51
|
[Pathophysiology of bone metastases and new molecular targets involved in bone remodelling]. Bull Cancer 2014; 100:1083-91. [PMID: 24152978 DOI: 10.1684/bdc.2013.1836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bone metastases are common complications of cancers. These skeletal lesions are usually osteolytic (excess of bone destruction), osteosclerostic (excess of bone formation) or mixed. Metastatic cancer cells residing in the bone marrow alter the functions of bone-resorbing (osteoclasts) and bone-forming (osteoblasts) cells and hijack signals coming from the bone matrix. In this review, we first described cellular and molecular mechanisms that drive cancer cells to colonize the bone marrow. We next show how cancer cells alter bone remodelling to promote the formation of osteolytic or osteosclerotic lesions.
Collapse
|
52
|
Gutierrez-Arenas O, Eriksson O, Hellgren Kotaleski J. Segregation and crosstalk of D1 receptor-mediated activation of ERK in striatal medium spiny neurons upon acute administration of psychostimulants. PLoS Comput Biol 2014; 10:e1003445. [PMID: 24499932 PMCID: PMC3907292 DOI: 10.1371/journal.pcbi.1003445] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 12/06/2013] [Indexed: 12/29/2022] Open
Abstract
The convergence of corticostriatal glutamate and dopamine from the midbrain in the striatal medium spiny neurons (MSN) triggers synaptic plasticity that underlies reinforcement learning and pathological conditions such as psychostimulant addiction. The increase in striatal dopamine produced by the acute administration of psychostimulants has been found to activate not only effectors of the AC5/cAMP/PKA signaling cascade such as GluR1, but also effectors of the NMDAR/Ca(2+)/RAS cascade such as ERK. The dopamine-triggered effects on both these cascades are mediated by D1R coupled to Golf but while the phosphorylation of GluR1 is affected by reductions in the available amount of Golf but not of D1R, the activation of ERK follows the opposite pattern. This segregation is puzzling considering that D1R-induced Golf activation monotonically increases with DA and that there is crosstalk from the AC5/cAMP/PKA cascade to the NMDAR/Ca(2+)/RAS cascade via a STEP (a tyrosine phosphatase). In this work, we developed a signaling model which accounts for this segregation based on the assumption that a common pool of D1R and Golf is distributed in two D1R/Golf signaling compartments. This model integrates a relatively large amount of experimental data for neurons in vivo and in vitro. We used it to explore the crosstalk topologies under which the sensitivities of the AC5/cAMP/PKA signaling cascade to reductions in D1R or Golf are transferred or not to the activation of ERK. We found that the sequestration of STEP by its substrate ERK together with the insensitivity of STEP activity on targets upstream of ERK (i.e. Fyn and NR2B) to PKA phosphorylation are able to explain the experimentally observed segregation. This model provides a quantitative framework for simulation based experiments to study signaling required for long term potentiation in MSNs.
Collapse
Affiliation(s)
- Omar Gutierrez-Arenas
- School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Olivia Eriksson
- Department of Numerical Analysis and Computer Science, Stockholm University, Stockholm, Sweden
| | - Jeanette Hellgren Kotaleski
- School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Numerical Analysis and Computer Science, Stockholm University, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
53
|
Wood SL, Brown JE. The Application of ‘Omics’ Techniques for Cancers That Metastasise to Bone: From Biological Mechanism to Biomarkers. CANCER METASTASIS - BIOLOGY AND TREATMENT 2014:125-153. [DOI: 10.1007/978-94-007-7569-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
54
|
Lamour V, Nokin MJ, Henry A, Castronovo V, Bellahcène A. [SIBLING proteins: molecular tools for tumor progression and angiogenesis]. Med Sci (Paris) 2013; 29:1018-25. [PMID: 24280506 DOI: 10.1051/medsci/20132911019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The small integrin-binding ligand N-linked glycoprotein (SIBLING) family consists of osteopontin (OPN), bonesialoprotein (BSP), dentin matrix protein 1 (DMP1), dentin sialophosphoprotein (DSPP) and matrix extracellular phosphoglycoprotein (MEPE). These proteins, initially identified in bone and teeth, share many structural characteristics. It is now well established that they are over expressed in many tumors and play a critical role at different steps of cancer development. In this review, we describe the roles of SIBLING proteins at different stages of cancer progression including cancer cell adhesion, proliferation, migration, invasion, metastasis and angiogenesis.
Collapse
Affiliation(s)
- Virginie Lamour
- Laboratoire de recherche sur les métastases, GIGA (groupe interdisciplinaire de génoprotéomique appliquée)-Cancer, Université de Liège, Building 23, Sart Tilman, 4000 Liège, Belgique
| | | | | | | | | |
Collapse
|
55
|
Pantano F, Zoccoli A, Iuliani M, Fioramonti M, Lanzetta G, Tonini G, Santini D. Targeting Bone Metastases: New Drugs for New Targets. Clin Rev Bone Miner Metab 2013. [DOI: 10.1007/s12018-013-9150-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
56
|
Razaq W. Bone Targeted Therapies for Bone Metastasis in Breast Cancer. J Clin Med 2013; 2:176-87. [PMID: 26237142 PMCID: PMC4470142 DOI: 10.3390/jcm2040176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/07/2013] [Accepted: 09/10/2013] [Indexed: 02/06/2023] Open
Abstract
Cancer metastasis to the bone develops commonly in patients with various malignancies, and is a major cause of morbidity and diminished quality of life in many affected patients. Emerging treatments for metastatic bone disease have arisen from advances in our understanding of the unique cellular and molecular mechanisms that contribute to the bone metastasis. The tendency of cancer cells to metastasize to bone is probably the end result of many factors including vascular pathways, the highly vascular nature of the bone marrow (which increases the probability that cancer cells will be deposited in bone marrow capillaries), and molecular characteristics of the cancer cells that allow them to adapt to the bone marrow microenvironment. The goals of treating osseous metastases are manifold. Proper treatment can lead to significant improvements in pain control and function, and maintain skeletal integrity. The treatment plan requires a multidisciplinary approach. Widespread metastatic disease necessitates systemic therapy, while a localized problem is best managed with surgery, external beam radiotherapy, or both. Patients with bone metastasis can have prolonged survival, and proper management can have a significant impact on their quality of life. We will review the factors in this article that are promising molecular bone-targeted therapies or will be likely targets for future therapeutic intervention to restore bone remodeling and suppress tumor growth.
