51
|
Zhang G, Li T, Chang X, Xing J. Long Noncoding RNA SNHG14 Promotes Ischemic Brain Injury via Regulating miR-199b/AQP4 Axis. Neurochem Res 2021; 46:1280-1290. [PMID: 33609254 DOI: 10.1007/s11064-021-03265-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND Ischemic stroke is the leading cause of disability worldwide. Long noncoding RNAs (lncRNAs) play important roles in the pathogenesis of cerebral ischemia. This study aimed to investigate the role and mechanism of lncRNA small nucleolar RNA host gene 14 (SNHG14) in ischemic brain injury. METHODS Cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in mice. The expression of SNHG14 in MCAO mouse model was detected by quantitative real-time PCR (qRT-PCR). The levels of SNHG14, microRNA-199b (miR-199b) and aquaporin 4 (AQP4) in oxygen-glucose deprivation (OGD)-stimulated BV2 cells were determined by qRT-PCR or western blot assay. Cell proliferation and apoptosis were assessed by Cell Counting Kit-8 (CCK-8) assay and flow cytometry. The levels of pro-inflammatory cytokines were measured by enzyme-linked immunosorbent assay (ELISA). The levels of oxidative stress markers were examined using commercial kits. The relationships among SNHG14, miR-199b and AQP4 were confirmed by dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay. RESULTS SNHG14 was up-regulated in MCAO mouse model. Depletion of SNHG14 lessened cerebral ischemia in MCAO mouse model. SNHG14 silencing inhibited inflammation and oxidative stress in OGD-exposed BV2 cells. MiR-199b level was decreased, while AQP4 level was increased in OGD-treated BV2 cells. Knockdown of miR-199b reversed the effect of SNHG14 knockdown on ischemic damage in OGD-stimulated BV2 cells. Moreover, AQP4 overexpression abolished the effect of miR-199b on ischemic injury in OGD-treated BV2 cells. Furthermore, SNHG14 indirectly regulate AQP4 expression by sponging miR-199b. CONCLUSIONS Knockdown of SNHG14 attenuated ischemic brain injury by inhibiting inflammation and oxidative stress through the miR-199b/AQP4 axis.
Collapse
Affiliation(s)
- Guanglin Zhang
- Department of Cerebrovascular, Henan Provincial People's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Department of Cerebrovascular, Henan Provincial People's Hospital Affiliated to Zhengzhou University, No. 7, Weiwu Road, Jinshui District, Henan Province, China.
| | - Tianxiao Li
- Department of Cerebrovascular, Henan Provincial People's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xiaozan Chang
- Department of Cerebrovascular, Henan Provincial People's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Jun Xing
- Department of Cerebrovascular, Henan Provincial People's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, China
| |
Collapse
|
52
|
Chen J, Liu P, Dong X, Jin J, Xu Y. The role of lncRNAs in ischemic stroke. Neurochem Int 2021; 147:105019. [PMID: 33905763 DOI: 10.1016/j.neuint.2021.105019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is a leading cause of disability and mortality worldwide due to the narrow therapeutic time window of the only two approved therapies, intravenous thrombolysis and thrombectomy. The pathophysiological processes of ischemic stroke are driven by multiple complex molecular and cellular interactions that ultimately induce brain damage and neurobehavioral impairment. Long non-coding RNAs (LncRNAs) are significantly altered in the blood and brains of ischemic stroke patients and play a critical role in the pathogenesis of stroke, which serve as potential targets for stroke interventions. In this review, we provide an overview of the roles of lncRNAs in the pathophysiology of ischemic stroke and discuss the opportunities and challenges for the clinical application of lncRNAs in the diagnosis and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jian Chen
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Pinyi Liu
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Xiaohong Dong
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Jiali Jin
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.
