51
|
Abstract
Since the publication of the first X-ray structure of a GPCR (G-protein couple receptor) in 2000, the rate at which subsequent ones have appeared has steadily increased. This has required the development of new methodology to overcome the challenges presented by instability of isolated GPCRs, combined with a systematic optimization of existing approaches for protein expression, purification and crystallization. In addition, quality control measures that are predictive of successful outcomes have been identified. Repeated attempts at solving the structures of GPCRs have highlighted experimental approaches that are most likely to lead to success, and have allowed definition of a first-pass protocol for new receptors.
Collapse
|
52
|
Carraher C, Nazmi AR, Newcomb RD, Kralicek A. Recombinant expression, detergent solubilisation and purification of insect odorant receptor subunits. Protein Expr Purif 2013; 90:160-9. [PMID: 23770557 DOI: 10.1016/j.pep.2013.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 12/16/2022]
Abstract
Insect odorant receptors (ORs) are seven transmembrane domain proteins that comprise a novel family of ligand-gated non-selective cation channels. The functional channel is made up of an odour activated ligand-binding OR and the OR co-receptor, Orco. However, the structure, stoichiometry and mechanism of activation of the receptor complex are not well understood. Here we demonstrate that baculovirus-mediated Sf9 cell expression and wheat germ cell-free expression, but not Escherichia coli cell-based or cell-free expression, can be used successfully to over-express a selection of insect ORs. From a panel of 19 detergents, 1%w/v Zwittergent 3-16 was able to solubilise five Drosophila melanogaster ORs produced from both eukaryotic expression systems. A large-scale purification protocol was then developed for DmOrco and the ligand-binding receptor, DmOr22a. The proteins were nickel-affinity purified using a deca-histidine tag in a buffer containing 0.2 mM Zwittergent 3-16, followed by size exclusion chromatography. These purified ORs appear to form similarly sized protein-detergent complexes when isolated from both expression systems. Circular dichroism analysis of both purified proteins suggests they are folded correctly. We also provide evidence that when DmOrco is expressed in Sf9 cells it undergoes post translational modification, probably glycosylation. Finally we show that the recombinant ORs can be incorporated into pre-formed liposomes. The ability to recombinantly express and purify insect ORs to homogeneity on a preparative scale, as well as insert them into liposomes, is a major step forward in enabling future structural and functional studies, as well as their use in OR based biosensors.
Collapse
Affiliation(s)
- Colm Carraher
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | | | | | | |
Collapse
|
53
|
Maeda S, Schertler GFX. Production of GPCR and GPCR complexes for structure determination. Curr Opin Struct Biol 2013; 23:381-92. [PMID: 23707225 DOI: 10.1016/j.sbi.2013.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 04/11/2013] [Accepted: 04/11/2013] [Indexed: 01/12/2023]
Abstract
Since the first high-resolution structure of the beta 2 adrenergic receptor (b2AR) in 2007, we have seen a growing number of G-protein-coupled receptor (GPCR) structures coming to the repertory, providing a significant progress in our understanding of the structural basis of their function. This has been achieved by the interdisciplinary collaborative work between scientists with various expertise and the development of new methodologies as well as combining and optimizing existing techniques.
Collapse
Affiliation(s)
- Shoji Maeda
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | |
Collapse
|
54
|
McNeely PM, Naranjo AN, Robinson AS. Structure-function studies with G protein-coupled receptors as a paradigm for improving drug discovery and development of therapeutics. Biotechnol J 2013; 7:1451-61. [PMID: 23213015 DOI: 10.1002/biot.201200076] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 10/07/2012] [Accepted: 10/10/2012] [Indexed: 12/21/2022]
Abstract
There are a great variety of human membrane proteins, and these currently form the largest group of targets for marketed drugs. Despite the advances in drug design, however, promiscuity between drug molecules and targets often leads to undesired signaling effects, which result in unintended side effects. In this review, one family of membrane proteins - the G protein-coupled receptors (GPCRs) - is used as a model to review experimental techniques that may be used to examine the activity of membrane proteins. As these receptors are highly relevant to healthy human physiology and represent the largest family of drug targets, they represent an excellent model for membrane proteins in general. We also review experimental evidence that suggests there may be multiple ways to target a GPCR - and by extension, membrane proteins - to more effectively target unhealthy phenotypes while reducing the occurrence and severity of side effects.
Collapse
Affiliation(s)
- Patrick M McNeely
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | | | | |
Collapse
|
55
|
Shiroishi M. Strategies for the Structural Determination of G Protein-coupled Receptors: From an Example of Histamine H<sub>1</sub> Receptor. YAKUGAKU ZASSHI 2013; 133:539-47. [DOI: 10.1248/yakushi.13-00001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
56
|
Tillotson BJ, Cho YK, Shusta EV. Cells and cell lysates: a direct approach for engineering antibodies against membrane proteins using yeast surface display. Methods 2013; 60:27-37. [PMID: 22449570 PMCID: PMC3405166 DOI: 10.1016/j.ymeth.2012.03.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 03/09/2012] [Indexed: 01/16/2023] Open
Abstract
Membrane proteins (MPs) are often desirable targets for antibody engineering. However, the majority of antibody engineering platforms depend implicitly on aqueous solubility of the target antigen which is often problematic for MPs. Recombinant, soluble forms of MPs have been successfully employed as antigen sources for antibody engineering, but heterologous expression and purification of soluble MP fragments remains a challenging and time-consuming process. Here we present a more direct approach to aid in the engineering of antibodies to MPs. By combining yeast surface display technology directly with whole cells or detergent-solubilized whole-cell lysates, antibody libraries can be screened against MP antigens in their near-native conformations. We also describe how the platform can be adapted for antibody characterization and antigen identification. This collection of compatible methods serves as a basis for antibody engineering against MPs and it is predicted that these methods will mature in parallel with developments in membrane protein biochemistry and solubilization technology.
