51
|
Horn A, Fox MD. Opportunities of connectomic neuromodulation. Neuroimage 2020; 221:117180. [PMID: 32702488 PMCID: PMC7847552 DOI: 10.1016/j.neuroimage.2020.117180] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/12/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
The process of altering neural activity - neuromodulation - has long been used to treat patients with brain disorders and answer scientific questions. Deep brain stimulation in particular has provided clinical benefit to over 150,000 patients. However, our understanding of how neuromodulation impacts the brain is evolving. Instead of focusing on the local impact at the stimulation site itself, we are considering the remote impact on brain regions connected to the stimulation site. Brain connectivity information derived from advanced magnetic resonance imaging data can be used to identify these connections and better understand clinical and behavioral effects of neuromodulation. In this article, we review studies combining neuromodulation and brain connectomics, highlighting opportunities where this approach may prove particularly valuable. We focus on deep brain stimulation, but show that the same principles can be applied to other forms of neuromodulation, such as transcranial magnetic stimulation and MRI-guided focused ultrasound. We outline future perspectives and provide testable hypotheses for future work.
Collapse
Affiliation(s)
- Andreas Horn
- Neurology Department, Movement Disorders and Neuromodulation Sectio Charité - University Medicine Berlin,, Charitéplatz 1, D-10117 Berlin, Germany.
| | - Michael D Fox
- Berenson-Allen Center for Non-invasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, United States; Martinos Center for Biomedical Imaging, Departments of Neurology and Radiology, Harvard Medical School and Massachusetts General Hospital, United States; Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Harvard Medical School and Brigham and Women's Hospital, United States.
| |
Collapse
|
52
|
García-Gomar MG, Concha L, Soto-Abraham J, Tournier JD, Aguado-Carrillo G, Velasco-Campos F. Long-Term Improvement of Parkinson Disease Motor Symptoms Derived From Lesions of Prelemniscal Fiber Tract Components. Oper Neurosurg (Hagerstown) 2020; 19:539-550. [PMID: 32629480 DOI: 10.1093/ons/opaa186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 04/15/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Prelemniscal radiations (Raprl) are composed of different fiber tracts, connecting the brain stem and cerebellum with basal ganglia and cerebral cortex. In Parkinson disease (PD), lesions in Raprl induce improvement of tremor, rigidity, and bradykinesia in some patients, while others show improvement of only 1 or 2 symptoms, suggesting different fiber tracts mediate different symptoms. OBJECTIVE To search for correlations between improvements of specific symptoms with surgical lesions of specific fiber tract components of Raprl in patients with PD. METHODS A total of 10 patients were treated with unilateral radiofrequency lesions directed to Raprl. The improvement for tremor, rigidity, bradykinesia, posture, and gait was evaluated at 24 to 33 mo after operation through the Unified Parkinson's Disease Rating Scale (UPDRS) score, and the precise location and extension of lesions through structural magnetic resonance imaging and probabilistic tractography at 6 to 8 mo postsurgery. Correlation between percentage of fiber tract involvement and percentage of UPDRS-III score improvement was evaluated through Spearman's correlation coefficient. RESULTS Group average improvement was 86% for tremor, 62% for rigidity, 56% for bradykinesia, and 45% for gait and posture. Improvement in global UPDRS score correlated with extent of lesions in fibers connecting with contralateral cerebellar cortex and improvement of posture and gait with fibers connecting with contralateral deep cerebellar nuclei. Lesion of fibers connecting the globus pallidum with pedunculopontine nucleus induced improvement of gait and posture over other symptoms. CONCLUSION Partial lesion of Raprl fibers resulted in symptom improvement at 2-yr follow-up. Lesions of selective fiber components may result in selective improvement of specific symptoms.
Collapse
Affiliation(s)
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus Juriquilla, Juriquilla, Mexico
| | - Julian Soto-Abraham
- Unit for Stereotactic and Functional Neurosurgery, General Hospital of Mexico, Ciudad de México, Mexico
| | - Jacques D Tournier
- Department of Biomedical Engineering, School of Bioengineering and Imaging Sciences, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom.,Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Gustavo Aguado-Carrillo
- Unit for Stereotactic and Functional Neurosurgery, General Hospital of Mexico, Ciudad de México, Mexico
| | - Francisco Velasco-Campos
- Unit for Stereotactic and Functional Neurosurgery, General Hospital of Mexico, Ciudad de México, Mexico
| |
Collapse
|
53
|
Kapadia AN, Elias GJB, Boutet A, Germann J, Pancholi A, Chu P, Zhong J, Fasano A, Munhoz R, Chow C, Kucharczyk W, Schwartz ML, Hodaie M, Lozano AM. Multimodal MRI for MRgFUS in essential tremor: post-treatment radiological markers of clinical outcome. J Neurol Neurosurg Psychiatry 2020; 91:921-927. [PMID: 32651242 DOI: 10.1136/jnnp-2020-322745] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/22/2020] [Accepted: 06/11/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND MRI-guided focused ultrasound (MRgFUS) thalamotomy is a promising non-invasive treatment option for medication-resistant essential tremor. However, it has been associated with variable efficacy and a relatively high incidence of adverse effects. OBJECTIVES To assess the evolution of radiological findings after MRgFUS thalamotomy and to evaluate their significance for clinical outcomes. METHODS Ninety-four patients who underwent MRgFUS between 2012 and 2017 were retrospectively evaluated. Lesion characteristics were assessed on routine MRI sequences, as well as with tractography. Relationships between imaging appearance, extent of white matter tract lesioning (59/94, on a 4-point scale) and clinical outcome were investigated. Recurrence was defined as >33% loss of tremor suppression at 3 months relative to day 7. RESULTS Acute lesions demonstrated blood products, surrounding oedema and peripheral diffusion restriction. The extent of dentatorubrothalamic tract (DRTT) lesioning was significantly associated with clinical improvement at 1 year (t=4.32, p=0.001). Lesion size decreased over time (180.8±91.5 mm3 at day 1 vs 19.5±19.3 mm3 at 1-year post-treatment). Higher post-treatment oedema (t=3.59, p<0.001) was associated with larger lesions at 3 months. Patients with larger lesions at day 1 demonstrated reduced rates of tremor recurrence (t=2.67, p=0.019); however, lesions over 170 mm3 trended towards greater incidence of adverse effects (sensitivity=0.60, specificity=0.63). Lesion encroachment on the medial lemniscus (Sn=1.00, Sp=0.32) and pyramidal tract (Sn=1.00, Sp=0.12) were also associated with increased adverse effects incidence. CONCLUSION Lesion size at day 1 predicts symptom recurrence, with fewer recurrences seen with larger lesions. Greater DRTT lesioning is associated with treatment efficacy. These findings may have implications for lesion targeting and extent. TRIAL REGISTRATION NUMBER NCT02252380.
Collapse
Affiliation(s)
- Anish N Kapadia
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Gavin J B Elias
- Division of Neurosurgery, University Health Network, Toronto, Ontario, Canada
| | - Alexandre Boutet
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery, University Health Network, Toronto, Ontario, Canada
| | - Jürgen Germann
- Division of Neurosurgery, University Health Network, Toronto, Ontario, Canada
| | - Aditiya Pancholi
- Division of Neurosurgery, University Health Network, Toronto, Ontario, Canada
| | - Powell Chu
- Division of Neurosurgery, University Health Network, Toronto, Ontario, Canada
| | - Jidan Zhong
- Division of Neurosurgery, University Health Network, Toronto, Ontario, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, University Health Network, Toronto, Ontario, Canada
| | - Renato Munhoz
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, University Health Network, Toronto, Ontario, Canada
| | - Clement Chow
- Division of Neurosurgery, University Health Network, Toronto, Ontario, Canada
| | - Walter Kucharczyk
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery, University Health Network, Toronto, Ontario, Canada
| | - Michael L Schwartz
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Mojgan Hodaie
- Division of Neurosurgery, University Health Network, Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
54
|
Coenen VA, Sajonz BE, Reisert M, Urbach H, Reinacher PC. There's more to the picture than meets the eye : Reply to: Letter to the editor of Acta Neurochirurgica: Blind men and the elephant-comment on "The dentato-rubro-thalamic tract as the potential common deep brain stimulation target for tremor of various origin: an observational case series". Acta Neurochir (Wien) 2020; 162:1869-1870. [PMID: 32337611 PMCID: PMC7360644 DOI: 10.1007/s00701-020-04348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Faculty of Freiburg University, Freiburg University Medical Center, Freiburg i.Br., Germany.
- Center for Deep Brain Stimulation, Freiburg University Medical Center, Freiburg i.Br., Germany.
| | - Bastian E Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Faculty of Freiburg University, Freiburg University Medical Center, Freiburg i.Br., Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Faculty of Freiburg University, Freiburg University Medical Center, Freiburg i.Br., Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Faculty of Freiburg University, Freiburg University Medical Center, Freiburg i.Br., Germany
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Faculty of Freiburg University, Freiburg University Medical Center, Freiburg i.Br., Germany
| |
Collapse
|
55
|
A unified connectomic target for deep brain stimulation in obsessive-compulsive disorder. Nat Commun 2020; 11:3364. [PMID: 32620886 PMCID: PMC7335093 DOI: 10.1038/s41467-020-16734-3] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple surgical targets for treating obsessive-compulsive disorder with deep brain stimulation (DBS) have been proposed. However, different targets may modulate the same neural network responsible for clinical improvement. We analyzed data from four cohorts of patients (N = 50) that underwent DBS to the anterior limb of the internal capsule (ALIC), the nucleus accumbens or the subthalamic nucleus (STN). The same fiber bundle was associated with optimal clinical response in cohorts targeting either structure. This bundle connected frontal regions to the STN. When informing the tract target based on the first cohort, clinical improvements in the second could be significantly predicted, and vice versa. To further confirm results, clinical improvements in eight patients from a third center and six patients from a fourth center were significantly predicted based on their stimulation overlap with this tract. Our results show that connectivity-derived models may inform clinical improvements across DBS targets, surgeons and centers. The identified tract target is openly available in atlas form. Li et al. analyzed structural connectivity of deep brain stimulation electrodes in 50 patients suffering from obsessive-compulsive disorder operated at four centers. Connectivity to a specific tract within the anterior limb of the internal capsule was associated with optimal treatment response across cohorts, surgeons and centers.
Collapse
|
56
|
Al-Fatly B, Ewert S, Kübler D, Kroneberg D, Horn A, Kühn AA. Connectivity profile of thalamic deep brain stimulation to effectively treat essential tremor. Brain 2020; 142:3086-3098. [PMID: 31377766 DOI: 10.1093/brain/awz236] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/06/2019] [Accepted: 06/09/2019] [Indexed: 01/19/2023] Open
Abstract
Essential tremor is the most prevalent movement disorder and is often refractory to medical treatment. Deep brain stimulation offers a therapeutic approach that can efficiently control tremor symptoms. Several deep brain stimulation targets (ventral intermediate nucleus, zona incerta, posterior subthalamic area) have been discussed for tremor treatment. Effective deep brain stimulation therapy for tremor critically involves optimal targeting to modulate the tremor network. This could potentially become more robust and precise by using state-of-the-art brain connectivity measurements. In the current study, we used two normative brain connectomes (structural and functional) to show the pattern of effective deep brain stimulation electrode connectivity in 36 patients with essential tremor. Our structural and functional connectivity models were significantly predictive of postoperative tremor improvement in out-of-sample data (P < 0.001 for both structural and functional leave-one-out cross-validation). Additionally, we segregated the somatotopic brain network based on head and hand tremor scores. These resulted in segregations that mapped onto the well-known somatotopic maps of both motor cortex and cerebellum. Crucially, this shows that slightly distinct networks need to be modulated to ameliorate head versus hand tremor and that those networks could be identified based on somatotopic zones in motor cortex and cerebellum. Finally, we propose a multi-modal connectomic deep brain stimulation sweet spot that may serve as a reference to enhance clinical care, in the future. This spot resided in the posterior subthalamic area, encroaching on the inferior borders of ventral intermediate nucleus and sensory thalamus. Our results underscore the importance of integrating brain connectivity in optimizing deep brain stimulation targeting for essential tremor.
Collapse
Affiliation(s)
- Bassam Al-Fatly
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Siobhan Ewert
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dorothee Kübler
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Daniel Kroneberg
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Horn
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Exzellenzcluster NeuroCure, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
57
|
Jang SH, Lee HD. Injury of the dentatorubrothalamic tract in patients with post-traumatic tremor following mild traumatic brain injury: a case-control study. Neural Regen Res 2020; 15:2063-2066. [PMID: 32394963 PMCID: PMC7716042 DOI: 10.4103/1673-5374.282259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-traumatic movement disorder is one of the sequelae of traumatic brain injury. The dentatorubrothalamic tract (DRTT) is reported to be involved in the control of movement. Therefore, injury of the DRTT can be accompanied by abnormal movements, including ataxia, tremor, or dystonia. We investigated DRTT injuries in 27 patients who showed post-traumatic tremor in at least one of four extremities following mild traumatic brain injury. We classified DRTT injuries based on diffusion tensor tractography parameters and configuration: type A: the DRTT showed narrowing, type B: the DRTT showed partial tearing, and type C: the DRTT showed discontinuation. Fractional anisotropy and fiber number of the DRTT were significantly decreased in patients compared with the healthy controls. Based on our DRTT injury classification, among the 54 hemispheres of the 27 patients, type A injury occurred in 22 hemispheres (40.7%) of 17 patients, type B injury was present in 15 hemispheres (27.7%) of 10 patients, and type C injury was observed in 8 hemispheres (14.8%) of 6 patients. Our results suggest that diffusion tensor tractography-based evaluation of the DRTT would be useful when determining cause of post-traumatic tremor in patients with mild traumatic brain injury. The study protocol was approved by the Institutional Review Board of Yeungnam University Hospital (YUMC-2018-09-007) on September 5, 2018.
