51
|
Kunnumakkara AB, Sailo BL, Banik K, Harsha C, Prasad S, Gupta SC, Bharti AC, Aggarwal BB. Chronic diseases, inflammation, and spices: how are they linked? J Transl Med 2018; 16:14. [PMID: 29370858 PMCID: PMC5785894 DOI: 10.1186/s12967-018-1381-2] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/10/2018] [Indexed: 01/17/2023] Open
Abstract
Extensive research within the last several decades has revealed that the major risk factors for most chronic diseases are infections, obesity, alcohol, tobacco, radiation, environmental pollutants, and diet. It is now well established that these factors induce chronic diseases through induction of inflammation. However, inflammation could be either acute or chronic. Acute inflammation persists for a short duration and is the host defense against infections and allergens, whereas the chronic inflammation persists for a long time and leads to many chronic diseases including cancer, cardiovascular diseases, neurodegenerative diseases, respiratory diseases, etc. Numerous lines of evidence suggest that the aforementioned risk factors induced cancer through chronic inflammation. First, transcription factors NF-κB and STAT3 that regulate expression of inflammatory gene products, have been found to be constitutively active in most cancers; second, chronic inflammation such as pancreatitis, prostatitis, hepatitis etc. leads to cancers; third, activation of NF-κB and STAT3 leads to cancer cell proliferation, survival, invasion, angiogenesis and metastasis; fourth, activation of NF-κB and STAT3 leads to resistance to chemotherapy and radiation, and hypoxia and acidic conditions activate these transcription factors. Therefore, targeting these pathways may provide opportunities for both prevention and treatment of cancer and other chronic diseases. We will discuss in this review the potential of various dietary agents such as spices and its components in the suppression of inflammatory pathways and their roles in the prevention and therapy of cancer and other chronic diseases. In fact, epidemiological studies do indicate that cancer incidence in countries such as India where spices are consumed daily is much lower (94/100,000) than those where spices are not consumed such as United States (318/100,000), suggesting the potential role of spices in cancer prevention.
Collapse
Affiliation(s)
- Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| | - Bethsebie L Sailo
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sahdeo Prasad
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | | |
Collapse
|
52
|
Wu H, Yang Y, Guo S, Yang J, Jiang K, Zhao G, Qiu C, Deng G. Nuciferine Ameliorates Inflammatory Responses by Inhibiting the TLR4-Mediated Pathway in Lipopolysaccharide-Induced Acute Lung Injury. Front Pharmacol 2017; 8:939. [PMID: 29311940 PMCID: PMC5742629 DOI: 10.3389/fphar.2017.00939] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022] Open
Abstract
Acute lung injury (ALI) is a complex syndrome with sepsis occurring in critical patients, who usually lack effective therapy. Nuciferine is a primary bioactive component extracted from the lotus leaf, and it displays extensive pharmacological functions, including anti-cancer, anti-inflammatory, and antioxidant properties. Nevertheless, the effects of nuciferine on lipopolysaccharide (LPS)-stimulated ALI in mice has not been investigated. ALI of mice stimulated by LPS was used to determine the anti-inflammatory function of nuciferine. The molecular mechanism of nuciferine was performed on RAW264.7 macrophage cells. The results of pathological section, myeloperoxidase activity and lung wet/dry ratio showed that nuciferine alleviated LPS-induced lung injury (p < 0.05). qRT-PCR and ELISA experiments suggested that nuciferine inhibited TNF-α, IL-6, and IL-1β secretion in tissues and RAW264.7 cells but increased IL-10 secretion (p < 0.05). Molecular studies showed that TLR4 expression and nuclear factor (NF)-κB activation were both inhibited by nuciferine treatment (p < 0.05). To further investigate the anti-inflammatory mechanism of nuciferine, TLR4 was knocked down. When TLR4 was silenced, LPS induced the production of IL-1β, and TNF-α was markedly decreased by TLR4-siRNA and nuciferine treatment in LPS-induced RAW264.7 cells (p < 0.05). These results suggested that nuciferine had the ability to protect against LPS-stimulated ALI. Thus, nuciferine may be a potential drug for treating LPS-induced pulmonary inflammation.
