51
|
Yan C, Xu Z, Huang W. Cellular Senescence Affects Cardiac Regeneration and Repair in Ischemic Heart Disease. Aging Dis 2021; 12:552-569. [PMID: 33815882 PMCID: PMC7990367 DOI: 10.14336/ad.2020.0811] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/11/2020] [Indexed: 01/10/2023] Open
Abstract
Ischemic heart disease (IHD) is defined as a syndrome of ischemic cardiomyopathy. Myogenesis and angiogenesis in the ischemic myocardium are important for cardiomyocyte (CM) survival, improving cardiac function and decreasing the progression of heart failure after IHD. Cellular senescence is a state of permanent irreversible cell cycle arrest caused by stress that results in a decline in cellular functions, such as proliferation, migration, homing, and differentiation. In addition, senescent cells produce the senescence-associated secretory phenotype (SASP), which affects the tissue microenvironment and surrounding cells by secreting proinflammatory cytokines, chemokines, growth factors, and extracellular matrix degradation proteins. The accumulation of cardiovascular-related senescent cells, including vascular endothelial cells (VECs), vascular smooth muscle cells (VSMCs), CMs and progenitor cells, is an important risk factor of cardiovascular diseases, such as vascular aging, atherosclerotic plaque formation, myocardial infarction (MI) and ventricular remodeling. This review summarizes the processes of angiogenesis, myogenesis and cellular senescence after IHD. In addition, this review focuses on the relationship between cellular senescence and cardiovascular disease and the mechanism of cellular senescence. Finally, we discuss a potential therapeutic strategy for MI targeting senescent cells.
Collapse
Affiliation(s)
- Chi Yan
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China.
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi, China.
- Department of Cardiology, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Guangxi, China.
| | - Zhimeng Xu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi, China.
| | - Weiqiang Huang
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China.
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi, China.
- Department of Cardiology, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Guangxi, China.
| |
Collapse
|
52
|
Current Status of Angiogenic Cell Therapy and Related Strategies Applied in Critical Limb Ischemia. Int J Mol Sci 2021; 22:ijms22052335. [PMID: 33652743 PMCID: PMC7956816 DOI: 10.3390/ijms22052335] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Critical limb ischemia (CLI) constitutes the most severe form of peripheral arterial disease (PAD), it is characterized by progressive blockade of arterial vessels, commonly correlated to atherosclerosis. Currently, revascularization strategies (bypass grafting, angioplasty) remain the first option for CLI patients, although less than 45% of them are eligible for surgical intervention mainly due to associated comorbidities. Moreover, patients usually require amputation in the short-term. Angiogenic cell therapy has arisen as a promising alternative for these "no-option" patients, with many studies demonstrating the potential of stem cells to enhance revascularization by promoting vessel formation and blood flow recovery in ischemic tissues. Herein, we provide an overview of studies focused on the use of angiogenic cell therapies in CLI in the last years, from approaches testing different cell types in animal/pre-clinical models of CLI, to the clinical trials currently under evaluation. Furthermore, recent alternatives related to stem cell therapies such as the use of secretomes, exosomes, or even microRNA, will be also described.
Collapse
|
53
|
Wang W, Hong G, Wang S, Gao W, Wang P. Tumor-derived exosomal miRNA-141 promote angiogenesis and malignant progression of lung cancer by targeting growth arrest-specific homeobox gene (GAX). Bioengineered 2021; 12:821-831. [PMID: 33627047 PMCID: PMC8291845 DOI: 10.1080/21655979.2021.1886771] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Previous researches have suggested that exosomal miRNA-141 has association with metastatic lung cancer, however, its role and regulatory mechanism require further study. In this study, exosomes were isolated from lung cancer patients and normal human serum and identified. We found that the expression of miRNA-141 was up-regulated in the lung cancer serum exosomes compared with the normal serum exosomes. When the exosomes were extracted for co-culture with HUVECs, they were absorbed and distributed around the nucleus by confocal microscopy. Moreover, exosomal miRNA-141 from A549 significantly not only promoted the migration and invasion of A549 but also increased the cell proliferation, tube formation of HUVECs. In order to reveal the mechanism of exosomal miRNA-141, bioinformatics analysis revealed that miRNA-141 targeted the binding of Growth arrest-specific homeobox gene (GAX) in the 3'UTR region, and confirmed by MS2-RIP assay and dual-luciferase assay. Exosome miRNA-141 could down-regulate the expression of GAX. Taken together, our results demonstrate that tumor-derived exosomal miRNA-141 promote angiogenesis and malignant progression of lung cancer by targeting GAX. It provides a new possibility for the treatment of lung cancer.
