in eight patients from five families with nephronophthisis (NPH) and retinal degeneration, two of the most common manifestations of ciliopathies. TRAF3IP1 encodes IFT54, a subunit of the IFT-B complex required for ciliogenesis. The identified mutations result in mild ciliary defects in patients but also reveal an unexpected role of IFT54 as a negative regulator of microtubule stability via MAP4 (microtubule-associated protein 4). Microtubule defects are associated with altered epithelialization/polarity in renal cells and with pronephric cysts and microphthalmia in zebrafish embryos. Our findings highlight the regulation of cytoplasmic microtubule dynamics as a role of the IFT54 protein beyond the cilium, contributing to the development of NPH-related ciliopathies.
Collapse
Affiliation(s)
- Albane A. Bizet
- Inserm UMR-1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France
- Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Anita Becker-Heck
- Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Rebecca Ryan
- Inserm UMR-1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France
- Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Kristina Weber
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | - Emilie Filhol
- Inserm UMR-1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France
- Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Pauline Krug
- Inserm UMR-1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France
- Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Jan Halbritter
- Division of Nephrology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Division of Nephrology, Department of Internal Medicine, University Clinic Leipzig, 04103 Leipzig, Germany
| | - Marion Delous
- Inserm UMR-1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France
- Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | | | - Bolan Linghu
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | - Edward J. Oakeley
- Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Mohammed Zarhrate
- Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
- Inserm UMR-1163, Genomic Core Facility, 75015 Paris, France
| | - Patrick Nitschké
- Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
- Paris Descartes Sorbonne Paris Cité University, Bioinformatics Core Facility, 75015 Paris, France
| | - Meriem Garfa-Traore
- Cell Imaging Platform, INSERM US24 Structure Fédérative de recherche Necker, Paris Descartes Sorbonne Paris Cité University, 75015 Paris, France
| | - Fabrizio Serluca
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | - Fan Yang
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | - Tewis Bouwmeester
- Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Lucile Pinson
- Department of Medical Genetic, Arnaud de Villeneuve University Health Center, 34090 Montpellier, France
| | - Elisabeth Cassuto
- Nephrology department, L'Archet II Hospital, Nice University Health Center, 06202 Nice, France
| | - Philippe Dubot
- Hemodialysis-Nephrology Department, William Morey Hospital, 71321 Chalon-sur-Saône, France
| | - Neveen A. Soliman Elshakhs
- Department of Pediatrics, Center of Pediatric Nephrology and Transplantation, Cairo University, Egyptian Group for Orphan Renal Diseases, 11956 Cairo, Egypt
| | - José A. Sahel
- INSERM U968, CNRS UMR 7210; Sorbonne Universités, Université Pierre et Marie Curie, UMR S968, Institut de la vision, 75012 Paris, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM, Direction de l'Hospitalisation et de l'Organisation des Soins, Centre d'Investigation Clinique 1423, 75012 Paris, France
| | - Rémi Salomon
- Inserm UMR-1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France
- Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
- Assistance Publique—Hôpitaux de Paris, Pediatric Nephrologic department, Necker-Enfants Malades Hospital, 75015 Paris, France
| | - Iain A. Drummond
- Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Marie-Claire Gubler
- Inserm UMR-1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France
- Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Corinne Antignac
- Inserm UMR-1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France
- Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
- Assistance Publique-Hôpitaux de Paris, Department of Genetics, Necker-Enfants Malades Hospital, 75015 Paris, France
| | - Salahdine Chibout
- Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | | | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | - Andreas W. Sailer
- Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Alexandre Benmerah
- Inserm UMR-1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France
- Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | | | - Sophie Saunier
- Inserm UMR-1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France
- Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| |
Collapse
|
62
|
Abstract
Flatworms have organs called protonephridia that could be used as a model system for the study of kidney disease.
Collapse
Affiliation(s)
- Melanie Issigonis
- Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Phillip A Newmark
- Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, United States
| |
Collapse
|
63
|
Thi-Kim Vu H, Rink JC, McKinney SA, McClain M, Lakshmanaperumal N, Alexander R, Sánchez Alvarado A. Stem cells and fluid flow drive cyst formation in an invertebrate excretory organ. eLife 2015; 4:e07405. [PMID: 26057828 PMCID: PMC4500094 DOI: 10.7554/elife.07405] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/09/2015] [Indexed: 12/29/2022] Open
Abstract
Cystic kidney diseases (CKDs) affect millions of people worldwide. The defining pathological features are fluid-filled cysts developing from nephric tubules due to defective flow sensing, cell proliferation and differentiation. The underlying molecular mechanisms, however, remain poorly understood, and the derived excretory systems of established invertebrate models (Caenorhabditis elegans and Drosophila melanogaster) are unsuitable to model CKDs. Systematic structure/function comparisons revealed that the combination of ultrafiltration and flow-associated filtrate modification that is central to CKD etiology is remarkably conserved between the planarian excretory system and the vertebrate nephron. Consistently, both RNA-mediated genetic interference (RNAi) of planarian orthologues of human CKD genes and inhibition of tubule flow led to tubular cystogenesis that share many features with vertebrate CKDs, suggesting deep mechanistic conservation. Our results demonstrate a common evolutionary origin of animal excretory systems and establish planarians as a novel and experimentally accessible invertebrate model for the study of human kidney pathologies.
Collapse
Affiliation(s)
- Hanh Thi-Kim Vu
- Stowers Institute for Medical Research, Kansas City, United States
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, United States
| | - Jochen C Rink
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sean A McKinney
- Stowers Institute for Medical Research, Kansas City, United States
| | - Melainia McClain
- Stowers Institute for Medical Research, Kansas City, United States
| | | | | | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research, Kansas City, United States
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, United States
- Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, United States
| |
Collapse
|
64
|
Abstract
PURPOSE OF REVIEW Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease and is one of the most common genetic disorders causing end-stage renal disease (ESRD) in children and adolescents. NPHP is a genetically heterogenous disorder with 20 identified genes. NPHP occurs as an isolated kidney disease, but approximately 15% of NPHP patients have additional extrarenal symptoms affecting other organs [e.g. eyes, liver, bones and central nervous system (CNS)]. The pleiotropy in NPHP is explained by the finding that almost all NPHP gene products share expression in primary cilia, a sensory organelle present in most mammalian cells. If extrarenal symptoms are present in addition to NPHP, these disorders are classified as NPHP-related ciliopathies (NPHP-RC). This review provides an update about recent advances in the field of NPHP-RC. RECENT FINDINGS The identification of novel disease-causing genes has improved our understanding of the pathomechanisms contributing to NPHP-RC. Multiple interactions between different NPHP-RC gene products have been published and outline the interconnectivity of the affected proteins and shared pathways. SUMMARY The significance of recently identified genes for NPHP-RC is discussed and the complex role and interaction of NPHP proteins in ciliary function and cellular signalling pathways is highlighted.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Adolescent
- Child
- Cilia/pathology
- Cilia/physiology
- Cytoskeletal Proteins
- Genes, Recessive
- Humans
- Kidney/pathology
- Kidney Diseases, Cystic/complications
- Kidney Diseases, Cystic/congenital
- Kidney Diseases, Cystic/pathology
- Kidney Diseases, Cystic/physiopathology
- Kidney Failure, Chronic/etiology
- Kidney Failure, Chronic/genetics
- Kidney Failure, Chronic/pathology
- Kidney Failure, Chronic/physiopathology
- Membrane Proteins/metabolism
- Mutation/genetics
- Phenotype
- Signal Transduction
Collapse
Affiliation(s)
- Matthias T F Wolf
- Division of Pediatric Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
65
|
Yamaguchi T, Devassy JG, Gabbs M, Ravandi A, Nagao S, Aukema HM. Dietary flax oil rich in α-linolenic acid reduces renal disease and oxylipin abnormalities, including formation of docosahexaenoic acid derived oxylipins in the CD1-pcy/pcy mouse model of nephronophthisis. Prostaglandins Leukot Essent Fatty Acids 2015; 94:83-9. [PMID: 25512022 DOI: 10.1016/j.plefa.2014.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/19/2014] [Accepted: 11/21/2014] [Indexed: 12/19/2022]
Abstract
The CD1-pcy/pcy mouse model of nephronophthisis displays reduced renal docosahexaenoic acid (DHA) levels and alterations in renal cyclooxygenase and lipoxygenase oxylipins derived from n-6 fatty acids. Since dietary flax oil ameliorates disease progression, its effect on renal fatty acids and oxylipins was examined. Sixteen weeks of feeding resulted in reduced disease progression and enrichment of renal phospholipid α-linolenic acid (ALA) and eicosapentaenoic acid, reduction in arachidonic acid (AA), but no change in linoleic acid (LA) or DHA. In diseased kidneys, flax oil feeding mitigated the elevated levels of renal cyclooxygenase derived oxylipins formed from AA and the lowered lipoxygenase and cytochrome P450 derived oxylipins formed from ALA and DHA. Increased DHA oxylipins occurred with flax feeding despite not altering DHA levels. Dietary flax oil may therefore reduce disease progression via mitigation of oxylipin abnormalities. This study also provides evidence of in vivo ALA conversion to DHA in amounts necessary to restore DHA oxylipin levels.