Collapse
Affiliation(s)
- Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yaping Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jing Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
53
|
Kähler C, Derezinski T, Bocian-Sobkowska J, Keckeis A, Zacke G. Spicae aetheroleum in uncomplicated acute bronchitis: a double-blind, randomised clinical trial. Wien Med Wochenschr 2017; 169:137-148. [PMID: 29209859 PMCID: PMC6435634 DOI: 10.1007/s10354-017-0612-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/06/2017] [Indexed: 11/30/2022]
Abstract
Background The trial aimed to evaluate the efficacy and safety of Spicae aetheroleum (Spicae ae.), a phytomedicine obtained by steam distillation of the flowering tops of Lavandula latifolia, as compared to placebo in adult patients with acute bronchitis. Methods Patients with uncomplicated acute bronchitis (bronchitis severity score [BSS] ≥ 5 score points) were randomly assigned to treatment with Spicae ae. or placebo in a double-blind, parallel-group design. No additional treatment was admitted. The primary objective was the mean difference of a defined total BSS of 25% between the Spicae ae. and the placebo group after 7 days of full medication dose. Secondary endpoints included the BSS at day 10, additional signs and symptoms of bronchitis, quality of life (QoL) and safety. Results The mean decrease in BSS at day 7 and day 10 was significant with 4.79 vs. 3.20 (p < 0.005 for a 25% difference) and 6.47 vs. 4.32 (p < 0.009 for a 25% difference) score points respectively in the Spicae ae. (n = 119) vs. placebo group (n = 110). Accordingly, most additional signs and symptoms of acute bronchitis as well as the patients’ QoL improved significantly with Spicae ae. as compared to placebo. In all, 258 patients were eligible for safety analysis. The treatment with Spicae ae. was well tolerated; no serious adverse events occurred. Conclusion The defined objectives both for the primary and secondary endpoints have been met. The results of this study provide evidence that Spicae ae. is well tolerated, effective and superior to placebo in the symptomatic treatment of uncomplicated acute bronchitis in adult patients.
Collapse
Affiliation(s)
- Christian Kähler
- Department for Pneumology, Critical Care and Allergology, Wangen im Allgäu, Germany
| | | | | | | | - Gabriele Zacke
- Pharmazeutische Fabrik Montavit Ges.m.b.H., Absam, Austria.
| |
Collapse
|
54
|
Martins AOBPB, Rodrigues LB, Cesário FRAS, de Oliveira MRC, Tintino CDM, Castro FFE, Alcântara IS, Fernandes MNM, de Albuquerque TR, da Silva MSA, de Sousa Araújo AA, Júniur LJQ, da Costa JGM, de Menezes IRA, Wanderley AG. Anti-edematogenic and anti-inflammatory activity of the essential oil from Croton rhamnifolioides leaves and its major constituent 1,8-cineole (eucalyptol). Biomed Pharmacother 2017; 96:384-395. [DOI: 10.1016/j.biopha.2017.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/12/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022] Open
|
55
|
Yadav N, Chandra H. Suppression of inflammatory and infection responses in lung macrophages by eucalyptus oil and its constituent 1,8-cineole: Role of pattern recognition receptors TREM-1 and NLRP3, the MAP kinase regulator MKP-1, and NFκB. PLoS One 2017; 12:e0188232. [PMID: 29141025 PMCID: PMC5687727 DOI: 10.1371/journal.pone.0188232] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/02/2017] [Indexed: 01/09/2023] Open
Abstract
Eucalyptus oil (EO) used in traditional medicine continues to prove useful for aroma therapy in respiratory ailments; however, there is a paucity of information on its mechanism of action and active components. In this direction, we investigated EO and its dominant constituent 1,8–cineole (eucalyptol) using the murine lung alveolar macrophage (AM) cell line MH-S. In an LPS-induced AM inflammation model, pre-treatment with EO significantly reduced (P ≤0.01or 0.05) the pro-inflammatory mediators TNF-α, IL-1 (α and β), and NO, albeit at a variable rate and extent; 1,8-cineole diminished IL-1 and IL-6. In a mycobacterial-infection AM model, EO pre-treatment or post-treatment significantly enhanced (P ≤0.01) the phagocytic activity and pathogen clearance. 1,8-cineole also significantly enhanced the pathogen clearance though the phagocytic activity was not significantly altered. EO or 1,8-cineole pre-treatment attenuated LPS-induced inflammatory signaling pathways at various levels accompanied by diminished inflammatory response. Among the pattern recognition receptors (PRRs) involved in LPS signaling, the TREM pathway surface receptor (TREM-1) was significantly downregulated. Importantly, the pre-treatments significantly downregulated (P ≤0.01) the intracellular PRR receptor NLRP3 of the inflammasome, which is consistent with the decrease in IL-1β secretion. Of the shared downstream signaling cascade for these PRR pathways, there was significant attenuation of phosphorylation of the transcription factor NF-κB and p38 (but increased phosphorylation of the other two MAP kinases, ERK1/2 and JNK1/2). 1,8-cineole showed a similar general trend except for an opposite effect on NF-κB and JNK1/2. In this context, either pre-treatment caused a significant downregulation of MKP-1 phosphatase, a negative regulator of MAPKs. Collectively, our results demonstrate that the anti-inflammatory activity of EO and 1,8-cineole is modulated via selective downregulation of the PRR pathways, including PRR receptors (TREM-1 and NLRP3) and common downstream signaling cascade partners (NF-κB, MAPKs, MKP-1). To our knowledge, this is the first report on the modulatory role of TREM-1 and NLRP3 inflammasome pathways and the MAPK negative regulator MKP-1 in context of the anti-inflammatory potential of EO and its constituent 1,8-cineole.