Collapse
Affiliation(s)
- Wajeeha Razaq
- Stephenson Cancer Center, The University of Oklahoma, Norman, OK 73104, USA.
| |
Collapse
|
57
|
Santana-Codina N, Carretero R, Sanz-Pamplona R, Cabrera T, Guney E, Oliva B, Clezardin P, Olarte OE, Loza-Alvarez P, Méndez-Lucas A, Perales JC, Sierra A. A transcriptome-proteome integrated network identifies endoplasmic reticulum thiol oxidoreductase (ERp57) as a hub that mediates bone metastasis. Mol Cell Proteomics 2013; 12:2111-25. [PMID: 23625662 DOI: 10.1074/mcp.m112.022772] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bone metastasis is the most common distant relapse in breast cancer. The identification of key proteins involved in the osteotropic phenotype would represent a major step toward the development of new prognostic markers and therapeutic improvements. The aim of this study was to characterize functional phenotypes that favor bone metastasis in human breast cancer. We used the human breast cancer cell line MDA-MB-231 and its osteotropic BO2 subclone to identify crucial proteins in bone metastatic growth. We identified 31 proteins, 15 underexpressed and 16 overexpressed, in BO2 cells compared with parental cells. We employed a network-modeling approach in which these 31 candidate proteins were prioritized with respect to their potential in metastasis formation, based on the topology of the protein-protein interaction network and differential expression. The protein-protein interaction network provided a framework to study the functional relationships between biological molecules by attributing functions to genes whose functions had not been characterized. The combination of expression profiles and protein interactions revealed an endoplasmic reticulum-thiol oxidoreductase, ERp57, functioning as a hub that retained four down-regulated nodes involved in antigen presentation associated with the human major histocompatibility complex class I molecules, including HLA-A, HLA-B, HLA-E, and HLA-F. Further analysis of the interaction network revealed an inverse correlation between ERp57 and vimentin, which influences cytoskeleton reorganization. Moreover, knockdown of ERp57 in BO2 cells confirmed its bone organ-specific prometastatic role. Altogether, ERp57 appears as a multifunctional chaperone that can regulate diverse biological processes to maintain the homeostasis of breast cancer cells and promote the development of bone metastasis.
Collapse
Affiliation(s)
- Naiara Santana-Codina
- Biological Clues of the Invasive and Metastatic Phenotype Group, Bellvitge Biomedical Research Institute IDIBELL, L'Hospitalet de Llobregat, Barcelona E-08908, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Dumont B, Castronovo V, Peulen O, Blétard N, Clézardin P, Delvenne P, De Pauw EA, Turtoi A, Bellahcène A. Differential proteomic analysis of a human breast tumor and its matched bone metastasis identifies cell membrane and extracellular proteins associated with bone metastasis. J Proteome Res 2012; 11:2247-60. [PMID: 22356681 DOI: 10.1021/pr201022n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The classical fate of metastasizing breast cancer cells is to seed and form secondary colonies in bones. The molecules closely associated with these processes are predominantly present at the cell surface and in the extracellular space, establishing the first contacts with the target tissue. In this study, we had the rare opportunity to analyze a bone metastatic lesion and its corresponding breast primary tumor obtained simultaneously from the same patient. Using mass spectrometry, we undertook a proteomic study on cell surface and extracellular protein-enriched material. We provide a repertoire of significantly modulated proteins, some with yet unknown roles in the bone metastatic process as well as proteins notably involved in cancer cell invasiveness and in bone metabolism. The comparison of these clinical data with those previously obtained using a human osteotropic breast cancer cell line highlighted an overlapping group of proteins. Certain differentially expressed proteins are validated in the present study using immunohistochemistry on a retrospective collection of breast tumors and matched bone metastases. Our exclusive set of selected proteins supports the setup of further investigations on both clinical samples and experimental bone metastasis models that will help to reveal the finely coordinated expression of proteins that favor the development of metastases in the bone microenvironment.
Collapse
Affiliation(s)
- Bruno Dumont
- Metastasis Research Laboratory, Department of Pathology, University of Liège, Bat. B23, CHU Sart Tilman Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Pourquoi certains cancers métastasent-ils préférentiellement à l’os ? ONCOLOGIE 2012. [DOI: 10.1007/s10269-011-2105-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
60
|
The gap junction protein Cx43 is involved in the bone-targeted metastatic behaviour of human prostate cancer cells. Clin Exp Metastasis 2011; 29:111-22. [PMID: 22080401 DOI: 10.1007/s10585-011-9434-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 11/01/2011] [Indexed: 01/20/2023]
Abstract
For decades, cancer was associated with gap-junction defects. However, more recently it appeared that the gap junction proteins (connexins) could be re-expressed and participate to cancer cell dissemination during the late stages of tumor progression. Since primary tumors of prostate cancer (PCa) are known to be connexin deficient, it was interesting to verify whether their bone-targeted metastatic behaviour could be influenced by the re-expression of the connexin type (connexin43) which is originally present in prostate tissue and highly expressed in bone where it participates to the differentiation of osteoblastic cells. Thus, we investigated the effect of the increased Cx43 expression, by retroviral infection, on the metastatic behaviour of two well-characterized cell lines (PC-3 and LNCaP) representing different stages of PCa progression. It appeared that Cx43 differently behaved in those cell lines and induced different phenotypes. In LNCaP, Cx43 was functional, localized at the plasma membrane and its high expression was correlated with a more aggressive phenotype both in vitro and in vivo. In particular, those Cx43-expressing LNCaP cells exhibited a high incidence of osteolytic metastases generated by bone xenografts in mice. Interestingly, LNCaP cells were also able to decrease the proliferation of cocultured osteoblastic cells. In contrast, the increased expression of Cx43 in PC-3 cells led to an unfunctional, cytoplasmic localization of the protein and was correlated with a reduction of proliferation, adhesion and invasion of the cells. In conclusion, the localization and the functionality of Cx43 may govern the ability of PCa cells to metastasize in bones.