Collapse
Affiliation(s)
- Wulong Wang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Oncology, The Second Affiliated Hospital of Baotou Medical College, BaoTou, Inner Mongolia, China
| | - Guodai Hong
- Department of Oncology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Siyuan Wang
- Department of Oncology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Wenbin Gao
- Department of Oncology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Ping Wang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
54
|
Chen Q, Lin G, Chen Y, Li C, Wu L, Hu X, Lin Q. miR-3574 ameliorates intermittent hypoxia-induced cardiomyocyte injury through inhibiting Axin1. Aging (Albany NY) 2021; 13:8068-8077. [PMID: 33582657 PMCID: PMC8034950 DOI: 10.18632/aging.202480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/31/2020] [Indexed: 12/11/2022]
Abstract
Objective: miRNAs play critical roles in the regulation of many cardiovascular diseases. However, its role and potential mechanism in cardiac injury caused by obstructive sleep apnea (OSA) remain poorly elucidated. In the present study, we aimed to investigate the effects of miR-3574 on cardiomyocyte injury under intermittent hypoxia (IH). Results: We confirmed that IH inhibited cell viability, induced cell apoptosis and suppressed miR-3574 expression in the H9c2. miR-3574 overexpression could ameliorate the effects of IH on the cell viability and cell apoptosis in the H9c2. Axin1 was a target gene of miR-3574, and miR-3574 overexpression reduced the expression of Axin1. miR-3574 could inhibit the IH-induced cardiomyocyte injury via downregulating Axin1. However, Axin1 could partially reverse these effects of miR-3574. Conclusion: Our study first reveals that miR-3574 could alleviate IH-induced cardiomyocyte injury by targeting Axin1, which may function as a novel and promising therapy target for OSA-associated cardiovascular diseases. Methods: H9c2 were exposed to IH condition. CCK-8 assay was applied to determine cell viability of H9c2. qRT-PCR was conducted to measure the expression level of mRNA and miRNA. Western blot assay was then performed to detect the protein levels. Finally, we used dual-luciferase reporter assay identify the potential target of miR-3574.
Collapse
Affiliation(s)
- Qingshi Chen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Fujian Medical University, Fengze, Quanzhou 362000, China.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Taijiang, Fuzhou 350005, China
| | - Guofu Lin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Taijiang, Fuzhou 350005, China
| | - Yongfa Chen
- The First Affiliated Hospital of Xiamen University, Siming, Xiamen 361001, China
| | - Chaowei Li
- The Second Affiliated Hospital of Fujian Medical University, Fengze, Quanzhou 362000, China
| | - Lizhen Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Fujian Medical University, Fengze, Quanzhou 362000, China
| | - Xin Hu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Fujian Medical University, Fengze, Quanzhou 362000, China
| | - Qichang Lin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Taijiang, Fuzhou 350005, China
| |
Collapse
|
55
|
Zhang L, Ouyang P, He G, Wang X, Song D, Yang Y, He X. Exosomes from microRNA-126 overexpressing mesenchymal stem cells promote angiogenesis by targeting the PIK3R2-mediated PI3K/Akt signalling pathway. J Cell Mol Med 2021; 25:2148-2162. [PMID: 33350092 PMCID: PMC7882955 DOI: 10.1111/jcmm.16192] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
microRNA-126 (miR-126), an endothelial-specific miRNA, is associated with vascular homeostasis and angiogenesis. However, the efficiency of miR-126-based treatment is partially compromised due to the low efficiency of miRNA delivery in vivo. Lately, exosomes have emerged as a natural tool for therapeutic molecule delivery. Herein, we investigated whether exosomes derived from bone marrow mesenchymal stem cells (BMMSCs) can be utilized to deliver miR-126 to promote angiogenesis. Exosomes were isolated from BMMSCs overexpressed with miR-126 (Exo-miR-126) by ultracentrifugation. In vitro study, Exo-miR-126 treatment promoted the proliferation, migration and angiogenesis of human umbilical vein endothelial cells (HUVECs). Furthermore, the gene/protein expression of angiogenesis-related vascular endothelial growth factor (VEGF) and angiotensin-1 (Ang-1) were up-regulated after incubation with Exo-miR-126. Additionally, the expression level of phosphoinositol-3 kinase regulatory subunit 2 (PIK3R2) showed an inverse correlation with miR-126 in HUVECs. Particularly, the Exo-miR-126 treatment contributed to enhanced angiogenesis of HUVECs by targeting PIK3R2 to activate the PI3K/Akt signalling pathway. Similarly, Exo-miR-126 administration profoundly increased the number of newly formed capillaries in wound sites and accelerated the wound healing in vivo. The results demonstrate that exosomes derived from BMMSCs combined with miR-126 may be a promising strategy to promote angiogenesis.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Orthopaedic SurgerySecond Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
- Department of Orthopaedic SurgeryXi'an Children's HospitalXi’anShaanxi ProvinceChina
| | - Pengrong Ouyang
- Department of Orthopaedic SurgerySecond Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Gaole He
- Department of Spine SurgeryHong Hui HospitalXi’an Jiaotong UniversityXi’anShaanxi ProvinceChina
| | - Xiaowei Wang
- Department of Orthopaedic SurgeryXi'an Children's HospitalXi’anShaanxi ProvinceChina
| | - Defu Song
- Department of Orthopaedic SurgeryXi'an Children's HospitalXi’anShaanxi ProvinceChina
| | - Yijun Yang
- Department of Orthopaedic SurgeryXi'an Children's HospitalXi’anShaanxi ProvinceChina
| | - Xijing He
- Department of Orthopaedic SurgerySecond Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
- Xi'an International Medical Center HospitalXi’anShaanxi ProvinceChina
| |
Collapse
|
56
|
|
57
|
Xia Z, Bi X, Lian J, Dai W, He X, Zhao L, Min J, Wang F. Slc39a5-mediated zinc homeostasis plays an essential role in venous angiogenesis in zebrafish. Open Biol 2020; 10:200281. [PMID: 33081634 PMCID: PMC7653363 DOI: 10.1098/rsob.200281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis is a precise process mediated by a variety of signals and the environmental niche. Although the essential trace element zinc and its homeostasis are essential for maintaining proper cellular functions, whether zinc plays a role in angiogenesis is currently unknown. Using zebrafish embryos as a model system, we found that zinc treatment significantly increased the expression of the slc39a5 gene, which encodes the zinc transporter Slc39a5. Moreover, knocking down slc39a5 expression using either a morpholino or CRISPR/Cas9-mediated gene editing led to cardiac ischaemia and an accumulation of red blood cells in the caudal vein plexus (CVP), as well as delayed venous sprouting and fewer vascular loops in the CVP region during early development. Further analysis revealed significantly reduced proliferation and delayed cell migration in the caudal vein of slc39a5 morphants. At the mechanistic level, we found increased levels of systemic zinc in slc39a5-deficient embryos, and chelating zinc restored CVP development. In addition, we found that zinc overload in wild-type embryos leads to impaired CVP formation. Taken together, these results indicate that Slc39a5 plays a critical role in endothelial sprouting and migration in venous angiogenesis by regulating zinc homeostasis.