Collapse
Affiliation(s)
- Niket Yadav
- Microbial Pathogenesis and Immunotoxicology Laboratory, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Harish Chandra
- Microbial Pathogenesis and Immunotoxicology Laboratory, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
56
|
Chao WW, Su CC, Peng HY, Chou ST. Melaleuca quinquenervia essential oil inhibits α-melanocyte-stimulating hormone-induced melanin production and oxidative stress in B16 melanoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 34:191-201. [PMID: 28899502 DOI: 10.1016/j.phymed.2017.08.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 06/29/2017] [Accepted: 08/20/2017] [Indexed: 05/14/2023]
Abstract
BACKGROUND Essential oils are odorous, volatile products of plant secondary metabolism, which are found in many leaves and stems. They show important biological activities, which account for the development of aromatherapy used in complementary and alternative medicine. The essential oil extracted from Melaleuca quinquenervia (Cav.) S.T. Blake (paperbark) (MQ-EO) has various functional properties. PURPOSE The aim of this study is to investigate the chemical composition of MQ-EO by using gas chromatography-mass spectrometry (GC-MS) and evaluate its tyrosinase inhibitory activity. METHODS Gas chromatography-mass spectrometry (GC-MS)-based metabolomics was used to identify 18 components in MQ-EO. The main components identified were 1,8-cineole (21.60%), α-pinene (15.93%), viridiflorol (14.55%), and α-terpineol (13.73%). B16 melanoma cells were treated with α-melanocyte-stimulating hormone (α-MSH) in the presence of various concentrations of MQ-EO or its major compounds. Cell viability was accessed by MTT assay and cellular tyrosinase activity and melanin content were determined by using spectrophotographic methods. The antioxidant mechanism of MQ-EO in α-MSH stimulated B16 cells was also investigated. RESULTS In α-melanocyte-stimulating hormone (α-MSH)-stimulated murine B16 melanoma cells, MQ-EO, 1,8-cineole, α-pinene, and α-terpineol significantly reduced melanin content and tyrosinase activity. Moreover, MQ-EO, 1,8-cineole, α-pinene, and α-terpineol decreased malondialdehyde (MDA) levels. In addition, restored glutathione (GSH) levels, glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase activities were increased in α-MSH-stimulated B16 cells. MQ-EO not only decreased apoptosis but also reduced DNA damage in α-MSH stimulated B16 cells. These results showed that MQ-EO and its main components, 1,8-cineole, α-pinene, and α-terpineol, possessed potent anti-tyrosinase and anti-melanogenic activities besides the antioxidant properties. CONCLUSIONS The active functional components of MQ-EO were found to be 1,8-cineole, α-pinene, and α-terpineol. Consequently, the results of present study suggest that MQ-EO is non-cytotoxic and can be used as a skin-whitening agent, both medically and cosmetically.
Collapse
Affiliation(s)
- Wen-Wan Chao
- Department of Nutrition and Health Sciences, Kainan University, Taoyuan, Taiwan
| | - Chia-Chi Su
- Department of Food and Nutrition, Providence University, 200, Sec. 7, Taiwan Boulevard, Shalu Dist., Taichung, 43301 Taiwan
| | - Hsin-Yi Peng
- Department of Chemical and Materials Engineering, Tunghai University, Taiwan
| | - Su-Tze Chou
- Department of Food and Nutrition, Providence University, 200, Sec. 7, Taiwan Boulevard, Shalu Dist., Taichung, 43301 Taiwan.
| |
Collapse
|
57
|
Caceres AI, Liu B, Jabba SV, Achanta S, Morris JB, Jordt SE. Transient Receptor Potential Cation Channel Subfamily M Member 8 channels mediate the anti-inflammatory effects of eucalyptol. Br J Pharmacol 2017; 174:867-879. [PMID: 28240768 DOI: 10.1111/bph.13760] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/11/2017] [Accepted: 02/16/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Eucalyptol (1,8-cineol), the major ingredient in the essential oil of eucalyptus leaves and other medicinal plants, has long been known for its anti-inflammatory properties. Eucalyptol interacts with the TRP cation channels among other targets, but it is unclear which of these mediates its anti-inflammatory effects. EXPERIMENTAL APPROACH Effects of eucalyptol were compared in wild-type and TRPM8 channel-deficient mice in two different models: footpad inflammation elicited by complete Freund's adjuvant (CFA) and pulmonary inflammation following administration of LPS. Oedema formation, behavioural inflammatory pain responses, leukocyte infiltration, enzyme activities and cytokine and chemokine levels were measured. KEY RESULTS In the CFA model, eucalyptol strongly attenuated oedema and mechanical allodynia and reduced levels of inflammatory cytokines (IL-1β, TNF-α and IL-6), effects comparable with those of ibuprofen. In the LPS model of pulmonary inflammation, eucalyptol treatment diminished leukocyte infiltration, myeloperoxidase activity and production of TNF-α, IL-1β, IFN-γ and IL-6. Genetic deletion of TRPM8 channels abolished the anti-inflammatory effects of eucalyptol in both models. Eucalyptol was at least sixfold more potent on human, than on mouse TRPM8 channels. A metabolite of eucalyptol, 2-hydroxy-1,8-cineol, also activated human TRPM8 channels. CONCLUSION AND IMPLICATIONS Among the pharmacological targets of eucalyptol, TRPM8 channels were essential for its anti-inflammatory effects in mice. Human TRPM8 channels are more sensitive to eucalyptol than rodent TRPM8 channels explaining the higher potency of eucalyptol in humans. Metabolites of eucalyptol could contribute to its anti-inflammatory effects. The development of more potent and selective TRPM8 agonists may yield novel anti-inflammatory agents.