Collapse
Affiliation(s)
- Tamio Yamaguchi
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Jessay G Devassy
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Melissa Gabbs
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Shizuko Nagao
- Education and Research Center of Animal Models for Human Diseases, Fujita Health University, Toyoake, Aichi, Japan
| | - Harold M Aukema
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada; Manitoba Institute of Child Health, Winnipeg, MB, Canada.
| |
Collapse
|
66
|
Gheissari A, Harandavar M, Hildebrandt F, Braun DA, Sedghi M, Parsi N, Merrikhi A, Madihi Y, Aghamohammadi F. Gene mutation analysis in Iranian children with nephronophthisis: a two-center study. IRANIAN JOURNAL OF KIDNEY DISEASES 2015; 9:119-125. [PMID: 25851290 PMCID: PMC5852675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/27/2014] [Accepted: 09/07/2014] [Indexed: 06/04/2023]
Abstract
INTRODUCTION Nephronophthisis is of the most commonly inherited ciliopathies that leads to end-stage renal disease in children. The NPHP1 gene is the first identified gene responsible for nephronophthisis and related diseases. This study assessed mutations of the NPHP1 gene in 16 Iranian families with at least one member presenting features of nephronophthisis. MATERIALS AND METHODS Fifty-seven patients diagnosed with chronic kidney disease or end-stage renal disease were referred to Imam Hossein Children Hospital, in Isfahan, Iran. The gene analysis study was carried on 16 patients and their first-degree relatives (40 DNA samples) suspicious of having nephronophthisis. The NPHP1 deletion analysis was performed for exons 5, 7, and 20 of the NPHP1 gene. RESULTS The patients' median age was 15 years. The mean and median age of the first presentation was 10.06 ± 2.59 years and 10.5 years, respectively. A homozygous deletion was identified in the NPHP1 gene spanning at least from exon 5 to exon 20 in two families. High-throughput mutation analysis identified a homozygous truncating mutation (c.1504C>T, p.R502*) in the NPHP5 in 5 families. CONCLUSIONS By combining NPHP1 deletion analysis with multiplex-polymerase-chain-reaction-based high-throughput mutation analysis we could identify the molecular disease-cause in 7 of 15 families from Iran. In 8 families, the molecular disease cause remained unknown.
Collapse
Affiliation(s)
- Alaleh Gheissari
- Department of Pediatric Nephrology, Isfahan University of Medical Sciences, Esfahan, Iran.
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
An efficient and comprehensive strategy for genetic diagnostics of polycystic kidney disease. PLoS One 2015; 10:e0116680. [PMID: 25646624 PMCID: PMC4315576 DOI: 10.1371/journal.pone.0116680] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/11/2014] [Indexed: 01/01/2023] Open
Abstract
Renal cysts are clinically and genetically heterogeneous conditions. Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent life-threatening genetic disease and mainly caused by mutations in PKD1. The presence of six PKD1 pseudogenes and tremendous allelic heterogeneity make molecular genetic testing challenging requiring laborious locus-specific amplification. Increasing evidence suggests a major role for PKD1 in early and severe cases of ADPKD and some patients with a recessive form. Furthermore it is becoming obvious that clinical manifestations can be mimicked by mutations in a number of other genes with the necessity for broader genetic testing. We established and validated a sequence capture based NGS testing approach for all genes known for cystic and polycystic kidney disease including PKD1. Thereby, we demonstrate that the applied standard mapping algorithm specifically aligns reads to the PKD1 locus and overcomes the complication of unspecific capture of pseudogenes. Employing careful and experienced assessment of NGS data, the method is shown to be very specific and equally sensitive as established methods. An additional advantage over conventional Sanger sequencing is the detection of copy number variations (CNVs). Sophisticated bioinformatic read simulation increased the high analytical depth of the validation study and further demonstrated the strength of the approach. We further raise some awareness of limitations and pitfalls of common NGS workflows when applied in complex regions like PKD1 demonstrating that quality of NGS needs more than high coverage of the target region. By this, we propose a time- and cost-efficient diagnostic strategy for comprehensive molecular genetic testing of polycystic kidney disease which is highly automatable and will be of particular value when therapeutic options for PKD emerge and genetic testing is needed for larger numbers of patients.
Collapse
|
68
|
Aggarwal HK, Jain D, Yadav S, Kaverappa V, Gupta A. Senior-loken syndrome with rare manifestations: a case report. Eurasian J Med 2015; 45:128-31. [PMID: 25610265 DOI: 10.5152/eajm.2013.25] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 03/02/2013] [Indexed: 11/22/2022] Open
Abstract
Senior-Loken syndrome refers to a disorder in which there is a combination of nephronophthisis and retinal dystrophy. The earliest presenting signs of the renal component are polyuria and polydipsia secondary to defective urinary concentrating ability. Nephronophthisis progresses to end-stage renal disease during the second decade. The retinal lesions are variable, ranging from severe infantile onset retinal dystrophy to more typical retinitis pigmentosa. There is a spectrum of other associated features, including skeletal, dermatological and cerebellar anomalies, observed in this entity. Here, we report a case of Senior-Loken syndrome associated with small hand (short metacarpals) and madarosis. To date, there are no cases reported in the literature describing the association of madarosis with this syndrome, and the presence of small hands has been reported only once.
Collapse
Affiliation(s)
- Harikrishan K Aggarwal
- Department of Medicine, Pt. B.D. Sharma University Of Health Sciences, Rohtak-124001 (Haryana) India
| | - Deepak Jain
- Department of Medicine, Pt. B.D. Sharma University Of Health Sciences, Rohtak-124001 (Haryana) India
| | - Sachin Yadav
- Department of Medicine, Pt. B.D. Sharma University Of Health Sciences, Rohtak-124001 (Haryana) India
| | - Vipin Kaverappa
- Department of Medicine, Pt. B.D. Sharma University Of Health Sciences, Rohtak-124001 (Haryana) India
| | - Abhishek Gupta
- Department of Medicine, Pt. B.D. Sharma University Of Health Sciences, Rohtak-124001 (Haryana) India
| |
Collapse
|
69
|
ARPKD and early manifestations of ADPKD: the original polycystic kidney disease and phenocopies. Pediatr Nephrol 2015; 30:15-30. [PMID: 24584572 PMCID: PMC4240914 DOI: 10.1007/s00467-013-2706-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/11/2013] [Accepted: 11/12/2013] [Indexed: 12/11/2022]
Abstract
Renal cysts are clinically and genetically heterogeneous conditions. Polycystic kidney disease (PKD) is common and its characterization has paved the way for the identification of a growing number of cilia-related disorders (ciliopathies) of which most show cystic kidneys. While the recessive form of PKD (ARPKD) virtually always presents in childhood, early onset can, in some instances, also occur in the dominant form (ADPKD). Both ADPKD genes (PKD1 and PKD2) can also be inherited in a recessive way, making the story more complex with evidence for a dosage-sensitive network. Several phenocopies are known, and mutations in HNF1ß or genes that typically cause other ciliopathies, such as nephronophthisis, Bardet-Biedl, Joubert syndrome and related disorders, can mimic PKD. An accurate genetic diagnosis is crucial for genetic counseling, prenatal diagnostics, and the clinical management of patients and their families. The increasing number of genes that have to be considered in patients with cystic kidney disease is challenging to address by conventional techniques and largely benefits from next-generation sequencing-based approaches. The parallel analysis of targeted genes considerably increases the detection rate, allows for better interpretation of identified variants, and avoids genetic misdiagnoses.