Collapse
|
61
|
Abstract
Solid tumors derived from epithelial tissues (carcinomas) are responsible for 90% of all new cancers in Europe, and the main four tumor entities are breast, prostate, lung, and colon cancer. Present tumor staging is mainly based on local tumor extension, metastatic lymph node involvement, and evidence of overt distant metastasis obtained by imaging technologies. However, these staging procedures are not sensitive enough to detect early tumor cell dissemination as a key event in tumor progression. Many teams have therefore focused on the development of sensitive assays that allow the specific detection of single tumor cells or small amounts of cell-free tumor DNA in the peripheral blood of cancer patients. These methods allow the detection and characterization of early metastatic spread and will provide unique insights into the biology of metastatic progression of human tumors, including the effects of therapeutic interventions.
Collapse
Affiliation(s)
- Catherine Alix-Panabières
- University Medical Center, Saint-Eloi Hospital, Institute of Research in Biotherapy, Laboratory of Rare Human Circulating Cells, Montpellier, France.
| | | | | |
Collapse
|
62
|
Gnant M, Clézardin P. Direct and indirect anticancer activity of bisphosphonates: a brief review of published literature. Cancer Treat Rev 2011; 38:407-15. [PMID: 21983264 DOI: 10.1016/j.ctrv.2011.09.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/07/2011] [Accepted: 09/12/2011] [Indexed: 01/02/2023]
Abstract
The bone marrow microenvironment provides a site for cancer cells to evade systemic anticancer therapy. Dormant tumor micrometastases are believed to be the source of disease persistence and relapse; however, the exact characteristics of cancer stem cells vs. cancer cells with limited metastatic potential have yet to be elucidated. Bisphosphonates inhibit osteoclast-mediated bone resorption, are approved for treating malignant bone disease from advanced cancers, and have shown efficacy for preventing cancer treatment-induced bone loss. Altering the bone marrow microenvironment to make it less conducive to cancer cell survival is now emerging as an important means to prevent cancer recurrence. This review aims to distill the diverse literature and provide a brief overview of the numerous preclinical and early clinical studies of bisphosphonates demonstrating a variety of direct and indirect anticancer activities that affect both the tumor cell (the "seed") and surrounding microenvironment (the "soil"). Recently, zoledronic acid was found to improve disease-free survival and overall survival in some adjuvant breast cancer settings and prolonged survival in patients with multiple myeloma and other advanced cancers. In the prostate cancer setting, antiresorptive therapy was reported to delay the development of overt bone metastases. Ongoing studies will provide further insight regarding the anticancer potential of bisphosphonates and other antiresorptive agents.
Collapse
Affiliation(s)
- Michael Gnant
- Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | | |
Collapse
|
63
|
Aft R, Perez JR, Raje N, Hirsh V, Saad F. Could targeting bone delay cancer progression? Potential mechanisms of action of bisphosphonates. Crit Rev Oncol Hematol 2011; 82:233-48. [PMID: 21683613 DOI: 10.1016/j.critrevonc.2011.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 05/18/2011] [Accepted: 05/25/2011] [Indexed: 12/12/2022] Open
Abstract
Although dissemination may occur early in the course of many cancers, the development of overt metastases depends upon a variety of factors inherent to the cancer cells and the tissue(s) they colonize. The time lag between initial dissemination and established metastases could be several years, during which period the bone marrow may provide an unwitting sanctuary for disseminated tumor cells (DTCs). Survival in a dormant state within the bone marrow may help DTCs weather the effects of anticancer therapies and seed posttreatment relapses. The importance of the bone marrow for facilitating DTC survival may vary depending on the type of cancer and mechanisms of tumor cell dissemination. By altering the bone microenvironment, bisphosphonates may reduce DTC viability. Moreover, some bisphosphonates have demonstrated multiple anticancer activities. These multiple mechanisms may help explain the improvement in disease outcomes with the use of zoledronic acid in malignancies like breast cancer and multiple myeloma.
Collapse
Affiliation(s)
- Rebecca Aft
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
64
|
Doyen J, Alix-Panabières C, Hofman P, Parks SK, Chamorey E, Naman H, Hannoun-Lévi JM. Circulating tumor cells in prostate cancer: a potential surrogate marker of survival. Crit Rev Oncol Hematol 2011; 81:241-56. [PMID: 21680196 DOI: 10.1016/j.critrevonc.2011.05.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 03/23/2011] [Accepted: 05/18/2011] [Indexed: 02/07/2023] Open
Abstract
Prostate-specific antigen (PSA) levels in blood are widely used in prostate cancer (PCa) for the management of this disease at every stage of progression. Currently, PSA levels combined with clinical stage and Gleason score provide the best predictor of survival and the main element to monitor treatment efficiency. However, these areas could be improved by utilizing emerging biomarkers. Recently, circulating tumor cells (CTCs) and disseminating tumor cells (DTCs) have been detected in PCa and may be a new surrogate candidate. Here we provide a systematic review of the literature in order to describe the current evidence of CTC/DTC surrogacy regarding outcome of prostate cancer patients. We also discuss several markers that could be used to increase the sensitivity and specificity of CTC/DTC detection. CTC/DTC detection is performed using a wide variety of techniques. Initially, reverse transcriptase polymerase chain reaction (RT-PCR) based methods were utilized with weak correlation between their positive detection and patients' outcome. More recent immunological techniques have indicated a reproducible correlation with outcome. Such surrogate markers may enable clinicians to provide early detection for inefficient treatments and patients with poor prognosis that are candidates for treatment intensification. Dissecting the micrometastasis phenomenon in CTCs/DTCs is a key point to increase surrogacy of this biomarker.