Collapse
Affiliation(s)
- Ana I Caceres
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Boyi Liu
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
- Department of Neurobiology and Acupuncture Research, The 3rd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sairam V Jabba
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | | | - John B Morris
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, USA
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
- Yale Tobacco Center of Regulatory Science (TCORS), Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
58
|
Acute and neuropathic orofacial antinociceptive effect of eucalyptol. Inflammopharmacology 2017; 25:247-254. [DOI: 10.1007/s10787-017-0324-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/02/2017] [Indexed: 12/19/2022]
|
59
|
Lin W, Jianbo S, Wanzhong L, Yanna L, Weiwei S, Gang W, Chunzhen Z. Protective effect of eucalyptus oil on pulmonary destruction and inflammation in chronic obstructive pulmonary disease (COPD) in rats. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/jmpr2015.5910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
60
|
Lai YN, Li Y, Fu LC, Zhao F, Liu N, Zhang FX, Xu PP. Combinations of 1,8-cineol and oseltamivir for the treatment of influenza virus A (H3N2) infection in mice. J Med Virol 2017; 89:1158-1167. [DOI: 10.1002/jmv.24755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/15/2016] [Accepted: 12/07/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Yan-ni Lai
- Institute of Tropical Medicine; Guangzhou University of Chinese Medicine; Guangzhou China
| | - Yun Li
- Institute of Tropical Medicine; Guangzhou University of Chinese Medicine; Guangzhou China
| | - Lin-chun Fu
- Institute of Tropical Medicine; Guangzhou University of Chinese Medicine; Guangzhou China
| | - Fang Zhao
- Institute of Tropical Medicine; Guangzhou University of Chinese Medicine; Guangzhou China
| | - Ni Liu
- Institute of Tropical Medicine; Guangzhou University of Chinese Medicine; Guangzhou China
| | - Feng-xue Zhang
- Institute of Tropical Medicine; Guangzhou University of Chinese Medicine; Guangzhou China
| | - Pei-ping Xu
- Institute of Tropical Medicine; Guangzhou University of Chinese Medicine; Guangzhou China
| |
Collapse
|
61
|
Han X, Parker TL. Cardamom ( Elettaria cardamomum) essential oil significantly inhibits vascular cell adhesion molecule 1 and impacts genome-wide gene expression in human dermal fibroblasts. COGENT MEDICINE 2017. [DOI: 10.1080/2331205x.2017.1308066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Xuesheng Han
- R&D, dōTERRA International, LLC, 389 South 1300 West, Pleasant Grove, UT 84062, USA
| | - Tory L. Parker
- R&D, dōTERRA International, LLC, 389 South 1300 West, Pleasant Grove, UT 84062, USA
| |
Collapse
|
62
|
Eucalyptol attenuates cigarette smoke-induced acute lung inflammation and oxidative stress in the mouse. Pulm Pharmacol Ther 2016; 41:11-18. [DOI: 10.1016/j.pupt.2016.09.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 08/19/2016] [Accepted: 09/02/2016] [Indexed: 11/23/2022]
|
63
|
Khalil M, Babes A, Lakra R, Försch S, Reeh PW, Wirtz S, Becker C, Neurath MF, Engel MA. Transient receptor potential melastatin 8 ion channel in macrophages modulates colitis through a balance-shift in TNF-alpha and interleukin-10 production. Mucosal Immunol 2016; 9:1500-1513. [PMID: 26982596 DOI: 10.1038/mi.2016.16] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/19/2016] [Indexed: 02/04/2023]
Abstract
The transient receptor potential (TRP) ion channel family is well characterized in sensory neurons; however, little is known about its role in the immune system. Here we show that the cold-sensing TRPM8 has an unexpected role in innate immunity. TRPM8 expression and function in macrophages were demonstrated in vitro using molecular techniques and calcium imaging. In addition, adoptive macrophage transfer and systemic interleukin (IL)-10 overexpression were performed in experimental colitis. TRPM8 activation induced calcium-transients in murine peritoneal macrophages (PM) and bone marrow-derived macrophages of wild-type (WT) but not TRPM8-deficient mice. TRPM8-deficient PM exhibited defective phagocytosis and increased motility compared with those in WT, whereas the opposite effects of TRPM8 activation were induced in WT PM. TRPM8 activation or blockage/genetic deletion induced a anti- or pro-inflammatory macrophage cytokine profile, respectively. WT mice treated with repeated menthol (TRPM8 agonist) enemas were consistently protected from experimental colitis, whereas TRPM8-deficient mice showed increased colitis susceptibility. Adoptive transfer of TRPM8-deficient macrophages aggravated colitis, whereas systemic IL-10 overexpression rescued this phenotype. TRPM8 activation in peptidergic sensory neurons did not affect neuropeptide release from the inflamed colon. TRPM8 in macrophages determines pro- or anti-inflammatory actions by regulating tumor necrosis factor-α and interleukin-10 production. These findings suggest novel TRPM8-based options for immunomodulatory intervention.