| |
Collapse
|
53
|
Jiang Y, Zhang W. LncRNA ZFAS1 plays a role in regulating the inflammatory responses in sepsis-induced acute lung injury via mediating miR-193a-3p. INFECTION GENETICS AND EVOLUTION 2021; 92:104860. [PMID: 33848686 DOI: 10.1016/j.meegid.2021.104860] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Accepted: 04/08/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To explore the role of lncRNA ZFAS1-mediated miR-193a-3p in the regulation of inflammatory responses in rats with sepsis-induced acute lung injury (ALI). METHODS Sepsis-induced ALI models were constructed by LPS induction and then injected with ZFAS1 overexpression plasmid. Thereafter, lung injury score and the W/D weight ratio were calculated. Besides, bronchoalveolar lavage fluid (BALF) was isolated from rats to perform the cell count and protein quantification, while qRT-PCR and ELISA were performed to detect the inflammatory cytokines expressions. In vitro, NR8383 cells were transfected and then treated with LPS, followed by the measurement of inflammatory cytokines, cell viability and cell apoptosis. RESULTS In comparison with the Control group, rats in the LPS group presented sharp increases in the W/D weight ratio and injury score of lung, total protein concentration and the count of neutrophils and macrophages in BALF. Besides, rats in LPS group also resulted in a decrease in ZFAS1 expression and increase in miR-193a-3p expression in lung tissues, with the increased pro-inflammatory cytokines. Dual luciferase reporter gene assay confirmed a target relation between miR-193a-3p and ZFAS1. As compared to the Blank group, NR8383 cells in the LPS group had up-regulated pro-inflammatory cytokines with declined cell viability and elevated cell apoptosis; and meanwhile, ZFAS1 and Bcl-2 were decreased but miR-193a-3p and Bax were increased. Overexpression of ZFAS1 could significantly improve LPS-induced ALI in vivo and in vitro with reduced levels of pro-inflammatory cytokines. CONCLUSION Overexpression of ZFAS1, possibly via targeting the expression of miR-193a-3p, could inhibit the apoptosis and ameliorate the inflammatory responses of ALI in sepsis.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Critical Care Medicine, Yantaishan Hospital, Yantai 264001, China
| | - Wei Zhang
- Department of Critical Care Medicine, Yantaishan Hospital, Yantai 264001, China.
| |
Collapse
|
54
|
Dipeptidyl-peptidase 3 protects oxygen-glucose deprivation/reoxygenation-injured hippocampal neurons by suppressing apoptosis, oxidative stress and inflammation via modulation of Keap1/Nrf2 signaling. Int Immunopharmacol 2021; 96:107595. [PMID: 33812256 DOI: 10.1016/j.intimp.2021.107595] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
Dipeptidyl-peptidase 3 (DPP3) plays a key role in regulating apoptosis, oxidative stress and inflammation under various pathological conditions, however, whether DPP3 regulates apoptosis and oxidative stress in neurons undergoing cerebral ischemia/reperfusion injury has not yet been well studied. The goals of this work were to evaluate the role of DPP3 in the regulation of oxygen-glucose deprivation/reoxygenation (OGD/R)-induced apoptosis, oxidative stress and inflammation in HT22 hippocampal neurons. Here, we showed that DPP3 expression was elevated in response to OGD/R in neurons. Knockdown of DPP3 exacerbated OGD/R-induced apoptosis, oxidative stress and inflammation, whilst up-regulation of DPP3 alleviated OGD/R-induced apoptosis, oxidative stress and inflammation in HT22 neurons. Further results revealed that DPP3 enhanced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and promoted transcriptional activity of the anti-oxidant response element (ARE). Additionally, DPP3 was shown to regulate Nrf2/ARE activation in a kelch-like ECH-associated protein 1 (Keap1)-dependent manner. Notably, inhibition of Nrf2 markedly reversed the DPP3-mediated neuroprotective effects against OGD/R injury. Taken together, these findings demonstrate that DPP3 exerts a neuroprotective role in OGD/R-injured neurons by suppressing neuronal apoptosis, oxidative stress and inflammation via modulation of Keap1/Nrf2 signaling. This work suggests DPP3 as a potential target for providing neuroprotective effects during cerebral ischemia/reperfusion injury.