Collapse
Affiliation(s)
- Zhidan Xia
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xinying Bi
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jia Lian
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Wei Dai
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xuyan He
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Lu Zhao
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Junxia Min
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Fudi Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
58
|
Wang XQ, Tu WZ, Guo JB, Song G, Zhang J, Chen CC, Chen PJ. A Bioinformatic Analysis of MicroRNAs' Role in Human Intervertebral Disc Degeneration. PAIN MEDICINE 2020; 20:2459-2471. [PMID: 30953590 DOI: 10.1093/pm/pnz015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objectives The aim of our study was to ascertain the underlying role of microRNAs (miRNAs) in human intervertebral disc degeneration (IDD). Design Bioinformatic analysis from multiple databases. Methods Studies of the association of miRNAs and IDD were identified in multiple electronic databases. All potential studies were assessed by the same inclusion and exclusion criteria. We recorded whether miRNA expression was commonly increased or suppressed in the intervertebral disc tissues and cells of IDD subjects. We used String to identify biological process and cellular component pathways of differentially expressed genes. Results We included fifty-seven articles from 1,277 records in this study. This report identified 40 different dysregulated miRNAs in 53 studies, including studies examining cell apoptosis (26 studies, 49.06%), cell proliferation (15 studies, 28.3%), extracellular matrix (ECM) degradation (10 studies, 18.86%), and inflammation (five studies, 9.43%) in IDD patients. Three upregulated miRNAs (miR-19b, miR-32, miR-130b) and three downregulated miRNAs (miR-31, miR-124a, miR-127-5p) were considered common miRNAs in IDD tissues. The top three biological process pathways for upregulated miRNAs were positive regulation of biological process, nervous system development, and negative regulation of biological process, and the top three biological process pathways for downregulated miRNAs were negative regulation of gene expression, intracellular signal transduction, and negative regulation of biological process. Conclusions This study revealed that miRNAs could be novel targets for preventing IDD and treating patients with IDD by regulating their target genes. These results provide valuable information for medical professionals, IDD patients, and health care policy makers.
Collapse
Affiliation(s)
- Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Equal contribution
| | - Wen-Zhan Tu
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Equal contribution
| | - Jia-Bao Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ge Song
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Juan Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chang-Cheng Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pei-Jie Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
59
|
Zhao Z, Sun W, Guo Z, Zhang J, Yu H, Liu B. Mechanisms of lncRNA/microRNA interactions in angiogenesis. Life Sci 2020; 254:116900. [DOI: 10.1016/j.lfs.2019.116900] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
|
60
|
Moghiman T, Barghchi B, Esmaeili SA, Shabestari MM, Tabaee SS, Momtazi-Borojeni AA. Therapeutic angiogenesis with exosomal microRNAs: an effectual approach for the treatment of myocardial ischemia. Heart Fail Rev 2020; 26:205-213. [PMID: 32632768 DOI: 10.1007/s10741-020-10001-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Therapeutic angiogenesis presents a potential approach for treating ischemic heart diseases especially in patients who are not appropriate candidates for traditional approaches of revascularization. This approach acts through inducing the neovascularization or maturation of pre-existing collateral vessels into functional arteries to bypass the blocked arteries and restore perfusion to ischemic myocardium. Successful stimulation of local angiogenesis can be established by the cross talk between stem cells, endothelial cells, and cardiomyocytes, which is mainly mediated by paracrine communication accompanied by secreted exosomes. Exosomes are extracellular vesicles carrying a complex of signaling molecules, such as microRNAs (miRs) that can modulate the function of recipient cells. Such particles have been indicated to exert cardioprotective role through providing signaling cues for angiogenesis, an effect ascribed mainly to their miRs content. Exosomal miRs-mediated therapeutic angiogenesis has been under drastic preclinical and clinical studies. In the current review, it was aimed to summarize pro-angiogenic exosomal miRs released by various cell types mediating angiogenesis, including stem cells, endothelial cells, and cardiomyocytes, which appear to exert a therapeutic effect on the myocardial ischemia. In brief, secreted exosomal miRs including miR-210, miR-23a-3p, miR-424, let-7f, miR-30b, miR-30c, miR-126, miR-21, miR-132, miR-130a-3p, miR-214, miR-378, miR-126, miR-133, and let-7b-5p could protect against myocardial ischemia through inducing cardiac angiogenesis and vascular regeneration resulting in the increase blood flow to ischemic myocardium.