Collapse
Affiliation(s)
- Benjamin J. Tillotson
- University of Wisconsin-Madison, Dept. of Chemical and Biological Engineering, 1415 Engineering Dr., Madison, WI 53706
| | - Yong Ku Cho
- University of Wisconsin-Madison, Dept. of Chemical and Biological Engineering, 1415 Engineering Dr., Madison, WI 53706
| | - Eric V. Shusta
- University of Wisconsin-Madison, Dept. of Chemical and Biological Engineering, 1415 Engineering Dr., Madison, WI 53706
| |
Collapse
|
57
|
Expression and purification of functional human mu opioid receptor from E.coli. PLoS One 2013; 8:e56500. [PMID: 23437147 PMCID: PMC3578875 DOI: 10.1371/journal.pone.0056500] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 01/10/2013] [Indexed: 12/17/2022] Open
Abstract
N-terminally his-tagged human mu opioid receptor, a G protein-coupled receptor was produced in E.coli employing synthetic codon-usage optimized constructs. The receptor was expressed in inclusion bodies and membrane-inserted in different E.coli strains. By optimizing the expression conditions the expression level for the membrane-integrated receptor was raised to 0.3–0.5 mg per liter of culture. Milligram quantities of receptor could be enriched by affinity chromatography from IPTG induced cultures grown at 18°C. By size exclusion chromatography the protein fraction with the fraction of alpha-helical secondary structure expected for a 7-TM receptor was isolated, by CD-spectroscopy an alpha-helical content of ca. 45% was found for protein solubilised in the detergent Fos-12. Receptor in Fos-12 micelles was shown to bind endomorphin-1 with a KD of 61 nM. A final yield of 0.17 mg functional protein per liter of culture was obtained.
Collapse
|
58
|
Emami S, Fan Y, Munro R, Ladizhansky V, Brown LS. Yeast-expressed human membrane protein aquaporin-1 yields excellent resolution of solid-state MAS NMR spectra. JOURNAL OF BIOMOLECULAR NMR 2013; 55:147-155. [PMID: 23344971 DOI: 10.1007/s10858-013-9710-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/15/2013] [Indexed: 06/01/2023]
Abstract
One of the biggest challenges in solid-state NMR studies of membrane proteins is to obtain a homogeneous natively folded sample giving high spectral resolution sufficient for structural studies. Eukaryotic membrane proteins are especially difficult and expensive targets in this respect. Methylotrophic yeast Pichia pastoris is a reliable producer of eukaryotic membrane proteins for crystallography and a promising economical source of isotopically labeled proteins for NMR. We show that eukaryotic membrane protein human aquaporin 1 can be doubly ((13)C/(15)N) isotopically labeled in this system and functionally reconstituted into phospholipids, giving excellent resolution of solid-state magic angle spinning NMR spectra.
Collapse
Affiliation(s)
- Sanaz Emami
- Departments of Physics, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | | | | | | | | |
Collapse
|
59
|
Abstract
The number of structures of integral membrane proteins from higher eukaryotes is steadily increasing due to a number of innovative protein engineering and crystallization strategies devised over the last few years. However, it is sobering to reflect that these structures represent only a tiny proportion of the total number of membrane proteins encoded by a mammalian genome. In addition, the structures determined to date are of the most tractable membrane proteins, i.e., those that are expressed functionally and to high levels in yeast or in insect cells using the baculovirus expression system. However, some membrane proteins that are expressed inefficiently in these systems can be produced at sufficiently high levels in mammalian cells to allow structure determination. Mammalian expression systems are an under-used resource in structural biology and represent an effective way to produce fully functional membrane proteins for structural studies. This review will discuss examples of vertebrate membrane protein overexpression in mammalian cells using a variety of viral, constitutive or inducible expression systems.
Collapse
Affiliation(s)
- Juni Andréll
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
60
|
Shiroishi M, Tsujimoto H, Makyio H, Asada H, Yurugi-Kobayashi T, Shimamura T, Murata T, Nomura N, Haga T, Iwata S, Kobayashi T. Platform for the rapid construction and evaluation of GPCRs for crystallography in Saccharomyces cerevisiae. Microb Cell Fact 2012; 11:78. [PMID: 22694812 PMCID: PMC3495400 DOI: 10.1186/1475-2859-11-78] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 06/13/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent successes in the determination of G-protein coupled receptor (GPCR) structures have relied on the ability of receptor variants to overcome difficulties in expression and purification. Therefore, the quick screening of functionally expressed stable receptor variants is vital. RESULTS We developed a platform using Saccharomyces cerevisiae for the rapid construction and evaluation of functional GPCR variants for structural studies. This platform enables us to perform a screening cycle from construction to evaluation of variants within 6-7 days. We firstly confirmed the functional expression of 25 full-length class A GPCRs in this platform. Then, in order to improve the expression level and stability, we generated and evaluated the variants of the four GPCRs (hADRB2, hCHRM2, hHRH1 and hNTSR1). These stabilized receptor variants improved both functional activity and monodispersity. Finally, the expression level of the stabilized hHRH1 in Pichia pastoris was improved up to 65 pmol/mg from negligible expression of the functional full-length receptor in S. cerevisiae at first screening. The stabilized hHRH1 was able to be purified for use in crystallization trials. CONCLUSIONS We demonstrated that the S. cerevisiae system should serve as an easy-to-handle and rapid platform for the construction and evaluation of GPCR variants. This platform can be a powerful prescreening method to identify a suitable GPCR variant for crystallography.