Collapse
Affiliation(s)
- Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Han Do Lee
- Department of Physical Medicine and Rehabilitation, College of Natural Science, Ulsan College University, Ulsan, Republic of Korea
| |
Collapse
|
58
|
Coenen VA, Sajonz B, Prokop T, Reisert M, Piroth T, Urbach H, Jenkner C, Reinacher PC. The dentato-rubro-thalamic tract as the potential common deep brain stimulation target for tremor of various origin: an observational case series. Acta Neurochir (Wien) 2020; 162:1053-1066. [PMID: 31997069 PMCID: PMC7156360 DOI: 10.1007/s00701-020-04248-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/23/2020] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Deep brain stimulation alleviates tremor of various origins. The dentato-rubro-thalamic tract (DRT) has been suspected as a common tremor-reducing structure. Statistical evidence has not been obtained. We here report the results of an uncontrolled case series of patients with refractory tremor who underwent deep brain stimulation under tractographic assistance. METHODS A total of 36 patients were enrolled (essential tremor (17), Parkinson's tremor (8), multiple sclerosis (7), dystonic head tremor (3), tardive dystonia (1)) and received 62 DBS electrodes (26 bilateral; 10 unilateral). Preoperatively, diffusion tensor magnetic resonance imaging sequences were acquired together with high-resolution anatomical T1W and T2W sequences. The DRT was individually tracked and used as a direct thalamic or subthalamic target. Intraoperative tremor reduction was graded on a 4-point scale (0 = no tremor reduction to 3 = full tremor control) and recorded together with the current amplitude, respectively. Stimulation point coordinates were recorded and compared to DRT. The relation of the current amplitude needed to reduce tremor was expressed as TiCR (tremor improvement per current ratio). RESULTS Stimulation points of 241 were available for analysis. A total of 68 trajectories were tested (62 dB leads, 1.1 trajectories tested per implanted lead). Tremor improvement was significantly decreasing (p < 0.01) if the distance to both the border and the center of the DRT was increasing. On the initial trajectory, 56 leads (90.3%) were finally placed. Long-term outcomes were not part of this analysis. DISCUSSION Tremor of various origins was acutely alleviated at different points along the DRT fiber tract (above and below the MCP plane) despite different tremor diseases. DRT is potentially a common tremor-reducing structure. Individual targeting helps to reduce brain penetrating tracts. TiCR characterizes stimulation efficacy and might help to identify an optimal stimulation point.
Collapse
Affiliation(s)
- Volker Arnd Coenen
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg (i.Br.), Germany.
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany.
- Brain Links/Brain Tools Cluster of Excellence, Freiburg University, Freiburg (i.Br.), Germany.
- NeuroModul Basics (Center for Basics in NeuroModulation), Freiburg University, Freiburg (i.Br.), Germany.
| | - Bastian Sajonz
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg (i.Br.), Germany
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
| | - Thomas Prokop
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg (i.Br.), Germany
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg (i.Br.), Germany
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
| | - Tobias Piroth
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
- Brain Links/Brain Tools Cluster of Excellence, Freiburg University, Freiburg (i.Br.), Germany
- Department of Neurology and Neurophysiology, Freiburg University Medical Center, Freiburg (i.Br.), Germany
| | - Horst Urbach
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
- Department of Neuroradiology, Freiburg University Medical Center, Freiburg (i.Br.), Germany
| | - Carolin Jenkner
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
- Clinical Trials Unit, Freiburg University Medical Center, Freiburg, Germany
| | - Peter Christoph Reinacher
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg (i.Br.), Germany
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
| |
Collapse
|
59
|
Navarro-Olvera JL, Diaz-Martinez JA, Covaleda-Rodriguez JC, Carrillo-Ruiz JD, Soto-Abraham JE, Aguado-Carrillo G, Velasco-Campos F. Radiofrequency Ablation of Prelemniscal Radiations for the Treatment of Non-Parkinsonian Tremor. Stereotact Funct Neurosurg 2020; 98:160-166. [PMID: 32340019 DOI: 10.1159/000505699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/31/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Previous reports proposed prelemniscal radiations (Raprl) as a target to treat motor symptoms of Parkinson's disease, and this was found particularly effective to control rest and postural tremor. However, tremor of other etiologies has been seldom treated with deep brain stimulation or ablation in this target. We present a series of such cases successfully treated by Raprl radiofrequency (RF) lesions. MATERIAL AND METHODS Six patients with predominant unilateral tremor on the right arm: 4 intention, 1 cerebellar and 1 rubral tremor, incapacitating in spite of at least 2 regimes of medical treatment at maximal tolerated doses, were operated under local anesthesia. RF lesions were performed in Raprl contralateral to most prominent symptoms. Patients had monthly evaluation of tremor severity through the Fahn-Tolosa-Marin Tremor Rating Scale and disability through the Tremor Disability Scale along a 1-year follow-up. RESULTS In 4/6 patients tremor was stopped by the simple insertion of an RF electrode in Raprl; in the other 2 cases, stimulation through the RF electrode at 100 Hz, with 100 µs and 1.0-1.5 V, stopped the tremor without side effects. Tremor disappeared in all cases immediately after surgery and partially reappeared in 2 cases with an amplitude about 20% of the preoperative condition. RF lesions in postoperative MRI ranked from 1.8 to 2.6 mm in diameter. CONCLUSIONS RF lesioning in Raprl is a simple, highly effective, inexpensive way to treat tremor of different etiologies.
Collapse
Affiliation(s)
- Jose Luis Navarro-Olvera
- Unit of Stereotactic and Functional Neurosurgery, General Hospital of Mexico, Mexico City, Mexico,
| | | | | | | | | | - Gustavo Aguado-Carrillo
- Unit of Stereotactic and Functional Neurosurgery, General Hospital of Mexico, Mexico City, Mexico
| | - Francisco Velasco-Campos
- Unit of Stereotactic and Functional Neurosurgery, General Hospital of Mexico, Mexico City, Mexico
| |
Collapse
|
60
|
Abstract
PURPOSE OF REVIEW Deep brain stimulation (DBS) is an established but growing treatment option for multiple brain disorders. Over the last decade, electrode placement and their effects were increasingly analyzed with modern-day neuroimaging methods like spatial normalization, fibertracking, or resting-state functional MRI. Similarly, specialized basal ganglia MRI sequences were introduced and imaging at high field strengths has become increasingly popular. RECENT FINDINGS To facilitate the process of precise electrode localizations, specialized software pipelines were introduced. By those means, DBS targets could recently be refined and significant relationships between electrode placement and clinical improvement could be shown. Furthermore, by combining electrode reconstructions with network imaging methods, relationships between electrode connectivity and clinical improvement were investigated. This led to a broad series of imaging-based insights about DBS that are reviewed in the present work. SUMMARY The reviewed literature makes a strong case that brain imaging plays an increasingly important role in DBS targeting and programming. Furthermore, brain imaging will likely help to better understand the mechanism of action of DBS.
Collapse
|
61
|
Ex vivo diffusion-weighted MRI tractography of the Göttingen minipig limbic system. Brain Struct Funct 2020; 225:1055-1071. [DOI: 10.1007/s00429-020-02058-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
|
62
|
Tohyama S, Walker MR, Sammartino F, Krishna V, Hodaie M. The Utility of Diffusion Tensor Imaging in Neuromodulation: Moving Beyond Conventional Magnetic Resonance Imaging. Neuromodulation 2020; 23:427-435. [DOI: 10.1111/ner.13107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/08/2019] [Accepted: 01/02/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Sarasa Tohyama
- Division of Brain, Imaging, and Behaviour–Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital University Health Network Toronto ON Canada
- Institute of Medical Science, Faculty of Medicine University of Toronto Toronto ON Canada
| | - Matthew R. Walker
- Division of Brain, Imaging, and Behaviour–Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital University Health Network Toronto ON Canada
| | - Francesco Sammartino
- Center for Neuromodulation, Department of Neurosurgery The Ohio State University Columbus OH USA
| | - Vibhor Krishna
- Center for Neuromodulation, Department of Neurosurgery The Ohio State University Columbus OH USA
| | - Mojgan Hodaie
- Division of Brain, Imaging, and Behaviour–Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital University Health Network Toronto ON Canada
- Institute of Medical Science, Faculty of Medicine University of Toronto Toronto ON Canada
- Department of Surgery, Faculty of Medicine University of Toronto Toronto ON Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital University Health Network Toronto ON Canada
| |
Collapse
|
63
|
Hori H, Yamaguchi T, Konishi Y, Taira T, Muragaki Y. Correlation between fractional anisotropy changes in the targeted ventral intermediate nucleus and clinical outcome after transcranial MR-guided focused ultrasound thalamotomy for essential tremor: results of a pilot study. J Neurosurg 2020; 132:568-573. [PMID: 30771772 DOI: 10.3171/2018.10.jns18993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/26/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE This study evaluated changes of fractional anisotropy (FA) in the ventral intermediate nucleus (VIM) of the thalamus after transcranial MR-guided focused ultrasound (TcMRgFUS) thalamotomy and their associations with clinical outcome. METHODS Clinical and radiological data of 12 patients with medically refractory essential tremor (mean age 76.5 years) who underwent TcMRgFUS thalamotomy with VIM targeting were analyzed retrospectively. The Clinical Rating Scale for Tremor (CRST) score was calculated before and at 1 year after treatment. Measurements of the relative FA (rFA) values, defined as ratio of the FA value in the targeted VIM to the FA value in the contralateral VIM, were performed before thalamotomy, and 1 day and 1 year thereafter. RESULTS TcMRgFUS thalamotomy was well tolerated and no long-term complications were noted. At 1-year follow-up, 8 patients demonstrated relief of tremor (improvement group), whereas in 4 others persistent tremor was noted (recurrence group). In the entire cohort, mean rFA values in the targeted VIM before treatment, and at 1 day and 1 year after treatment, were 1.12 ± 0.15, 0.44 ± 0.13, and 0.82 ± 0.22, respectively (p < 0.001). rFA values were consistently higher in the recurrence group compared with the improvement group, and the difference reached statistical significance at 1 day (p < 0.05) and 1 year (p < 0.01) after treatment. There was a statistically significant (p < 0.01) positive correlation between rFA values in the targeted VIM at 1 day after thalamotomy and CRST score at 1 year after treatment. Receiver operating characteristic curve analysis revealed that the optimal cutoff value of rFA at 1 day after thalamotomy for prediction of symptomatic improvement at 1-year follow-up is 0.54. CONCLUSIONS TcMRgFUS thalamotomy results in significant decrease of rFA in the targeted VIM, at both 1 day and 1 year after treatment. Relative FA values at 1 day after treatment showed significant correlation with CRST score at 1-year follow-up. Therefore, FA may be considered a possible imaging biomarker for early prediction of clinical outcome after TcMRgFUS thalamotomy for essential tremor.
Collapse
Affiliation(s)
- Hiroki Hori
- 1Faculty of Advanced Techno-Surgery and
- 3Department of Radiology and
| | - Toshio Yamaguchi
- 4Research Institute for Diagnostic Radiology, Shin-Yurigaoka General Hospital, Kawasaki, Kanagawa, Japan
| | | | - Takaomi Taira
- 2Department of Neurosurgery, Tokyo Women's Medical University, Tokyo; and
| | - Yoshihiro Muragaki
- 1Faculty of Advanced Techno-Surgery and
- 2Department of Neurosurgery, Tokyo Women's Medical University, Tokyo; and
| |
Collapse
|
64
|
Thiele S, Sörensen A, Weis J, Braun F, Meyer PT, Coenen VA, Döbrössy MD. Deep Brain Stimulation of the Medial Forebrain Bundle in a Rodent Model of Depression: Exploring Dopaminergic Mechanisms with Raclopride and Micro-PET. Stereotact Funct Neurosurg 2020; 98:8-20. [PMID: 31982883 DOI: 10.1159/000504860] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/18/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the medial forebrain bundle (MFB) can reverse depressive-like symptoms clinically and in experimental models of depression, but the mechanisms of action are unknown. OBJECTIVES This study investigated the role of dopaminergic mechanisms in MFB stimulation-mediated behavior changes, in conjunction with raclopride administration and micropositron emission tomography (micro-PET). METHODS Flinders Sensitive Line (FSL) rats were allocated into 4 groups: FSL (no treatment), FSL+ (DBS), FSL.R (FSL with raclopride), and FSL.R+ (FSL with raclopride and DBS). Animals were implanted with bilateral electrodes targeting the MFB and given 11 days access to raclopride in the drinking water with or without concurrent continuous bilateral DBS over the last 10 days. Behavioral testing was conducted after stimulation. A PET scan using [18F]desmethoxyfallypride was performed to determine D2 receptor availability before and after raclopride treatment. Changes in gene expression in the nucleus accumbens and the hippocampus were assessed using quantitative polymerase chain reaction. RESULTS Micro-PET imaging showed that raclopride administration blocked 36% of the D2 receptor in the striatum, but the relative level of blockade was reduced/modulated by stimulation. Raclopride treatment enhanced depressive-like symptoms in several tasks, and the MFB DBS partially reversed the depressive-like phenotype. The raclopride-treated MFB DBS animals had increased levels of mRNA coding for dopamine receptor D1 and D2 suggestive of a stimulation-mediated increase in dopamine receptors. CONCLUSION Data suggest that chronic and continuous MFB DBS could act via the modulation of the midbrain dopaminergic transmission, including impacting on the postsynaptic dopamine receptor profile.