Collapse
|
70
|
Kurschat CE, Müller RU, Franke M, Maintz D, Schermer B, Benzing T. An approach to cystic kidney diseases: the clinician's view. Nat Rev Nephrol 2014; 10:687-99. [DOI: 10.1038/nrneph.2014.173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
71
|
Vogel P, Gelfman CM, Issa T, Payne BJ, Hansen GM, Read RW, Jones C, Pitcher MR, Ding ZM, DaCosta CM, Shadoan MK, Vance RB, Powell DR. Nephronophthisis and retinal degeneration in tmem218-/- mice: a novel mouse model for Senior-Løken syndrome? Vet Pathol 2014; 52:580-95. [PMID: 25161209 DOI: 10.1177/0300985814547392] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mice deficient in TMEM218 (Tmem218(-/-) ) were generated as part of an effort to identify and validate pharmaceutically tractable targets for drug development through large-scale phenotypic screening of knockout mice. Routine diagnostics, expression analysis, histopathology, and electroretinogram analyses completed on Tmem218(-/-) mice identified a previously unknown role for TMEM218 in the development and function of the kidney and eye. The major observed phenotypes in Tmem218(-/-) mice were progressive cystic kidney disease and retinal degeneration. The renal lesions were characterized by diffuse renal cyst development with tubulointerstitial nephropathy and disruption of tubular basement membranes in essentially normal-sized kidneys. The retinal lesions were characterized by slow-onset loss of photoreceptors, which resulted in reduced electroretinogram responses. These renal and retinal lesions are most similar to those associated with nephronophthisis (NPHP) and retinitis pigmentosa in humans. At least 10% of NPHP cases present with extrarenal conditions, which most often include retinal degeneration. Senior-Løken syndrome is characterized by the concurrent development of autosomal recessive NPHP and retinitis pigmentosa. Since mutations in the known NPHP genes collectively account for only about 30% of NPHP cases, it is possible that TMEM218 could be involved in the development of similar ciliopathies in humans. In reviewing all other reported mouse models of NPHP, we suggest that Tmem218(-/-) mice could provide a useful model for elucidating the pathogenesis of cilia-associated disease in both the kidney and the retina, as well as in developing and testing novel therapeutic strategies for Senior-Løken syndrome.
Collapse
Affiliation(s)
- P Vogel
- Department of Pathology, Lexicon Pharmaceuticals Inc., The Woodlands, TX, USA
| | - C M Gelfman
- Department of Ophthalmology, Lexicon Pharmaceuticals Inc., The Woodlands, TX, USA
| | - T Issa
- Department of Ophthalmology, Lexicon Pharmaceuticals Inc., The Woodlands, TX, USA
| | - B J Payne
- Department of Pathology, Lexicon Pharmaceuticals Inc., The Woodlands, TX, USA
| | - G M Hansen
- Department of Molecular Genetics, Lexicon Pharmaceuticals Inc., The Woodlands, TX, USA
| | - R W Read
- Department of Pathology, Lexicon Pharmaceuticals Inc., The Woodlands, TX, USA
| | - C Jones
- Department of Ophthalmology, Lexicon Pharmaceuticals Inc., The Woodlands, TX, USA
| | - M R Pitcher
- Department of Ophthalmology, Lexicon Pharmaceuticals Inc., The Woodlands, TX, USA
| | - Z-M Ding
- Department of Metabolism, Lexicon Pharmaceuticals Inc., The Woodlands, TX, USA
| | - C M DaCosta
- Department of Metabolism, Lexicon Pharmaceuticals Inc., The Woodlands, TX, USA
| | - M K Shadoan
- Department of Metabolism, Lexicon Pharmaceuticals Inc., The Woodlands, TX, USA
| | - R B Vance
- Department of Pathology, Lexicon Pharmaceuticals Inc., The Woodlands, TX, USA
| | - D R Powell
- Department of Metabolism, Lexicon Pharmaceuticals Inc., The Woodlands, TX, USA
| |
Collapse
|
72
|
Bakkaloğlu SA, Kandur Y, Bedir-Demirdağ T, Işık-Gönül İ, Hildebrandt F. Diverse phenotypic expression of NPHP4 mutations in four siblings. Turk J Pediatr 2014; 56:423-426. [PMID: 25818963 PMCID: PMC5839637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nephronophthisis (NPHP) is an autosomal recessive disease characterized by renal tubular basement membrane disruption, interstitial fibrosis and tubular cysts that progresses to end-stage kidney disease (ESKD). There are also characteristic extrarenal manifestations. Mutations of more than thirteen genes that can cause NPHP have been identified. We herein report four siblings from a consanguineous family, who carried the same NPHP4 mutations but presented with different disease phenotypes ranging from enuresis nocturna to ESKD. Diluted urine and echogenic kidneys in ultrasound examination were consistent, which is typical for 100% of the NPHP cases that have been described. Chronic kidney disease developed in the older two brothers. The observed phenotypic differences are likely to be related to environmental and epigenetic factors, oligogenic inheritance and modifier genes affecting the age of presentation of signs and symptoms. NPHP should be considered as an important cause of CKD in children, which insidiously progresses to ESKD, with no specific therapy available.
Collapse
Affiliation(s)
- Sevcan A Bakkaloğlu
- Division of Pediatric Nephrology, Department of Pediatrics, Gazi University, Faculty of Medicine, Ankara, Turkey.
| | | | | | | | | |
Collapse
|
73
|
Failler M, Gee H, Krug P, Joo K, Halbritter J, Belkacem L, Filhol E, Porath J, Braun D, Schueler M, Frigo A, Alibeu O, Masson C, Brochard K, Hurault de Ligny B, Novo R, Pietrement C, Kayserili H, Salomon R, Gubler MC, Otto E, Antignac C, Kim J, Benmerah A, Hildebrandt F, Saunier S. Mutations of CEP83 cause infantile nephronophthisis and intellectual disability. Am J Hum Genet 2014; 94:905-14. [PMID: 24882706 DOI: 10.1016/j.ajhg.2014.05.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 05/09/2014] [Indexed: 01/23/2023] Open
Abstract
Ciliopathies are a group of hereditary disorders associated with defects in cilia structure and function. The distal appendages (DAPs) of centrioles are involved in the docking and anchoring of the mother centriole to the cellular membrane during ciliogenesis. The molecular composition of DAPs was recently elucidated and mutations in two genes encoding DAPs components (CEP164/NPHP15, SCLT1) have been associated with human ciliopathies, namely nephronophthisis and orofaciodigital syndrome. To identify additional DAP components defective in ciliopathies, we independently performed targeted exon sequencing of 1,221 genes associated with cilia and 5 known DAP protein-encoding genes in 1,255 individuals with a nephronophthisis-related ciliopathy. We thereby detected biallelic mutations in a key component of DAP-encoding gene, CEP83, in seven families. All affected individuals had early-onset nephronophthisis and four out of eight displayed learning disability and/or hydrocephalus. Fibroblasts and tubular renal cells from affected individuals showed an altered DAP composition and ciliary defects. In summary, we have identified mutations in CEP83, another DAP-component-encoding gene, as a cause of infantile nephronophthisis associated with central nervous system abnormalities in half of the individuals.