Collapse
Affiliation(s)
- Mitsunori Shiroishi
- Iwata Human Receptor Crystallography project, ERATO, JST, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Ohsfeldt E, Huang SH, Baycin-Hizal D, Kristoffersen L, Le TMT, Li E, Hristova K, Betenbaugh MJ. Increased expression of the integral membrane proteins EGFR and FGFR3 in anti-apoptotic Chinese hamster ovary cell lines. Biotechnol Appl Biochem 2012; 59:155-62. [PMID: 23586824 DOI: 10.1002/bab.1000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 01/04/2012] [Indexed: 01/12/2023]
Abstract
Membrane proteins such as receptor tyrosine kinases (RTKs) have a vital role in many cellular functions, making them potential targets for therapeutic research. In this study, we investigated the coexpression of the anti-apoptosis gene Bcl-x(L) with model membrane proteins as a means of increasing membrane protein expression in mammalian cells. Chinese hamster ovary (CHO) cells expressing heterologous Bcl-x(L) and wild-type CHO cells were transfected with either epidermal growth factor receptor or fibroblast growth factor receptor 3. The CHO-Bcl-x(L) cell lines showed increased expression of both RTK proteins as compared with the wild-type CHO cell lines in transient expression analysis, as detected by Western blot and flow cytometry after 15 days of antibiotic selection in stable expression pools. Increased expression was also seen in clonal isolates from the CHO-Bcl-x(L) cell lines, whereas the clonal cell line expression was minimal in wild-type CHO cell lines. Our results demonstrate that application of the anti-apoptosis gene Bcl-x(L) can increase expression of RTK proteins in CHO cells. This approach may be applied to improve stable expression of other membrane proteins in the future using mammalian cell lines with Bcl-x(L) or perhaps other anti-apoptotic genes.
Collapse
Affiliation(s)
- Erika Ohsfeldt
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Bornert O, Alkhalfioui F, Logez C, Wagner R. Overexpression of Membrane Proteins Using
Pichia pastoris. ACTA ACUST UNITED AC 2012; Chapter 29:29.2.1-29.2.24. [DOI: 10.1002/0471140864.ps2902s67] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Olivier Bornert
- Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, University of Strasbourg—CNRS Illkirch France
| | - Fatima Alkhalfioui
- Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, University of Strasbourg—CNRS Illkirch France
| | - Christel Logez
- Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, University of Strasbourg—CNRS Illkirch France
| | - Renaud Wagner
- Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, University of Strasbourg—CNRS Illkirch France
| |
Collapse
|
63
|
Bernaudat F, Frelet-Barrand A, Pochon N, Dementin S, Hivin P, Boutigny S, Rioux JB, Salvi D, Seigneurin-Berny D, Richaud P, Joyard J, Pignol D, Sabaty M, Desnos T, Pebay-Peyroula E, Darrouzet E, Vernet T, Rolland N. Heterologous expression of membrane proteins: choosing the appropriate host. PLoS One 2011; 6:e29191. [PMID: 22216205 PMCID: PMC3244453 DOI: 10.1371/journal.pone.0029191] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/22/2011] [Indexed: 11/19/2022] Open
Abstract
Background Membrane proteins are the targets of 50% of drugs, although they only represent 1% of total cellular proteins. The first major bottleneck on the route to their functional and structural characterisation is their overexpression; and simply choosing the right system can involve many months of trial and error. This work is intended as a guide to where to start when faced with heterologous expression of a membrane protein. Methodology/Principal Findings The expression of 20 membrane proteins, both peripheral and integral, in three prokaryotic (E. coli, L. lactis, R. sphaeroides) and three eukaryotic (A. thaliana, N. benthamiana, Sf9 insect cells) hosts was tested. The proteins tested were of various origins (bacteria, plants and mammals), functions (transporters, receptors, enzymes) and topologies (between 0 and 13 transmembrane segments). The Gateway system was used to clone all 20 genes into appropriate vectors for the hosts to be tested. Culture conditions were optimised for each host, and specific strategies were tested, such as the use of Mistic fusions in E. coli. 17 of the 20 proteins were produced at adequate yields for functional and, in some cases, structural studies. We have formulated general recommendations to assist with choosing an appropriate system based on our observations of protein behaviour in the different hosts. Conclusions/Significance Most of the methods presented here can be quite easily implemented in other laboratories. The results highlight certain factors that should be considered when selecting an expression host. The decision aide provided should help both newcomers and old-hands to select the best system for their favourite membrane protein.
Collapse
Affiliation(s)
- Florent Bernaudat
- Institut de Biologie Structurale Jean-Pierre Ebel, CEA, Grenoble, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Salom D, Cao P, Sun W, Kramp K, Jastrzebska B, Jin H, Feng Z, Palczewski K. Heterologous expression of functional G-protein-coupled receptors in Caenorhabditis elegans. FASEB J 2011; 26:492-502. [PMID: 22090314 DOI: 10.1096/fj.11-197780] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
New strategies for expression, purification, functional characterization, and structural determination of membrane-spanning G-protein-coupled receptors (GPCRs) are constantly being developed because of their importance to human health. Here, we report a Caenorhabditis elegans heterologous expression system able to produce milligram amounts of functional native and engineered GPCRs. Both bovine opsin [(b)opsin] and human adenosine A(2A) subtype receptor [(h)A(2A)R] expressed in neurons or muscles of C. elegans were localized to cell membranes. Worms expressing these GPCRs manifested changes in motor behavior in response to light and ligands, respectively. With a newly devised protocol, 0.6-1 mg of purified homogenous 9-cis-retinal-bound bovine isorhodopsin [(b)isoRho] and ligand-bound (h)A(2A)R were obtained from C. elegans from one 10-L fermentation at low cost. Purified recombinant (b)isoRho exhibited its signature absorbance spectrum and activated its cognate G-protein transducin in vitro at a rate similar to native rhodopsin (Rho) obtained from bovine retina. Generally high expression levels of 11 native and mutant GPCRs demonstrated the potential of this C. elegans system to produce milligram quantities of high-quality GPCRs and possibly other membrane proteins suitable for detailed characterization.
Collapse
|
65
|
Shiroishi M, Kobayashi T, Ogasawara S, Tsujimoto H, Ikeda-Suno C, Iwata S, Shimamura T. Production of the stable human histamine H₁ receptor in Pichia pastoris for structural determination. Methods 2011; 55:281-6. [PMID: 21903167 DOI: 10.1016/j.ymeth.2011.08.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 08/21/2011] [Accepted: 08/22/2011] [Indexed: 12/15/2022] Open
Abstract
G-protein coupled receptors (GPCRs) play essential roles in regulation of many physiological processes and are one of the major targets of pharmaceutical drugs. The 3D structure can provide important information for the understanding of GPCR function and the design of new drugs. However, the success of structure determination relies largely on the production of recombinant GPCRs, because the expression levels of GPCRs are very low in native tissues except rhodopsin. All non-rhodopsin GPCRs whose structures were determined so far were expressed in insect cells and the availability of other hosts was unknown. Recently, we succeeded to determine the structure of human histamine H(1) receptor (H(1)R) expressed in Pichia pastoris. Here, we report the expression and purification procedures of recombinant H(1)R used in the structural determination. The receptor was designed to possess a N-terminal 19-residue deletion and a replacement of the third cytoplasmic loop with T4-lysozyme. The receptor was verified to show similar binding activities with the receptor expressed in other hosts. The receptor was purified by the immobilized metal ion affinity chromatography and used for the crystallographic study that resulted in the successful structure determination.