Collapse
Affiliation(s)
- Toktam Moghiman
- Atherosclerosis Prevention Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bita Barghchi
- Medical School, Islamic Azad University, Tehran Branch, Tehran, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyedeh Samaneh Tabaee
- Cardiology Noncommunicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Amir Abbas Momtazi-Borojeni
- Halal Research center of IRI, FDA, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
61
|
Fan D, Kassiri Z. Biology of Tissue Inhibitor of Metalloproteinase 3 (TIMP3), and Its Therapeutic Implications in Cardiovascular Pathology. Front Physiol 2020; 11:661. [PMID: 32612540 PMCID: PMC7308558 DOI: 10.3389/fphys.2020.00661] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Tissue inhibitor of metalloproteinase 3 (TIMP3) is unique among the four TIMPs due to its extracellular matrix (ECM)-binding property and broad range of inhibitory substrates that includes matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), and ADAM with thrombospondin motifs (ADAMTSs). In addition to its metalloproteinase-inhibitory function, TIMP3 can interact with proteins in the extracellular space resulting in its multifarious functions. TIMP3 mRNA has a long 3' untranslated region (UTR) which is a target for numerous microRNAs. TIMP3 levels are reduced in various cardiovascular diseases, and studies have shown that TIMP3 replenishment ameliorates the disease, suggesting a therapeutic potential for TIMP3 in cardiovascular diseases. While significant efforts have been made in identifying the effector targets of TIMP3, the regulatory mechanism for the expression of this multi-functional TIMP has been less explored. Here, we provide an overview of TIMP3 gene structure, transcriptional and post-transcriptional regulators (transcription factors and microRNAs), protein structure and partners, its role in cardiovascular pathology and its application as therapy, while also drawing reference from TIMP3 function in other diseases.
Collapse
Affiliation(s)
- Dong Fan
- Department of Pathology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
62
|
Li X, Jia Z, Zhao X, Xu M, Chen M. Expression of miR-210 in the peripheral blood of patients with newly diagnosed type 2 diabetes mellitus and its effect on the number and function of endothelial progenitor cells. Microvasc Res 2020; 131:104032. [PMID: 32533960 DOI: 10.1016/j.mvr.2020.104032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE This study aims to investigate the correlation between the expression of miR-210 in peripheral blood and the number of peripheral endothelial progenitor cells (EPCs) in patients with type 2 diabetes mellitus (T2DM). We also determined the effect of miR-210 on EPC proliferation, adhesion, migration, tube formation, and apoptosis. METHODS A total of 32 patients with newly diagnosed T2DM (T2DM group) and 32 control subjects with normal glucose tolerance (NC group) were included. Peripheral blood samples were collected from each subject. The miR-210 level was determined by quantitative real-time polymerase chain reaction (qRT-PCR), and the number of positive EPCs indicated by CD34, CD133, and KDR expressions was detected by flow cytometry. After isolation, culture, and identification by fluorescent staining, EPCs were divided into four groups: NC group, untransfected type 2 diabetic group, miR-210 inhibitor NC group, and miR-210 inhibitor group. The expression of miR-120 in each group was detected by qRT-PCR, and the changes in the proliferation, adhesion, migration, tube formation, and apoptosis of EPCs after transfection with a miR-210 inhibitor were observed. RESULTS The expression level of miR-210 in the T2DM group (5.83 ± 1.26) was significantly higher than that in the NC group (1.18 ± 0.54) (t = 17.26, P < 0.001). The number of EPCs was significantly lower in the T2DM group (39.3 ± 12.6)/106 cells than that in the NC group (76.2 ± 10.7)/106 cells (t = 10.49, P < 0.001). Spearman's correlation analysis showed that the expression of miR-210 in the peripheral blood of patients with T2DM was negatively correlated with the number of EPCs (r = -0.558, P = 0.001). Multiple linear stepwise regression analysis showed that the peripheral blood level of miR-210 was an independent correlation factor that affected the number of EPCs (P < 0.001). After transfection with the miR-210 inhibitor, the proliferation, adhesion, tube formation, and migration levels of EPCs in miR-210 inhibitor group were higher than those in untransfected type 2 diabetic group and miR-210 inhibitor NC group, whereas the apoptosis rate was lower than that in these groups, and these results were statistically significant (P < 0.05). CONCLUSION The increased expression of miR-210 in patients with T2DM may be related to the decreased number and function of EPCs in peripheral blood.
Collapse
Affiliation(s)
- Xueting Li
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Zeguo Jia
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Xiaotong Zhao
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Murong Xu
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Mingwei Chen
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, PR China; Institute of traditional Chinese medicine for the prevention and control of diabetes, Anhui Academy of Chinese Medicine, Hefei, Anhui 230032, PR China.