Collapse
Affiliation(s)
- Jérôme Doyen
- Department of Radiation Oncology, Antoine-Lacassagne Cancer Center, Nice, France.
| | | | | | | | | | | | | |
Collapse
|
65
|
Gnant M, Hadji P. Prevention of bone metastases and management of bone health in early breast cancer. Breast Cancer Res 2010; 12:216. [PMID: 21172067 PMCID: PMC3046430 DOI: 10.1186/bcr2768] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Treatment options for women with early-stage breast cancer have never been better, and the addition of bisphosphonates to adjuvant therapy is a valuable new tool capable of substantially improving clinical outcomes for these women. Several recent studies demonstrated that the anticancer activity of bisphosphonates is not limited to bone, and can translate into a reduction in disease recurrence, including reductions in locoregional and distant metastases. In addition, bisphosphonates maintain bone health during adjuvant therapy; this may be especially important for women who are at high risk for fracture.
Collapse
Affiliation(s)
- Michael Gnant
- Department of Surgery, Medical University of Vienna, A-1090 Währinger Gürtel 18-20, Vienna, Austria
| | - Peyman Hadji
- Department of Endocrinology and Reproductive Medicine, Philipps University of Marburg, Universitäts Klinikum Giessen und Marburg, Standort Marburg Balderingstrasse, 35034 Marburg, Germany
| |
Collapse
|
66
|
David M, Wannecq E, Descotes F, Jansen S, Deux B, Ribeiro J, Serre CM, Grès S, Bendriss-Vermare N, Bollen M, Saez S, Aoki J, Saulnier-Blache JS, Clézardin P, Peyruchaud O. Cancer cell expression of autotaxin controls bone metastasis formation in mouse through lysophosphatidic acid-dependent activation of osteoclasts. PLoS One 2010; 5:e9741. [PMID: 20305819 PMCID: PMC2840030 DOI: 10.1371/journal.pone.0009741] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 02/26/2010] [Indexed: 02/02/2023] Open
Abstract
Background Bone metastases are highly frequent complications of breast cancers. Current bone metastasis treatments using powerful anti-resorbtive agents are only palliative indicating that factors independent of bone resorption control bone metastasis progression. Autotaxin (ATX/NPP2) is a secreted protein with both oncogenic and pro-metastatic properties. Through its lysosphospholipase D (lysoPLD) activity, ATX controls the level of lysophosphatidic acid (LPA) in the blood. Platelet-derived LPA promotes the progression of osteolytic bone metastases of breast cancer cells. We asked whether ATX was involved in the bone metastasis process. We characterized the role of ATX in osteolytic bone metastasis formation by using genetically modified breast cancer cells exploited on different osteolytic bone metastasis mouse models. Methodology/Principal Findings Intravenous injection of human breast cancer MDA-B02 cells with forced expression of ATX (MDA-B02/ATX) to inmmunodeficiency BALB/C nude mice enhanced osteolytic bone metastasis formation, as judged by increased bone loss, tumor burden, and a higher number of active osteoclasts at the metastatic site. Mouse breast cancer 4T1 cells induced the formation of osteolytic bone metastases after intracardiac injection in immunocompetent BALB/C mice. These cells expressed active ATX and silencing ATX expression inhibited the extent of osteolytic bone lesions and decreased the number of active osteoclasts at the bone metastatic site. In vitro, osteoclast differentiation was enhanced in presence of MDA-B02/ATX cell conditioned media or recombinant autotaxin that was blocked by the autotaxin inhibitor vpc8a202. In vitro, addition of LPA to active charcoal-treated serum restored the capacity of the serum to support RANK-L/MCSF-induced osteoclastogenesis. Conclusion/Significance Expression of autotaxin by cancer cells controls osteolytic bone metastasis formation. This work demonstrates a new role for LPA as a factor that stimulates directly cancer growth and metastasis, and osteoclast differentiation. Therefore, targeting the autotaxin/LPA track emerges as a potential new therapeutic approach to improve the outcome of patients with bone metastases.
Collapse
Affiliation(s)
- Marion David
- INSERM, U664, Lyon, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
- Faculté de Médecine Laennec, Lyon, France
| | | | - Françoise Descotes
- Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France
| | - Silvia Jansen
- Laboratory of Biosignaling and Therapeutics, Department of Molecular Cell Biology, University of Leuven, Leuven, Belgium
| | - Blandine Deux
- INSERM, U664, Lyon, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
- Faculté de Médecine Laennec, Lyon, France
| | - Johnny Ribeiro
- INSERM, U664, Lyon, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
- Faculté de Médecine Laennec, Lyon, France
| | - Claire-Marie Serre
- INSERM, U664, Lyon, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
- Faculté de Médecine Laennec, Lyon, France
| | | | | | - Mathieu Bollen
- Laboratory of Biosignaling and Therapeutics, Department of Molecular Cell Biology, University of Leuven, Leuven, Belgium
| | - Simone Saez
- Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France
| | | | | | - Philippe Clézardin
- INSERM, U664, Lyon, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
- Faculté de Médecine Laennec, Lyon, France
| | - Olivier Peyruchaud
- INSERM, U664, Lyon, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
- Faculté de Médecine Laennec, Lyon, France
- * E-mail:
| |
Collapse
|
67
|
Rose AAN, Siegel PM. Emerging therapeutic targets in breast cancer bone metastasis. Future Oncol 2010; 6:55-74. [DOI: 10.2217/fon.09.138] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the past decade, our understanding of the molecular mechanisms that underlie breast cancer pathology and progression has dramatically improved. Using this knowledge, we have identified additional targets and developed novel therapeutic interventions in breast cancer. Together, these translational research efforts are helping to usher us into an age of personalized cancer therapy. Metastasis to bone is a common and devastating consequence of breast cancer. Bisphosphonates, which represent the current gold standard in bone metastasis therapies, are being improved with newer and more efficacious generations of these compounds being developed. Breast cancer growth in the bone requires activation of various signaling pathways in both cancer cells and stromal cells, including those that are stimulated by TGF-β and RANKL, and mediated through the Src tyrosine kinase. Bone cells and cancer cells alike express promising targets for therapeutic intervention, including Cathepsin K, CXCR4 and GPNMB. In this article we discuss the molecular mechanisms behind these pro-metastatic molecules and review the most recent findings in the clinical development of their associated targeted therapies.