Collapse
Affiliation(s)
- Mitsunori Shiroishi
- Human Receptor Crystallography Project, ERATO, Japan Science and Technology Agency, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
66
|
High throughput platforms for structural genomics of integral membrane proteins. Curr Opin Struct Biol 2011; 21:517-22. [PMID: 21807498 DOI: 10.1016/j.sbi.2011.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 06/20/2011] [Accepted: 07/07/2011] [Indexed: 11/20/2022]
Abstract
Structural genomics approaches on integral membrane proteins have been postulated for over a decade, yet specific efforts are lagging years behind their soluble counterparts. Indeed, high throughput methodologies for production and characterization of prokaryotic integral membrane proteins are only now emerging, while large-scale efforts for eukaryotic ones are still in their infancy. Presented here is a review of recent literature on actively ongoing structural genomics of membrane protein initiatives, with a focus on those aimed at implementing interesting techniques aimed at increasing our rate of success for this class of macromolecules.
Collapse
|
67
|
Klammt C, Perrin MH, Maslennikov I, Renault L, Krupa M, Kwiatkowski W, Stahlberg H, Vale W, Choe S. Polymer-based cell-free expression of ligand-binding family B G-protein coupled receptors without detergents. Protein Sci 2011; 20:1030-41. [PMID: 21465615 PMCID: PMC3104232 DOI: 10.1002/pro.636] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 02/23/2011] [Accepted: 03/25/2011] [Indexed: 12/13/2022]
Abstract
G-protein coupled receptors (GPCRs) constitute the largest family of intercellular signaling molecules and are estimated to be the target of more than 50% of all modern drugs. As with most integral membrane proteins (IMPs), a major bottleneck in the structural and biochemical analysis of GPCRs is their expression by conventional expression systems. Cell-free (CF) expression provides a relatively new and powerful tool for obtaining preparative amounts of IMPs. However, in the case of GPCRs, insufficient homogeneity of the targeted protein is a problem as the in vitro expression is mainly done with detergents, in which aggregation and solubilization difficulties, as well as problems with proper folding of hydrophilic domains, are common. Here, we report that using CF expression with the help of a fructose-based polymer, NV10 polymer (NVoy), we obtained preparative amounts of homogeneous GPCRs from the three GPCR families. We demonstrate that two GPCR B family members, corticotrophin-releasing factor receptors 1 and 2β are not only solubilized in NVoy but also have functional ligand-binding characteristics with different agonists and antagonists in a detergent-free environment as well. Our findings open new possibilities for functional and structural studies of GPCRs and IMPs in general.
Collapse
Affiliation(s)
- Christian Klammt
- Structural Biology Laboratory, The Salk Institute for Biological StudiesLa Jolla, California 92037
- Joint Center for Biosciences, Gachon University of Medicine and ScienceIncheon 406-840, Korea
| | - Marilyn H Perrin
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological StudiesLa Jolla, California 92037
| | - Innokentiy Maslennikov
- Structural Biology Laboratory, The Salk Institute for Biological StudiesLa Jolla, California 92037
- Joint Center for Biosciences, Gachon University of Medicine and ScienceIncheon 406-840, Korea
| | - Ludovic Renault
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California at DavisDavis, California 95616
| | - Martin Krupa
- Structural Biology Laboratory, The Salk Institute for Biological StudiesLa Jolla, California 92037
| | - Witek Kwiatkowski
- Structural Biology Laboratory, The Salk Institute for Biological StudiesLa Jolla, California 92037
| | - Henning Stahlberg
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California at DavisDavis, California 95616
| | - Wylie Vale
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological StudiesLa Jolla, California 92037
| | - Senyon Choe
- Structural Biology Laboratory, The Salk Institute for Biological StudiesLa Jolla, California 92037
- Joint Center for Biosciences, Gachon University of Medicine and ScienceIncheon 406-840, Korea
| |
Collapse
|
68
|
Ramón A, Marín M. Advances in the production of membrane proteins in Pichia pastoris. Biotechnol J 2011; 6:700-6. [DOI: 10.1002/biot.201100146] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 03/24/2011] [Accepted: 03/31/2011] [Indexed: 11/07/2022]
|
69
|
New Tools for Breaking Barriers to GPCR Expression in E. coli. J Mol Biol 2011; 408:597-8. [DOI: 10.1016/j.jmb.2011.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
70
|
Fan Y, Shi L, Ladizhansky V, Brown LS. Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment. JOURNAL OF BIOMOLECULAR NMR 2011; 49:151-161. [PMID: 21246256 DOI: 10.1007/s10858-011-9473-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 01/07/2011] [Indexed: 05/30/2023]
Abstract
Overexpression of isotope-labeled multi-spanning eukaryotic membrane proteins for structural NMR studies is often challenging. On the one hand, difficulties with achieving proper folding, membrane insertion, and native-like post-translational modifications frequently disqualify bacterial expression systems. On the other hand, eukaryotic cell cultures can be prohibitively expensive. One of the viable alternatives, successfully used for producing proteins for solution NMR studies, is yeast expression systems, particularly Pichia pastoris. We report on successful implementation and optimization of isotope labeling protocols, previously used for soluble secreted proteins, to produce homogeneous samples of a eukaryotic seven-transmembrane helical protein, rhodopsin from Leptosphaeria maculans. Even in shake-flask cultures, yields exceeded 5 mg of purified uniformly (13)C,(15)N-labeled protein per liter of culture. The protein was stable (at least several weeks at 5°C) and functionally active upon reconstitution into lipid membranes at high protein-to-lipid ratio required for solid-state NMR. The samples gave high-resolution (13)C and (15)N solid-state magic angle spinning NMR spectra, amenable to a detailed structural analysis. We believe that similar protocols can be adopted for challenging mammalian targets, which often resist characterization by other structural methods.