Collapse
|
55
|
LncRNA-MIAT promotes neural cell autophagy and apoptosis in ischemic stroke by up-regulating REDD1. Brain Res 2021; 1763:147436. [PMID: 33745924 DOI: 10.1016/j.brainres.2021.147436] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/28/2021] [Accepted: 03/14/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Ischemic stroke (IS) accounts for 80% of stroke incidence, which has an impact on the life quality of patients. Long non-coding RNA (LncRNA), a class of non-coding transcripts greater than 200 nucleotidesin length, has been extensively studied in cerebrovascular diseases. Myocardial infarction associated transcript (MIAT) is highly expressed in nervous system. Therefore this study aims to explore the role of LncRNA MIAT in IS and to clarify its underlying mechanism, providing therapeutic value for the treatment of IS. METHODS The neurological function of rats was evaluated by neurological deficit score. Triphenyltetrazolium chloride (TTC) staining was used to detect infarct area in brain tissues. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to examine the expression of MIAT. Western blotting was used to detect the expressions of REDD1, p-mTOR, autophagy-related proteins LC3 and p62, and apoptotic-related proteins Bax, cleaved-caspase3, Bcl-2. Flow cytometry was applied to examine neuronal cell apoptosis. RNA pull-down and RIP assay was used to verify the binding of MIAT and REDD1. The level of REDD1 ubiquitination was detected by ubiquitination and Co-immunoprecipitation (Co-IP) assay. RESULTS The expressions of MIAT and REDD1 were increased in IS rats and oxygen-glucose deprivation/reoxygenation (OGD/R)-induced PC12 cell injury. After interference with si-MIAT, the results of flow cytometry showed that the rate of apoptosis was reduced. Western blotting results showed that the expression of LC3II/LC3I, Bax, and cleaved-caspase3 was decreased, while the expression of p-mTOR, p62, and Bcl-2 was increased. RNA pull-down and RIP assay found the binding relationship between MIAT and REDD1, and interference with si-MIAT down-regulated the expression of REDD1. The level of REDD1 ubiquitination was increased and the expression of REDD1 was decreased after interference with si-MIAT in PC12 cells. Co-IP results showed that interference with si-MIAT enhanced the binding ability of CUL4A-DDB1 and REDD1. CONCLUSION Altogether, MIAT promotes autophagy and apoptosis of neural cells and aggravates IS by up-regulating the expression of REDD1.
Collapse
|
56
|
Gan L, Liao S, Xing Y, Deng S. The Regulatory Functions of lncRNAs on Angiogenesis Following Ischemic Stroke. Front Mol Neurosci 2021; 13:613976. [PMID: 33613191 PMCID: PMC7890233 DOI: 10.3389/fnmol.2020.613976] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is one of the leading causes of global mortality and disability. It is a multi-factorial disease involving multiple factors, and gene dysregulation is considered as the major molecular mechanisms underlying disease progression. Angiogenesis can promote collateral circulation, which helps the restoration of blood supply in the ischemic area and reduces ischemic necrosis following ischemic injury. Aberrant expression of long non-coding RNAs (lncRNAs) in ischemic stroke is associated with various biological functions of endothelial cells and serves essential roles on the angiogenesis of ischemic stroke. The key roles of lncRNAs on angiogenesis suggest their potential as novel therapeutic targets for future diagnosis and treatment. This review elucidates the detailed regulatory functions of lncRNAs on angiogenesis following ischemic stroke through numerous mechanisms, such as interaction with target microRNAs, downstream signaling pathways and target molecules.
Collapse
Affiliation(s)
- Li Gan
- Laboratory of Forensic and Biomedical Information, Chongqing Medical University, Chongqing, China
| | - Shengtao Liao
- Department of Gastroenterology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Xing
- Laboratory of Forensic and Biomedical Information, Chongqing Medical University, Chongqing, China
| | - Shixiong Deng
- Laboratory of Forensic and Biomedical Information, Chongqing Medical University, Chongqing, China
| |
Collapse
|
57
|
Tan Y, Zhou F, Yang D, Zhang X, Zeng M, Wan L. MicroRNA-126a-5p Exerts Neuroprotective Effects on Ischemic Stroke via Targeting NADPH Oxidase 2. Neuropsychiatr Dis Treat 2021; 17:2089-2103. [PMID: 34234438 PMCID: PMC8242150 DOI: 10.2147/ndt.s293611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/14/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Ischemic stroke is a destructive cerebrovascular disorder related to oxidative stress; NOX2 is a major source for ROS production; and miR-126a-5p is involved in several diseases, such as abdominal aortic aneurysm. We investigated the role of miR-126a-5p in regulating NOX2 in ischemic stroke. METHODS MiR-126a-5p and NOX2 were examined in the brains of rats subjected to cerebral ischemia/reperfusion (I/R) by RT-PCR and Western blot. MiR-126a-5p agomir was delivered to examine the effects of miR-126a-5p on I/R injury. The neurological deficit, infarct volume, and brain water content were evaluated. NOX activity, ROS production, and MDA and SOD levels were detected to assess oxidative stress. H&E staining was used to examine cell state. Apoptosis was evaluated by TUNEL, caspase-3 activity, and cleaved-caspase-3 protein level. The relationship between miR-126a-5p and NOX2 was analyzed by bioinformatics and luciferase reporter assay. MiR-126a-5p mimic, miR-126a-5p inhibitor, or pcDNA-NOX2 were transfected in SH-SY5Y cells to further assess the effects of miR-126a-5p on OGD/R-induced cells injury. RESULTS NOX2 was upregulated and miR-126a-5p was down-regulated in the brains of I/R rats. MiR-126a-5p agomir obviously reduced the neurological deficit, infarct volume, brain water content, oxidative stress, and apoptosis in I/R rats. MiR-126a-5p targeted NOX2 directly and regulated NOX2 negatively. Moreover, miR-126a-5p mimic elevated cell viability and inhibited oxidative stress and apoptosis in OGD/R-treated SH-SY5Y cells, while miR-126a-5p inhibitor had the opposite effects. NOX2 overexpression antagonized the protective effects of miR-126a-5p mimic on OGD/R-induced cell injury. CONCLUSION MiR-126a-5p is a novel potential target for ischemic stroke therapy due to its protection against cerebral I/R injury via directly targeting NOX2.