| |
Collapse
|
63
|
Icli B, Li H, Pérez-Cremades D, Wu W, Ozdemir D, Haemmig S, Guimaraes RB, Manica A, Marchini JF, Orgill DP, Feinberg MW. MiR-4674 regulates angiogenesis in tissue injury by targeting p38K signaling in endothelial cells. Am J Physiol Cell Physiol 2020; 318:C524-C535. [PMID: 31913696 PMCID: PMC7099516 DOI: 10.1152/ajpcell.00542.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/27/2019] [Accepted: 01/03/2020] [Indexed: 01/22/2023]
Abstract
Neoangiogenesis is critical for tissue repair in response to injury such as myocardial ischemia or dermal wound healing. MicroRNAs are small noncoding RNAs and important regulators of angiogenesis under physiological and pathological disease states. Therefore, identification of microRNAs that may restore impaired angiogenesis in response to tissue injury may provide new targets for therapy. Using a microRNA microarray profiling approach, we identified a human-specific microRNA, miR-4674, that was significantly decreased in patients after myocardial tissue injury and had an endothelial cell (EC)-enriched expression pattern. Functionally, overexpression of miR-4674 markedly attenuated EC proliferation, migration, network tube formation, and spheroid sprouting, whereas blockade of miR-4674 had the opposite effects. Transcriptomic profiling, gene set enrichment analyses, bioinformatics, 3'-untranslated region (3'-UTR) reporter and microribonucleoprotein immunoprecipitation (miRNP-IP) assays, and small interfering RNA dependency studies revealed that miR-4674 regulates VEGF stimulated-p38 mitogen-activated protein kinase (MAPK) signaling and targets interleukin 1 receptor-associated kinase 1 (Irak1) and BICD cargo adaptor 2 (Bicd2) in ECs. Furthermore, Irak1 and Bicd2 were necessary for miR-4674-driven EC proliferation and migration. Finally, neutralization of miR-4674 increased angiogenesis, Irak1 and Bicd2 expression, and p38 phosphorylation in human skin organoids as a model of tissue injury. Collectively, targeting miR-4674 may provide a novel therapeutic target for tissue repair in pathological disease states associated with impaired angiogenesis.
Collapse
Affiliation(s)
- Basak Icli
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hao Li
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel Pérez-Cremades
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Physiology, University of Valencia and Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana (INCLIVA) Biomedical Research Institute, Valencia, Spain
| | - Winona Wu
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Denizhan Ozdemir
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Medical Biology, Hacettepe University, Ankara, Turkey
| | - Stefan Haemmig
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raphael Boesch Guimaraes
- Instituto de Cardiologia do Rio Grande do Sul, Fundação Universitária de Cardiologia (ICFUC), Porto Alegre, Rio Grande do Sul, Brazil
| | - Andre Manica
- Instituto de Cardiologia do Rio Grande do Sul, Fundação Universitária de Cardiologia (ICFUC), Porto Alegre, Rio Grande do Sul, Brazil
| | - Julio F Marchini
- Heart Institute, University of São Paulo Medical School, São Paulo, Brazil
| | - Dennis P Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
64
|
Zheng X, Fu X, Wang K, Wang M. Deep neural networks for human microRNA precursor detection. BMC Bioinformatics 2020; 21:17. [PMID: 31931701 PMCID: PMC6958766 DOI: 10.1186/s12859-020-3339-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Abstract
Background MicroRNAs (miRNAs) play important roles in a variety of biological processes by regulating gene expression at the post-transcriptional level. So, the discovery of new miRNAs has become a popular task in biological research. Since the experimental identification of miRNAs is time-consuming, many computational tools have been developed to identify miRNA precursor (pre-miRNA). Most of these computation methods are based on traditional machine learning methods and their performance depends heavily on the selected features which are usually determined by domain experts. To develop easily implemented methods with better performance, we investigated different deep learning architectures for the pre-miRNAs identification. Results In this work, we applied convolution neural networks (CNN) and recurrent neural networks (RNN) to predict human pre-miRNAs. We combined the sequences with the predicted secondary structures of pre-miRNAs as input features of our models, avoiding the feature extraction and selection process by hand. The models were easily trained on the training dataset with low generalization error, and therefore had satisfactory performance on the test dataset. The prediction results on the same benchmark dataset showed that our models outperformed or were highly comparable to other state-of-the-art methods in this area. Furthermore, our CNN model trained on human dataset had high prediction accuracy on data from other species. Conclusions Deep neural networks (DNN) could be utilized for the human pre-miRNAs detection with high performance. Complex features of RNA sequences could be automatically extracted by CNN and RNN, which were used for the pre-miRNAs prediction. Through proper regularization, our deep learning models, although trained on comparatively small dataset, had strong generalization ability.
Collapse
Affiliation(s)
- Xueming Zheng
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xingli Fu
- Jiangsu University Health Science Center, Jiangsu University, Zhenjiang, China
| | - Kaicheng Wang
- Intensive Care Unit, HuiShan People's Hospital of Wuxi, Wuxi, Jiangsu Province, China
| | - Meng Wang
- School of Computer Science, Jiangsu University of Science and Technology, Zhenjiang, China.
| |
Collapse
|
65
|
van der Kwast RV, Quax PH, Nossent AY. An Emerging Role for isomiRs and the microRNA Epitranscriptome in Neovascularization. Cells 2019; 9:cells9010061. [PMID: 31881725 PMCID: PMC7017316 DOI: 10.3390/cells9010061] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 02/06/2023] Open
Abstract
Therapeutic neovascularization can facilitate blood flow recovery in patients with ischemic cardiovascular disease, the leading cause of death worldwide. Neovascularization encompasses both angiogenesis, the sprouting of new capillaries from existing vessels, and arteriogenesis, the maturation of preexisting collateral arterioles into fully functional arteries. Both angiogenesis and arteriogenesis are highly multifactorial processes that require a multifactorial regulator to be stimulated simultaneously. MicroRNAs can regulate both angiogenesis and arteriogenesis due to their ability to modulate expression of many genes simultaneously. Recent studies have revealed that many microRNAs have variants with altered terminal sequences, known as isomiRs. Additionally, endogenous microRNAs have been identified that carry biochemically modified nucleotides, revealing a dynamic microRNA epitranscriptome. Both types of microRNA alterations were shown to be dynamically regulated in response to ischemia and are able to influence neovascularization by affecting the microRNA’s biogenesis, or even its silencing activity. Therefore, these novel regulatory layers influence microRNA functioning and could provide new opportunities to stimulate neovascularization. In this review we will highlight the formation and function of isomiRs and various forms of microRNA modifications, and discuss recent findings that demonstrate that both isomiRs and microRNA modifications directly affect neovascularization and vascular remodeling.