Collapse
Affiliation(s)
- Ying Fan
- Department of Physics, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | | | | | | |
Collapse
|
71
|
Petrovskaya LE, Shulga AA, Bocharova OV, Ermolyuk YS, Kryukova EA, Chupin VV, Blommers MJJ, Arseniev AS, Kirpichnikov MP. Expression of G-protein coupled receptors in Escherichia coli for structural studies. BIOCHEMISTRY (MOSCOW) 2010; 75:881-91. [PMID: 20673212 DOI: 10.1134/s0006297910070102] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To elaborate a high-performance system for expression of genes of G-protein coupled receptors (GPCR), methods of direct and hybrid expression of 17 GPCR genes in Escherichia coli and selection of strains and bacteria cultivation conditions were investigated. It was established that expression of most of the target GPCR fused with the N-terminal fragment of OmpF or Mistic using media for autoinduction provides high output (up to 50 mg/liter).
Collapse
Affiliation(s)
- L E Petrovskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Mammalian G protein-coupled receptor expression in Escherichia coli: II. Refolding and biophysical characterization of mouse cannabinoid receptor 1 and human parathyroid hormone receptor 1. Anal Biochem 2010; 401:74-80. [DOI: 10.1016/j.ab.2010.02.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/11/2010] [Accepted: 02/13/2010] [Indexed: 11/19/2022]
|
73
|
Hrmova M, Stone BA, Fincher GB. High-yield production, refolding and a molecular modelling of the catalytic module of (1,3)-β-d-glucan (curdlan) synthase from Agrobacterium sp. Glycoconj J 2010; 27:461-76. [DOI: 10.1007/s10719-010-9291-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Revised: 04/14/2010] [Accepted: 04/14/2010] [Indexed: 11/24/2022]
|
74
|
Deniaud A, Liguori L, Blesneac I, Lenormand JL, Pebay-Peyroula E. Crystallization of the membrane protein hVDAC1 produced in cell-free system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1540-6. [PMID: 20435015 DOI: 10.1016/j.bbamem.2010.04.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/18/2010] [Accepted: 04/22/2010] [Indexed: 11/25/2022]
Abstract
Structural studies of membrane proteins are in constant evolution with the development of new improvements for their expression, purification, stabilization and crystallization. However, none of these methods still provides a universal approach to solve the structure of membrane proteins. Here we describe the crystallization of the human voltage-dependent anion channel-1 produced by a bacterial cell-free expression system. While VDAC structures have been recently solved, we propose an alternative strategy for producing the recombinant protein, which can be applied to other membrane proteins reluctant to expression, purification and crystallization by classical approaches. Despite a lot of efforts to crystallize a cell-free expressed membrane protein, this study is to our knowledge one of the first reports of a successful crystallization. Focusing on expression in a soluble and functional state, in a detergent environment, is the key to get crystals. Although the diffraction of VDAC crystals is limited, the simplicity and the rapidity to set-up and optimize this technology are drastic advantages in comparison to other methods.
Collapse
Affiliation(s)
- A Deniaud
- CEA, Institut de Biologie Structurale Jean-Pierre Ebel, 41 rue Jules Horowitz 38027 Grenoble, France
| | | | | | | | | |
Collapse
|
75
|
Takahashi H, Shimada I. Production of isotopically labeled heterologous proteins in non-E. coli prokaryotic and eukaryotic cells. JOURNAL OF BIOMOLECULAR NMR 2010; 46:3-10. [PMID: 19787297 DOI: 10.1007/s10858-009-9377-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 09/15/2009] [Indexed: 05/28/2023]
Abstract
The preparation of stable isotope-labeled proteins is necessary for the application of a wide variety of NMR methods, to study the structures and dynamics of proteins and protein complexes. The E. coli expression system is generally used for the production of isotope-labeled proteins, because of the advantages of ease of handling, rapid growth, high-level protein production, and low cost for isotope-labeling. However, many eukaryotic proteins are not functionally expressed in E. coli, due to problems related to disulfide bond formation, post-translational modifications, and folding. In such cases, other expression systems are required for producing proteins for biomolecular NMR analyses. In this paper, we review the recent advances in expression systems for isotopically labeled heterologous proteins, utilizing non-E. coli prokaryotic and eukaryotic cells.
Collapse
Affiliation(s)
- Hideo Takahashi
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.
| | | |
Collapse
|
76
|
Lundstrom K. Expression of mammalian membrane proteins in mammalian cells using Semliki Forest virus vectors. Methods Mol Biol 2010; 601:149-163. [PMID: 20099145 DOI: 10.1007/978-1-60761-344-2_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
One of the major bottlenecks in drug screening and structural biology on membrane proteins has for a long time been the expression of recombinant protein in sufficient quality and quantity. The expression has been evaluated in all existing expression systems, from cell-free translation and bacterial systems to expression in animal cells. In contrast to soluble proteins, the expression levels have been relatively low due to the following reasons: The topology of membrane proteins requires special, posttranslational processing, folding, and insertion into membranes, which often are mammalian cell specific. Despite these strict demands, functional membrane proteins (G protein-coupled receptors, ion channels, and transporters) have been successfully expressed in bacterial, yeast, and insect cells. A general drawback observed in prokaryotic cells is that accumulation of foreign protein in membranes is toxic and results in growth arrest and therefore low yields of recombinant protein.In this chapter, the focus is on expression of recombinant mammalian membrane proteins in mammalian host cells, particularly applying Semliki Forest virus (SFV) vectors. Replication-deficient SFV vectors are rapidly generated at high titers in BHK-21 (Baby Hamster Kidney) cells, which then are applied for a broad range of mammalian and nonmammalian cells. The SFV system has provided high expression levels of topologically different proteins, especially for membrane proteins. Robust ligand-binding assays and functional coupling to G proteins and electrophysiological recordings have made the SFV system an attractive tool in drug discovery. Furthermore, the high susceptibility of SFV vectors to primary neurons has allowed various applications in neuroscience. Establishment of large-scale production in mammalian adherent and suspension cultures has allowed production of hundreds of milligrams of membrane proteins that has allowed their submission to serious structural biology approaches. In this context, a structural genomics program for SFV-based overexpression of 100 GPCRs was established.