Collapse
Affiliation(s)
- April AN Rose
- Departments of Medicine, Goodman Cancer Centre, McGill University, QC H3A 1A3, Canada
| | - Peter M Siegel
- Departments of Medicine and Biochemistry, Goodman Cancer Centre, McGill University, 1160 Pine Ave. West, Room 513, Montréal, QC H3A 1A3, Canada
| |
Collapse
|
68
|
Grelier G, Voirin N, Ay AS, Cox DG, Chabaud S, Treilleux I, Léon-Goddard S, Rimokh R, Mikaelian I, Venoux C, Puisieux A, Lasset C, Moyret-Lalle C. Prognostic value of Dicer expression in human breast cancers and association with the mesenchymal phenotype. Br J Cancer 2009; 101:673-83. [PMID: 19672267 PMCID: PMC2736830 DOI: 10.1038/sj.bjc.6605193] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/21/2009] [Accepted: 06/30/2009] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Dicer, a ribonuclease, is the key enzyme required for the biogenesis of microRNAs and small interfering RNAs and is essential for both mammalian development and cell differentiation. Recent evidence indicates that Dicer may also be involved in tumourigenesis. However, no studies have examined the clinical significance of Dicer at both the RNA and the protein levels in breast cancer. METHODS In this study, the biological and prognostic value of Dicer expression was assessed in breast cancer cell lines, breast cancer progression cellular models, and in two well-characterised sets of breast carcinoma samples obtained from patients with long-term follow-up using tissue microarrays and quantitative reverse transcription-PCR. RESULTS We have found that Dicer protein expression is significantly associated with hormone receptor status and cancer subtype in breast tumours (ER P=0.008; PR P=0.019; cancer subtype P=0.023, luminal A P=0.0174). Dicer mRNA expression appeared to have an independent prognostic impact in metastatic disease (hazard ratio=3.36, P=0.0032). In the breast cancer cell lines, lower Dicer expression was found in cells harbouring a mesenchymal phenotype and in metastatic bone derivatives of a breast cancer cell line. These findings suggest that the downregulation of Dicer expression may be related to the metastatic spread of tumours. CONCLUSION Assessment of Dicer expression may facilitate prediction of distant metastases for patients suffering from breast cancer.
Collapse
Affiliation(s)
- G Grelier
- Université de Lyon, Université Lyon 1, ISPB, Lyon, F-69003, France
- Inserm, U590, Lyon, F-69008, France
- Centre Léon Bérard, Lyon, F-69008, France
| | - N Voirin
- Université de Lyon, Université Lyon 1, Faculté Grange Blanche, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, F-69373, France
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service d’Hygiène, Epidémiologie et Prévention, Lyon, F-69437, France
| | - A-S Ay
- Université de Lyon, Université Lyon 1, ISPB, Lyon, F-69003, France
- Inserm, U590, Lyon, F-69008, France
- Centre Léon Bérard, Lyon, F-69008, France
| | - D G Cox
- Inserm, U590, Lyon, F-69008, France
| | - S Chabaud
- Centre Léon Bérard, Département de Santé Publique, Lyon, F-69008, France
| | - I Treilleux
- Centre Léon Bérard, Service d’Anatomopathologie, Lyon, F-69008, France
| | - S Léon-Goddard
- Centre Léon Bérard, Service d’Anatomopathologie, Lyon, F-69008, France
| | - R Rimokh
- Inserm, U590, Lyon, F-69008, France
- Centre Léon Bérard, Lyon, F-69008, France
| | - I Mikaelian
- Université de Lyon, université Lyon 1, Faculté Grange Blanche, CNRS, UMR5201, Laboratoire de Génétique Moléculaire, Signalisation et Cancer, Lyon, F-69008, France
| | - C Venoux
- Université de Lyon, université Lyon 1, Faculté Grange Blanche, CNRS, UMR5201, Laboratoire de Génétique Moléculaire, Signalisation et Cancer, Lyon, F-69008, France
| | - A Puisieux
- Université de Lyon, Université Lyon 1, ISPB, Lyon, F-69003, France
- Inserm, U590, Lyon, F-69008, France
- Centre Léon Bérard, Lyon, F-69008, France
| | - C Lasset
- Université de Lyon, Université Lyon 1, Faculté Grange Blanche, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, F-69373, France
- Centre Léon Bérard, Département de Santé Publique, Lyon, F-69008, France
| | - C Moyret-Lalle
- Université de Lyon, Université Lyon 1, ISPB, Lyon, F-69003, France
- Inserm, U590, Lyon, F-69008, France
- Centre Léon Bérard, Lyon, F-69008, France
| |
Collapse
|
69
|
Cell membrane proteomic analysis identifies proteins differentially expressed in osteotropic human breast cancer cells. Neoplasia 2009; 10:1014-20. [PMID: 18714363 DOI: 10.1593/neo.08570] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 06/13/2008] [Accepted: 06/13/2008] [Indexed: 12/29/2022]
Abstract
Metastatic breast cancer cells are characterized by their high propensity to colonize the skeleton and form bone metastases, causing major morbidity and mortality. Identifying key proteins involved in the osteotropic phenotype would represent a major step toward the development of both new prognostic markers and new effective therapies. Cell surface proteins differentially expressed in cancer cells are preferred potential targets for antibody-based targeted therapies. In this study, using cell surface biotinylation and a mass spectrometric approach, we have compared the profile of accessible cell surface proteins between the human breast cancer cell line MDA-MB-231 and its highly osteotropic B02 subclone. This strategy allowed the identification of several proteins either up- or downregulated in the osteotropic cell line, and differential protein expressions were validated using antibody-based techniques. Class I HLAs were down-regulated in the bone metastatic variant, whereas alpha(v)beta(3) integrins, among others, were consistently up-regulated in this latter cell line. These results show that comprehensive profiling of the cell surface proteome of mother cancerous cell lines and derived organ-specific metastatic cell lines provides an effective approach for the identification of potential accessible marker proteins for both prognosis and antibody-based targeted therapies.