Collapse
|
74
|
Huynh Cong E, Bizet AA, Boyer O, Woerner S, Gribouval O, Filhol E, Arrondel C, Thomas S, Silbermann F, Canaud G, Hachicha J, Ben Dhia N, Peraldi MN, Harzallah K, Iftene D, Daniel L, Willems M, Noel LH, Bole-Feysot C, Nitschké P, Gubler MC, Mollet G, Saunier S, Antignac C. A homozygous missense mutation in the ciliary gene TTC21B causes familial FSGS. J Am Soc Nephrol 2014; 25:2435-43. [PMID: 24876116 DOI: 10.1681/asn.2013101126] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Several genes, mainly involved in podocyte cytoskeleton regulation, have been implicated in familial forms of primary FSGS. We identified a homozygous missense mutation (p.P209L) in the TTC21B gene in seven families with FSGS. Mutations in this ciliary gene were previously reported to cause nephronophthisis, a chronic tubulointerstitial nephropathy. Notably, tubular basement membrane thickening reminiscent of that observed in nephronophthisis was present in patients with FSGS and the p.P209L mutation. We demonstrated that the TTC21B gene product IFT139, an intraflagellar transport-A component, mainly localizes at the base of the primary cilium in developing podocytes from human fetal tissue and in undifferentiated cultured podocytes. In contrast, in nonciliated adult podocytes and differentiated cultured cells, IFT139 relocalized along the extended microtubule network. We further showed that knockdown of IFT139 in podocytes leads to primary cilia defects, abnormal cell migration, and cytoskeleton alterations, which can be partially rescued by p.P209L overexpression, indicating its hypomorphic effect. Our results demonstrate the involvement of a ciliary gene in a glomerular disorder and point to a critical function of IFT139 in podocytes. Altogether, these data suggest that this homozygous TTC21B p.P209L mutation leads to a novel hereditary kidney disorder with both glomerular and tubulointerstitial damages.
Collapse
Affiliation(s)
- Evelyne Huynh Cong
- INSERM U1163, Laboratory of Hereditary Kidney Diseases, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Albane A Bizet
- INSERM U1163, Laboratory of Hereditary Kidney Diseases, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Olivia Boyer
- INSERM U1163, Laboratory of Hereditary Kidney Diseases, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France; Assistance Publique-Hôpitaux de Paris, Department of Pediatric Nephrology, Necker Hospital, Paris, France
| | - Stéphanie Woerner
- INSERM U1163, Laboratory of Hereditary Kidney Diseases, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Olivier Gribouval
- INSERM U1163, Laboratory of Hereditary Kidney Diseases, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Emilie Filhol
- INSERM U1163, Laboratory of Hereditary Kidney Diseases, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Christelle Arrondel
- INSERM U1163, Laboratory of Hereditary Kidney Diseases, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Sophie Thomas
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France; INSERM U1163, Laboratory of Embryology and Genetics of Congenital Malformations, Paris, France
| | - Flora Silbermann
- INSERM U1163, Laboratory of Hereditary Kidney Diseases, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Guillaume Canaud
- Assistance Publique-Hôpitaux de Paris, Department of Nephrology and Transplantation and Intensive Care Unit, Necker Hospital, Paris, France
| | - Jamil Hachicha
- Department of Nephrology, University of Sfax, Hedi Chaker Hospital, Sfax, Tunisia
| | - Nasr Ben Dhia
- Department of Nephrology, Faculty of Medicine, Monastir, Tunisia
| | - Marie-Noëlle Peraldi
- INSERM U940, Paris Diderot University and Nephrology Unit, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Kais Harzallah
- Faculty of Medicine, Military Hospital of Tunis, Tunis, Tunisia
| | - Daouia Iftene
- Department of Nephrology-Dialysis, Army Central Hospital, Kouba, Alger, Algeria
| | - Laurent Daniel
- Assistance Publique-Hôpitaux de Marseille, Department of Pathology, la Timone Hospital, Marseille, France
| | - Marjolaine Willems
- INSERM U844, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier, France
| | - Laure-Hélène Noel
- Assistance Publique-Hôpitaux de Paris, Department of Nephrology and Transplantation and Intensive Care Unit, Necker Hospital, Paris, France
| | - Christine Bole-Feysot
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France; Imagine Institute, Genomic Core Facility, Paris, France
| | - Patrick Nitschké
- Paris-Descartes Sorbonne Paris-Cité University, Bioinformatics Core Facility, Paris, France
| | - Marie-Claire Gubler
- INSERM U1163, Laboratory of Hereditary Kidney Diseases, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Géraldine Mollet
- INSERM U1163, Laboratory of Hereditary Kidney Diseases, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Sophie Saunier
- INSERM U1163, Laboratory of Hereditary Kidney Diseases, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Corinne Antignac
- INSERM U1163, Laboratory of Hereditary Kidney Diseases, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France; Assistance Publique-Hôpitaux de Paris, Department of Genetics, Necker Hospital, Paris, France;
| |
Collapse
|
75
|
Senior-Loken syndrome: A novel NPHP5 gene mutation in a family from Kuwait. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2014. [DOI: 10.1016/j.ejmhg.2013.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
76
|
Abstract
Cilia and flagella are surface-exposed, finger-like organelles whose core consists of a microtubule (MT)-based axoneme that grows from a modified centriole, the basal body. Cilia are found on the surface of many eukaryotic cells and play important roles in cell motility and in coordinating a variety of signaling pathways during growth, development, and tissue homeostasis. Defective cilia have been linked to a number of developmental disorders and diseases, collectively called ciliopathies. Cilia are dynamic organelles that assemble and disassemble in tight coordination with the cell cycle. In most cells, cilia are assembled during growth arrest in a multistep process involving interaction of vesicles with appendages present on the distal end of mature centrioles, and addition of tubulin and other building blocks to the distal tip of the basal body and growing axoneme; these building blocks are sorted through a region at the cilium base known as the ciliary necklace, and then transported via intraflagellar transport (IFT) along the axoneme toward the tip for assembly. After assembly, the cilium frequently continues to turn over and incorporate tubulin at its distal end in an IFT-dependent manner. Prior to cell division, the cilia are usually resorbed to liberate centrosomes for mitotic spindle pole formation. Here, we present an overview of the main cytoskeletal structures associated with cilia and centrioles with emphasis on the MT-associated appendages, fibers, and filaments at the cilium base and tip. The composition and possible functions of these structures are discussed in relation to cilia assembly, disassembly, and length regulation.
Collapse
Affiliation(s)
- Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
77
|
Renal Cyclooxygenase Products are Higher and Lipoxygenase Products are Lower in Early Disease in the pcy Mouse Model of Adolescent Nephronophthisis. Lipids 2013; 49:39-47. [DOI: 10.1007/s11745-013-3859-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 10/21/2013] [Indexed: 12/26/2022]
|
78
|
Kim YH, Epting D, Slanchev K, Engel C, Walz G, Kramer-Zucker A. A complex of BBS1 and NPHP7 is required for cilia motility in zebrafish. PLoS One 2013; 8:e72549. [PMID: 24069149 PMCID: PMC3771994 DOI: 10.1371/journal.pone.0072549] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/10/2013] [Indexed: 12/21/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) and nephronophthisis (NPH) are hereditary autosomal recessive disorders, encoded by two families of diverse genes. BBS and NPH display several overlapping phenotypes including cystic kidney disease, retinitis pigmentosa, liver fibrosis, situs inversus and cerebellar defects. Since most of the BBS and NPH proteins localize to cilia and/or their appendages, BBS and NPH are considered ciliopathies. In this study, we characterized the function of the transcription factor Nphp7 in zebrafish, and addressed the molecular connection between BBS and NPH. The knockdown of zebrafish bbs1 and nphp7.2 caused similar phenotypic changes including convergent extension defects, curvature of the body axis, hydrocephalus, abnormal heart looping and cystic pronephros, all consistent with an altered ciliary function. Immunoprecipitation assays revealed a physical interaction between BBS1 and NPHP7, and the simultaneous knockdown of zbbs1 and znphp7.2 enhanced the cystic pronephros phenotype synergistically, suggesting a genetic interaction between zbbs1 and znphp7.2 in vivo. Deletion of zBbs1 or zNphp7.2 did not compromise cilia formation, but disrupted cilia motility. Although NPHP7 has been shown to act as transcriptional repressor, our studies suggest a crosstalk between BBS1 and NPHP7 in regulating normal function of the cilium.