Collapse
Affiliation(s)
- Reginald V.C.T. van der Kwast
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Paul H.A. Quax
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - A. Yaël Nossent
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Laboratory Medicine and Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence:
| |
Collapse
|
66
|
Chen L, Wang X, Qu X, Pan L, Wang Z, Lu Y, Hu H. Activation of the STAT3/microRNA-21 pathway participates in angiotensin II-induced angiogenesis. J Cell Physiol 2019; 234:19640-19654. [PMID: 30950039 PMCID: PMC6767590 DOI: 10.1002/jcp.28564] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 12/26/2022]
Abstract
Angiotensin II (AngII) facilitates angiogenesis that is associated with the continuous progression of atherosclerotic plaques, but the underlying mechanisms are still not fully understood. Several microRNAs (miRNAs) have been shown to promote angiogenesis; however, whether miRNAs play a crucial role in AngII-induced angiogenesis remains unclear. This study evaluated the functional involvement of miRNA-21 (miR-21) in the AngII-mediated proangiogenic response in human microvascular endothelial cells (HMECs). We found that AngII exerted a proangiogenic role, indicated by the promotion of proliferation, migration, and tube formation in HMECs. Next, miR-21 was found to be upregulated in AngII-treated HMECs, and its specific inhibitor potently blocked the proangiogenic effects of AngII. Subsequently, we focused on the constitutive activation of STAT3 in the AngII-mediated proangiogenic process. Bioinformatic analysis indicated that STAT3 acted as a transcription factor initiating miR-21 expression, which was verified by ChIP-PCR. A reporter assay further identified three functional binding sites of STAT3 in the miR-21 promoter region. Moreover, phosphatase and tensin homolog (PTEN) was recognized as a target of miR-21, and STAT3 inhibition restored AngII-induced reduction in PTEN. Similarly, the STAT3/miR-21 axis was shown to mediate AngII-provoked angiogenesis in vivo, which was demonstrated by using the appropriate inhibitors. Our data suggest that AngII was involved in proangiogenic responses through miR-21 upregulation and reduced PTEN expression, which was, at least in part, linked to STAT3 signaling. The present study provides novel insights into AngII-induced angiogenesis and suggests potential treatment strategies for attenuating the progression of atherosclerotic lesions and preventing atherosclerosis complications.
Collapse
Affiliation(s)
- Li‐Yuan Chen
- Department of CardiologySouthwest Hospital, Third Military Medical UniversityChongqingChina
| | - Xue Wang
- Department of Occupational HealthThird Military Medical UniversityChongqingChina
| | - Xiao‐Long Qu
- Department of CardiologySouthwest Hospital, Third Military Medical UniversityChongqingChina
| | - Li‐Na Pan
- Department of CardiologySouthwest Hospital, Third Military Medical UniversityChongqingChina
| | - Ze‐Yang Wang
- Department of CardiologySouthwest Hospital, Third Military Medical UniversityChongqingChina
| | - Yong‐Hui Lu
- Department of Occupational HealthThird Military Medical UniversityChongqingChina
| | - Hou‐Yuan Hu
- Department of CardiologySouthwest Hospital, Third Military Medical UniversityChongqingChina
| |
Collapse
|
67
|
Zhang C, Liao P, Liang R, Zheng X, Jian J. Epigallocatechin gallate prevents mitochondrial impairment and cell apoptosis by regulating miR-30a/p53 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 61:152845. [PMID: 31029907 DOI: 10.1016/j.phymed.2019.152845] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/17/2019] [Accepted: 01/26/2019] [Indexed: 06/09/2023]
Abstract
PURPOSE This study was designed to investigate whether EGCG prevents cardiac I/R mitochondrial impairment and cell apoptosis by regulating miR-30a/p53 axis. METHODS The H9c2 cardiomyocytes hypoxia/reoxygenation (H/R) model in vitro and myocardial ischemia /reperfusion (I/R) model in vivo were made, with or without EGCG treatment. The levels of I/R-induced creatine kinase-MB (CK-MB) and the release of lactate dehydrogenase (LDH), as well as the adenosine triphosphate (ATP) and cardiac functional impairment were examined. Stablely transfecting miR-30a mimic or inhibitor in H9c2 cardiomyocytes was built. The expression of miR-30a, p53 and related proteins in cells was measured by western blotting and qRT-PCR. Cell viability and apoptosis were examined using CCK-8 assay and flow cytometry. The content of reactive oxygen species (ROS), mitochondrial permeability transition pores (MPTP) opening and mitochondrial transmembrane potential (ΔΨm) in cells was measured by fluorescent probes. The levels of miR-30a and p53, some related proteins expression and apoptosis in the cardiac muscle tissues were determined by quantitative real-time PCR (qRT-PCR), H&E staining, western blotting and TUNEL assays. RESULTS We found that EGCG preconditioning significantly decreased the levels of CK-MB and LDH, increased the activity of ATP, reduced the apoptotic rate and partially preserved heart function. Furthermore, EGCG decreased ROS levels, MPTP opening and depolarization of ΔΨm, and improved the activity of post-I/R cardiomyocyte. The beneficial effect of EGCG was associated with restored levels of miR-30a expression in the I/R injury that correspond to p53 mRNA downregulation. The regulatory effect of EGCG was greatly enhanced by miR-30a mimic and suppressed by miR-30a inhibitor. More importantly, EGCG pretreatment inhibited the expression of mitochondrial apoptotic related proteins downstream of the miR-30a/p53 pathway. CONCLUSION This study demonstrated that EGCG pretreatment may attenuate mitochondrial impairment and myocardial apoptosis by regulation of miR-30a/p53 axis.
