51
|
Wan X, Ding X, Chen S, Song H, Jiang H, Fang Y, Li P, Guo J. The functional sites of miRNAs and lncRNAs in gastric carcinogenesis. Tumour Biol 2015; 36:521-32. [PMID: 25636450 PMCID: PMC4342515 DOI: 10.1007/s13277-015-3136-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/19/2015] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is one of the most common malignant diseases and has one of the highest mortality rates worldwide. Its molecular mechanisms are poorly understood. Recently, the functions of non-coding RNAs (ncRNAs) in gastric cancer have attracted wide attention. Although the expression levels of various ncRNAs are different, they may work together in a network and contribute to gastric carcinogenesis by altering the expression of oncogenes or tumor suppressor genes. They affect the cell cycle, apoptosis, motility, invasion, and metastasis. Dysregulated microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), including miR-21, miR-106, H19, and ANRIL, directly or indirectly regulate carcinogenic factors or signaling pathways such as PTEN, CDK, caspase, E-cadherin, Akt, and P53. Greater recognition of the roles of miRNAs and lncRNAs in gastric carcinogenesis can provide new insight into the mechanisms of tumor development and identify targets for anticancer drug development.
Collapse
Affiliation(s)
- Xiangxiang Wan
- Department of Gastroenterology, Ningbo First Hospital, No. 59 Liuting Street, Ningbo, 315010, China
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Zhang J, Fei B, Wang Q, Song M, Yin Y, Zhang B, Ni S, Guo W, Bian Z, Quan C, Liu Z, Wang Y, Yu J, Du X, Hua D, Huang Z. MicroRNA-638 inhibits cell proliferation, invasion and regulates cell cycle by targeting tetraspanin 1 in human colorectal carcinoma. Oncotarget 2014; 5:12083-96. [PMID: 25301729 PMCID: PMC4322991 DOI: 10.18632/oncotarget.2499] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 09/16/2014] [Indexed: 11/25/2022] Open
Abstract
The expression of miR-638 was found downregulated in colorectal carcinoma (CRC) in our previous study. However, the role of miR-638 in CRC remains unknown. The aim of this study was to determine the function and mechanism of miR-638 in CRC. Here, we verified that miR-638 was frequently downregulated in CRC tissues compared with corresponding noncancerous tissues (NCTs) in an expanded CRC cohort, and survival analysis showed that the downregulation of miR-638 in CRC was associated with poor prognoses. The ectopic expression of miR-638 inhibited CRC cell proliferation, invasion and arrest the cell cycle in G1 phase, whereas the repression of miR-638 significantly promoted CRC cell growth, invasion and cell cycle G1/S transition. Subsequent mechanism analyses revealed that miR-638 inhibited CRC cell growth, invasion and cell cycle progression by targeting TSPAN1. TSPAN1 protein levels were upregulated in CRC samples and were inversely correlated with miR-638 levels. More importantly, high TSPAN1 expression levels in CRC tissues predicted poor overall survival, and appears to be an independent prognostic factor for CRC survival. Furthermore, CpG island methylation analyses revealed that the miR-638 promoter was hypermethylated in CRC and that attenuating promoter methylation was sufficient to restore miR-638 expression in CRC cells. Taken together, our current data demonstrate that miR-638 functions as a tumor suppressor in human CRC by inhibiting TSPAN1, and that TSPAN1 is a potential prognostic factor for CRC.
Collapse
Affiliation(s)
- Jiwei Zhang
- Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Bojian Fei
- Department of Surgical Oncology, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Qifeng Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Mingxu Song
- Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Yuan Yin
- Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Binbin Zhang
- Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Shujuan Ni
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Weijie Guo
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zehua Bian
- Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Chao Quan
- Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Zhihui Liu
- Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Yugang Wang
- Department of Urology, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109-5942, USA
| | - Jian Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Xiang Du
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Dong Hua
- Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Zhaohui Huang
- Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| |
Collapse
|
53
|
Lin Y, Li D, Liang Q, Liu S, Zuo X, Li L, Sun X, Li W, Guo M, Huang Z. miR-638 regulates differentiation and proliferation in leukemic cells by targeting cyclin-dependent kinase 2. J Biol Chem 2014; 290:1818-28. [PMID: 25451924 DOI: 10.1074/jbc.m114.599191] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs have been extensively studied as regulators of hematopoiesis and leukemogenesis. We identified miR-638 as a novel regulator in myeloid differentiation and proliferation of leukemic cells. We found that miR-638 was developmentally up-regulated in cells of myeloid but not lymphoid lineage. Furthermore, significant miR-638 down-regulation was observed in primary acute myeloid leukemia (AML) blasts, whereas miR-638 expression was dramatically up-regulated in primary AML blasts and leukemic cell lines undergoing forced myeloid differentiation. These observations suggest that miR-638 might play a role in myeloid differentiation, and its dysregulation may contribute to leukemogenesis. Indeed, ectopic expression of miR-638 promoted phorbol 12-myristate 13-acetate- or all-trans-retinoic acid-induced differentiation of leukemic cell lines and primary AML blasts, whereas miR-638 inhibition caused an opposite phenotype. Consistently, miR-638 overexpression induced G1 cell cycle arrest and reduced colony formation in soft agar. Cyclin-dependent kinase 2 (CDK2) was found to be a target gene of miR-638. CDK2 inhibition phenotypically mimicked the overexpression of miR-638. Moreover, forced expression of CDK2 restored the proliferation and the colony-forming ability inhibited by miR-638. Our data suggest that miR-638 regulates proliferation and myeloid differentiation by targeting CDK2 and may serve as a novel target for leukemia therapy or marker for AML diagnosis and prognosis.