Collapse
Affiliation(s)
- Stephanie Thiele
- Department of Stereotactic and Functional Neurosurgery, University of Freiburg Medical Center, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Arnd Sörensen
- Department of Nuclear Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Jasmin Weis
- Department of Stereotactic and Functional Neurosurgery, University of Freiburg Medical Center, Freiburg, Germany
| | - Friederike Braun
- Department of Nuclear Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, University of Freiburg Medical Center, Freiburg, Germany
| | - Máté D Döbrössy
- Department of Stereotactic and Functional Neurosurgery, University of Freiburg Medical Center, Freiburg, Germany,
| |
Collapse
|
65
|
Krishna V, Sammartino F, Agrawal P, Changizi BK, Bourekas E, Knopp MV, Rezai A. Prospective Tractography-Based Targeting for Improved Safety of Focused Ultrasound Thalamotomy. Neurosurgery 2020; 84:160-168. [PMID: 29579287 DOI: 10.1093/neuros/nyy020] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/19/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Focused ultrasound thalamotomy (FUS-T) was recently approved for the treatment of refractory essential tremor (ET). Despite its noninvasive approach, FUS-T reinitiated concerns about the adverse effects and long-term efficacy after lesioning. OBJECTIVE To prospectively assess the outcomes of FUS-T in 10 ET patients using tractography-based targeting of the ventral intermediate nucleus (VIM). METHODS VIM was identified at the intercommissural plane based on its neighboring tracts: the pyramidal tract and medial lemniscus. FUS-T was performed at the center of tractography-defined VIM. Tremor outcomes, at baseline and 3 mo, were assessed independently by the Tremor Research Group. We analyzed targeting coordinates, clinical outcomes, and adverse events. The FUS-T lesion location was analyzed in relation to unbiased thalamic parcellation using probabilisitic tractography. Quantitative diffusion-weighted imaging changes were also studied in fiber tracts of interest. RESULTS The tractography coordinates were more anterior than the standard. Intraoperatively, therapeutic sonications at the tractography target improved tremor (>50% improvement) without motor or sensory side effects. Sustained improvement in tremor was observed at 3 mo (tremor score: 18.3 ± 6.9 vs 8.1 ± 4.4, P = .001). No motor weakness and sensory deficits after FUS-T were observed during 6-mo follow-up. Ataxia was observed in 3 patients. FUS-T lesions overlapped with the VIM parcellated with probablisitic tractography. Significant microstructural changes were observed in the white matter connecting VIM with cerebellum and motor cortex. CONCLUSION This is the first report of prospective VIM targeting with tractography for FUS-T. These results suggest that tractography-guided targeting is safe and has satisfactory short-term clinical outcomes.
Collapse
Affiliation(s)
- Vibhor Krishna
- Center for Neuromodulation, The Ohio State University, Columbus, Ohio
| | | | - Punit Agrawal
- Center for Neuromodulation, The Ohio State University, Columbus, Ohio
| | | | - Eric Bourekas
- De-partment of Radiology, The Ohio State University, Columbus, Ohio
| | - Michael V Knopp
- De-partment of Radiology, The Ohio State University, Columbus, Ohio
| | - Ali Rezai
- Center for Neuromodulation, The Ohio State University, Columbus, Ohio
| |
Collapse
|
66
|
Dimov A, Patel W, Yao Y, Wang Y, O'Halloran R, Kopell BH. Iron concentration linked to structural connectivity in the subthalamic nucleus: implications for deep brain stimulation. J Neurosurg 2020; 132:197-204. [PMID: 30660115 DOI: 10.3171/2018.8.jns18531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/31/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The objective of this study was to investigate the relationship between iron and white matter connectivity in the subthalamic nucleus (STN) in patients undergoing deep brain stimulation (DBS) of the STN for treatment of Parkinson's disease. METHODS Nine Parkinson's disease patients underwent preoperative 3T MRI imaging which included acquisition of T1-weighted anatomical images along with diffusion tensor imaging (DTI) and quantitative susceptibility mapping (QSM). MR tractography was performed for the seed voxels located within the STN, and the correlations between normalized QSM values and the STN's connectivity to a set of a priori chosen regions of interest were assessed. RESULTS A strong negative correlation was found between STN connectivity and QSM intensity for the thalamus, premotor, motor, and sensory regions, while a strong positive correlation was found for frontal, putamen, and brain stem areas. CONCLUSIONS Quantitative susceptibility mapping not only accurately delineates the STN borders but is also able to provide functional information about the STN functional subdivisions. The observed iron-to-connectivity correlation patterns may aid in planning DBS surgery to avoid unwanted side effects associated with DBS.
Collapse
Affiliation(s)
- Alexey Dimov
- 1Weill Medical College of Cornell University, New York
- 2Meinig School of Biomedical Engineering, Cornell University, Ithaca
| | - Wahaj Patel
- 3Department of Radiology, Icahn School of Medicine at Mount Sinai, New York
- 4The City College of the City University of New York, New York
| | - Yihao Yao
- 5Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- 1Weill Medical College of Cornell University, New York
- 2Meinig School of Biomedical Engineering, Cornell University, Ithaca
| | - Rafael O'Halloran
- 3Department of Radiology, Icahn School of Medicine at Mount Sinai, New York
- 6Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York; and
| | - Brian H Kopell
- 7Departments of Neurosurgery, Neurology, Psychiatry, and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
67
|
Weidman EK, Kaplitt MG, Strybing K, Chazen JL. Repeat magnetic resonance imaging-guided focused ultrasound thalamotomy for recurrent essential tremor: case report and review of MRI findings. J Neurosurg 2020; 132:211-216. [PMID: 30684946 DOI: 10.3171/2018.10.jns181721] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/26/2018] [Indexed: 11/06/2022]
Abstract
An 86-year-old right-handed man with medically refractory essential tremor was treated using left-sided MRI-guided focused ultrasound (MRgFUS) thalamotomy targeting the dentatorubrothalamic tract (DRTT) at its intersection with the ventral intermediate nucleus of the thalamus, with immediate symptomatic improvement and immediate postprocedure imaging demonstrating disruption of the DRTT. The patient experienced a partial return of symptoms 9 weeks following the procedure, and MRI demonstrated retraction of the left thalamic ablation site. The patient underwent repeat left-sided MRgFUS thalamotomy 4 months after initial treatment, resulting in reduced tremor. MR thermometry temperature measurements during the second MRgFUS procedure were unreliable with large fluctuations and false readings, likely due to susceptibility effects from the initial MRgFUS procedure. Final sonications were therefore monitored using the amount of energy delivered. The patient fared well after the second procedure and had sustained improvement in tremor control at the 12-month follow-up. This is the first report to describe the technical challenges of repeat MRgFUS with serial imaging.
Collapse
Affiliation(s)
| | - Michael G Kaplitt
- 2Neurological Surgery, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York
| | - Kristin Strybing
- 2Neurological Surgery, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York
| | | |
Collapse
|
68
|
Muller J, Alizadeh M, Li L, Thalheimer S, Matias C, Tantawi M, Miao J, Silverman M, Zhang V, Yun G, Romo V, Mohamed FB, Wu C. Feasibility of diffusion and probabilistic white matter analysis in patients implanted with a deep brain stimulator. Neuroimage Clin 2019; 25:102135. [PMID: 31901789 PMCID: PMC6948366 DOI: 10.1016/j.nicl.2019.102135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/27/2019] [Accepted: 12/13/2019] [Indexed: 01/03/2023]
Abstract
Deep brain stimulation (DBS) for Parkinson's disease (PD) is an established advanced therapy that produces therapeutic effects through high frequency stimulation. Although this therapeutic option leads to improved clinical outcomes, the mechanisms of the underlying efficacy of this treatment are not well understood. Therefore, investigation of DBS and its postoperative effects on brain architecture is of great interest. Diffusion weighted imaging (DWI) is an advanced imaging technique, which has the ability to estimate the structure of white matter fibers; however, clinical application of DWI after DBS implantation is challenging due to the strong susceptibility artifacts caused by implanted devices. This study aims to evaluate the feasibility of generating meaningful white matter reconstructions after DBS implantation; and to subsequently quantify the degree to which these tracts are affected by post-operative device-related artifacts. DWI was safely performed before and after implanting electrodes for DBS in 9 PD patients. Differences within each subject between pre- and post-implantation FA, MD, and RD values for 123 regions of interest (ROIs) were calculated. While differences were noted globally, they were larger in regions directly affected by the artifact. White matter tracts were generated from each ROI with probabilistic tractography, revealing significant differences in the reconstruction of several white matter structures after DBS. Tracts pertinent to PD, such as regions of the substantia nigra and nigrostriatal tracts, were largely unaffected. The aim of this study was to demonstrate the feasibility and clinical applicability of acquiring and processing DWI post-operatively in PD patients after DBS implantation. The presence of global differences provides an impetus for acquiring DWI shortly after implantation to establish a new baseline against which longitudinal changes in brain connectivity in DBS patients can be compared. Understanding that post-operative fiber tracking in patients is feasible on a clinically-relevant scale has significant implications for increasing our current understanding of the pathophysiology of movement disorders, and may provide insights into better defining the pathophysiology and therapeutic effects of DBS.
Collapse
Affiliation(s)
- J Muller
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States; Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States.
| | - M Alizadeh
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States; Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - L Li
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States; Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - S Thalheimer
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States; Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - C Matias
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - M Tantawi
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - J Miao
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - M Silverman
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - V Zhang
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - G Yun
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - V Romo
- Department of Anesthesiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - F B Mohamed
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - C Wu
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States; Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
69
|
Abstract
Deep brain stimulation is the most advanced and effective neuromodulation therapy for Parkinson disease, essential tremor, and generalized dystonia. This article discusses how imaging improves surgical techniques and outcomes and widens possibilities in translational neuroscience in Parkinson disease, essential tremor, generalized dystonia, and epilepsy. In movement disorders diffusion tensor imaging allows anatomic segment of cortical areas and different functional subregions within deep-seated targets to understand the side effects of stimulation and gain more data to describe the therapeutic mechanism of action. The introduction of visualization of white matter tracks increases the safety of neurosurgical techniques in functional neurosurgery and neuro-oncology.
Collapse
Affiliation(s)
- Lorand Eross
- Department of Functional Neurosurgery, Center of Neuromodulation, National Institute of Clinical Neurosciences, Amerikai út 57, Budapest 1145, Hungary.
| | - Jonathan Riley
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University Buffalo Medical, 955 Main Street, Buffalo, NY 14203, USA
| | - Elad I Levy
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University Buffalo, 955 Main Street, Buffalo, NY 14203, USA
| | - Kunal Vakharia
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University Buffalo, 955 Main Street, Buffalo, NY 14203, USA
| |
Collapse
|
70
|
Reinacher PC, Várkuti B, Krüger MT, Piroth T, Egger K, Roelz R, Coenen VA. Automatic Segmentation of the Subthalamic Nucleus: A Viable Option to Support Planning and Visualization of Patient-Specific Targeting in Deep Brain Stimulation. Oper Neurosurg (Hagerstown) 2019; 17:497-502. [PMID: 30860266 DOI: 10.1093/ons/opz015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 01/31/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Automatic segmentation is gaining relevancy in image-based targeting of neural structures. OBJECTIVE To evaluate its feasibility, we retrospectively analyzed the concordance of magnetic resonance imaging (MRI)-based automatic segmentation of the subthalamic nucleus (STN) and intraoperative microelectrode recordings (MERs). METHODS Electrodes (n = 60) for deep brain stimulation were implanted in the STN of patients (n = 30; median age 57 yr) with Parkinson disease (n = 29) or rapid-onset dystonia parkinsonism (n = 1). Elements (Brainlab, Munich, Germany) were used to segment the STN, using 2 volumetric T1 (±contrast) and volumetric T2 images as input. The stereotactic computed tomography was coregistered with the imaging, and the original stereotactic coordinates were imported. MERs (0.5-1 mm steps) along the anterior, central, and lateral trajectories were used to determine differences between the image-segmented STN boundary and MER-based STN entry and exit. RESULTS Of 175 trajectories, 105 penetrated or touched (≤0.7 mm) the STN. The overall median deviation between the segmented STN boundary and electrophysiological recordings was 1.1 mm for MER-based STN entry and 2.0 mm for STN exit. Regarding the entry point of the STN, there was no statistically significant difference between MRI-based automatic segmentation and the electrophysiological trajectories analyzed with intraoperative MER. The exit point was significantly different between both methods in the central and lateral trajectories. CONCLUSION MRI-based automatic segmentation of the STN is a viable, patient-specific targeting approach that can be used alongside traditional targeting methods in deep brain stimulation to support preoperative planning and visualization of target structures and aid postoperative optimization of programming.