Collapse
Affiliation(s)
- Chan Zhang
- Xiangya Hospital of Centre-south University, Changsha, Hunan 410000, China
| | - Ping Liao
- Department of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Ronggan Liang
- Department of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Xiaojia Zheng
- Department of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Jie Jian
- Department of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, China.
| |
Collapse
|
68
|
Bowler E, Oltean S. Alternative Splicing in Angiogenesis. Int J Mol Sci 2019; 20:E2067. [PMID: 31027366 PMCID: PMC6540211 DOI: 10.3390/ijms20092067] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing of pre-mRNA allows the generation of multiple splice isoforms from a given gene, which can have distinct functions. In fact, splice isoforms can have opposing functions and there are many instances whereby a splice isoform acts as an inhibitor of canonical isoform function, thereby adding an additional layer of regulation to important processes. Angiogenesis is an important process that is governed by alternative splicing mechanisms. This review focuses on the alternative spliced isoforms of key genes that are involved in the angiogenesis process; VEGF-A, VEGFR1, VEGFR2, NRP-1, FGFRs, Vasohibin-1, Vasohibin-2, HIF-1α, Angiopoietin-1 and Angiopoietin-2.
Collapse
Affiliation(s)
- Elizabeth Bowler
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter EX4 4PY, UK.
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter EX4 4PY, UK.
| |
Collapse
|
69
|
Icli B, Wu W, Ozdemir D, Li H, Haemmig S, Liu X, Giatsidis G, Cheng HS, Avci SN, Kurt M, Lee N, Guimaraes RB, Manica A, Marchini JF, Rynning SE, Risnes I, Hollan I, Croce K, Orgill DP, Feinberg MW. MicroRNA-135a-3p regulates angiogenesis and tissue repair by targeting p38 signaling in endothelial cells. FASEB J 2019; 33:5599-5614. [PMID: 30668922 PMCID: PMC6436660 DOI: 10.1096/fj.201802063rr] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/02/2019] [Indexed: 12/26/2022]
Abstract
Angiogenesis is a critical process in repair of tissue injury that is regulated by a delicate balance between pro- and antiangiogenic factors. In disease states associated with impaired angiogenesis, we identified that miR-135a-3p is rapidly induced and serves as an antiangiogenic microRNA (miRNA) by targeting endothelial cell (EC) p38 signaling in vitro and in vivo. MiR-135a-3p overexpression significantly inhibited EC proliferation, migration, and network tube formation in matrigel, whereas miR-135-3p neutralization had the opposite effects. Mechanistic studies using transcriptomic profiling, bioinformatics, 3'-UTR reporter and miRNA ribonucleoprotein complex -immunoprecipitation assays, and small interfering RNA dependency studies revealed that miR-135a-3p inhibits the p38 signaling pathway in ECs by targeting huntingtin-interacting protein 1 (HIP1). Local delivery of miR-135a-3p inhibitors to wounds of diabetic db/db mice markedly increased angiogenesis, granulation tissue thickness, and wound closure rates, whereas local delivery of miR-135a-3p mimics impaired these effects. Finally, through gain- and loss-of-function studies in human skin organoids as a model of tissue injury, we demonstrated that miR-135a-3p potently modulated p38 signaling and angiogenesis in response to VEGF stimulation by targeting HIP1. These findings establish miR-135a-3p as a pivotal regulator of pathophysiological angiogenesis and tissue repair by targeting a VEGF-HIP1-p38K signaling axis, providing new targets for angiogenic therapy to promote tissue repair.-Icli, B., Wu, W., Ozdemir, D., Li, H., Haemmig, S., Liu, X., Giatsidis, G., Cheng, H. S., Avci, S. N., Kurt, M., Lee, N., Guimaraes, R. B., Manica, A., Marchini, J. F., Rynning, S. E., Risnes, I., Hollan, I., Croce, K., Orgill, D. P., Feinberg, M. W. MicroRNA-135a-3p regulates angiogenesis and tissue repair by targeting p38 signaling in endothelial cells.