Collapse
|
77
|
Freigassner M, Pichler H, Glieder A. Tuning microbial hosts for membrane protein production. Microb Cell Fact 2009; 8:69. [PMID: 20040113 PMCID: PMC2807855 DOI: 10.1186/1475-2859-8-69] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 12/29/2009] [Indexed: 12/22/2022] Open
Abstract
The last four years have brought exciting progress in membrane protein research. Finally those many efforts that have been put into expression of eukaryotic membrane proteins are coming to fruition and enable to solve an ever-growing number of high resolution structures. In the past, many skilful optimization steps were required to achieve sufficient expression of functional membrane proteins. Optimization was performed individually for every membrane protein, but provided insight about commonly encountered bottlenecks and, more importantly, general guidelines how to alleviate cellular limitations during microbial membrane protein expression. Lately, system-wide analyses are emerging as powerful means to decipher cellular bottlenecks during heterologous protein production and their use in microbial membrane protein expression has grown in popularity during the past months. This review covers the most prominent solutions and pitfalls in expression of eukaryotic membrane proteins using microbial hosts (prokaryotes, yeasts), highlights skilful applications of our basic understanding to improve membrane protein production. Omics technologies provide new concepts to engineer microbial hosts for membrane protein production.
Collapse
Affiliation(s)
- Maria Freigassner
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria.
| | | | | |
Collapse
|
78
|
Koth CMM, Payandeh J. Strategies for the cloning and expression of membrane proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2009; 76:43-86. [PMID: 20663478 DOI: 10.1016/s1876-1623(08)76002-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Despite the determination of thousands of high-resolution structures of soluble proteins, many features of integral membrane proteins render them difficult targets for the structural biologist. Among these, the most important challenge is in expressing sufficient quantities of active protein to support downstream purification and structure determination efforts. Over 190 unique membrane protein structures have now been solved, and noticeable trends in successful expression strategies are beginning to emerge. A number of groups have also explored high-throughput (HTP) methods for membrane protein expression, with varying degrees of success. Here we review the current state of expressing membrane proteins for functional and structural studies. We first survey successful methods that have already yielded levels of membrane protein expression sufficient for structure determination. HTP methods are also examined since these aim to explore large numbers of targets and can predict reasonable starting points for many membrane proteins. Since HTP techniques may fail, particularly for certain classes of eukaryotic targets, detailed strategies for the expression of two prominent classes of eukaryotic protein families, G-protein-coupled receptors and ion channels, are also summarized.
Collapse
Affiliation(s)
- Christopher M M Koth
- Department of Structural Biology, Genentech, South San Francisco, California 94080, USA
| | | |
Collapse
|
79
|
Congreve M, Marshall F. The impact of GPCR structures on pharmacology and structure-based drug design. Br J Pharmacol 2009; 159:986-96. [PMID: 19912230 DOI: 10.1111/j.1476-5381.2009.00476.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
After many years of effort, recent technical breakthroughs have enabled the X-ray crystal structures of three G-protein-coupled receptors (GPCRs) (beta1 and beta2 adrenergic and adenosine A(2a)) to be solved in addition to rhodopsin. GPCRs, like other membrane proteins, have lagged behind soluble drug targets such as kinases and proteases in the number of structures available and the level of understanding of these targets and their interaction with drugs. The availability of increasing numbers of structures of GPCRs is set to greatly increase our understanding of some of the key issues in GPCR biology. In particular, what constitutes the different receptor conformations that are involved in signalling and the molecular changes which occur upon receptor activation. How future GPCR structures might alter our views on areas such as agonist-directed signalling and allosteric regulation as well as dimerization is discussed. Knowledge of crystal structures in complex with small molecules will enable techniques in drug discovery and design, which have previously only been applied to soluble targets, to now be used for GPCR targets. These methods include structure-based drug design, virtual screening and fragment screening. This review considers how these methods have been used to address problems in drug discovery for kinase and protease targets and therefore how such methods are likely to impact GPCR drug discovery in the future.
Collapse
Affiliation(s)
- Miles Congreve
- Heptares Therapeutics Ltd, Welwyn Garden City, Hertfordshire, UK
| | | |
Collapse
|
80
|
Kim HJ, Howell SC, Van Horn WD, Jeon YH, Sanders CR. Recent Advances in the Application of Solution NMR Spectroscopy to Multi-Span Integral Membrane Proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2009; 55:335-360. [PMID: 20161395 PMCID: PMC2782866 DOI: 10.1016/j.pnmrs.2009.07.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Hak Jun Kim
- Korea Polar Research Institute, Korea Ocean Research and Development Institute, Incheon, 406-840, Korea
| | - Stanley C. Howell
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
| | - Wade D. Van Horn
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
| | - Young Ho Jeon
- Center for Magnetic Resonance, Korea Basic Research Institute, Daejon, 305-333, Korea
| | - Charles R. Sanders
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
| |
Collapse
|
81
|
Dahmane T, Damian M, Mary S, Popot JL, Banères JL. Amphipol-assisted in vitro folding of G protein-coupled receptors. Biochemistry 2009; 48:6516-21. [PMID: 19534448 DOI: 10.1021/bi801729z] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
G protein-coupled receptors (GPCRs) regulate numerous physiological functions. The primary difficulty presented by their study in vitro is to obtain them in sufficient amounts under a functional and stable form. Escherichia coli is a host of choice for producing recombinant proteins for structural studies. However, the insertion of GPCRs into its plasma membrane usually results in bacterial death. An alternative approach consists of targeting recombinant receptors to inclusion bodies, where they accumulate without affecting bacterial growth, and then folding them in vitro. This approach, however, stumbles over the very low folding yields typically achieved, whether in detergent solutions or in detergent-lipid mixtures. Here, we show that synthetic polymers known as amphipols provide a highly efficient medium for folding GPCRs. Using a generic protocol, we have folded four class A GPCRs to their functional state, as evidenced by the binding of their respective ligands. This strategy thus appears to have the potential to be generalized to a large number of GPCRs. These data are also of interest from a more fundamental point of view: they indicate that the structural information stored in the sequence of these four receptors allows them to reach their correct three-dimensional structure in an environment that bears no similarity, beyond the amphiphilic character, to lipid bilayers.