Collapse
Affiliation(s)
- Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bálint Várkuti
- Department of Functional and Stereotactic Neurosurgery, Brainlab AG, Olof Palme Straße 9, Munich, Germany
| | - Marie T Krüger
- Department of Neurosurgery, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Piroth
- Department of Neurology, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karl Egger
- Department of Neuroradiology, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roland Roelz
- Department of Neurosurgery, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
71
|
Nordin T, Zsigmond P, Pujol S, Westin CF, Wårdell K. White matter tracing combined with electric field simulation - A patient-specific approach for deep brain stimulation. Neuroimage Clin 2019; 24:102026. [PMID: 31795055 PMCID: PMC6880013 DOI: 10.1016/j.nicl.2019.102026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/04/2019] [Accepted: 10/02/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) in zona incerta (Zi) is used for symptom alleviation in essential tremor (ET). Zi is positioned along the dentato-rubro-thalamic tract (DRT). Electric field simulations with the finite element method (FEM) can be used for estimation of a volume where the stimulation affects the tissue by applying a fixed isolevel (VDBS). This work aims to develop a workflow for combined patient-specific electric field simulation and white matter tracing of the DRT, and to investigate the influence on the VDBS from different brain tissue models, lead design and stimulation modes. The novelty of this work lies in the combination of all these components. METHOD Patients with ET were implanted in Zi (lead 3389, n = 3, voltage mode; directional lead 6172, n = 1, current mode). Probabilistic reconstruction from diffusion MRI (dMRI) of the DRT (n = 8) was computed with FSL Toolbox. Brain tissue models were created for each patient (two homogenous, one heterogenous isotropic, one heterogenous anisotropic) and the respective VDBS (n = 48) calculated from the Comsol Multiphysics FEM simulations. The DRT and VDBS were visualized with 3DSlicer and superimposed on the preoperative T2 MRI, and the common volumes calculated. Dice Coefficient (DC) and level of anisotropy were used to evaluate and compare the brain models. RESULT Combined patient-specific tractography and electric field simulation was designed and evaluated, and all patients showed benefit from DBS. All VDBS overlapped the reconstructed DRT. Current stimulation showed prominent difference between the tissue models, where the homogenous grey matter deviated most (67 < DC < 69). Result from heterogenous isotropic and anisotropic models were similar (DC > 0.95), however the anisotropic model consistently generated larger volumes related to a greater extension of the electric field along the DBS lead. Independent of tissue model, the steering effect of the directional lead was evident and consistent. CONCLUSION A workflow for patient-specific electric field simulations in combination with reconstruction of DRT was successfully implemented. Accurate tissue classification is essential for electric field simulations, especially when using the current control stimulation. With an accurate targeting and tractography reconstruction, directional leads have the potential to tailor the electric field into the desired region.
Collapse
Affiliation(s)
- Teresa Nordin
- Department of Biomedical Engineering, Linköping University, Sweden.
| | - Peter Zsigmond
- Department of Neurosurgery and Clinical and Experimental Medicine, Linköping University, Sweden
| | - Sonia Pujol
- Laboratory of Mathematics in Imaging, Brigham and Women's Hospital, Harvard Medical School, USA; Surgical Planning Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, USA
| | - Carl-Fredrik Westin
- Laboratory of Mathematics in Imaging, Brigham and Women's Hospital, Harvard Medical School, USA
| | - Karin Wårdell
- Department of Biomedical Engineering, Linköping University, Sweden
| |
Collapse
|
72
|
Fernandez-Garcia C, Alonso-Frech F, Monje MHG, Matias-Guiu J. Role of deep brain stimulation therapy in the magnetic resonance-guided high-frequency focused ultrasound era: current situation and future prospects. Expert Rev Neurother 2019; 20:7-21. [PMID: 31623494 DOI: 10.1080/14737175.2020.1677465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Deep brain stimulation (DBS) is a well-established treatment of movement disorders; but recently there has been an increasing trend toward the ablative procedure magnetic resonance-guided focused ultrasound (MRgFU). DBS is an efficient neuromodulatory technique but associated with surgical complications. MRIgFUS is an incision-free method that allows thermal lesioning, with fewer surgical complications but irreversible effects.Areas covered: We look at current and prospective aspects of both techniques. In DBS, appropriate patient selection, improvement in surgical expertise, target accuracy (preoperative and intraoperative imaging), neurophysiological recordings, and novel segmented leads need to be considered. However, increased number of older patients with higher comorbidities and risk of DBS complications (mainly intracranial hemorrhage, but also infections, hardware complications) make them not eligible for surgery. With MRgFUS, hemorrhage risks are virtually nonexistent, infection or hardware malfunction are eliminated, while irreversible side effects can appear.Expert commentary: Comparison of the efficacy and risks associated with these techniques, in combination with a growing aged population in developed countries with higher comorbidities and a preference for less invasive treatments, necessitates a review of the indications for movement disorders and the most appropriate treatment modalities.
Collapse
Affiliation(s)
- C Fernandez-Garcia
- Department of Neurosurgery, Hospital Clínico San Carlos, San Carlos Research Health Institute (IdISSC), Madrid, Spain.,Medicine Department, Universidad Complutense, Madrid, Spain
| | - F Alonso-Frech
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Research Health Institute (IdISSC), Universidad Complutense, Madrid, Spain.,HM CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Móstoles, Madrid, Spain
| | - M H G Monje
- HM CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Móstoles, Madrid, Spain
| | - J Matias-Guiu
- Medicine Department, Universidad Complutense, Madrid, Spain.,Department of Neurology, Hospital Clínico San Carlos, San Carlos Research Health Institute (IdISSC), Universidad Complutense, Madrid, Spain
| |
Collapse
|
73
|
Bermudez Noguera C, Bao S, Petersen KJ, Lopez AM, Reid J, Plassard AJ, Zald DH, Claassen DO, Dawant BM, Landman BA. Using deep learning for a diffusion-based segmentation of the dentate nucleus and its benefits over atlas-based methods. J Med Imaging (Bellingham) 2019; 6:044007. [PMID: 31824980 PMCID: PMC6895566 DOI: 10.1117/1.jmi.6.4.044007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/18/2019] [Indexed: 01/17/2023] Open
Abstract
The dentate nucleus (DN) is a gray matter structure deep in the cerebellum involved in motor coordination, sensory input integration, executive planning, language, and visuospatial function. The DN is an emerging biomarker of disease, informing studies that advance pathophysiologic understanding of neurodegenerative and related disorders. The main challenge in defining the DN radiologically is that, like many deep gray matter structures, it has poor contrast in T1-weighted magnetic resonance (MR) images and therefore requires specialized MR acquisitions for visualization. Manual tracing of the DN across multiple acquisitions is resource-intensive and does not scale well to large datasets. We describe a technique that automatically segments the DN using deep learning (DL) on common imaging sequences, such as T1-weighted, T2-weighted, and diffusion MR imaging. We trained a DL algorithm that can automatically delineate the DN and provide an estimate of its volume. The automatic segmentation achieved higher agreement to the manual labels compared to template registration, which is the current common practice in DN segmentation or multiatlas segmentation of manual labels. Across all sequences, the FA maps achieved the highest mean Dice similarity coefficient (DSC) of 0.83 compared to T1 imaging ( DSC = 0.76 ), T2 imaging ( DSC = 0.79 ), or a multisequence approach ( DSC = 0.80 ). A single atlas registration approach using the spatially unbiased atlas template of the cerebellum and brainstem template achieved a DSC of 0.23, and multi-atlas segmentation achieved a DSC of 0.33. Overall, we propose a method of delineating the DN on clinical imaging that can reproduce manual labels with higher accuracy than current atlas-based tools.
Collapse
Affiliation(s)
- Camilo Bermudez Noguera
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Shunxing Bao
- Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, United States
| | - Kalen J. Petersen
- Vanderbilt University, Department of Neurology, Nashville, Tennessee, United States
| | - Alexander M. Lopez
- Vanderbilt University, Department of Neurology, Nashville, Tennessee, United States
| | - Jacqueline Reid
- Vanderbilt University, Department of Neurology, Nashville, Tennessee, United States
| | - Andrew J. Plassard
- Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, United States
| | - David H. Zald
- Vanderbilt University, Department of Psychology and Psychiatry, Nashville, Tennessee, United States
| | - Daniel O. Claassen
- Vanderbilt University, Department of Neurology, Nashville, Tennessee, United States
| | - Benoit M. Dawant
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
- Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, United States
| | - Bennett A. Landman
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
- Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, United States
- Vanderbilt University, Department of Psychology and Psychiatry, Nashville, Tennessee, United States
| |
Collapse
|
74
|
Ramirez-Zamora A, Giordano J, Boyden ES, Gradinaru V, Gunduz A, Starr PA, Sheth SA, McIntyre CC, Fox MD, Vitek J, Vedam-Mai V, Akbar U, Almeida L, Bronte-Stewart HM, Mayberg HS, Pouratian N, Gittis AH, Singer AC, Creed MC, Lazaro-Munoz G, Richardson M, Rossi MA, Cendejas-Zaragoza L, D'Haese PF, Chiong W, Gilron R, Chizeck H, Ko A, Baker KB, Wagenaar J, Harel N, Deeb W, Foote KD, Okun MS. Proceedings of the Sixth Deep Brain Stimulation Think Tank Modulation of Brain Networks and Application of Advanced Neuroimaging, Neurophysiology, and Optogenetics. Front Neurosci 2019; 13:936. [PMID: 31572109 PMCID: PMC6751331 DOI: 10.3389/fnins.2019.00936] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/21/2019] [Indexed: 02/05/2023] Open
Abstract
The annual deep brain stimulation (DBS) Think Tank aims to create an opportunity for a multidisciplinary discussion in the field of neuromodulation to examine developments, opportunities and challenges in the field. The proceedings of the Sixth Annual Think Tank recapitulate progress in applications of neurotechnology, neurophysiology, and emerging techniques for the treatment of a range of psychiatric and neurological conditions including Parkinson’s disease, essential tremor, Tourette syndrome, epilepsy, cognitive disorders, and addiction. Each section of this overview provides insight about the understanding of neuromodulation for specific disease and discusses current challenges and future directions. This year’s report addresses key issues in implementing advanced neurophysiological techniques, evolving use of novel modulation techniques to deliver DBS, ans improved neuroimaging techniques. The proceedings also offer insights into the new era of brain network neuromodulation and connectomic DBS to define and target dysfunctional brain networks. The proceedings also focused on innovations in applications and understanding of adaptive DBS (closed-loop systems), the use and applications of optogenetics in the field of neurostimulation and the need to develop databases for DBS indications. Finally, updates on neuroethical, legal, social, and policy issues relevant to DBS research are discussed.
Collapse
Affiliation(s)
- Adolfo Ramirez-Zamora
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - James Giordano
- Neuroethics Studies Program, Department of Neurology and Department of Biochemistry, Georgetown University Medical Center, Washington, DC, United States
| | - Edward S Boyden
- Media Laboratory, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Aysegul Gunduz
- Department of Neuroscience and Department of Biomedical Engineering and Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Philip A Starr
- Graduate Program in Neuroscience, Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Sameer A Sheth
- Department of Neurological Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Michael D Fox
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jerrold Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Vinata Vedam-Mai
- Department of Neurosurgery, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Umer Akbar
- Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Veterans Affairs Medical Center, Brown Institute for Brain Science, Brown University, Providence, RI, United States
| | - Leonardo Almeida
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Helen M Bronte-Stewart
- Department of Neurology and Department of Neurological Sciences and Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Helen S Mayberg
- Department of Neurology and Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nader Pouratian
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Aryn H Gittis
- Biological Sciences and Center for Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Annabelle C Singer
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Atlanta, GA, United States
| | - Meaghan C Creed
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Gabriel Lazaro-Munoz
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Mark Richardson
- Center for the Neural Basis of Cognition, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Marvin A Rossi
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, United States
| | | | | | - Winston Chiong
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Ro'ee Gilron
- Graduate Program in Neuroscience, Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Howard Chizeck
- Graduate Program in Neuroscience, Department of Electrical Engineering, University of Washington, Seattle, WA, United States
| | - Andrew Ko
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - Kenneth B Baker
- Movement Disorders Program, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Joost Wagenaar
- Department of Neurology, Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Wissam Deeb
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Kelly D Foote
- Department of Neurosurgery, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
75
|
Nowacki A, Debove I, Rossi F, Schlaeppi JA, Petermann K, Wiest R, Schüpbach M, Pollo C. Targeting the posterior subthalamic area for essential tremor: proposal for MRI-based anatomical landmarks. J Neurosurg 2019; 131:820-827. [PMID: 30497206 DOI: 10.3171/2018.4.jns18373] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/12/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) of the posterior subthalamic area (PSA) is an alternative to thalamic DBS for the treatment of essential tremor (ET). The dentato-rubro-thalamic tract (DRTT) has recently been proposed as the anatomical substrate underlying effective stimulation. For clinical purposes, depiction of the DRTT mainly depends on diffusion tensor imaging (DTI)-based tractography, which has some drawbacks. The objective of this study was to present an accurate targeting strategy for DBS of the PSA based on anatomical landmarks visible on MRI and to evaluate clinical effectiveness. METHODS The authors performed a retrospective cohort study of a prospective series of 11 ET patients undergoing bilateral DBS of the PSA. The subthalamic nucleus and red nucleus served as anatomical landmarks to define the target point within the adjacent PSA on 3-T T2-weighted MRI. Stimulating contact (SC) positions with reference to the midcommissural point were analyzed and projected onto the stereotactic atlas of Morel. Postoperative outcome assessment after 6 and 12 months was based on change in Tremor Rating Scale (TRS) scores. RESULTS Actual target position corresponded to the intended target based on anatomical landmarks depicted on MRI. The total TRS score was reduced (improved) from 47.2 ± 15.7 to 21.3 ± 10.7 (p < 0.001). No severe complication occurred. The mean SC position projected onto the PSA at the margin of the cerebellothalamic fascicle and the zona incerta. CONCLUSIONS Targeting of the PSA based on anatomical landmarks representable on MRI is reliable and leads to accurate lead placement as well as good long-term clinical outcome.