Collapse
|
70
|
Physiopathologie des métastases osseuses. ONCOLOGIE 2009. [DOI: 10.1007/s10269-008-0977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
71
|
Le Gall C, Bonnelye E, Clézardin P. Cathepsin K inhibitors as treatment of bone metastasis. Curr Opin Support Palliat Care 2008; 2:218-22. [PMID: 18685424 DOI: 10.1097/spc.0b013e32830baea9] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Cancer cells that metastasize to the skeleton are, on their own, rarely able to destroy bone. Instead, they stimulate the function of bone-degrading cells, the osteoclasts, leading to the formation of osteolytic lesions. The purpose of this review is to consider cathepsin K, a cysteine protease produced by osteoclasts, as a therapeutic target for the treatment of patients with osteolytic bone metastases. RECENT FINDINGS Cathepsin K plays a key role in osteoclast-mediated bone degradation. It is also produced by cancer cells that metastasize to bone where it functions in proteolytic pathways that promote cancer cell invasion. Highly selective and potent cathepsin K inhibitors have been recently developed and shown to be useful antiresorptive agents to treat osteoporosis. Moreover, preclinical studies show that cathepsin K inhibitors reduce breast cancer-induced osteolysis and skeletal tumor burden. This reduction of skeletal tumor burden is due to the antiresorptive activity of cathepsin K inhibitors, which in turn, deprive cancer cells of bone-derived growth factors that are required for tumor growth. SUMMARY Cathepsin K inhibitors are appropriate drugs to treat diseases associated with increased bone loss. However, their chronic use in treating osteoporosis may result in adverse effects because basic nitrogen-containing cathepsin K inhibitors accumulate within acidic organelles such as lysosomes, thereby inhibiting the activity of other cathepsins. These adverse effects should not, however, preclude the use of these drugs in life-threatening diseases such as bone metastasis.
Collapse
Affiliation(s)
- Céline Le Gall
- Institut National de la Santé et de la Recherche Médicale, Lyon, France
| | | | | |
Collapse
|
72
|
Takahashi M, Furihata M, Akimitsu N, Watanabe M, Kaul S, Yumoto N, Okada T. A highly bone marrow metastatic murine breast cancer model established through in vivo selection exhibits enhanced anchorage-independent growth and cell migration mediated by ICAM-1. Clin Exp Metastasis 2008; 25:517-29. [PMID: 18340424 DOI: 10.1007/s10585-008-9163-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 03/03/2008] [Indexed: 11/28/2022]
Abstract
To understand the mechanisms underlying bone marrow metastasis precisely, we established the highly metastatic 4T1E/M3 murine breast cancer cell line. 4T1 murine breast cancer cells were transfected with the neomycin resistance gene, selected in G418, intravenously injected into mice, and harvested from bone marrow. By repeating this protocol three times, we established the 4T1E/M3 cells. The clonality of 4T1E/M3 cells was markedly high confirmed by genomic southern analysis using neo-gene probe. When tissues harvested from mice after intravenous injection of 4T1E/M3 cells were examined histologically, markedly enhanced bone marrow metastasis was observed; 77% of spines from 4T1E/M3-injected mouse showed metastasis as compared to 14% metastasis seen with the parent cells. In vitro, 4T1E/M3 cells attached more strongly to the plastic plate and to bone marrow-derived endothelial cells. DNA micro arrays, real time RT-PCR and FACS analyses revealed that the expression of ICAM-1 and beta2 integrin was upregulated in 4T1E/M3 cells at both the mRNA and cell surface protein levels. 4T1E/M3 cells also showed greater anchorage-independent proliferation in soft agar, and migrated markedly faster than the parent cells in wound healing assays. Anti-ICAM-1 antibodies strongly inhibited both the colony formation and the migration activity of 4T1E/M3 suggesting the importance of the role of ICAM-1. Our newly established highly metastatic 4T1E/M3 cells may provide a potentially powerful tool to study the molecular mechanisms of bone marrow metastasis and to identify new molecular targets for therapeutic interventions.
Collapse
Affiliation(s)
- Munehisa Takahashi
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
73
|
Bellahcène A, Castronovo V, Ogbureke KUE, Fisher LW, Fedarko NS. Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nat Rev Cancer 2008; 8:212-26. [PMID: 18292776 PMCID: PMC2484121 DOI: 10.1038/nrc2345] [Citation(s) in RCA: 353] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Numerous components and pathways are involved in the complex interplay between cancer cells and their environment. The family of glycophosphoproteins comprising osteopontin, bone sialoprotein, dentin matrix protein 1, dentin sialophosphoprotein and matrix extracellular phosphoglycoprotein - small integrin-binding ligand N-linked glycoproteins (SIBLINGs) - are emerging as important players in many stages of cancer progression. From their detection in various human cancers to the demonstration of their key functional roles during malignant transformation, invasion and metastasis, the SIBLINGs are proteins with potential as diagnostic and prognostic tools, as well as new therapeutic targets.
Collapse
Affiliation(s)
- Akeila Bellahcène
- Metastasis Research Laboratory, University of Liege, Tour de Pathologie, -1, Bât. B23, Sart Tilman via 4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
74
|
Detry C, Lamour V, Castronovo V, Bellahcène A. CREB-1 and AP-1 transcription factors JunD and Fra-2 regulate bone sialoprotein gene expression in human breast cancer cells. Bone 2008; 42:422-31. [PMID: 18088579 DOI: 10.1016/j.bone.2007.10.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 10/01/2007] [Accepted: 10/24/2007] [Indexed: 10/22/2022]
Abstract
Bone sialoprotein (BSP) expression is detected in a variety of human osteotropic cancers. High expression of BSP in breast and prostate primary carcinomas is associated with progression and bone metastases development. In this study, we examined the transcriptional regulation of BSP gene expression in MDA-MB-231 and MCF-7 human breast cancer cells compared with Saos-2 human osteoblast-like cells. BSP human promoter deletion analyses delineated a -56/-84 region, which comprises a cAMP response element (CRE) that was sufficient for maximal promoter activity in breast cancer cell lines. We found that the basic fibroblast growth factor response element (FRE) also located in the proximal promoter was a crucial regulator of human BSP promoter activity in Saos-2 but not in breast cancer cells. Promoter activity experiments in combination with DNA mobility shift assays demonstrated that BSP promoter activity is under the control of the CRE element, through CREB-1, JunD and Fra-2 binding, in MDA-MB-231, MCF-7 and in Saos-2 cells. Forskolin, a protein kinase A pathway activator, failed to enhance BSP transcriptional activity suggesting that CRE site behaves as a constitutive rather than an inducible element in these cell lines. Over-expression of JunD and Fra-2 increased BSP promoter activity and upregulated endogenous BSP protein expression in MCF-7 and Saos-2 cells while siRNA-mediated inhibition of both factors expression significantly reduced BSP protein level in MDA-MB-231. Collectively, these data provide with new transcriptional mechanisms, implicating CREB and AP-1 factors, that control BSP gene expression in breast cancer cells.