Collapse
Affiliation(s)
- Yun Hee Kim
- Renal Division, University Hospital Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Faculty of Biology (or Faculty of Chemistry, Pharmacy, and Earth Sciences), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Daniel Epting
- Renal Division, University Hospital Freiburg, Freiburg, Germany
| | - Krasimir Slanchev
- Renal Division, University Hospital Freiburg, Freiburg, Germany
- Neurobiology, Max-Planck-Institute, Martinsried, Germany
| | - Christina Engel
- Renal Division, University Hospital Freiburg, Freiburg, Germany
| | - Gerd Walz
- Renal Division, University Hospital Freiburg, Freiburg, Germany
| | | |
Collapse
|
79
|
Mergen M, Engel C, Müller B, Follo M, Schäfer T, Jung M, Walz G. The nephronophthisis gene product NPHP2/Inversin interacts with Aurora A and interferes with HDAC6-mediated cilia disassembly. Nephrol Dial Transplant 2013; 28:2744-53. [PMID: 24026243 DOI: 10.1093/ndt/gft316] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Nephronophthisis (NPH) is a rare recessive disease caused by several different gene mutations. Most gene products localize to the cilium, and thus, the various NPH manifestations including kidney cysts and situs inversus have been linked to ciliary defects. RESULTS Here, we describe that targeted knockdown of NPHP2 significantly reduced the number of cilia on polarized MDCK cells. As one of the underlying molecular mechanisms, we identified a direct interaction between NPHP2 and Aurora A, a cell cycle kinase that promotes ciliary disassembly after activation by Hef1. NPHP2 inhibited the phosphorylation and activation of Aurora A, and reduced its kinase activity in vitro. Aurora A and histone deacetylase inhibitors ameliorated the ciliogenesis defect in NPHP2-deficient MDCK cells, supporting our hypothesis that NPHP2 is involved in the control of ciliary disassembly. Furthermore, we observed that nephrocystin (NPHP1), an interaction partner of NPHP2, also binds Aurora A, exerting very similar inhibitory effects on Hef1-mediated Aurora A activation. CONCLUSIONS Taken together, these findings suggest that NPHP gene products can interfere with ciliary disassembly through interaction with the Hef1/Aurora A module, thereby modulating cell cycle control and cell proliferation.
Collapse
Affiliation(s)
- Miriam Mergen
- Renal Division, University Freiburg Medical Center, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
80
|
Hirano D, Fujinaga S, Ohtomo Y, Nishizaki N, Hara S, Murakami H, Yamaguchi Y, Hattori M, Ida H. Nephronophthisis cannot be detected by urinary screening program. Clin Pediatr (Phila) 2013; 52:759-61. [PMID: 22523277 DOI: 10.1177/0009922812441390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
81
|
Ruh H, Salonikios T, Fuchser J, Schwartz M, Sticht C, Hochheim C, Wirnitzer B, Gretz N, Hopf C. MALDI imaging MS reveals candidate lipid markers of polycystic kidney disease. J Lipid Res 2013; 54:2785-94. [PMID: 23852700 DOI: 10.1194/jlr.m040014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a severe, monogenetically inherited kidney and liver disease. PCK rats carrying the orthologous mutant gene serve as a model of human disease, and alterations in lipid profiles in PCK rats suggest that defined subsets of lipids may be useful as molecular disease markers. Whereas MALDI protein imaging mass spectrometry (IMS) has become a promising tool for disease classification, widely applicable workflows that link MALDI lipid imaging and identification as well as structural characterization of candidate disease-classifying marker lipids are lacking. Here, we combine selective MALDI imaging of sulfated kidney lipids and Fisher discriminant analysis (FDA) of imaging data sets for identification of candidate markers of progressive disease in PCK rats. Our study highlights strong increases in lower mass lipids as main classifiers of cystic disease. Structure determination by high-resolution mass spectrometry identifies these altered lipids as taurine-conjugated bile acids. These sulfated lipids are selectively elevated in the PCK rat model but not in models of related hepatorenal fibrocystic diseases, suggesting that they be molecular markers of the disease and that a combination of MALDI imaging with high-resolution MS methods and Fisher discriminant data analysis may be applicable for lipid marker discovery.
Collapse
Affiliation(s)
- Hermelindis Ruh
- Institute of Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Lin YC, Niewiadomski P, Lin B, Nakamura H, Phua SC, Jiao J, Levchenko A, Inoue T, Rohatgi R, Inoue T. Chemically inducible diffusion trap at cilia reveals molecular sieve-like barrier. Nat Chem Biol 2013; 9:437-43. [PMID: 23666116 DOI: 10.1038/nchembio.1252] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/05/2013] [Indexed: 11/09/2022]
Abstract
Primary cilia function as specialized compartments for signal transduction. The stereotyped structure and signaling function of cilia inextricably depend on the selective segregation of molecules in cilia. However, the fundamental principles governing the access of soluble proteins to primary cilia remain unresolved. We developed a methodology termed 'chemically inducible diffusion trap at cilia' to visualize the diffusion process of a series of fluorescent proteins ranging in size from 3.2 nm to 7.9 nm into primary cilia. We found that the interior of the cilium was accessible to proteins as large as 7.9 nm. The kinetics of ciliary accumulation of this panel of proteins was exponentially limited by their Stokes radii. Quantitative modeling suggests that the diffusion barrier operates as a molecular sieve at the base of cilia. Our study presents a set of powerful, generally applicable tools for the quantitative monitoring of ciliary protein diffusion under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University
| | - Pawel Niewiadomski
- Departments of Medicine and Biochemistry, School of Medicine, Stanford University
| | - Benjamin Lin
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University.,Department of Biomedical Engineering, Johns Hopkins University
| | - Hideki Nakamura
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University
| | - Siew Cheng Phua
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University
| | - John Jiao
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University
| | - Andre Levchenko
- Department of Biomedical Engineering, Johns Hopkins University
| | - Takafumi Inoue
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University
| | - Rajat Rohatgi
- Departments of Medicine and Biochemistry, School of Medicine, Stanford University
| | - Takanari Inoue
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University.,PRESTO Investigator, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
83
|
Veland IR, Montjean R, Eley L, Pedersen LB, Schwab A, Goodship J, Kristiansen K, Pedersen SF, Saunier S, Christensen ST. Inversin/Nephrocystin-2 is required for fibroblast polarity and directional cell migration. PLoS One 2013; 8:e60193. [PMID: 23593172 PMCID: PMC3620528 DOI: 10.1371/journal.pone.0060193] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/22/2013] [Indexed: 12/30/2022] Open
Abstract
Inversin is a ciliary protein that critically regulates developmental processes and tissue homeostasis in vertebrates, partly through the degradation of Dishevelled (Dvl) proteins to coordinate Wnt signaling in planar cell polarity (PCP). Here, we investigated the role of Inversin in coordinating cell migration, which highly depends on polarity processes at the single-cell level, including the spatial and temporal organization of the cytoskeleton as well as expression and cellular localization of proteins in leading edge formation of migrating cells. Using cultures of mouse embryonic fibroblasts (MEFs) derived from inv(-/-) and inv(+/+) animals, we confirmed that both inv(-/-) and inv(+/+) MEFs form primary cilia, and that Inversin localizes to the primary cilium in inv(+/+) MEFs. In wound healing assays, inv(-/-) MEFs were severely compromised in their migratory ability and exhibited cytoskeletal rearrangements, including distorted lamellipodia formation and cilia orientation. Transcriptome analysis revealed dysregulation of Wnt signaling and of pathways regulating actin organization and focal adhesions in inv(-/-) MEFs as compared to inv(+/+) MEFs. Further, Dvl-1 and Dvl-3 localized to MEF primary cilia, and β-catenin/Wnt signaling was elevated in inv(-/-) MEFs, which moreover showed reduced ciliary localization of Dvl-3. Finally, inv(-/-) MEFs displayed dramatically altered activity and localization of RhoA, Rac1, and Cdc42 GTPases, and aberrant expression and targeting of the Na(+)/H(+) exchanger NHE1 and ezrin/radixin/moesin (ERM) proteins to the edge of cells facing the wound. Phosphorylation of β-catenin at the ciliary base and formation of well-defined lamellipodia with localization and activation of ERM to the leading edge of migrating cells were restored in inv(-/-) MEFs expressing Inv-GFP. Collectively, our findings point to the significance of Inversin in controlling cell migration processes, at least in part through transcriptional regulation of genes involved in Wnt signaling and pathways that control cytoskeletal organization and ion transport.