Collapse
Affiliation(s)
| | | | | | | | | | - Roland Wiest
- 3Diagnostic and Interventional Neuroradiology, Inselspital, University Hospital Bern, and University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
76
|
Miller TR, Zhuo J, Eisenberg HM, Fishman PS, Melhem ER, Gullapalli R, Gandhi D. Targeting of the dentato-rubro-thalamic tract for MR-guided focused ultrasound treatment of essential tremor. Neuroradiol J 2019; 32:401-407. [PMID: 31407957 DOI: 10.1177/1971400919870180] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Magnetic resonance-guided focused ultrasound ablation of the thalamic ventral intermediate nucleus is a safe and effective treatment for medically refractory essential tremor. However, indirect targeting of the ventral intermediate nucleus using stereotactic coordinates from normal neuroanatomy can be inefficient. We therefore evaluated the feasibility of supplementing this method with direct targeting of the dentato-rubro-thalamic tract. METHODS We retrospectively identified four patients undergoing magnetic resonance-guided focused ultrasound ablation for essential tremor in which preoperative diffusion tractography imaging of the dentato-rubro-thalamic tract was fused with T2 weighted-imaging and utilized for intra-procedural targeting. The size and location of the dentato-rubro-thalamic tract and 24-hour lesion, as well as the center of the stereotactic coordinates, was evaluated. Finally, the amount of overlap between the dentato-rubro-thalamic tract and the lesion was calculated. RESULTS The 24-hour lesion size was homogeneous in the cohort (mean 31.3 mm2, range 30-32 mm2), while there was substantial variation in the dentato-rubro-thalamic tract area (mean 14.3 mm2, range 3-24 mm2). The center of the stereotactic coordinates and dentato-rubro-thalamic tract diverged by more than 1 mm in mediolateral and anterposterior directions in all patients, while the dentato-rubro-thalamic tract and lesion centers were in close proximity (mean mediolateral separation 1 mm, range 0.1-2.2 mm; mean anteroposterior separation 0.75 mm, range 0.4-1.2 mm). There was greater than 50% coverage of the dentato-rubro-thalamic tract by the lesion in all patients (mean 82.9%, range 66.7-100%). All patients experienced durable tremor relief. CONCLUSION Direct targeting of the dentato-rubro-thalamic tract using diffusion tractography imaging fused to T2 weighted-imaging may be a useful strategy for focused ultrasound treatment of essential tremor. Further investigation of the technique is warranted.
Collapse
Affiliation(s)
- Timothy R Miller
- Department of Diagnostic Radiology, University of Maryland Medical Center, USA
| | - Jiachen Zhuo
- Department of Diagnostic Radiology, University of Maryland Medical Center, USA
| | | | - Paul S Fishman
- Department of Neurology, University of Maryland Medical Center, USA
| | - Elias R Melhem
- Department of Diagnostic Radiology, University of Maryland Medical Center, USA
| | - Rao Gullapalli
- Department of Diagnostic Radiology, University of Maryland Medical Center, USA
| | - Dheeraj Gandhi
- Department of Diagnostic Radiology, University of Maryland Medical Center, USA.,Department of Neurosurgery, University of Maryland Medical Center, USA.,Department of Neurology, University of Maryland Medical Center, USA
| |
Collapse
|
77
|
Comparison of posterior subthalamic area deep brain stimulation for tremor using conventional landmarks versus directly targeting the dentatorubrothalamic tract with tractography. Clin Neurol Neurosurg 2019; 185:105466. [PMID: 31466022 DOI: 10.1016/j.clineuro.2019.105466] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/19/2019] [Accepted: 08/06/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To compare posterior subthalamic area deep brain stimulation (PSA-DBS) performed in the conventional manner against diffusion tensor imaging and tractography (DTIT)-guided lead implantation into the dentatorubrothalamic tract (DRTT). PATIENTS AND METHODS Double-blind, randomised study involving 34 patients with either tremor-dominant Parkinson's disease or essential tremor. Patients were randomised to Group A (DBS leads inserted using conventional landmarks) or Group B (leads guided into the DRTT using DTIT). Tremor (Fahn-Tolosa-Marin) and quality-of-life (PDQ-39) scores were evaluated 0-, 6-, 12-, 36- and 60-months after surgery. RESULTS PSA-DBS resulted in marked tremor reduction in both groups. However, Group B patients had significantly better arm tremor control (especially control of intention tremor), increased mobility and activities of daily living, reduced social stigma and need for social support as well as lower stimulation amplitudes and pulse widths compared to Group A patients. The better outcomes were sustained for up to 60-months from surgery. The active contacts of Group B patients were consistently closer to the centre of the DRTT than in Group A. Speech problems were more common in Group A patients. CONCLUSION DTIT-guided lead placement results in better and more stable tremor control and fewer adverse effects compared to lead placement in the conventional manner. This is because DTIT-guidance allows closer and more consistent placement of leads to the centre of the DRTT than conventional methods.
Collapse
|
78
|
Howell B, Gunalan K, McIntyre CC. A Driving-Force Predictor for Estimating Pathway Activation in Patient-Specific Models of Deep Brain Stimulation. Neuromodulation 2019; 22:403-415. [PMID: 30775834 PMCID: PMC6579680 DOI: 10.1111/ner.12929] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/30/2018] [Accepted: 12/20/2018] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Detailed biophysical modeling of deep brain stimulation (DBS) provides a theoretical approach to quantify the cellular response to the applied electric field. However, the most accurate models for performing such analyses, patient-specific field-cable (FC) pathway-activation models (PAMs), are so technically demanding to implement that their use in clinical research is greatly limited. Predictive algorithms can simplify PAM calculations, but they generally fail to reproduce the output of FC models when evaluated over a wide range of clinically relevant stimulation parameters. Therefore, we set out to develop a novel driving-force (DF) predictive algorithm (DF-Howell), customized to the study of DBS, which can better match FC results. METHODS We developed the DF-Howell algorithm and compared its predictions to FC PAM results, as well as to the DF-Peterson algorithm, which is currently the most accurate and generalizable DF-based method. Comparison of the various methods was quantified within the context of subthalamic DBS using activation thresholds of axons representing the internal capsule, hyperdirect pathway, and cerebellothalamic tract for various combinations of fiber diameters, stimulus pulse widths, and electrode configurations. RESULTS The DF-Howell predictor estimated activation of the three axonal pathways with less than a 6.2% mean error with respect to the FC PAM for all 21 cases tested. In 15 of the 21 cases, DF-Howell outperformed DF-Peterson in estimating pathway activation, reducing mean-errors up to 22.5%. CONCLUSIONS DF-Howell represents an accurate predictor for estimating axonal pathway activation in patient-specific DBS models, but errors still exist relative to FC PAM calculations. Nonetheless, the tractability of DF algorithms helps to reduce the technical barriers for performing accurate biophysical modeling in clinical DBS research studies.
Collapse
Affiliation(s)
- Bryan Howell
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH, USA
- Emory University, Department of Psychiatry and Behavioral Science, Atlanta, GA, USA
| | - Kabilar Gunalan
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH, USA
| | - Cameron C. McIntyre
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH, USA
| |
Collapse
|
79
|
Neuroimaging Technological Advancements for Targeting in Functional Neurosurgery. Curr Neurol Neurosci Rep 2019; 19:42. [DOI: 10.1007/s11910-019-0961-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
80
|
Park YS, Sammartino F, Young NA, Corrigan J, Krishna V, Rezai AR. Anatomic Review of the Ventral Capsule/Ventral Striatum and the Nucleus Accumbens to Guide Target Selection for Deep Brain Stimulation for Obsessive-Compulsive Disorder. World Neurosurg 2019; 126:1-10. [PMID: 30790738 DOI: 10.1016/j.wneu.2019.01.254] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Disturbances in the reward network of the brain underlie addiction, depression, and obsessive-compulsive disorder. The ventral capsule/ventral striatum and nucleus accumbens (NAc) region is a clinically approved target for deep brain stimulation for obsessive-compulsive disorder. METHODS We performed a comprehensive literature review to define clinically relevant anatomy and connectivity of the ventral capsule/ventral striatum and NAc region to guide target selection for deep brain stimulation. RESULTS Architecturally and functionally, the NAc is divided into the core and the shell, with each area having different connections. The shell primarily receives limbic information, and the core typically receives information from the motor system. In general, afferents from the prefrontal cortex, hippocampus, and amygdala are excitatory. The dopaminergic projections to the NAc from the ventral tegmental area modulate the balance of these excitatory inputs. Several important inputs to the NAc converge at the junction of the internal capsule (IC) and the anterior commissure (AC): the ventral amygdalofugal pathways that run parallel to and underneath the AC, the precommissural fornical fibers that run anterior to the AC, axons from the ventral prefrontal cortex and medial orbitofrontal cortex that occupy the most ventral part of the IC and embedding within the NAc and AC, and the superolateral branch of the medial forebrain bundle located parallel to the anterior thalamic radiation in the IC. CONCLUSIONS The caudal part of the NAc passing through the IC-AC junction may be an effective target for deep brain stimulation to improve behavioral symptoms associated with obsessive-compulsive disorder.
Collapse
Affiliation(s)
- Yong-Sook Park
- Department of Neurosurgery, Chung-Ang University Hospital, Seoul, Korea
| | | | - Nicole A Young
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio, USA
| | - John Corrigan
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio, USA
| | - Vibhor Krishna
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio, USA.
| | - Ali R Rezai
- Department of Neurosurgery, West Virginia University Hospital, Morgantown, West Virginia, USA
| |
Collapse
|
81
|
A retrospective evaluation of thalamic targeting for tremor deep brain stimulation using high-resolution anatomical imaging with supplementary fiber tractography. J Neurol Sci 2019; 398:148-156. [PMID: 30716581 DOI: 10.1016/j.jns.2019.01.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/22/2018] [Accepted: 01/15/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Deep brain stimulation (DBS) of the ventral intermediate (Vim) thalamic nucleus is used to treat tremors. Here, we identified the Vim nucleus on fast gray matter acquisition T1 inversion recovery (FGATIR) images and delineated the dentate-rubrothalamic tract (DRT) to determine the DBS target. We evaluated whether this method could consistently identify the Vim nucleus by anatomical imaging and fiber tractography. METHODS We retrospectively reviewed clinical data of patients who underwent unilateral thalamic DBS for severe tremor disorders. We evaluated outcomes at baseline, 6 months and 1 year following intervention, and annually thereafter. We reviewed preoperative planning to determine whether our tractography technique could consistently depict the DRT, and evaluated implanted electrode position by fusing postoperative CT scans to preoperative MR images. RESULTS Seven patients (three men and four women) were included; preoperative diagnoses included essential tremor (n = 3), Parkinson's (n = 2), and Holmes tremor (n = 2). All patients responded to DBS therapy; motor scores improved at 6-month and last follow-up. The Vim nucleus was successfully identified, as the DRT was depicted in all cases. Of ten active DBS contacts in seven leads, four contacts were located outside of the depicted DRT, and these contacts tended to require higher stimulation intensity. CONCLUSIONS The Vim nucleus was successfully identified with FGATIR. Our methods may be useful to determine optimal DBS trajectory, and potentially improve outcomes.