Collapse
Affiliation(s)
- Yi Lin
- From the College of Life Sciences, Wuhan University, Wuhan, Hubei, China, 430072
| | - Dengju Li
- the Department of Hematology, Tongji Hospital of Huazhong Technology University, Wuhan, Hubei, China, 430030
| | - Qing Liang
- the Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China, 430071, and
| | - Shangqing Liu
- the Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China, 430071, and
| | - Xuelan Zuo
- the Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China, 430071, and
| | - Lin Li
- the Department of Hematology, Jiangsu Province Hospital of Traditional Chinese Medicine (TCM), Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China, 210029
| | - Xuemei Sun
- the Department of Hematology, Jiangsu Province Hospital of Traditional Chinese Medicine (TCM), Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China, 210029
| | - Wenxin Li
- From the College of Life Sciences, Wuhan University, Wuhan, Hubei, China, 430072
| | - Mingxiong Guo
- From the College of Life Sciences, Wuhan University, Wuhan, Hubei, China, 430072,
| | - Zan Huang
- From the College of Life Sciences, Wuhan University, Wuhan, Hubei, China, 430072,
| |
Collapse
|
54
|
Igaz I, Igaz P. Tumor surveillance by circulating microRNAs: a hypothesis. Cell Mol Life Sci 2014; 71:4081-7. [PMID: 25037157 PMCID: PMC4194016 DOI: 10.1007/s00018-014-1682-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/07/2014] [Accepted: 07/10/2014] [Indexed: 12/18/2022]
Abstract
A growing body of experimental evidence supports the diagnostic relevance of circulating microRNAs in various diseases including cancer. The biological relevance of circulating microRNAs is, however, largely unknown, particularly in healthy individuals. Here, we propose a hypothesis based on the relative abundance of microRNAs with predominant tumor suppressor activity in the blood of healthy individuals. According to our hypothesis, certain sets of circulating microRNAs might function as a tumor surveillance mechanism exerting continuous inhibition on tumor formation. The microRNA-mediated tumor surveillance might complement cancer immune surveillance.
Collapse
Affiliation(s)
- Ivan Igaz
- Department of Gastroenterology, Szent Imre Teaching Hospital, Tétényi str. 12-16, Budapest, 1115 Hungary
| | - Peter Igaz
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi str. 46, Budapest, 1088 Hungary
| |
Collapse
|
55
|
Decreased miR-204 in H. pylori-associated gastric cancer promotes cancer cell proliferation and invasion by targeting SOX4. PLoS One 2014; 9:e101457. [PMID: 24984017 PMCID: PMC4077842 DOI: 10.1371/journal.pone.0101457] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/05/2014] [Indexed: 12/14/2022] Open
Abstract
Background The molecular mechanism between Helicobacter pylori (H. pylori) infection and gastric cancer remained largely unknown. In this study, we determined the role of miRNA in H. pylori induced gastric cancer. Methods and Results We found that miR-204 was decreased in H. pylori positive tissues by qRT-PCR. Knockdown of miR-204 enhanced the invasion and proliferation ability of gastric cancer cells in vitro. Luciferase assay revealed that SOX4 was target gene of miR-204, which was found up-regulated in H. pylori positive tissues. Down-regulation of miR-204 and over-expression of SOX4 promoted epithelial-mesenchymal transition process. Conclusion Taken together, our findings demonstrated that miR-204 may act as a tumor suppressor in H. pylori induced gastric cancer by targeting SOX4.
Collapse
|
56
|
Xia Y, Wu Y, Liu B, Wang P, Chen Y. Downregulation of miR-638 promotes invasion and proliferation by regulating SOX2 and induces EMT in NSCLC. FEBS Lett 2014; 588:2238-45. [PMID: 24842609 DOI: 10.1016/j.febslet.2014.05.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/01/2014] [Accepted: 05/02/2014] [Indexed: 12/17/2022]
Abstract
Aberrant expression of microRNAs has been shown to regulate the biological processes of lung cancer cells. However, the role of miR-638 in the development of NSCLC is still unclear. In this study, low miR-638 and high SOX2 were shown to be associated with tumor size and metastasis of NSCLC patients. Downregulated miR-638 could promote cell invasion and proliferation, while high miR-638 expression reversed the effect. Furthermore, miR-638 could regulate SOX2 by directly binding to its 3'-UTR. Silencing of SOX2 by siRNA partially abolished the enhancement of cell invasion and proliferation induced by downregulated miR-638. Aberrant miR-638 expression could modulate the expression levels of markers of epithelial-to-mesenchymal transition. Our results indicate that miR-638 may play a pivotal role in the development of NSCLC.
Collapse
Affiliation(s)
- Yang Xia
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Yanhu Wu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Bin Liu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Pengli Wang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Yijiang Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China.
| |
Collapse
|