Collapse
Affiliation(s)
- Yu Tan
- Department of Neurology, The Third Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, 330008, People's Republic of China
| | - Feng Zhou
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai City, Guangdong Province, 519000, People's Republic of China
| | - Dejiang Yang
- Department of Neurology, The Third Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, 330008, People's Republic of China
| | - Xiaowei Zhang
- Department of Neurology, The Third Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, 330008, People's Republic of China
| | - Meihong Zeng
- Department of Neurology, The Third Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, 330008, People's Republic of China
| | - Lei Wan
- Department of Neurology, The Third Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, 330008, People's Republic of China
| |
Collapse
|
58
|
Mañas-García L, Penedo-Vázquez A, López-Postigo A, Deschrevel J, Durán X, Barreiro E. Prolonged Immobilization Exacerbates the Loss of Muscle Mass and Function Induced by Cancer-Associated Cachexia through Enhanced Proteolysis in Mice. Int J Mol Sci 2020; 21:E8167. [PMID: 33142912 PMCID: PMC7663403 DOI: 10.3390/ijms21218167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
We hypothesized that in mice with lung cancer (LC)-induced cachexia, periods of immobilization of the hindlimb (7 and 15 days) may further aggravate the process of muscle mass loss and function. Mice were divided into seven groups (n = 10/group): (1) non-immobilized control mice, (2) 7-day unloaded mice (7-day I), (3) 15-day unloaded mice (15-day I), (4) 21-day LC-cachexia group (LC 21-days), (5) 30-day LC-cachexia group (LC 30-days), (6) 21-day LC-cachexia group besides 7 days of unloading (LC 21-days + 7-day I), (7) 30-day LC-cachexia group besides 15 days of unloading (LC 30-days + 15-day I). Physiological parameters, body weight, muscle and tumor weights, phenotype and morphometry, muscle damage (including troponin I), proteolytic and autophagy markers, and muscle regeneration markers were identified in gastrocnemius muscle. In LC-induced cachexia mice exposed to hindlimb unloading, gastrocnemius weight, limb strength, fast-twitch myofiber cross-sectional area, and muscle regeneration markers significantly decreased, while tumor weight and area, muscle damage (troponin), and proteolytic and autophagy markers increased. In gastrocnemius of cancer-cachectic mice exposed to unloading, severe muscle atrophy and impaired function was observed along with increased muscle proteolysis and autophagy, muscle damage, and impaired muscle regeneration.
Collapse
Affiliation(s)
- Laura Mañas-García
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (L.M.-G.); (A.P.-V.); (A.L.-P.); (J.D.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Antonio Penedo-Vázquez
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (L.M.-G.); (A.P.-V.); (A.L.-P.); (J.D.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Adrián López-Postigo
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (L.M.-G.); (A.P.-V.); (A.L.-P.); (J.D.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Jorieke Deschrevel
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (L.M.-G.); (A.P.-V.); (A.L.-P.); (J.D.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
- Laboratory of Respiratory diseases and Thoracic Surgery, Department Chrometa, Catholic University of Leuven, B-3000 Leuven, Belgium
| | - Xavier Durán
- Scientific and Technical Department, Hospital del Mar-IMIM, 08003 Barcelona, Spain;
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (L.M.-G.); (A.P.-V.); (A.L.-P.); (J.D.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| |
Collapse
|
59
|
Comprehensive Analysis of Long Non-coding RNA-Associated Competing Endogenous RNA Network in Duchenne Muscular Dystrophy. Interdiscip Sci 2020; 12:447-460. [PMID: 32876881 DOI: 10.1007/s12539-020-00388-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022]
Abstract