Collapse
|
82
|
Nowacki A, Schlaier J, Debove I, Pollo C. Validation of diffusion tensor imaging tractography to visualize the dentatorubrothalamic tract for surgical planning. J Neurosurg 2019; 130:99-108. [PMID: 29570012 DOI: 10.3171/2017.9.jns171321] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/05/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The dentatorubrothalamic tract (DRTT) has been suggested as the anatomical substrate for deep brain stimulation (DBS)-induced tremor alleviation. So far, little is known about how accurately and reliably tracking results correspond to the anatomical DRTT. The objective of this study was to systematically investigate and validate the results of different tractography approaches for surgical planning. METHODS The authors retrospectively analyzed 4 methodological approaches for diffusion tensor imaging (DTI)-based fiber tracking using different regions of interest in 6 patients with essential tremor. Tracking results were analyzed and validated with reference to MRI-based anatomical landmarks, were projected onto the stereotactic atlas of Morel at 3 predetermined levels (vertical levels -3.6, -1.8, and 0 mm below the anterior commissure-posterior commissure line), and were correlated to clinical outcome. RESULTS The 4 different methodologies for tracking the DRTT led to divergent results with respect to the MRI-based anatomical landmarks and when projected onto the stereotactic atlas of Morel. There was a statistically significant difference in the lateral and anteroposterior coordinates at the 3 vertical levels (p < 0.001, 2-way ANOVA). Different fractional anisotropy values ranging from 0.1 to 0.46 were required for anatomically plausible tracking results and led to varying degrees of success. Tracking results were not correlated to postoperative tremor reduction. CONCLUSIONS Different tracking methods can yield results with good anatomical approximation. The authors recommend using 3 regions of interest including the dentate nucleus of the cerebellum, the posterior subthalamic area, and the precentral gyrus to visualize the DRTT. Tracking results must be cautiously evaluated for anatomical plausibility and accuracy in each patient.
Collapse
Affiliation(s)
| | - Jürgen Schlaier
- 2Department of Neurosurgery, University of Regensburg Medical Center, Regensburg, Germany
| | - Ines Debove
- 3Neurology, University Hospital Inselspital Bern, University of Bern, Switzerland; and
| | | |
Collapse
|
83
|
Peña E, Zhang S, Patriat R, Aman JE, Vitek JL, Harel N, Johnson MD. Multi-objective particle swarm optimization for postoperative deep brain stimulation targeting of subthalamic nucleus pathways. J Neural Eng 2018; 15:066020. [PMID: 30211697 PMCID: PMC6424118 DOI: 10.1088/1741-2552/aae12f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The effectiveness of deep brain stimulation (DBS) therapy strongly depends on precise surgical targeting of intracranial leads and on clinical optimization of stimulation settings. Recent advances in surgical targeting, multi-electrode designs, and multi-channel independent current-controlled stimulation are poised to enable finer control in modulating pathways within the brain. However, the large stimulation parameter space enabled by these technologies also poses significant challenges for efficiently identifying the most therapeutic DBS setting for a given patient. Here, we present a computational approach for programming directional DBS leads that is based on a non-convex optimization framework for neural pathway targeting. APPROACH The algorithm integrates patient-specific pre-operative 7 T MR imaging, post-operative CT scans, and multi-objective particle swarm optimization (MOPSO) methods using dominance based-criteria and incorporating multiple neural pathways simultaneously. The algorithm was evaluated on eight patient-specific models of subthalamic nucleus (STN) DBS to identify electrode configurations and stimulation amplitudes to optimally activate or avoid six clinically relevant pathways: motor territory of STN, non-motor territory of STN, internal capsule, superior cerebellar peduncle, thalamic fasciculus, and hyperdirect pathway. MAIN RESULTS Across the patient-specific models, single-electrode stimulation showed significant correlations across modeled pathways, particularly for motor and non-motor STN efferents. The MOPSO approach was able to identify multi-electrode configurations that achieved improved targeting of motor STN efferents and hyperdirect pathway afferents than that achieved by any single-electrode monopolar setting at equivalent power levels. SIGNIFICANCE These results suggest that pathway targeting with patient-specific model-based optimization algorithms can efficiently identify non-trivial electrode configurations for enhancing activation of clinically relevant pathways. However, the results also indicate that inter-pathway correlations can limit selectivity for certain pathways even with directional DBS leads.
Collapse
Affiliation(s)
- Edgar Peña
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Simeng Zhang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Remi Patriat
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, United States
| | - Joshua E. Aman
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jerrold L. Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, United States
| | - Matthew D. Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
84
|
Middlebrooks EH, Tuna IS, Almeida L, Grewal SS, Wong J, Heckman MG, Lesser ER, Bredel M, Foote KD, Okun MS, Holanda VM. Structural connectivity-based segmentation of the thalamus and prediction of tremor improvement following thalamic deep brain stimulation of the ventral intermediate nucleus. NEUROIMAGE-CLINICAL 2018; 20:1266-1273. [PMID: 30318403 PMCID: PMC6308387 DOI: 10.1016/j.nicl.2018.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 11/27/2022]
Abstract
Objectives Traditional targeting methods for thalamic deep brain stimulation (DBS) performed to address tremor have predominantly relied on indirect atlas-based methods that focus on the ventral intermediate nucleus despite known variability in thalamic functional anatomy. Improvements in preoperative targeting may help maximize outcomes and reduce thalamic DBS–related complications. In this study, we evaluated the ability of thalamic parcellation with structural connectivity–based segmentation (SCBS) to predict tremor improvement following thalamic DBS. Methods In this retrospective analysis of 40 patients with essential tremor, hard segmentation of the thalamus was performed by using probabilistic tractography to assess structural connectivity to 7 cortical targets. The volume of tissue activated (VTA) was modeled in each patient on the basis of the DBS settings. The volume of overlap between the VTA and the 7 thalamic segments was determined and correlated with changes in preoperative and postoperative Fahn-Tolosa-Marin Tremor Rating Scale (TRS) scores by using multivariable linear regression models. Results A significant association was observed between greater VTA in the supplementary motor area (SMA) and premotor cortex (PMC) thalamic segment and greater improvement in TRS score when considering both the raw change (P = .001) and percentage change (P = .011). In contrast, no association was observed between change in TRS score and VTA in the primary motor cortex thalamic segment (P ≥ .19). Conclusions Our data suggest that greater VTA in the thalamic SMA/PMC segment during thalamic DBS was associated with significant improvement in TRS score in patients with tremor. These findings support the potential role of thalamic SCBS as an independent predictor of tremor improvement in patients who receive thalamic DBS. Pre-operative connectivity data may improve thalamic DBS targeting for tremor. Tremor control was positively correlated with connectivity-based thalamic segmentation. Stimulation of the SMA/PMC connected thalamic region correlated with tremor control.
Collapse
Affiliation(s)
- Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA; Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, USA.
| | - Ibrahim S Tuna
- Department of Radiology, University of Florida, Gainesville, FL, USA
| | - Leonardo Almeida
- Department of Neurology, University of Florida, Gainesville, FL, USA; Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Sanjeet S Grewal
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Joshua Wong
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, USA
| | - Elizabeth R Lesser
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, USA
| | - Markus Bredel
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kelly D Foote
- Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, University of Florida, Gainesville, FL, USA; Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Vanessa M Holanda
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA; Center of Neurology and Neurosurgery Associates (NeuroCENNA), BP-A Beneficência Portuguesa de São Paulo, São Paulo, Brazil
| |
Collapse
|
85
|
Fenoy AJ, Schiess MC. Comparison of tractography-assisted to atlas-based targeting for deep brain stimulation in essential tremor. Mov Disord 2018; 33:1895-1901. [PMID: 30187527 DOI: 10.1002/mds.27463] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/12/2018] [Accepted: 05/17/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Direct targeting of the dentato-rubro-thalamic tract is efficacious in DBS for tremor suppression. OBJECTIVES We sought to compare outcomes and optimal stimulation parameters for tremor control using the technique of directly targeting the dentato-rubro-thalamic tract to those who underwent indirect targeting of the ventral intermediate nucleus thalamus. METHODS Twenty consecutive essential tremor patients obtained preoperative diffusion MRIs, where the dentato-rubro-thalamic tract was individually drawn and used to directly target the ventral intermediate nucleus of the thalamus during surgery. These patients were compared to an earlier cohort of 20 consecutive patients who underwent surgery using atlas-based coordinates. Baseline and 1-year postsurgery tremor amplitude using The Essential Tremor Rating Assessment Scale was recorded, as were the parameters needed for successful tremor control. RESULTS The indirectly targeted group had greater baseline and postop tremor severity relative to those directly targeted (baseline, 2.9 vs. 2.6; P = 0.02; postop, 1.1 vs. 0.8; P = 0.03). Mean voltage, pulse width, and frequency for optimal tremor control in the directly targeted group (38 electrodes) = 2.8 V, 80 μs, 153 Hz; the parameters for the indirectly targeted group (38 electrodes) = 2.9 V, 86 µs, 179 Hz (significantly greater, P < 0.001). Both groups had significant improvement in arm tremor amplitude from baseline (P < 0.001) without sustained side effects. CONCLUSION Direct targeting of the dentato-rubro-thalamic tract provides excellent tremor control, comparable to indirectly targeting the ventral intermediate nucleus of the thalamus. Use of lower stimulation parameters, especially frequency, to control tremor in the directly targeted group suggests that it is a more efficient targeting methodology, which may minimize battery depletion. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Albert J Fenoy
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Mya C Schiess
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
86
|
Merchant SHI. Multifactorial etiology for tolerance to Deep Brain Stimulation for "essential tremor syndrome". Clin Neurophysiol 2018; 129:2217-2218. [PMID: 30119920 DOI: 10.1016/j.clinph.2018.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 07/28/2018] [Indexed: 11/29/2022]
|
87
|
Petersen KJ, Reid JA, Chakravorti S, Juttukonda MR, Franco G, Trujillo P, Stark AJ, Dawant BM, Donahue MJ, Claassen DO. Structural and functional connectivity of the nondecussating dentato-rubro-thalamic tract. Neuroimage 2018; 176:364-371. [PMID: 29733955 PMCID: PMC6002752 DOI: 10.1016/j.neuroimage.2018.04.074] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/04/2018] [Accepted: 04/30/2018] [Indexed: 12/20/2022] Open
Abstract
The dentato-rubro-thalamic tract (DRTT) regulates motor control, connecting the cerebellum to the thalamus. This tract is modulated by deep-brain stimulation in the surgical treatment of medically refractory tremor, especially in essential tremor, where high-frequency stimulation of the thalamus can improve symptoms. The DRTT is classically described as a decussating pathway, ascending to the contralateral thalamus. However, the existence of a nondecussating (i.e. ipsilateral) DRTT in humans was recently demonstrated, and these tracts are arranged in distinct regions of the superior cerebellar peduncle. We hypothesized that the ipsilateral DRTT is connected to specific thalamic nuclei and therefore may have unique functional relevance. The goals of this study were to confirm the presence of the decussating and nondecussating DRTT pathways, identify thalamic termination zones of each tract, and compare whether structural connectivity findings agree with functional connectivity. Diffusion-weighted imaging was used to perform probabilistic tractography of the decussating and nondecussating DRTT in young healthy subjects from the Human Connectome Project (n = 91) scanned using multi-shell diffusion-weighted imaging (270 directions; TR/TE = 5500/89 ms; spatial resolution = 1.25 mm isotropic). To define thalamic anatomical landmarks, a segmentation procedure based on the Morel Atlas was employed, and DRTT targeting was quantified based on the proportion of streamlines arriving at each nucleus. In parallel, functional connectivity analysis was performed using resting-state functional MRI (TR/TE = 720/33 ms; spatial resolution = 2 mm isotropic). It was found that the decussating and nondecussating DRTTs have significantly different thalamic endpoints, with the former preferentially targeting relatively anterior and lateral thalamic nuclei, and the latter connected to more posterior and medial nuclei (p < 0.001). Functional and structural connectivity measures were found to be significantly correlated (r = 0.45, p = 0.031). These findings provide new insight into pathways through which unilateral cerebellum can exert bilateral influence on movement and raise questions about the functional implications of ipsilateral cerebellar efferents.
Collapse
Affiliation(s)
- Kalen J Petersen
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Srijata Chakravorti
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Meher R Juttukonda
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Giulia Franco
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam J Stark
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Benoit M Dawant
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Manus J Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel O Claassen
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
88
|
Chazen JL, Sarva H, Stieg PE, Min RJ, Ballon DJ, Pryor KO, Riegelhaupt PM, Kaplitt MG. Clinical improvement associated with targeted interruption of the cerebellothalamic tract following MR-guided focused ultrasound for essential tremor. J Neurosurg 2018; 129:315-323. [DOI: 10.3171/2017.4.jns162803] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVEThe objective of this study was to evaluate the utility of diffusion tensor imaging (DTI) tractography–based targeting of the dentatorubrothalamic tract (DRT) for magnetic resonance–guided focused ultrasound (MRgFUS) thalamotomy in patients with essential tremor (ET) and correlate postprocedural tract disruption with clinical outcomes.METHODSFour patients received preprocedural and immediate postprocedural DTI in addition to traditional anatomical MRI sequences for MRgFUS thalamotomy. Optimal ablation sites were selected based on the patient-specific location of the DRT as demonstrated by DTI (direct targeting) and correlated with traditional atlas-based measurements for thalamic ventral intermediate nucleus (Vim) lesioning (indirect targeting). Fiber tracts were displayed three-dimensionally during the procedure and used in conjunction with clinical signs of tremor control for fine correction of the ablation site. Immediately following the conclusion of the procedure, the MRgFUS head frame was removed and patients were placed in a 32-channel MRI head coil for follow-up DTI and anatomical MRI sequences.RESULTSAll patients had excellent postoperative tremor control and successful pre- and postprocedural DTI fiber tracking of the corticospinal tract, medial lemniscus, and DRT. Immediate postprocedure DTI failed to track the DRT ipsilateral to the lesion site with a preserved contralateral DRT, coincident with substantial resolution of contralateral tremor.CONCLUSIONSDTI can reliably identify the optimal ablation target and demonstrates tract disruption on immediate postprocedural imaging. A clinical improvement of ET was observed immediately following the procedure, correlating with DRT disruption and suggesting that interruption of the DRT is a consequence of clinically successful MRgFUS thalamotomy. These findings may have utility for both MRgFUS procedure planning in surgically naive patients and retreatment of patients who have previously undergone unsuccessful thalamic Vim lesioning.