Collapse
Affiliation(s)
- M Khalil
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Erlangen, Germany
| | - A Babes
- University of Bucharest Department of Physiology, Faculty of Biology, Bucharest, Romania
| | - R Lakra
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Erlangen, Germany
| | - S Försch
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Erlangen, Germany
| | - P W Reeh
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - S Wirtz
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Erlangen, Germany
| | - C Becker
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Erlangen, Germany
| | - M F Neurath
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Erlangen, Germany
| | - M A Engel
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
64
|
Structurally Related Monoterpenes p-Cymene, Carvacrol and Thymol Isolated from Essential Oil from Leaves of Lippia sidoides Cham. (Verbenaceae) Protect Mice against Elastase-Induced Emphysema. Molecules 2016; 21:molecules21101390. [PMID: 27775634 PMCID: PMC6273112 DOI: 10.3390/molecules21101390] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/04/2016] [Accepted: 10/12/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by irreversible airflow obstruction and inflammation. Natural products, such as monoterpenes, displayed anti-inflammatory and anti-oxidant activities and can be used as a source of new compounds to COPD treatment. Our aim was to evaluate, in an elastase-induced pulmonary emphysema in mice, the effects of and underlying mechanisms of three related natural monoterpenes (p-cymene, carvacrol and thymol) isolated from essential oil from leaves Lippia sidoides Cham. (Verbenaceae). METHODS Mices received porcine pancreatic elastase (PPE) and were treated with p-cymene, carvacrol, thymol or vehicle 30 min later and again on 7th, 14th and 28th days. Lung inflammatory profile and histological sections were evaluated. RESULTS In the elastase-instilled animals, the tested monoterpenes reduced alveolar enlargement, macrophages and the levels of IL-1β, IL-6, IL-8 and IL-17 in bronchoalveolar lavage fluid (BALF), and collagen fibers, MMP-9 and p-65-NF-κB-positive cells in lung parenchyma (p < 0.05). All treatments attenuated levels of 8-iso-PGF2α but only thymol was able to reduced exhaled nitric oxide (p < 0.05). CONCLUSION Monoterpenes p-cymene, carvacrol and thymol reduced lung emphysema and inflammation in mice. No significant differences among the three monoterpenes treatments were found, suggesting that the presence of hydroxyl group in the molecular structure of thymol and carvacrol do not play a central role in the anti-inflammatory effects.
Collapse
|
65
|
Li Y, Lai Y, Wang Y, Liu N, Zhang F, Xu P. 1, 8-Cineol Protect Against Influenza-Virus-Induced Pneumonia in Mice. Inflammation 2016; 39:1582-93. [PMID: 27351430 DOI: 10.1007/s10753-016-0394-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
1,8-Cineol is a major monoterpene principally from eucalyptus essential oils and has been shown to exert anti-inflammatory, antiviral, and inhibitory of nuclear factor (NF)-kB effect. In the present study, we evaluated the effect of 1,8-cineol on mice infected with influenza A virus. We found that 1,8-cineol protects against influenza viral infection in mice. Moreover, 1,8-cineol efficiently decreased the level of IL-4, IL-5, IL-10, and MCP-1 in nasal lavage fluids and the level of IL-1β, IL-6, TNF-α, and IFN-γ in lung tissues of mice infected with influenza virus. The results also showed that 1,8-cineol reduced the expression of NF-kB p65, intercellular adhesion molecule (ICAM)-1, and vascular cell adhesion molecule (VCAM)-1 in lung tissues. Thus, 1,8-cineol appears to be able to augment protection against IFV infection in mice via attenuation of pulmonary inflammatory responses.