Collapse
Affiliation(s)
- Iben R. Veland
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rodrick Montjean
- Inserm U-983, Imagine Institut, Paris Descartes-Sorbonne Paris Cité University, Necker Hospital, Paris, France
| | - Lorraine Eley
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lotte B. Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Albrecht Schwab
- Institute of Physiology II, Münster University, Münster, Germany
| | - Judith Goodship
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Stine F. Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Saunier
- Inserm U-983, Imagine Institut, Paris Descartes-Sorbonne Paris Cité University, Necker Hospital, Paris, France
| | | |
Collapse
|
84
|
Balgradean M, Cinteza E, Ferechide D. Post renal transplant type 2 diabetes mellitus in a case of familial juvenile nephrophthisis. MAEDICA 2013; 8:26-29. [PMID: 24023594 PMCID: PMC3749756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 01/25/2013] [Indexed: 06/02/2023]
Abstract
Familial juvenile nephronophtisis, an autosomal recessive tubulointerstitial chronic nephritis, is characterized by progressive renal disease and end stage renal failure, which require kidney transplantation. Post-transplant diabetes mellitus (PTDM) incidence after kidney transplantation varies from 4-25%. Obesity, positive oral glucose tolerance test, metabolic syndromes, and post-transplantation multi-drug, high dose, long-term immunosuppressive therapy are the risk factors incriminated.We present the case of a 15-year-old overweight boy who was diagnosed with familial juvenile nephronophtisis five years before, afterwards progressive renal disease and end stage renal failure. This young patient developed PTDM three years after renal transplantation. His underweight brother, with the same medical history, did not develop PTDM.Transplantation was mandatory for a child with familial juvenile nephronophtisis.The case illustrates the risk factors for PTDM.
Collapse
Affiliation(s)
- Mihaela Balgradean
- "Carol Davila" University of Medicine and Pharmacy, Department of Pediatrics, Bucharest, Romania ; "MS Curie" Emergency Children's Hospital, Bucharest, Romania
| | | | | |
Collapse
|
85
|
BARZEGAR M, MALAKI M, SADEGI-HOKMABADI E. Joubert syndrome with variable features: presentation of two cases. IRANIAN JOURNAL OF CHILD NEUROLOGY 2013; 7:43-6. [PMID: 24665296 PMCID: PMC3943034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 11/06/2022]
Abstract
Joubert syndrome is a very rare disorder characterized by respiratory irregularities, nystagmus, hypotonia, and global developmental delay with abnormalities of cerebellum. We present two cases of this syndrome with different phenotypes. The first case was an 8-month-old girl with hypotonia, apnea, and mild developmental delay as well as retinal degeneration and unilateral renal cystic dysplasia. The second case was a 27-month-old boy who presented with episodes of hyperpnea, apnea, retinal dystrophy, and severe global developmental delay. Both patients had normal metabolic profile and prototype imaging of joubert syndrome including vermis agenesis and molar tooth sign.
Collapse
Affiliation(s)
- Mohammad BARZEGAR
- Professor of Pediatric Neurology, Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid MALAKI
- Assistant Professor of Pediatric Neurology, Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elyar SADEGI-HOKMABADI
- Adult Neurologist, Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
86
|
Abstract
Renal cysts are a common radiological finding in both adults and children. They occur in a variety of conditions, and the clinical presentation, management, and prognosis varies widely. In this article, we discuss the major causes of renal cysts in children and adults with a particular focus on the most common genetic forms. Many cystoproteins have been localized to the cilia centrosome complex (CCC). We consider the evidence for a universal 'cilia hypothesis' for cyst formation and the evidence for non-ciliary proteins in cyst formation.
Collapse
|
87
|
Abstract
The ciliopathies are an apparently disparate group of human diseases that all result from defects in the formation and/or function of cilia. They include disorders such as Meckel-Grüber syndrome (MKS), Joubert syndrome (JBTS), Bardet-Biedl syndrome (BBS) and Alström syndrome (ALS). Reflecting the manifold requirements for cilia in signalling, sensation and motility, different ciliopathies exhibit common elements. The mouse has been used widely as a model organism for the study of ciliopathies. Although many mutant alleles have proved lethal, continued investigations have led to the development of better models. Here, we review current mouse models of a core set of ciliopathies, their utility and future prospects.
Collapse
Affiliation(s)
- Dominic P Norris
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, UK.
| | | |
Collapse
|
88
|
McCooke JK, Appels R, Barrero RA, Ding A, Ozimek-Kulik JE, Bellgard MI, Morahan G, Phillips JK. A novel mutation causing nephronophthisis in the Lewis polycystic kidney rat localises to a conserved RCC1 domain in Nek8. BMC Genomics 2012; 13:393. [PMID: 22899815 PMCID: PMC3441220 DOI: 10.1186/1471-2164-13-393] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 08/06/2012] [Indexed: 01/03/2023] Open
Abstract
Background Nephronophthisis (NPHP) as a cause of cystic kidney disease is the most common genetic cause of progressive renal failure in children and young adults. NPHP is characterized by abnormal and/or loss of function of proteins associated with primary cilia. Previously, we characterized an autosomal recessive phenotype of cystic kidney disease in the Lewis Polycystic Kidney (LPK) rat. Results In this study, quantitative trait locus analysis was used to define a ~1.6Mbp region on rat chromosome 10q25 harbouring the lpk mutation. Targeted genome capture and next-generation sequencing of this region identified a non-synonymous mutation R650C in the NIMA (never in mitosis gene a)- related kinase 8 ( Nek8) gene. This is a novel Nek8 mutation that occurs within the regulator of chromosome condensation 1 (RCC1)-like region of the protein. Specifically, the R650C substitution is located within a G[QRC]LG repeat motif of the predicted seven bladed beta-propeller structure of the RCC1 domain. The rat Nek8 gene is located in a region syntenic to portions of human chromosome 17 and mouse 11. Scanning electron microscopy confirmed abnormally long cilia on LPK kidney epithelial cells, and fluorescence immunohistochemistry for Nek8 protein revealed altered cilia localisation. Conclusions When assessed relative to other Nek8 NPHP mutations, our results indicate the whole propeller structure of the RCC1 domain is important, as the different mutations cause comparable phenotypes. This study establishes the LPK rat as a novel model system for NPHP and further consolidates the link between cystic kidney disease and cilia proteins.