Collapse
Affiliation(s)
- C Detry
- Metastasis Research Laboratory, Center of Experimental Cancer Research, University of Liège, Belgium
| | | | | | | |
Collapse
|
75
|
Abstract
There is an urgent need to understand distant metastases in breast cancer as they are the most lethal form of recurrence and a major cause of mortality in patients. Some predictors for distant metastases, including nodal status, tumor grade, and hormonal status, are useful in identifying patients at increased risk for distant metastases. Adjuvant endocrine therapy has been the treatment of choice for postmenopausal women with hormone-sensitive breast cancer, and some therapies have shown significant reductions in the risk of distant metastases. Skeletal metastases in breast cancer are treated with bisphosphonates with a certain level of success. With more new agents undergoing clinical trials, a thorough review of the specific and long-term safety of these agents is essential, as is a better understanding of the deterioration in the quality of life and cost concerns of patients who develop distant metastases. Gene-expression profiling is a new entrant in the field of distant metastases diagnosis, which is largely successful in defining gene signatures that predict the development of distant metastases. This review will discuss the biology and the impact of distant metastases on outcomes for patients with breast cancer; it also encompasses the current status, emerging focus, and future perspectives in treatment of skeletal metastases in patients with breast cancer.
Collapse
Affiliation(s)
- Shafaat A Rabbani
- Department of Medicine, McGill University Health Centre, Montreal, QC, Canada.
| | | |
Collapse
|
76
|
Rose AAN, Pepin F, Russo C, Abou Khalil JE, Hallett M, Siegel PM. Osteoactivin promotes breast cancer metastasis to bone. Mol Cancer Res 2007; 5:1001-14. [PMID: 17951401 DOI: 10.1158/1541-7786.mcr-07-0119] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The skeleton is a preferred site of metastasis in patients with disseminated breast cancer. We have used 4T1 mouse mammary carcinoma cells, which metastasize to bone from the mammary fat pads of immunocompetent mice, to identify novel genes involved in this process. In vivo selection of parental cells resulted in the isolation of independent, aggressively bone metastatic breast cancer populations with reduced metastasis to the lung. Gene expression profiling identified osteoactivin as a candidate that is highly and selectively expressed in aggressively bone metastatic breast cancer cells. These cells displayed enhanced migratory and invasive characteristics in vitro, the latter requiring sustained osteoactivin expression. Osteoactivin depletion in these cells, by small interfering RNA, also lead to a loss of matrix metalloproteinase-3 expression, whereas forced osteoactivin expression in parental 4T1 cells was sufficient to elevate matrix metalloproteinase-3 levels, suggesting that this matrix metalloproteinase may be an important mediator of osteoactivin function. Overexpression of osteoactivin in an independent, weakly bone metastatic breast cancer cell model significantly enhanced the formation of osteolytic bone metastases in vivo. Finally, high levels of osteoactivin expression in primary human breast cancers correlate with estrogen receptor-negative status and increasing tumor grade. Thus, we have identified osteoactivin as a protein that is expressed in aggressive human breast cancers and is capable of promoting breast cancer metastasis to bone.
Collapse
Affiliation(s)
- April A N Rose
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
77
|
Clezardin P, Teti A. Bone metastasis: pathogenesis and therapeutic implications. Clin Exp Metastasis 2007; 24:599-608. [DOI: 10.1007/s10585-007-9112-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 10/01/2007] [Indexed: 12/20/2022]
|
78
|
Salem AM, Zohny SF, Abd El-Wahab MM, Hamdy R. Predictive value of osteocalcin and β-CrossLaps in metastatic breast cancer. Clin Biochem 2007; 40:1201-8. [PMID: 17889845 DOI: 10.1016/j.clinbiochem.2007.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Revised: 06/25/2007] [Accepted: 07/02/2007] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Assessment of the diagnostic value of serum CEA, CA 15.3, osteocalcin (OC) and beta-CrossLaps (beta-CTX) in the detection of metastatic breast cancer. DESIGN AND METHODS This study included 47 patients with breast cancer (20 non-metastatic breast cancer, 11 bone metastasis, 11 soft tissue metastasis, 5 bone plus soft tissue metastasis), 10 patients with benign breast lesions and 13 healthy volunteers. CEA and CA 15.3 were determined using microparticle enzyme immunoassay; while OC and beta-CTX were measured by electrochemiluminescence immunoassay. RESULTS CEA, CA 15.3, OC and beta-CTX median levels were higher in breast cancer patients compared to controls (p=0.006, 0.001, 0.004 and 0.038, respectively). Increased levels of OC and beta-CTX were demonstrated in bone metastatic patients compared to non-metastatic or soft tissue metastatic patients (p=0.000). CONCLUSIONS Combined use of OC and beta-CTX could be useful in early detection of bone metastatic breast cancer which might improve the outcome of the disease.