Collapse
Affiliation(s)
- Yun Li
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist., Guangzhou, Guangdong, 510405, People's Republic of China
| | - Yanni Lai
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist., Guangzhou, Guangdong, 510405, People's Republic of China
| | - Yao Wang
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist., Guangzhou, Guangdong, 510405, People's Republic of China
| | - Ni Liu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist., Guangzhou, Guangdong, 510405, People's Republic of China
| | - Fengxue Zhang
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist., Guangzhou, Guangdong, 510405, People's Republic of China
| | - Peiping Xu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist., Guangzhou, Guangdong, 510405, People's Republic of China.
| |
Collapse
|
66
|
1,8-Cineole potentiates IRF3-mediated antiviral response in human stem cells and in an ex vivo model of rhinosinusitis. Clin Sci (Lond) 2016; 130:1339-52. [PMID: 27129189 DOI: 10.1042/cs20160218] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/22/2016] [Indexed: 11/17/2022]
Abstract
The common cold is one of the most frequent human inflammatory diseases caused by viruses and can facilitate bacterial superinfections, resulting in sinusitis or pneumonia. The active ingredient of the drug Soledum, 1,8-cineole, is commonly applied for treating inflammatory diseases of the respiratory tract. However, the potential for 1,8-cineole to treat primary viral infections of the respiratory tract remains unclear. In the present study, we demonstrate for the first time that 1,8-cineole potentiates poly(I:C)-induced activity of the antiviral transcription factor interferon regulatory factor 3 (IRF3), while simultaneously reducing proinflammatory nuclear factor (NF)-κB activity in human cell lines, inferior turbinate stem cells (ITSCs) and in ex vivo cultivated human nasal mucosa. Co-treatment of cell lines with poly(I:C) and 1,8-cineole resulted in significantly increased IRF3 reporter gene activity compared with poly(I:C) alone, whereas NF-κB activity was reduced. Accordingly, 1,8-cineole- and poly(I:C) treatment led to increased nuclear translocation of IRF3 in ITSCs and a human ex vivo model of rhinosinusitis compared with the poly(I:C) treatment approach. Nuclear translocation of IRF3 was significantly increased in ITSCs and slice cultures treated with lipopolysaccharide (LPS) and 1,8-cineole compared with the LPS-treated cells mimicking bacterial infection. Our findings strongly suggest that 1,8-cineole potentiates the antiviral activity of IRF3 in addition to its inhibitory effect on proinflammatory NF-κB signalling, and may thus broaden its field of application.
Collapse
|
67
|
Seol GH, Kim KY. Eucalyptol and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 929:389-398. [PMID: 27771935 DOI: 10.1007/978-3-319-41342-6_18] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Patients with chronic diseases such as cardiovascular diseases, chronic respiratory diseases, and neurological diseases have been shown to benefit from treatments such as aromatherapy in addition to medication. Most chronic diseases are caused by chronic inflammation and oxidative stress as well as harmful factors. Eucalyptol (1,8-cineole), a terpenoid oxide isolated from Eucalyptus species, is a promising compound for treating such conditions as it has been shown to have anti-inflammatory and antioxidant effects in various diseases, including respiratory disease, pancreatitis, colon damage, and cardiovascular and neurodegenerative diseases. Eucalyptol suppresses lipopolysaccharide (LPS)-induced proinflammatory cytokine production through the action of NF-κB, TNF-α, IL-1β, and IL-6 and the extracellular signal-regulated kinase (ERK) pathway, and reduces oxidative stress through the regulation of signaling pathways and radical scavenging. The effects of eucalyptol have been studied in several cell and animal models as well as in patients with chronic diseases. Furthermore, eucalyptol can pass the blood-brain barrier and hence can be used as a carrier to deliver drugs to the brain via a microemulsion system. In summary, the various biological activities of eucalyptol such as its anti-inflammatory and antioxidant properties, as well as its physicochemical characteristics, make this compound a potentially important drug for the treatment of chronic diseases.
Collapse
Affiliation(s)
- Geun Hee Seol
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul, 02841, Republic of Korea.
| | - Ka Young Kim
- Department of Nursing Science, School of Nursing, Gachon University, Incheon, 21936, Republic of Korea
| |
Collapse
|
68
|
Wang Z, Ji Y, Wang S, Wang R, Li Z, Kang A, Xu H, Shi M, Zhao M. Protective effect of intestinal ischemic preconditioning on ischemia reperfusion-caused lung injury in rats. Inflammation 2015; 38:424-32. [PMID: 25359707 DOI: 10.1007/s10753-014-0047-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intestinal ischemia reperfusion (IR) causes injury of distant critical organs. Remote intestinal ischemic preconditioning (IP) may confer the cytoprotection in critical organs including lung. The authors hypothesized that intestinal IP would be a prophylactic factor in the prevention of distant lung injury induced by IR. Rats were randomly divided into IR, IP, and Sham (S) group. Compared with IR group in the serum and lung tissue, MPO, MDA, TNF-α, and IL-1 levels were significantly decreased in the IP group. Following the same pattern, NO level in the serum and lung tissue was significantly increased in the IP group. And intestinal IP markedly abolished lung injury scores in contrast to IR group. Moreover, intestinal IP significantly attenuated caspase-3 expression, leading to the low expression of Bax and the high expression of Bcl-2. The present study showed that intestinal IP ameliorates the capacity of anti-oxygen free radical, inhibits the release of pro-inflammatory cytokines and alleviates apoptosis in IR-induced lung injury in rats. Intestinal IP may provide a novel prophylactic strategy for treatment of IR-induced lung injury.