Collapse
Affiliation(s)
- Basak Icli
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Winona Wu
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Denizhan Ozdemir
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Biology, Hacettepe University, Ankara, Turkey
| | - Hao Li
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stefan Haemmig
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xin Liu
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Giorgio Giatsidis
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Henry S. Cheng
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Seyma Nazli Avci
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Merve Kurt
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nathan Lee
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Raphael Boesche Guimaraes
- Instituto de Cardiologia do Rio Grande do Sul, Fundação Universitária de Cardiologia (ICFUC), Porto Alegre, Rio Grande do Sul, Brazil
| | - Andre Manica
- Instituto de Cardiologia do Rio Grande do Sul, Fundação Universitária de Cardiologia (ICFUC), Porto Alegre, Rio Grande do Sul, Brazil
| | - Julio F. Marchini
- Heart Institute, University of São Paulo Medical School, São Paulo, Brazil
| | - Stein Erik Rynning
- Department of Cardiac Surgery, LHL Hospital Gardermoen, Jessheim, Norway
| | - Ivar Risnes
- Department of Cardiac Surgery, LHL Hospital Gardermoen, Jessheim, Norway
| | - Ivana Hollan
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Rheumatology Department, Lillehamer Hospital for Rheumatic Diseases, Lillehamer, Norway
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Kevin Croce
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dennis P. Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark W. Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
70
|
Fang Y, Sun B, Wang J, Wang Y. miR-622 inhibits angiogenesis by suppressing the CXCR4-VEGFA axis in colorectal cancer. Gene 2019; 699:37-42. [PMID: 30851425 DOI: 10.1016/j.gene.2019.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023]
Abstract
Angiogenesis is essential for tumor metastasis. Our previous study has revealed that miR-622 inhibits colorectal cancer (CRC) metastasis. Here, we aimed to explore the effects and potential molecular mechanisms of action of miR-622 on angiogenesis. We found that overexpression of miR-622 inhibited CRC angiogenesis in vitro, according to suppression of proliferation, migration, tube formation, and invasiveness of human umbilical vein endothelial cells (HUVECs) treated with a tumor cell-conditioned medium derived from Caco-2 or HT-29 cells. Likewise, enhanced miR-622 expression suppressed CRC angiogenesis in vivo as determined by the measurement of Ki67 and VEGFA levels and microvessel density (by immunostaining). CXCR4, encoding a positive regulator of vascular endothelial growth factor A (VEGFA), was shown to be a direct target of miR-622. Overexpression of CXCR4 attenuated the inhibition of VEGFA expression by miR-622 and reversed the loss of tumor angiogenesis caused by miR-622. Taken together, these data show that miR-622 inhibits CRC angiogenesis by suppressing the CXCR4-VEGFA signaling axis, which represents a promising target for developing a new therapeutic strategy against CRC.
Collapse
Affiliation(s)
- Yantian Fang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bo Sun
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiangli Wang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanong Wang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
71
|
Zheng X, Xu S, Zhang Y, Huang X. Nucleotide-level Convolutional Neural Networks for Pre-miRNA Classification. Sci Rep 2019; 9:628. [PMID: 30679648 PMCID: PMC6346112 DOI: 10.1038/s41598-018-36946-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/06/2018] [Indexed: 12/23/2022] Open
Abstract
Due to the biogenesis difference, miRNAs can be divided into canonical microRNAs and mirtrons. Compared to canonical microRNAs, mirtrons are less conserved and hard to be identified. Except stringent annotations based on experiments, many in silico computational methods have be developed to classify miRNAs. Although several machine learning classifiers delivered high classification performance, all the predictors depended heavily on the selection of calculated features. Here, we introduced nucleotide-level convolutional neural networks (CNNs) for pre-miRNAs classification. By using "one-hot" encoding and padding, pre-miRNAs were converted into matrixes with the same shape. The convolution and max-pooling operations can automatically extract features from pre-miRNAs sequences. Evaluation on test dataset showed that our models had a satisfactory performance. Our investigation showed that it was feasible to apply CNNs to extract features from biological sequences. Since there are many hyperparameters can be tuned in CNNs, we believe that the performance of nucleotide-level convolutional neural networks can be greatly improved in the future.
Collapse
Affiliation(s)
- Xueming Zheng
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Shungao Xu
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinxiang Huang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
72
|
Haybar H, Rezaeeyan H, Shahjahani M, Shirzad R, Saki N. T‐bet transcription factor in cardiovascular disease: Attenuation or inflammation factor? J Cell Physiol 2018; 234:7915-7922. [DOI: 10.1002/jcp.27935] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Hadi Rezaeeyan
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Mohammad Shahjahani
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Reza Shirzad
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| |
Collapse
|
73
|
Xu ZM, Huang F, Huang WQ. Angiogenic lncRNAs: A potential therapeutic target for ischaemic heart disease. Life Sci 2018; 211:157-171. [PMID: 30219334 DOI: 10.1016/j.lfs.2018.09.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/31/2018] [Accepted: 09/09/2018] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (LncRNAs) are involved in biological processes and the pathology of diseases and represent an important biomarker or therapeutic target for disease. Emerging evidence has suggested that lncRNAs modulate angiogenesis by regulating the angiogenic cell process-including vascular endothelial cells (VECs); stem cells, particularly bone marrow-derived stem cells, endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs); and vascular smooth muscle cells (VSMCs)-and participating in ischaemic heart disease (IHD). Therapeutic angiogenesis as an alternative therapy to promote coronary collateral circulation has been demonstrated to significantly improve the prognosis and quality of life of patients with IHD in past decades. Therefore, lncRNAs are likely to represent a novel therapeutic target for IHD through regulation of the angiogenesis process. This review summarizes the classification and functions of lncRNAs and their roles in regulating angiogenesis and in IHD, in the context of an overview of therapeutic angiogenesis in clinical trials.
Collapse
Affiliation(s)
- Zhi-Meng Xu
- Department of Geriatric Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Feng Huang
- Institute of Cardiovascular Diseases & Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Wei-Qiang Huang
- Department of Geriatric Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China.
| |
Collapse
|