Collapse
Affiliation(s)
| | | | | | | | | | - Kane O. Pryor
- 4Anesthesia, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York
| | - Paul M. Riegelhaupt
- 4Anesthesia, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York
| | | |
Collapse
|
89
|
Objective predictors of 'early tolerance' to ventral intermediate nucleus of thalamus deep brain stimulation in essential tremor patients. Clin Neurophysiol 2018; 129:1628-1633. [PMID: 29908405 DOI: 10.1016/j.clinph.2018.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/24/2018] [Accepted: 05/04/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To identify pre-operative clinical and computerized spiral analysis characteristics that may help ascertain which patients with Essential Tremor (ET) will exhibit 'early tolerance' to ventral intermediate nucleus of thalamus (Vim) deep brain stimulation (DBS). METHODS Identification of comparative characteristics of defined cases of 'early tolerance' versus patients with sustained satisfactory response treated with Vim DBS surgery for medically-refractory ET, based on retrospective chart review by a clinician blinded to the findings of computerized spiral analysis. RESULTS Statistically significant differences in two spiral analysis indices, SWVI and DoS, were found in the dominant upper limbs of patients who developed 'early tolerance', whereas the clinical characteristics were not significantly different. CONCLUSION Objective measurements of upper limb kinematics using graphonomic tests like spiral analysis should be considered in the pre-operative evaluation for DBS, especially in the setting of moderate-severe predominantly action and proximal postural tremors. SIGNIFICANCE Ours is the first investigation looking into the pre-operative clinical and objective physiologic characteristics of the patients who develop 'early tolerance' to Vim DBS for the treatment of essential tremor. The study has significant implications for pre-operative evaluation and potential surgical target selection for the treatment of tremors.
Collapse
|
90
|
Reinacher PC, Amtage F, Rijntjes M, Piroth T, Prokop T, Jenkner C, Kätzler J, Coenen VA. One Pass Thalamic and Subthalamic Stimulation for Patients with Tremor-Dominant Idiopathic Parkinson Syndrome (OPINION): Protocol for a Randomized, Active-Controlled, Double-Blinded Pilot Trial. JMIR Res Protoc 2018; 7:e36. [PMID: 29382631 PMCID: PMC5811645 DOI: 10.2196/resprot.8341] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 01/15/2023] Open
Abstract
Background Besides fluctuations, therapy refractory tremor is one of the main indications of deep brain stimulation (DBS) in patients with idiopathic Parkinson syndrome (IPS). Although thalamic DBS (ventral intermediate nucleus [Vim] of thalamus) has been shown to reduce tremor in 85-95% of patients, bradykinesia and rigidity often are not well controlled. The dentato-rubro-thalamic tract (DRT) that can directly be targeted with special diffusion tensor magnetic resonance imaging sequences has been shown as an efficient target for thalamic DBS. The subthalamic nucleus (STN) is typically chosen in younger patients as the target for dopamine-responsive motor symptoms. This study investigates a one-path thalamic (Vim/DRT) and subthalamic implantation of DBS electrodes and possibly a combined stimulation strategy for both target regions. Objective This study investigates a one path thalamic (Vim/DRT) and subthalamic implantation of DBS electrodes and a possibly combined stimulation strategy for both target regions. Methods This is a randomized, active-controlled, double-blinded (patient- and observer-blinded), monocentric trial with three treatments, three periods and six treatment sequences allocated according to a Williams design. Eighteen patients will undergo one-path thalamic (Vim/DRT) and STN implantation of DBS electrodes. After one month, a double-blinded and randomly-assigned stimulation of the thalamic target (Vim/DRT), the STN and a combined stimulation of both target regions will be performed for a period of three months each. The primary objective is to assess the quality of life obtained by the Parkinson’s Disease Questionnaire (39 items) for each stimulation modality. Secondary objectives include tremor reduction (obtained by the Fahn-Tolosa-Marin tremor rating scale, video recordings, the Unified Parkinson’s disease rating scale, and by tremor analysis), psychiatric assessment of patients, and to assess the safety of intervention. Results At the moment, the recruitment is stopped and 12 patients have been randomized and treated. A futility analysis is being carried out by means of a conditional power analysis. Conclusions The approach of the OPINION trial planned to make, for the first time, a direct comparison of the different stimulation conditions (Vim/DRT, compared to STN, compared to Vim/DRT+STN) in a homogeneous patient population and, furthermore, will allow for intraindividual comparison of each condition with the “quality of life” outcome parameter. We hypothesize that the combined stimulation of the STN and the thalamic (Vim/DRT) target will be superior with respect to the patients’ quality of life as compared to the singular stimulation of the individual target regions. If this holds true, this work might change the standardized treatment described in the previous section. Trial Registration ClinicalTrials.gov: NCT02288468; https://clinicaltrials.gov/ct2/show/NCT02288468 (Archived by WebCite at http://www.webcitation.org/6wlKnt2pJ); and German Clinical Trials Register: DRKS00007526; https://www.drks.de/drks_ web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00007526 (Archived by WebCite at http://www.webcitation.org/6wlKyXZZL).
Collapse
Affiliation(s)
- Peter Christoph Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian Amtage
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Neurology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Michel Rijntjes
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Neurology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Tobias Piroth
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Neurology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Thomas Prokop
- Department of Stereotactic and Functional Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carolin Jenkner
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Clinical Trials Unit Freiburg, Medical Center, University of Freiburg, Freiburg, Germany
| | - Jürgen Kätzler
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Clinical Trials Unit Freiburg, Medical Center, University of Freiburg, Freiburg, Germany
| | - Volker Arnd Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
91
|
Rodrigues NB, Mithani K, Meng Y, Lipsman N, Hamani C. The Emerging Role of Tractography in Deep Brain Stimulation: Basic Principles and Current Applications. Brain Sci 2018; 8:brainsci8020023. [PMID: 29382119 PMCID: PMC5836042 DOI: 10.3390/brainsci8020023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 12/30/2022] Open
Abstract
Diffusion tensor imaging (DTI) is an MRI-based technique that delineates white matter tracts in the brain by tracking the diffusion of water in neural tissue. This methodology, known as “tractography”, has been extensively applied in clinical neuroscience to explore nervous system architecture and diseases. More recently, tractography has been used to assist with neurosurgical targeting in functional neurosurgery. This review provides an overview of DTI principles, and discusses current applications of tractography for improving and helping develop novel deep brain stimulation (DBS) targets.
Collapse
Affiliation(s)
- Nelson B Rodrigues
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Karim Mithani
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada.
| | - Ying Meng
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Nir Lipsman
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada.
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.
| | - Clement Hamani
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada.
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.
| |
Collapse
|
92
|
Awake versus Asleep Deep Brain Stimulation Surgery: Technical Considerations and Critical Review of the Literature. Brain Sci 2018; 8:brainsci8010017. [PMID: 29351243 PMCID: PMC5789348 DOI: 10.3390/brainsci8010017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 11/22/2022] Open
Abstract
Advancements in neuroimaging have led to a trend toward direct, image-based targeting under general anesthesia without the use of microelectrode recording (MER) or intraoperative test stimulation, also referred to as “asleep” deep brain stimulation (DBS) surgery. Asleep DBS, utilizing imaging in the form of intraoperative computed tomography (iCT) or magnetic resonance imaging (iMRI), has demonstrated reliable targeting accuracy of DBS leads implanted within the globus pallidus and subthalamic nucleus while also improving clinical outcomes in patients with Parkinson’s disease. In lieu, of randomized control trials, retrospective comparisons between asleep and awake DBS with MER have shown similar short-term efficacy with the potential for decreased complications in asleep cohorts. In lieu of long-term outcome data, awake DBS using MER must demonstrate more durable outcomes with fewer stimulation-induced side effects and lead revisions in order for its use to remain justifiable; although patient-specific factors may also be used to guide the decision regarding which technique may be most appropriate and tolerable to the patient.
Collapse
|
93
|
Tsolaki E, Downes A, Speier W, Elias WJ, Pouratian N. The potential value of probabilistic tractography-based for MR-guided focused ultrasound thalamotomy for essential tremor. NEUROIMAGE-CLINICAL 2017. [PMID: 29527503 PMCID: PMC5842733 DOI: 10.1016/j.nicl.2017.12.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Magnetic Resonance-guided Focused UltraSound (MRgFUS) offers an incisionless approach to treat essential tremor (ET). Due to lack of evident internal anatomy on traditional structural imaging, indirect targeting must still be used to localize the lesion. Here, we investigate the potential predictive value of probabilistic tractography guided thalamic targeting by defining how tractography-defined targets, lesion size and location, and clinical outcomes interrelate. MR imaging and clinical outcomes from 12 ET patients that underwent MRgFUS thalamotomy in a pilot study at the University of Virginia were evaluated in this analysis. FSL was used to evaluate each patient's voxel-wise thalamic connectivity with FreeSurfer generated pre- and post-central gyrus targets, to generate thalamic target maps. Using Receiver Operating Characteristic curves, the overlap between these thalamic target maps and the MRgFUS lesion was systematically evaluated relative to clinical outcome. To further define the connectivity characteristics of effective MRgFUS thalamotomy lesions, we evaluated whole brain probabilistic tractography of lesions (using post-treatment imaging to define the lesion pre-treatment diffusion tensor MRI). The structural connectivity difference was explored between subjects with the best clinical outcome relative to all others. Ten of twelve patients presented high percentage of overlapping between connectivity-based thalamic segmentation maps and lesion area. The improvement of clinical score was predicted (AUC: 0.80) using the volume of intersection between the thalamic target (precentral gyrus) map and MRgFUS induced lesion as feature. The main structural differences between those with different magnitudes of response were observed in connectivity to the pre- and post-central gyri and brainstem/cerebellum. MRgFUS thalamotomy lesions characterized by strong structural connectivity to precentral gyrus demonstrated better responses in a cohort of patients treated with MRgFUS for ET. The intersection between lesion and thalamic-connectivity maps to motor - sensory targets proved to be effective in predicting the response to the therapy. These imaging techniques can be used to increase the efficacy and consistency of outcomes with MRgFUS and potentially shorten treatment times by identifying optimal targets in advance of treatment. MRgFUS thalamic lesions with connecting to peri-rolandic cortices and cerebellum demonstrate superior outcomes. The overlap of MRgFUS induced lesion and tractography-based thalamic segmentation correlates with clinical improvement. Probabilistic tractography-guided thalamic segmentation may be useful to increase MRgFUS efficacy and consistency.
Collapse
Affiliation(s)
- Evangelia Tsolaki
- Department of Neurosurgery David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| | - Angela Downes
- Department of Neurosurgery David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - William Speier
- Department of Neurosurgery David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - W Jeff Elias
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, USA
| | - Nader Pouratian
- Department of Neurosurgery David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Brain Research Institute David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| |
Collapse
|
94
|
Blood AJ, Waugh JL, Münte TF, Heldmann M, Domingo A, Klein C, Breiter HC, Lee LV, Rosales RL, Brüggemann N. Increased insula-putamen connectivity in X-linked dystonia-parkinsonism. NEUROIMAGE-CLINICAL 2017. [PMID: 29527488 PMCID: PMC5842648 DOI: 10.1016/j.nicl.2017.10.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Preliminary evidence from postmortem studies of X-linked dystonia-parkinsonism (XDP) suggests tissue loss may occur first and/or most severely in the striatal striosome compartment, followed later by cell loss in the matrix compartment. However, little is known about how this relates to pathogenesis and pathophysiology. While MRI cannot visualize these striatal compartments directly in humans, differences in relative gradients of afferent cortical connectivity across compartments (weighted toward paralimbic versus sensorimotor cortex, respectively) can be used to infer potential selective loss in vivo. In the current study we evaluated relative connectivity of paralimbic versus sensorimotor cortex with the caudate and putamen in 17 individuals with XDP and 17 matched controls. Although caudate and putamen volumes were reduced in XDP, there were no significant reductions in either “matrix-weighted”, or “striosome-weighted” connectivity. In fact, paralimbic connectivity with the putamen was elevated, rather than reduced, in XDP. This was driven most strongly by elevated putamen connectivity with the anterior insula. There was no relationship of these findings to disease duration or striatal volume, suggesting insula and/or paralimbic connectivity in XDP may develop abnormally and/or increase in the years before symptom onset. Previous work suggested striosomes might degenerate preferentially in early XDP. We developed a DTI tractography method to assess striosome and matrix integrity. Striosomal afferents to putamen were elevated in XDP, despite reduced putamen volume. Connectivity was particularly elevated from the insula (two to three-fold). Striosome connectivity strength was not associated with disease duration.