Collapse
Affiliation(s)
- Tassadite Dahmane
- UMR 7099, CNRS and Université Paris-7, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | | | | | | | | |
Collapse
|
82
|
Lundstrom K. Alphaviruses in gene therapy. Viruses 2009; 1:13-25. [PMID: 21994535 PMCID: PMC3185459 DOI: 10.3390/v1010013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 04/15/2009] [Accepted: 04/20/2009] [Indexed: 11/16/2022] Open
Abstract
Alphaviruses are enveloped single stranded RNA viruses, which as gene therapy vectors provide high-level transient gene expression. Semliki Forest virus (SFV), Sindbis virus (SIN) and Venezuelan Equine Encephalitis (VEE) virus have been engineered as efficient replication-deficient and -competent expression vectors. Alphavirus vectors have frequently been used as vehicles for tumor vaccine generation. Moreover, SFV and SIN vectors have been applied for intratumoral injections in animals implanted with tumor xenografts. SIN vectors have demonstrated natural tumor targeting, which might permit systemic vector administration. Another approach for systemic delivery of SFV has been to encapsulate replication-deficient viral particles in liposomes, which can provide passive targeting to tumors and allow repeated administration without host immune responses. This approach has demonstrated safe delivery of encapsulated SFV particles to melanoma and kidney carcinoma patients in a phase I trial. Finally, the prominent neurotropism of alphaviruses make them attractive for the treatment of CNS-related diseases.
Collapse
|
83
|
Zhang J, Xiong B, Zhen X, Zhang A. Dopamine D1receptor ligands: Where are we now and where are we going. Med Res Rev 2009; 29:272-94. [DOI: 10.1002/med.20130] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
84
|
Mammalian G-protein-coupled receptor expression in Escherichia coli: I. High-throughput large-scale production as inclusion bodies. Anal Biochem 2009; 386:147-55. [DOI: 10.1016/j.ab.2008.12.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 11/27/2008] [Accepted: 12/13/2008] [Indexed: 11/20/2022]
|
85
|
Yurugi-Kobayashi T, Asada H, Shiroishi M, Shimamura T, Funamoto S, Katsuta N, Ito K, Sugawara T, Tokuda N, Tsujimoto H, Murata T, Nomura N, Haga K, Haga T, Iwata S, Kobayashi T. Comparison of functional non-glycosylated GPCRs expression in Pichia pastoris. Biochem Biophys Res Commun 2009; 380:271-6. [PMID: 19167344 DOI: 10.1016/j.bbrc.2009.01.053] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Accepted: 01/13/2009] [Indexed: 11/27/2022]
Abstract
N-linked glycosylation is the most common post-translational modification of G-protein-coupled receptors (GPCRs) and is correlated to the localization and function of the receptors depending on each receptor. However, heterogeneity of glycosylation can interfere with protein crystallization. The removal of N-linked glycosylation from membrane proteins improves the ability to crystallize these proteins. We screened 25 non-glycosylated GPCRs for functional receptor production in the methylotrophic yeast Pichia pastoris using specific ligand-receptor binding assays. We found that five clones were expressed at greater than 10 pmol/mg, 9 clones at 1-10 pmol/mg and 11 clones at less than 1 pmol/mg of membrane protein. Further optimization of culture parameters including culture scale, induction time, pH and temperature enabled us to achieve expression of a functional human muscarinic acetylcholine receptor subtype 2 (CHRM2) with a B(max) value of 51.2 pmol/mg of membrane protein. Approximately 1.9 mg of the human CHRM2 was produced from a 1-L culture.
Collapse
Affiliation(s)
- Takami Yurugi-Kobayashi
- Iwata Human Receptor Crystallography Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Konoe-cho, Yoshida, Sakyo-Ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Leifert WR. An overview on GPCRs and drug discovery: structure-based drug design and structural biology on GPCRs. Methods Mol Biol 2009; 552:51-66. [PMID: 19513641 PMCID: PMC7122359 DOI: 10.1007/978-1-60327-317-6_4] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
G protein-coupled receptors (GPCRs) represent 50-60% of the current drug targets. There is no doubt that this family of membrane proteins plays a crucial role in drug discovery today. Classically, a number of drugs based on GPCRs have been developed for such different indications as cardiovascular, metabolic, neurodegenerative, psychiatric, and oncologic diseases. Owing to the restricted structural information on GPCRs, only limited exploration of structure-based drug design has been possible. Much effort has been dedicated to structural biology on GPCRs and very recently an X-ray structure of the beta2-adrenergic receptor was obtained. This breakthrough will certainly increase the efforts in structural biology on GPCRs and furthermore speed up and facilitate the drug discovery process.