Duchenne muscular dystrophy (DMD) is one of the most severe neuromuscular disorders. Long non-coding RNAs (lncRNAs) are a group of non-coding transcripts, which could regulate messenger RNA (mRNA) by binding the mutual miRNAs, thus acting as competing endogenous RNAs (ceRNAs). So far, the role of lncRNA in DMD pathogenesis remains unclear. In the current study, expression profile from a total of 33 DMD patients and 12 healthy people were downloaded from Gene Expression Omnibus (GEO) database (GSE38417 and GSE109178). Differentially expressed (DE) lncRNAs were discovered and targeted mRNAs were predicted. The ceRNA network of lncRNAs-miRNAs-mRNAs was then constructed. Genome Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the putative mRNAs in the ceRNA network were performed through Database for Annotation, Visualization and Integration Discovery (DAVID) website. Topological property of the network was analyzed using Cytoscape to disclose the hub lncRNAs. According to our assessments, 19 common DElncRNAs and 846 common DEmRNAs were identified in DMD compared to controls. The created ceRNA network contained 6 lncRNA nodes, 69 mRNA nodes, 27 miRNA nodes and 102 edges, while four hub lncRNAs (XIST, AL132709, LINC00310, ALDH1L1-AS2) were uncovered. In conclusion, our latest bioinformatic analysis demonstrated that lncRNA is likely involved in DMD. This work highlights the importance of lncRNA and provides new insights for exploring the molecular mechanism of DMD. The created ceRNA network contained 6 lncRNA nodes, 69 mRNA nodes, 27 miRNA nodes and 102 edges, while four hub lncRNAs (XIST, AL132709, LINC00310, ALDH1L1-AS2) were uncovered. Remarkably, KEGG analysis indicated that targeted mRNAs in the network were mainly enriched in "microRNAs in cancer" and "proteoglycans in cancer". Our study may offer novel perspectives on the pathogenesis of DMD from the point of lncRNAs. This work might be also conducive for exploring the molecular mechanism of increased incidence of tumorigenesis reported in DMD patients and experimental models.
Collapse
|
60
|
Zhou T, Wang S, Lu K, Yin C. Long Non-Coding RNA SNHG7 Alleviates Oxygen and Glucose Deprivation/Reoxygenation-Induced Neuronal Injury by Modulating miR-9/SIRT1 Axis in PC12 Cells: Potential Role in Ischemic Stroke. Neuropsychiatr Dis Treat 2020; 16:2837-2848. [PMID: 33262598 PMCID: PMC7700012 DOI: 10.2147/ndt.s273421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/19/2020] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE The roles of long non-coding RNA (lncRNAs) in ischemic stroke (IS) have been widely illustrated. Here, we focused on the function and mechanism of lncRNA SNHG7 in IS. METHODS Middle cerebral artery occlusion (MCAO) was used for inducing mice to establish IS models in vivo. Oxygen and glucose deprivation/reoxygenation (OGD/R) was used for treating PC12 cells to establish IS models in vitro. Relative expression of SNHG7 and miR-9 was determined by qRT-PCR. The neuronal injury was assessed by measuring relative activity of ROS, malondialdehyde (MDA) level and cell viability. Cell viability was determined by MTT assay. Dual-luciferase reporter (DLR) assay was employed to test the target of SNHG7 or miR-9. Western blot was used to determine the protein expression of SIRT1. Apoptosis rate was measured by flow cytometry. RESULTS SNHG7 was down-regulated and miR-9 was up-regulated by MCAO treatment in brain tissues of mice and by OGD/R treatment in PC12 cells. Overexpression of SNHG7 or suppression of miR-9 decreased the relative activity of ROS and the MDA level as well as enhancing cell viability, and SNHG7 reduced apoptosis rate in OGD/R-induced PC12 cells (IS cells). MiR-9 was targeted by SNHG7 and SIRT1 was targeted by miR-9. The protein expression of SIRT1 was reduced by OGD/R treatment in PC12 cells. The suppressive effects of SNHG7 on the relative activity of ROS, the MDA level and apoptosis rate as well as the promotion effect of SNHG7 on cell viability were reversed by miR-9 mimics or sh-SIRT1 in IS cells. CONCLUSION LncRNA SNHG7 alleviated OGD/R-induced neuronal injury by mediating miR-9/SIRT1 axis in vitro.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Neurosurgery, Zibo First Hospital, Zibo City 255200, People's Republic of China
| | - Shuai Wang
- Department of Neurosurgery, Zibo First Hospital, Zibo City 255200, People's Republic of China
| | - Kai Lu
- Department of Neurology, Liaocheng Third People's Hospital, Liaocheng City 252000, People's Republic of China
| | - Chunhui Yin
- Department of Intervention Clinic, Weifang Hospital of Traditional Chinese Medicine, Weifang City 261000, People's Republic of China
| |
Collapse
|