Collapse
Affiliation(s)
- Anne J Blood
- Mood and Motor Control Laboratory, Massachusetts General Hospital (MGH), Charlestown, MA, USA; Laboratory of Neuroimaging and Genetics, MGH, Charlestown, MA, USA; Depts. of Neurology, MGH, Boston, MA, USA; Psychiatry, MGH, Boston, MA, USA; Martinos Center for Biomedical Imaging, Dept. of Radiology, MGH, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Jeff L Waugh
- Mood and Motor Control Laboratory, Massachusetts General Hospital (MGH), Charlestown, MA, USA; Depts. of Neurology, MGH, Boston, MA, USA; Martinos Center for Biomedical Imaging, Dept. of Radiology, MGH, Charlestown, MA, USA; Division of Child Neurology, Boston Children's Hospital, USA; Harvard Medical School, Boston, MA, USA
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Aloysius Domingo
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Hans C Breiter
- Mood and Motor Control Laboratory, Massachusetts General Hospital (MGH), Charlestown, MA, USA; Laboratory of Neuroimaging and Genetics, MGH, Charlestown, MA, USA; Psychiatry, MGH, Boston, MA, USA; Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lillian V Lee
- XDP Study Group, Philippine Children's Medical Center, Quezon City, Philippines
| | - Raymond L Rosales
- XDP Study Group, Philippine Children's Medical Center, Quezon City, Philippines; Department of Neurology and Psychiatry, Faculty of Medicine and Surgery, University of Santo Tomas, Manila, Philippines
| | - Norbert Brüggemann
- Department of Neurology, University of Lübeck, Lübeck, Germany; Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
95
|
Jang SH, Kwon HG. Aggravation of an injured dentato-rubro-thalamic tract in a patient with mild traumatic brain injury: A case report. Medicine (Baltimore) 2017; 96:e8253. [PMID: 29068990 PMCID: PMC5671823 DOI: 10.1097/md.0000000000008253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
RATIONALE We report on a patient with mild traumatic brain injury (TBI) by follow-up diffusion tensor tractography (DTT), and observed for approximately nine monthsby serial diffusion tensor tractography (DTT). PATIENT CONCERNS A 66-year-old male patient was injured in a car crash. Approximately four weeks after the crash, he developed a tremor in the right hand and leg. His symptoms worsened over time. DIAGNOSES Approximately six months after the crash, he developed a mild tremor in the left hand. Nine months after the crash, he manifested severe tremor in his right hand, mild resting and intentional tremor in his left hand and both legs, and mild trunkal ataxia. INTERVENTIONS N/A. OUTCOMES On 3-week DTT, well reconstructed DRTTs were observed in both hemispheres, except for the thinned lower portion of the right DRTT. On 9-month DTT, the right lower DRTT had thinned compared with the 3-week DTT and showed a disruption at the upper portion. The left DRTT showed thinning in the lower portion and tearing in the upper portion compared with 3-week DTT. LESSONS Aggravation of an injured DRTT was demonstrated in a patient with mild TBI, using serial DTT examination.
Collapse
Affiliation(s)
- Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu Department of Physical Therapy, College of Health Sciences, Catholic University of Pusan, Republic of Korea
| | | |
Collapse
|
96
|
See AAQ, King NKK. Improving Surgical Outcome Using Diffusion Tensor Imaging Techniques in Deep Brain Stimulation. Front Surg 2017; 4:54. [PMID: 29034243 PMCID: PMC5625016 DOI: 10.3389/fsurg.2017.00054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 09/06/2017] [Indexed: 12/16/2022] Open
Abstract
Introduction Recent advances in surgical imaging include the use of diffusion tensor imaging (DTI) in deep brain stimulation (DBS) and provide a detailed view of the white matter tracts and their connections which are not seen with conventional magnetic resonance imaging. Given that the efficacy of DBS depends on the precise and accurate targeting of these circuits, better surgical planning using information obtained from DTI may lead to improved surgical outcome. We aim to review the available literature to evaluate the efficacy of such a strategy. Methods A search of PubMed was performed to identify all articles using the search terms “(diffusion tractography OR diffusion tensor imaging OR DTI) AND (deep brain stimulation OR DBS).” Studies were included if DTI was used and clinical outcomes were reported. Results We identified 35 studies where the use of DTI in DBS was evaluated. The most studied pathology was movement disorders (17 studies), psychiatric disorders (11 studies), and pain (7 studies). The overall responder rates for tremor reduction was 70.0% (SD = 26.1%) in 69 patients, 36.5% (SD = 19.1%) for obsessive–compulsive disorder in 9 patients, 48.3% (SD = 40.0%) for depression in 40 patients, and 49.7% (SD = 35.1%) for chronic pain in 23 patients. Discussion The studies reviewed show that the use of DTI for surgical planning is feasible, provide additional information over conventional targeting methods, and can improve surgical outcome. Patients in whom the DBS electrodes were within the DTI targets experienced better outcomes than those in whom the electrodes were not. Many current studies are limited by their small sample size or retrospective nature. The use of DTI in DBS planning appears underutilized and further studies are warranted given that surgical outcome can be optimized using this non-invasive technique.
Collapse
Affiliation(s)
- Angela An Qi See
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - Nicolas Kon Kam King
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
97
|
Reddy S, Fenoy A, Furr-Stimming E, Schiess M, Mehanna R. Does the Use of Intraoperative Microelectrode Recording Influence the Final Location of Lead Implants in the Ventral Intermediate Nucleus for Deep Brain Stimulation? THE CEREBELLUM 2017; 16:421-426. [PMID: 27491538 DOI: 10.1007/s12311-016-0816-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To determine if the use of intraoperative microelectrode recording (MER) influences the final location of lead implant in deep brain stimulation (DBS) of the ventral intermediate nucleus (VIM), and to evaluate the incidence of associated complications. The usefulness of intraoperative MER in DBS is debated, some centers suggesting it increases complications without additional benefit. We conducted a retrospective chart review of all patients who underwent VIM DBS with MER at the University of Texas Health Science Center in Houston from June 1, 2009 to October 1, 2013. Initial (MRI determined) and final (intraoperative MER determined) coordinates of implant were compared. To assess incidences of hemorrhagic and infectious complications, we reviewed postoperative CT scans and follow-up notes. Forty-five lead implants on 24 patients were reviewed. The mean age at implantation was 62.42 years (range 18-83). The average duration from diagnosis to surgery was 21.5 years (range 1-52). A statistically significant mean difference was observed in the superior-inferior plane (0.52 ± 0.80 mm inferiorly, p < 0.05) and the anterior-posterior plane (0.45 ± 0.86 mm posteriorly, p < 0.05). A non-statistically significant difference was also observed in the medial-lateral plane (0.02± 0.15 mm, p > 0.05). One patient developed an infectious complication (4.2 %) that required removal of leads; two patients had minimal asymptomatic intra-ventricular bleeding (8.3 %). In our DBS center, intraoperative MER in VIM DBS implant does not seem to have a higher rate of surgical complications compared to historical series not using MER, and might also be useful in determining the final lead location.
Collapse
Affiliation(s)
- Sujan Reddy
- University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Albert Fenoy
- University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Mya Schiess
- University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Raja Mehanna
- University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
98
|
Horn A, Reich M, Vorwerk J, Li N, Wenzel G, Fang Q, Schmitz-Hübsch T, Nickl R, Kupsch A, Volkmann J, Kühn AA, Fox MD. Connectivity Predicts deep brain stimulation outcome in Parkinson disease. Ann Neurol 2017; 82:67-78. [PMID: 28586141 DOI: 10.1002/ana.24974] [Citation(s) in RCA: 478] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The benefit of deep brain stimulation (DBS) for Parkinson disease (PD) may depend on connectivity between the stimulation site and other brain regions, but which regions and whether connectivity can predict outcome in patients remain unknown. Here, we identify the structural and functional connectivity profile of effective DBS to the subthalamic nucleus (STN) and test its ability to predict outcome in an independent cohort. METHODS A training dataset of 51 PD patients with STN DBS was combined with publicly available human connectome data (diffusion tractography and resting state functional connectivity) to identify connections reliably associated with clinical improvement (motor score of the Unified Parkinson Disease Rating Scale [UPDRS]). This connectivity profile was then used to predict outcome in an independent cohort of 44 patients from a different center. RESULTS In the training dataset, connectivity between the DBS electrode and a distributed network of brain regions correlated with clinical response including structural connectivity to supplementary motor area and functional anticorrelation to primary motor cortex (p < 0.001). This same connectivity profile predicted response in an independent patient cohort (p < 0.01). Structural and functional connectivity were independent predictors of clinical improvement (p < 0.001) and estimated response in individual patients with an average error of 15% UPDRS improvement. Results were similar using connectome data from normal subjects or a connectome age, sex, and disease matched to our DBS patients. INTERPRETATION Effective STN DBS for PD is associated with a specific connectivity profile that can predict clinical outcome across independent cohorts. This prediction does not require specialized imaging in PD patients themselves. Ann Neurol 2017;82:67-78.
Collapse
Affiliation(s)
- Andreas Horn
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Department of Neurology, Movement Disorder and Neuromodulation Unit, Charité-Universitätsmedizin, Berlin, Germany
| | - Martin Reich
- Department of Neurology, Würzburg University Hospital, Würzburg, Germany
| | - Johannes Vorwerk
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah
| | - Ningfei Li
- Institute of Software Engineering and Theoretical Computer Science, Neural Information Processing Group, Berlin Technical University, Berlin, Germany
| | - Gregor Wenzel
- Department of Neurology, Movement Disorder and Neuromodulation Unit, Charité-Universitätsmedizin, Berlin, Germany
| | - Qianqian Fang
- Department of Bioengineering, Northeastern University, Boston, MA
| | - Tanja Schmitz-Hübsch
- Department of Neurology, Movement Disorder and Neuromodulation Unit, Charité-Universitätsmedizin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin, Berlin, Germany
| | - Robert Nickl
- Department of Neurosurgery, Würzburg University Hospital, Würzburg, Germany
| | - Andreas Kupsch
- Clinic of Neurology and Stereotactic Neurosurgery, Otto von Guericke University, Magdeburg, Germany.,Neurology Moves, Berlin, Germany
| | - Jens Volkmann
- Department of Neurology, Würzburg University Hospital, Würzburg, Germany
| | - Andrea A Kühn
- Department of Neurology, Movement Disorder and Neuromodulation Unit, Charité-Universitätsmedizin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin, Berlin, Germany
| | - Michael D Fox
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA
| |
Collapse
|
99
|
Fiechter M, Nowacki A, Oertel MF, Fichtner J, Debove I, Lachenmayer ML, Wiest R, Bassetti CL, Raabe A, Kaelin-Lang A, Schüpbach MW, Pollo C. Deep Brain Stimulation for Tremor: Is There a Common Structure? Stereotact Funct Neurosurg 2017; 95:243-250. [DOI: 10.1159/000478270] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 06/08/2017] [Indexed: 12/19/2022]
|
100
|
Study on Lesion Assessment of Cerebello-Thalamo-Cortical Network in Wilson's Disease with Diffusion Tensor Imaging. Neural Plast 2017; 2017:7323121. [PMID: 28781902 PMCID: PMC5525080 DOI: 10.1155/2017/7323121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 05/11/2017] [Indexed: 11/17/2022] Open
Abstract
Wilson's disease (WD) is a genetic disorder of copper metabolism with pathological copper accumulation in the brain and any other tissues. This article aimed to assess lesions in cerebello-thalamo-cortical network with an advanced technique of diffusion tensor imaging (DTI) in WD. 35 WD patients and 30 age- and sex-matched healthy volunteers were recruited to accept diffusion-weighted images with 15 gradient vectors and conventional magnetic resonance imaging (MRI). The DTI parameters, including fractional anisotropy (FA) and mean diffusion (MD), were calculated by diffusion kurtosis estimator software. After registration, patient groups with FA mappings and MD mappings and normal groups were compared with 3dttest and receiver-operating characteristic (ROC) curve analysis, corrected with FDR simulations (p = 0.001, α = 0.05, cluster size = 326). We found that the degree of FA increased in the bilateral head of the caudate nucleus (HCN), lenticular nucleus (LN), ventral thalamus, substantia nigra (SN), red nucleus (RN), right dentate nucleus (DN), and decreased in the mediodorsal thalamus and extensive white matter. The value of MD increased in HCN, LN, SN, RN, and extensive white matter. The technique of DTI provides higher sensitivity and specificity than conventional MRI to detect Wilson's disease. Besides, lesions in the basal ganglia, thalamus, and cerebellum might disconnect the basal ganglia-thalamo-cortical circuits or dentato-rubro-thalamic (DRT) track and disrupt cerebello-thalamo-cortical network finally, which may cause clinical extrapyramidal symptoms.
Collapse
|