Collapse
Affiliation(s)
- Ahmed M Salem
- Faculty of Science, Biochemistry Department, Ain Shams University, 11566, Abbassia, Cairo, Egypt
| | | | | | | |
Collapse
|
79
|
Gene arrays for diagnosis, prognosis and treatment of breast cancer metastasis. Clin Exp Metastasis 2007; 24:575-85. [DOI: 10.1007/s10585-007-9110-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 09/28/2007] [Indexed: 10/22/2022]
|
80
|
Lamour V, Detry C, Sanchez C, Henrotin Y, Castronovo V, Bellahcène A. Runx2- and histone deacetylase 3-mediated repression is relieved in differentiating human osteoblast cells to allow high bone sialoprotein expression. J Biol Chem 2007; 282:36240-9. [PMID: 17956871 DOI: 10.1074/jbc.m705833200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone sialoprotein (BSP) is a bone matrix glycoprotein whose expression coincides with terminal osteoblastic differentiation and the onset of mineralization. In this study we show that BSP expression is considerably increased in confluent Saos-2 human osteosarcoma cells and in differentiating normal human osteoblasts, concomitantly with the decrease of Runx2, a key transcription factor controlling bone formation. Therefore, we investigated the role of Runx2 in the regulation of BSP expression in Saos-2 cells. Using a mobility shift assay, we demonstrated that Runx2 binds to the BSP promoter only in preconfluent cells. Histone deacetylase 3 (HDAC3) has been recently shown to act as a Runx2 co-repressor. Chromatin immunoprecipitation assays demonstrated that both Runx2 and HDAC3 are detectable at the BSP promoter in preconfluent Saos-2 cells but not when they are confluent and overexpress BSP. Consistently, nuclear Runx2 protein level is down-regulated, whereas Saos-2 cells became increasingly confluent. Finally, the suppression of HDAC3, Runx2, or both by RNA interference induced the expression of BSP at both mRNA and protein levels in Saos-2 cells. Our data demonstrate that Runx2 and HDAC3 repress BSP gene expression and that this repression is suspended upon osteoblastic cell differentiation. Both the nuclear disappearance of Runx2 and the non-recruitment of HDAC3 represent new means to relieve Runx2-mediated suppression of BSP expression, thus allowing the acquisition of a fully differentiated and mineralization-competent phenotype by osteoblast cells.
Collapse
Affiliation(s)
- Virginie Lamour
- Metastasis Research Laboratory, Center of Experimental Cancer Research and Bone and Cartilage Metabolism Research Unit, University of Liège, 4000 Liège, Belgium
| | | | | | | | | | | |
Collapse
|
81
|
Garcia T, Jackson A, Bachelier R, Clément-Lacroix P, Baron R, Clézardin P, Pujuguet P. A convenient clinically relevant model of human breast cancer bone metastasis. Clin Exp Metastasis 2007; 25:33-42. [PMID: 17902030 DOI: 10.1007/s10585-007-9099-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 09/13/2007] [Indexed: 12/25/2022]
Abstract
Breast cancer patients with advanced disease exhibit bone metastases, leading to the formation of osteolytic lesions for which the only currently available treatments are palliative. Here, we describe how we refined a mouse model of human breast cancer metastasis into bone, characterized its transcriptome and demonstrated its clinical relevance. Cells were selected from bone metastases caused by MDA-MB-231 cells after several in vivo passages, and engineered to express luciferase. Whole body bioluminescence live imaging indicated that the selected isogenic B02 clone was unique in its ability to form rapidly growing osteolytic bone metastases. B02 cells were detected as early as 10 days after tail vein injection, as opposed to 1 month after cardiac injection in other haematogenous models. Whole transcriptomic analysis identified 114 upregulated and 247 downregulated genes in B02 cells compared to the parental cells, several of which represent novel targets. In addition, there was a 50% overlap between the B02 signature and a recently described signature obtained from human breast cancer bone metastases. Consistent with the plasticity of an aggressive metastatic variant, 10% of the regulated genes are involved in proliferation, migration, invasion and angiogenesis. Strikingly, B02 cells also express osteoblast-specific genes, thus mimicking a process referred to as osteomimicry in the clinic. The B02 cells "human bone metastatic signature", the expression of bone-specific genes, as well as the live imaging of this convenient model highlight its clinical relevance and usefulness during drug development.
Collapse
Affiliation(s)
- Teresa Garcia
- Galapagos SASU, 102 route de Noisy, Romainville, 93230, France
| | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
Breast cancer causes mortality by metastasizing to a variety of vital organs, such as bone, lung, brain and liver. Effective therapeutic intervention of this deadly process relies on a better mechanistic understanding of metastasis organotropism. Recent studies have confirmed earlier speculations that metastasis is a non-random process and is dependent on intricate tumor-stroma interactions at the target organ. Both the intrinsic properties of breast cancer cells and the host organ microenvironment are important in determining the efficiency of organ-specific metastasis. Advances in animal modeling, in vivo imaging and functional genomics have accelerated the discovery of important molecular mediators of organ-specific metastasis. A conceptual framework of breast cancer organotropism is emerging and will be instrumental in guiding future efforts in this exciting research field.
Collapse
Affiliation(s)
- Xin Lu
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | | |
Collapse
|
83
|
McLachlan E, Shao Q, Laird DW. Connexins and gap junctions in mammary gland development and breast cancer progression. J Membr Biol 2007; 218:107-21. [PMID: 17661126 DOI: 10.1007/s00232-007-9052-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 05/14/2007] [Indexed: 01/19/2023]
Abstract
The development and function of the mammary gland require precise control of gap junctional intercellular communication (GJIC). Here, we review the expression and function of gap junction proteins, connexins, in the normal mouse and human mammary gland. We then discuss the possible tumor-suppressive role of Cx26 and Cx43 in primary breast tumors and through the various stages of breast cancer metastasis and consider whether connexins or GJIC may actually promote tumorigenesis at some stages. Finally, we present in vitro data on the impact of connexin expression on breast cancer cell metastasis to the bone. We observed that Cx43 expression inhibited the invasive and migratory potentials of MDA-MB-231 breast cancer cells in a bone microenvironment, provided by the MC3T3-E1 mouse osteoblastic cell line. Expression of either Cx26 or Cx43 had no effect on MDA-MB-231 growth and adhesion under the influence of osteoblasts and did not result in regulation of osteogenic gene expression in these breast cancer cells. Furthermore, connexin-expressing MDA-MB-231 cells did not have an effect on the growth or differentiation of MC3T3-E1 cells. In summary, we conclude that connexin expression and GJIC are integral to the development and differentiation of the mammary gland. In breast cancer, connexins generally act as tumor suppressors in the primary tumor; however, in advanced breast tumors, connexins appear to act as both context-dependent tumor suppressors and facilitators of disease progression.
Collapse
Affiliation(s)
- Elizabeth McLachlan
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|