Collapse
Affiliation(s)
- John K McCooke
- Centre for Comparative Genomics, Murdoch University, Perth, WA 6150, Australia
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Seeger-Nukpezah T, Golemis EA. The extracellular matrix and ciliary signaling. Curr Opin Cell Biol 2012; 24:652-61. [PMID: 22819513 DOI: 10.1016/j.ceb.2012.06.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/29/2012] [Accepted: 06/11/2012] [Indexed: 12/24/2022]
Abstract
The primary cilium protrudes like an antenna from the cell surface, sensing mechanical and chemical cues provided in the cellular environment. In some tissue types, ciliary orientation to lumens allows response to fluid flow; in others, such as bone, ciliary protrusion into the extracellular matrix allows response to compression forces. The ciliary membrane contains receptors for Hedgehog, Wnt, Notch, and other potent growth factors, and in some instances also harbors integrin and cadherin family members, allowing receipt of a robust range of signals. A growing list of ciliopathies, arising from deficient formation or function of cilia, includes both developmental defects and chronic, progressive disorders such as polycystic kidney disease (PKD); changes in ciliary function have been proposed to support cancer progression. Recent findings have revealed extensive signaling dialog between cilia and extracellular matrix (ECM), with defects in cilia associated with fibrosis in multiple contexts. Further, a growing number of proteins have been determined to possess multiple roles in control of cilia and focal adhesion interactions with the ECM, further coordinating functionality. We summarize and discuss these recent findings.
Collapse
Affiliation(s)
- Tamina Seeger-Nukpezah
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | |
Collapse
|
90
|
Borgal L, Habbig S, Hatzold J, Liebau MC, Dafinger C, Sacarea I, Hammerschmidt M, Benzing T, Schermer B. The ciliary protein nephrocystin-4 translocates the canonical Wnt regulator Jade-1 to the nucleus to negatively regulate β-catenin signaling. J Biol Chem 2012; 287:25370-80. [PMID: 22654112 DOI: 10.1074/jbc.m112.385658] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nephronophthisis (NPH) is an autosomal-recessive cystic kidney disease and represents the most common genetic cause for end-stage renal disease in children and adolescents. It can be caused by the mutation of genes encoding for the nephrocystin proteins (NPHPs). All NPHPs localize to primary cilia, classifying this disease as a "ciliopathy." The primary cilium is a critical regulator of several cell signaling pathways. Cystogenesis in the kidney is thought to involve overactivation of canonical Wnt signaling, which is negatively regulated by the primary cilium and several NPH proteins, although the mechanism remains unclear. Jade-1 has recently been identified as a novel ubiquitin ligase targeting the canonical Wnt downstream effector β-catenin for proteasomal degradation. Here, we identify Jade-1 as a novel component of the NPHP protein complex. Jade-1 colocalizes with NPHP1 at the transition zone of primary cilia and interacts with NPHP4. Furthermore, NPHP4 stabilizes protein levels of Jade-1 and promotes the translocation of Jade-1 to the nucleus. Finally, NPHP4 and Jade-1 additively inhibit canonical Wnt signaling, and this genetic interaction is conserved in zebrafish. The stabilization and nuclear translocation of Jade-1 by NPHP4 enhances the ability of Jade-1 to negatively regulate canonical Wnt signaling. Loss of this repressor function in nephronophthisis might be an important factor promoting Wnt activation and contributing to cyst formation.
Collapse
Affiliation(s)
- Lori Borgal
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
|
92
|
Abstract
Cilia are antenna-like organelles found on the surface of most cells. They transduce molecular signals and facilitate interactions between cells and their environment. Ciliary dysfunction has been shown to underlie a broad range of overlapping, clinically and genetically heterogeneous phenotypes, collectively termed ciliopathies. Literally, all organs can be affected. Frequent cilia-related manifestations are (poly)cystic kidney disease, retinal degeneration, situs inversus, cardiac defects, polydactyly, other skeletal abnormalities, and defects of the central and peripheral nervous system, occurring either isolated or as part of syndromes. Characterization of ciliopathies and the decisive role of primary cilia in signal transduction and cell division provides novel insights into tumorigenesis, mental retardation, and other common causes of morbidity and mortality, including diabetes mellitus and obesity. New technologies ("Next generation sequencing/NGS") have considerably improved genetic research and diagnostics by allowing simultaneous investigation of all disease genes at reduced costs and lower turn-around times. This is undoubtedly a result of the dynamic development in the field of human genetics and deserves increased attention in genetic counselling and the management of affected families.
Collapse
Affiliation(s)
- Carsten Bergmann
- Center for Human Genetics Bioscientia, Konrad-Adenauer-Str. 17, 55218 Ingelheim, Germany.
| |
Collapse
|
93
|
Sugimoto K, Takemura Y, Yanagida H, Fujita S, Miyazawa T, Sakata N, Okada M, Takemura T. Renal tubular dysgenesis and tubulointerstitial nephritis antigen in juvenile nephronophthisis. Nephrology (Carlton) 2011; 16:495-501. [PMID: 21265929 DOI: 10.1111/j.1440-1797.2011.01442.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIM The relationship between abnormalities of tubular architecture and tubulointerstitial nephritis antigen (TIN-ag) in juvenile nephronophthisis (J-NPH) was evaluated. METHODS Sixteen J-NPH patients were examined. Nephrocystin-1, TIN-ag, type IV collagen, Fas antigen and the C5b-9 complement complex were stained by immunohistochemical methods. RESULTS Renal tubules of patients with J-NPH showed morphological abnormalities of tubular basement membranes (TBM) and frequent apoptosis of tubular epithelial cells. Additionally, the C5b-9 complement complex was deposited within the TBM in the absence of immunoglobulin deposition, suggesting complement-dependent TBM injury. Localization of TIN-ag in the TBM of J-NPH patients disclosed a partial defect or discontinuity in 14 of the 16 patients, while type IV collagen immunoreactivity was relatively preserved. These findings suggest that tubulogenesis is disturbed during nephronogenesis in J-NPH patients because of a defect in nephrocystin, an NPHP gene product. TBM defects induce further morphological abnormalities such as cystic dilation of tubules; as tubular function impairment advances, the incomplete tubules may be injured by C5b-9 complement complexes, followed by apoptotic cell death. CONCLUSION TIN-ag, which is important in early nephrogenesis, lacks normal activity, and vulnerable and incomplete tubules with deficient TIN-ag expression are formed. Removal of these defective tubules by apoptosis combined with the C5b-9 complement complex could be the primary reason for progression to end-stage renal disease in J-NPH patients.
Collapse
Affiliation(s)
- Keisuke Sugimoto
- Department of Paediatrics, Kinki University School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Follow-up of patients with juvenile nephronophthisis after renal transplantation: a single center experience. Transplant Proc 2011; 43:847-9. [PMID: 21486612 DOI: 10.1016/j.transproceed.2011.01.107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Nephronophthisis (NPHP) is the most common genetic cause of end-stage renal disease (ESRD) in the first 3 decades of life. Treatment of patients with NPHP is symptomatic; kidney transplantation is the treatment of choice when ESRD is established. We report herein our center's experience with kidney transplantation for children with juvenile NPHP. PATIENTS We retrospectively analyzed medical records of 9 renal transplant recipients with a primary diagnosis of juvenile NPHP confirmed by genetic analysis and/or renal biopsy findings in a single center from 1996 to 2010. RESULTS Of the 9 patients, 6 received a living related and 3 a cadaveric donor transplantation. Preemptive renal transplantation was performed in 7 patients. The median age of the patients was 13.38 ± 4.6 years; the median follow-up period was 17 months. Posttransplantation immusuppression comprised corticosteroids, a calcineurin inhibitor, and mycophenolate mofetil or azathioprine. One patient lost his renal graft owing to renal graft thrombosis, and grade II chronic allograft nephropathy was diagnosed by renal biopsy on the 62th day after renal transplantation in another patient. The median glomerular filtration rates after transplantation at 1, 3, and 5 years were 85, 75.2, and 83.2 mL/min/1.73 m(2), respectively. CONCLUSION We observed preserved graft functions for long periods among renal transplant recipients with juvenile NPHP. Chronic allograft nephropathy developed rarely on long follow-up.