Collapse
Affiliation(s)
- Zhidong Wang
- Department of VIP General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Sudhoff H, Klenke C, Greiner JFW, Müller J, Brotzmann V, Ebmeyer J, Kaltschmidt B, Kaltschmidt C. 1,8-Cineol Reduces Mucus-Production in a Novel Human Ex Vivo Model of Late Rhinosinusitis. PLoS One 2015. [PMID: 26207629 PMCID: PMC4514714 DOI: 10.1371/journal.pone.0133040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inflammatory diseases of the respiratory system such as rhinosinusitis, chronic obstructive pulmonary disease, or bronchial asthma are strongly associated with overproduction and hypersecretion of mucus lining the epithelial airway surface. 1,8-cineol, the active ingredient of the pharmaceutical drug Soledum, is commonly applied for treating such inflammatory airway diseases. However, its potential effects on mucus overproduction still remain unclear.In the present study, we successfully established ex vivo cultures of human nasal turbinate slices to investigate the effects of 1,8-cineol on mucus hypersecretion in experimentally induced rhinosinusitis. The presence of acetyl-α-tubulin-positive cilia confirmed the integrity of the ex vivo cultured epithelium. Mucin-filled goblet cells were also detectable in nasal slice cultures, as revealed by Alcian Blue and Periodic acid-Schiff stainings. Treatment of nasal slice cultures with lipopolysaccharides mimicking bacterial infection as observed during late rhinosinusitis led to a significantly increased number of mucin-filled goblet cells. Notably, the number of mucin-filled goblet cells was found to be significantly decreased after co-treatment with 1,8-cineol. On a molecular level, real time PCR-analysis further showed 1,8-cineol to significantly reduce the expression levels of the mucin genes MUC2 and MUC19 in close association with significantly attenuated NF-κB-activity. In conclusion, we demonstrate for the first time a 1,8-cineol-dependent reduction of mucin-filled goblet cells and MUC2-gene expression associated with an attenuated NF-κB-activity in human nasal slice cultures. Our findings suggest that these effects partially account for the clinical benefits of 1,8-cineol-based therapy during rhinosinusitis. Therefore, topical application of 1,8-cineol may offer a novel therapeutic approach to reduce bacteria-induced mucus hypersecretion.
Collapse
Affiliation(s)
- Holger Sudhoff
- Department of Otolaryngology, Head and Neck Surgery, Klinikum Bielefeld, D-33604 Bielefeld, Germany
| | - Christin Klenke
- Department of Otolaryngology, Head and Neck Surgery, Klinikum Bielefeld, D-33604 Bielefeld, Germany
| | - Johannes F. W. Greiner
- Department of Otolaryngology, Head and Neck Surgery, Klinikum Bielefeld, D-33604 Bielefeld, Germany
- Department of Cell Biology, University of Bielefeld, D-33501 Bielefeld, Germany
| | - Janine Müller
- Department of Otolaryngology, Head and Neck Surgery, Klinikum Bielefeld, D-33604 Bielefeld, Germany
- AG Molecular Neurobiology, University of Bielefeld, D-33501 Bielefeld, Germany
| | - Viktoria Brotzmann
- Department of Otolaryngology, Head and Neck Surgery, Klinikum Bielefeld, D-33604 Bielefeld, Germany
- Department of Cell Biology, University of Bielefeld, D-33501 Bielefeld, Germany
| | - Jörg Ebmeyer
- Department of Otolaryngology, Head and Neck Surgery, Klinikum Bielefeld, D-33604 Bielefeld, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, D-33501 Bielefeld, Germany
- AG Molecular Neurobiology, University of Bielefeld, D-33501 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, D-33501 Bielefeld, Germany
- * E-mail:
| |
Collapse
|
70
|
Kim KY, Lee HS, Seol GH. Eucalyptol suppresses matrix metalloproteinase-9 expression through an extracellular signal-regulated kinase-dependent nuclear factor-kappa B pathway to exert anti-inflammatory effects in an acute lung inflammation model. J Pharm Pharmacol 2015; 67:1066-74. [DOI: 10.1111/jphp.12407] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/07/2015] [Indexed: 01/20/2023]
Abstract
Abstract
Objectives
The acute lung injury (ALI) model is characterised by a severe acute inflammatory response in the lungs that represents the pathogenesis of acute respiratory distress syndrome (ARDS). In this study, we sought to elucidate the anti-inflammatory mechanism of eucalyptol in relation to tissue remodelling in acute lung inflammation.
Methods
BALB/C mice were intraperitoneally injected with eucalyptol (100, 200 or 400 mg/kg) or dexamethasone (1 mg/kg) 1 h before intratracheal challenge with lipopolysaccharide (LPS; 1.5 mg/kg) and sacrificed after 4 h. The anti-inflammatory effects of eucalyptol were assessed by determining cell counts, measuring cytokine and nitric oxide production and performing Western blotting and histological analyses.