Collapse
|
95
|
Zebrafish: a model system for the study of vertebrate renal development, function, and pathophysiology. Curr Opin Nephrol Hypertens 2011; 20:416-24. [DOI: 10.1097/mnh.0b013e3283477797] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
96
|
Zhao C, Malicki J. Nephrocystins and MKS proteins interact with IFT particle and facilitate transport of selected ciliary cargos. EMBO J 2011; 30:2532-44. [PMID: 21602787 DOI: 10.1038/emboj.2011.165] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 04/19/2011] [Indexed: 01/16/2023] Open
Abstract
Cilia are required for the development and function of many organs. Efficient transport of protein cargo along ciliary axoneme is necessary to sustain these processes. Despite its importance, the mode of interaction between the intraflagellar ciliary transport (IFT) mechanism and its cargo proteins remains poorly understood. Our studies demonstrate that IFT particle components, and a Meckel-Gruber syndrome 1 (MKS1)-related, B9 domain protein, B9d2, bind each other and contribute to the ciliary localization of Inversin (Nephrocystin 2). B9d2, Inversin, and Nephrocystin 5 support, in turn, the transport of a cargo protein, Opsin, but not another photoreceptor ciliary transmembrane protein, Peripherin. Interestingly, the components of this mechanism also contribute to the formation of planar cell polarity in mechanosensory epithelia. These studies reveal a molecular mechanism that mediates the transport of selected ciliary cargos and is of fundamental importance for the differentiation and survival of sensory cells.
Collapse
Affiliation(s)
- Chengtian Zhao
- Division of Craniofacial and Molecular Genetics, and Program in Genetics, Sackler School of Graduate Biomedical Studies, Tufts University, Boston, MA, USA
| | | |
Collapse
|
97
|
Simms RJ, Hynes AM, Eley L, Sayer JA. Nephronophthisis: a genetically diverse ciliopathy. Int J Nephrol 2011; 2011:527137. [PMID: 21660307 PMCID: PMC3108105 DOI: 10.4061/2011/527137] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 02/28/2011] [Indexed: 12/15/2022] Open
Abstract
Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease and a leading genetic cause of established renal failure (ERF) in children and young adults. Early presenting symptoms in children with NPHP include polyuria, nocturia, or secondary enuresis, pointing to a urinary concentrating defect. Renal ultrasound typically shows normal kidney size with increased echogenicity and corticomedullary cysts. Importantly, NPHP is associated with extra renal manifestations in 10-15% of patients. The most frequent extrarenal association is retinal degeneration, leading to blindness. Increasingly, molecular genetic testing is being utilised to diagnose NPHP and avoid the need for a renal biopsy. In this paper, we discuss the latest understanding in the molecular and cellular pathogenesis of NPHP. We suggest an appropriate clinical management plan and screening programme for individuals with NPHP and their families.
Collapse
Affiliation(s)
- Roslyn J Simms
- Institute of Human Genetics, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | | | | | | |
Collapse
|
98
|
Sweeney WE, Avner ED. Diagnosis and management of childhood polycystic kidney disease. Pediatr Nephrol 2011; 26:675-92. [PMID: 21046169 DOI: 10.1007/s00467-010-1656-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 08/17/2010] [Accepted: 08/27/2010] [Indexed: 01/31/2023]
Abstract
A number of syndromic disorders have renal cysts as a component of their phenotypes. These disorders can generally be distinguished from autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD) by imaging studies of their characteristic, predominantly non-renal associated abnormalities. Therefore, a major distinction in the differential diagnosis of enlarge echogenic kidneys is delineating ARPKD from ADPKD. ADPKD and ARPKD can be diagnosed by imaging the kidney with ultrasound, computed tomography, or magnetic resonance imaging (MRI), although ultrasound is still the method of choice for diagnosis in utero and in young children due to ease of use, cost, and safety. Differences in ultrasound characteristics, the presence or absence of associated extrarenal abnormalities, and the screening of the parents >40 years of age usually allow the clinician to make an accurate diagnosis. Early diagnosis of ADPKD and ARPKD affords the opportunity for maximal anticipatory care (i.e. blood pressure control) and in the not-too-distant future, the opportunity to benefit from new therapies currently being developed. If results are equivocal, genetic testing is available for both ARPKD and ADPKD. Specialized centers are now offering preimplantation genetic diagnosis and in vitro fertilization for parents who have previously had a child with ARPKD. For ADPKD patients, a number of therapeutic interventions are currently in clinical trial and may soon be available.
Collapse
Affiliation(s)
- William E Sweeney
- Department of Pediatrics, Children's Hospital Health System of Wisconsin, Milwaukee, WI, USA
| | | |
Collapse
|
99
|
Vincensini L, Blisnick T, Bastin P. [The importance of model organisms to study cilia and flagella biology]. Biol Aujourdhui 2011; 205:5-28. [PMID: 21501571 DOI: 10.1051/jbio/2011005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Indexed: 12/24/2022]
Abstract
Cilia and flagella are ubiquitous organelles that protrude from the surfaces of many cells, and whose architecture is highly conserved from protists to humans. These complex organelles, composed of over 500 proteins, can be either immotile or motile. They are involved in a myriad of biological processes, including sensing (non-motile cilia) and/or cell motility or movement of extracellular fluids (motile cilia). The ever-expanding list of human diseases linked to defective cilia illustrates the functional importance of cilia and flagella. These ciliopathies are characterised by an impressive diversity of symptoms and an often complex genetic etiology. A precise knowledge of cilia and flagella biology is thus critical to better understand these pathologies. However, multi-ciliated cells are terminally differentiated and difficult to manipulate, and a primary cilium is assembled only when the cell exits from the cell cycle. In this context the use of model organisms, that relies on the high degree of structural but also of molecular conservation of these organelles across evolution, is instrumental to decipher the many facets of cilia and flagella biology. In this review, we highlight the specific strengths of the main model organisms to investigate the molecular composition, mode of assembly, sensing and motility mechanisms and functions of cilia and flagella. Pioneering studies carried out in the green alga Chlamydomonas established the link between cilia and several genetic diseases. Moreover, multicellular organisms such as mouse, zebrafish, Xenopus, C. elegans or Drosophila, and protists like Paramecium, Tetrahymena and Trypanosoma or Leishmania each bring specific advantages to the study of cilium biology. For example, the function of genes involved in primary ciliary dyskinesia (due to defects in ciliary motility) can be efficiently assessed in trypanosomes.
Collapse
Affiliation(s)
- Laetitia Vincensini
- Unité de Biologie Cellulaire des Trypanosomes, Institut Pasteur et CNRS URA 2581, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
100
|
Liebau MC, Höpker K, Müller RU, Schmedding I, Zank S, Schairer B, Fabretti F, Höhne M, Bartram MP, Dafinger C, Hackl M, Burst V, Habbig S, Zentgraf H, Blaukat A, Walz G, Benzing T, Schermer B. Nephrocystin-4 regulates Pyk2-induced tyrosine phosphorylation of nephrocystin-1 to control targeting to monocilia. J Biol Chem 2011; 286:14237-45. [PMID: 21357692 PMCID: PMC3077625 DOI: 10.1074/jbc.m110.165464] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nephronophthisis is the most common genetic cause of end-stage renal failure during childhood and adolescence. Genetic studies have identified disease-causing mutations in at least 11 different genes (NPHP1–11), but the function of the corresponding nephrocystin proteins remains poorly understood. The two evolutionarily conserved proteins nephrocystin-1 (NPHP1) and nephrocystin-4 (NPHP4) interact and localize to cilia in kidney, retina, and brain characterizing nephronophthisis and associated pathologies as result of a ciliopathy. Here we show that NPHP4, but not truncating patient mutations, negatively regulates tyrosine phosphorylation of NPHP1. NPHP4 counteracts Pyk2-mediated phosphorylation of three defined tyrosine residues of NPHP1 thereby controlling binding of NPHP1 to the trans-Golgi sorting protein PACS-1. Knockdown of NPHP4 resulted in an accumulation of NPHP1 in trans-Golgi vesicles of ciliated retinal epithelial cells. These data strongly suggest that NPHP4 acts upstream of NPHP1 in a common pathway and support the concept of a role for nephrocystin proteins in intracellular vesicular transport.
Collapse
Affiliation(s)
- Max C Liebau
- Renal Division, Department of Medicine and Center for Molecular Medicine, University of Cologne, 50937 Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|