Key findings
Eucalyptol attenuated inflammation-associated increases in cell numbers, matrix metalloproteinase-9 (MMP-9) expression, production of cytokines (tumour necrosis factor-α and interleukin-6) and nitric oxide, and nuclear factor-kappa B (NF-κB) and phosphorylated extracellular signal-regulated kinase protein levels induced by LPS in bronchoalveolar lavage fluid from ALI mice. Furthermore, pretreatment with 400 mg/kg eucalyptol prevented LPS-induced histopathological changes. Collectively, these results indicate that eucalyptol acts through a mechanism involving decreased MMP-9 expression and an extracellular signal-regulated kinase-dependent NF-κB pathway to exert anti-inflammatory actions in acute lung inflammation.
Conclusions
Thus, eucalyptol may be a potentially important agent in the treatment of pulmonary inflammation.
Collapse
Affiliation(s)
- Ka Young Kim
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul, Republic of Korea
| | - Hui Su Lee
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul, Republic of Korea
| | - Geun Hee Seol
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul, Republic of Korea
| |
Collapse
|
71
|
Zhang Y, Yu JB, Luo XQ, Gong LR, Wang M, Cao XS, Dong SA, Yan YM, Kwon Y, He J. Effect of ERK1/2 signaling pathway in electro-acupuncture mediated up-regulation of heme oxygenase-1 in lungs of rabbits with endotoxic shock. Med Sci Monit 2014; 20:1452-60. [PMID: 25139460 PMCID: PMC4144948 DOI: 10.12659/msm.890736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background The anti-oxidative and anti-inflammatory activities of electro-acupuncture (EA), a traditional clinical method, are widely accepted, but its mechanisms are not yet well defined. In this study, we investigated the role of extracellular signal-regulated kinases1/2 (ERK1/2) pathways on electro-acupuncture – mediated up-regulation of heme oxygenase-1 (HO-1) in rabbit lungs injured by LPS-induced endotoxic shock. Material/Methods Seventy rabbits were randomly divided into 7 groups: group C, group M, group D, group SEAM, group EAM, group EAMPD, and group PD98059. Male New England white rabbits were given EA treatment on both sides once a day on days 1–5, and then received LPS to replicate the experimental model of injured lung induced by endotoxic shock. Then, they were killed by exsanguination at 6 h after LPS administration. The blood samples were collected for serum examination, and the lungs were removed for pathology examination, determination of wet-to-dry weight ratio, MDA content, SOD activity, serum tumor necrosis factor-α, determination of HO-1 protein and mRNA expression, and determination of ERK1/2 protein. Results The results revealed that after EA treatment, expression of HO-1and ERK1/2 was slightly increased compared to those in other groups, accompanied with less severe lung injury as indicated by lower index of lung injury score, lower wet-to-dry weight ratio, MDA content, and serum tumor necrosis factor-α levels, and greater SOD activity (p<0.05 for all). After pretreatment with ERK1/2 inhibitor PD98059, the effect of EA treatment and expression of HO-1 were suppressed (p<0.05 for all). Conclusions After electro-acupuncture stimulation at ST36 and BL13, severe lung injury during endotoxic shock was attenuated. The mechanism may be through up-regulation of HO-1, mediated by the signal transductions of ERK1/2 pathways. Thus, the regulation of ERK1/2 pathways via electro-acupuncture may be a therapeutic strategy for endotoxic shock.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Anesthesiology, Tianjin Nan Kai Hospital, Tianjin Medical University, Tianjin, China (mainland)
| | - Jian-Bo Yu
- Department of Anesthesiology, Tianjin Nan Kai Hospital, Tianjin Medical University, Tianjin, China (mainland)
| | - Xiao-Qing Luo
- Department of Pathology, First People's Hospital of Xiang Yang, Hubei, China (mainland)
| | - Li-Rong Gong
- Department of Anesthesiology, Tianjin Nan Kai Hospital, Tianjin Medical University, Tianjin, China (mainland)
| | - Man Wang
- Department of Anesthesiology, Tianjin Nan Kai Hospital, Tianjin Medical University, Tianjin, China (mainland)
| | - Xin-Shun Cao
- Department of Anesthesiology, Tianjin Nan Kai Hospital, Tianjin Medical University, Tianjin, China (mainland)
| | - Shu-An Dong
- Department of Anesthesiology, Tianjin Nan Kai Hospital, Tianjin Medical University, Tianjin, China (mainland)
| | - Yu-Miao Yan
- Department of Anesthesiology, Tianjin Nan Kai Hospital, Tianjin Medical University, Tianjin, China (mainland)
| | - Yihyun Kwon
- Acupuncture, National University of Health Sciences, Lombard, USA
| | - Jia He
- Acupuncture, Tianjin University of Traditional Chinese Medicine, Tianjin, China (mainland)
| |
Collapse
|