Collapse
|
87
|
Two Novel GPCR-Type G Proteins Are Abscisic Acid Receptors in Arabidopsis. Cell 2009; 136:136-48. [DOI: 10.1016/j.cell.2008.12.026] [Citation(s) in RCA: 295] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 04/15/2008] [Accepted: 12/10/2008] [Indexed: 11/19/2022]
|
88
|
Singh S, Gras A, Fiez-Vandal C, Ruprecht J, Rana R, Martinez M, Strange PG, Wagner R, Byrne B. Large-scale functional expression of WT and truncated human adenosine A2A receptor in Pichia pastoris bioreactor cultures. Microb Cell Fact 2008; 7:28. [PMID: 18847468 PMCID: PMC2570359 DOI: 10.1186/1475-2859-7-28] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 10/10/2008] [Indexed: 11/16/2022] Open
Abstract
Background The large-scale production of G-protein coupled receptors (GPCRs) for functional and structural studies remains a challenge. Recent successes have been made in the expression of a range of GPCRs using Pichia pastoris as an expression host. P. pastoris has a number of advantages over other expression systems including ability to post-translationally modify expressed proteins, relative low cost for production and ability to grow to very high cell densities. Several previous studies have described the expression of GPCRs in P. pastoris using shaker flasks, which allow culturing of small volumes (500 ml) with moderate cell densities (OD600 ~15). The use of bioreactors, which allow straightforward culturing of large volumes, together with optimal control of growth parameters including pH and dissolved oxygen to maximise cell densities and expression of the target receptors, are an attractive alternative. The aim of this study was to compare the levels of expression of the human Adenosine 2A receptor (A2AR) in P. pastoris under control of a methanol-inducible promoter in both flask and bioreactor cultures. Results Bioreactor cultures yielded an approximately five times increase in cell density (OD600 ~75) compared to flask cultures prior to induction and a doubling in functional expression level per mg of membrane protein, representing a significant optimisation. Furthermore, analysis of a C-terminally truncated A2AR, terminating at residue V334 yielded the highest levels (200 pmol/mg) so far reported for expression of this receptor in P. pastoris. This truncated form of the receptor was also revealed to be resistant to C-terminal degradation in contrast to the WT A2AR, and therefore more suitable for further functional and structural studies. Conclusion Large-scale expression of the A2AR in P. pastoris bioreactor cultures results in significant increases in functional expression compared to traditional flask cultures.
Collapse
Affiliation(s)
- Shweta Singh
- Membrane Protein Crystallography Group, Division of Molecular Biosciences, Imperial College London, South Kensington, London, SW7 2AZ, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Link AJ, Skretas G, Strauch EM, Chari NS, Georgiou G. Efficient production of membrane-integrated and detergent-soluble G protein-coupled receptors in Escherichia coli. Protein Sci 2008; 17:1857-63. [PMID: 18593817 PMCID: PMC2548370 DOI: 10.1110/ps.035980.108] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 06/19/2008] [Accepted: 06/20/2008] [Indexed: 10/21/2022]
Abstract
G protein-coupled receptors (GPCRs) are notoriously difficult to express, particularly in microbial systems. Using GPCR fusions with the green fluorescent protein (GFP), we conducted studies to identify bacterial host effector genes that result in a general and significant enhancement in the amount of membrane-integrated human GPCRs that can be produced in Escherichia coli. We show that coexpression of the membrane-bound AAA+ protease FtsH greatly enhances the expression yield of four different class I GPCRs, irrespective of the presence of GFP. Using this new expression system, we produced 0.5 and 2 mg/L of detergent-solubilized and purified full-length central cannabinoid receptor (CB1) and bradykinin receptor 2 (BR2) in shake flask cultures, respectively, two proteins that had previously eluded expression in microbial systems.
Collapse
MESH Headings
- ATP-Dependent Proteases/biosynthesis
- ATP-Dependent Proteases/genetics
- Cell Membrane/chemistry
- Cell Membrane/metabolism
- Detergents/chemistry
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/biosynthesis
- Escherichia coli Proteins/genetics
- Green Fluorescent Proteins/biosynthesis
- Humans
- Protein Engineering
- Receptor, Bradykinin B2/biosynthesis
- Receptor, Bradykinin B2/chemistry
- Receptor, Bradykinin B2/isolation & purification
- Receptor, Cannabinoid, CB1/biosynthesis
- Receptor, Cannabinoid, CB1/chemistry
- Receptor, Cannabinoid, CB1/isolation & purification
- Receptors, G-Protein-Coupled/biosynthesis
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/isolation & purification
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/isolation & purification
- Solubility
Collapse
Affiliation(s)
- A James Link
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | |
Collapse
|
90
|
Magnin T, Fiez-Vandal C, Potier N, Coquard A, Leray I, Steffan T, Logez C, Alkhalfioui F, Pattus F, Wagner R. A novel, generic and effective method for the rapid purification of G protein-coupled receptors. Protein Expr Purif 2008; 64:1-7. [PMID: 18835448 DOI: 10.1016/j.pep.2008.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 09/01/2008] [Accepted: 09/02/2008] [Indexed: 11/19/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of membrane receptors and are of major therapeutic importance. Structure determination of G protein-coupled receptors and other applications require milligram quantities of purified receptor proteins on a regular basis. Recombinant GPCRs fused to a heterologous biotinylation domain were produced in the yeast Pichia pastoris. We describe an efficient method for their rapid purification that relies on the capture of these receptors with streptavidin immobilized on agarose beads, and their subsequent release by enzymatic digestion with TEV protease. This method has been applied to several GPCRs belonging to the class A rhodopsin subfamily, leading to high yields of purified proteins; it represents a method of choice for biochemical and biophysical studies when large quantities of purified GPCRs are needed.
Collapse
Affiliation(s)
- Thierry Magnin
- LC1-UMR 7175, Institut Gilbert Laustriat, Pôle API, Bd Sébastien Brant, BP 10413, 67412 Illkirch Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Mize GJ, Harris JE, Takayama TK, Kulman JD. Regulated expression of active biotinylated G-protein coupled receptors in mammalian cells. Protein Expr Purif 2008; 57:280-9. [PMID: 18042400 DOI: 10.1016/j.pep.2007.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 09/18/2007] [Accepted: 09/19/2007] [Indexed: 11/16/2022]
Affiliation(s)
- Gregory J Mize
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
92
|
Robin G, Cowieson NP, Guncar G, Forwood JK, Listwan P, Hume DA, Kobe B, Martin JL, Huber T. A general target selection method for crystallographic proteomics. Methods Mol Biol 2008; 426:27-35. [PMID: 18542855 DOI: 10.1007/978-1-60327-058-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Increasing the success in obtaining structures and maximizing the value of the structures determined are the two major goals of target selection in structural proteomics. This chapter presents an efficient and flexible target selection procedure supplemented with a Web-based resource that is suitable for small- to large-scale structural genomics projects that use crystallography as the major means of structure determination. Based on three criteria, biological significance, structural novelty, and "crystallizability," the approach first removes (filters) targets that do not meet minimal criteria and then ranks the remaining targets based on their "crystallizability" estimates. This novel procedure was designed to maximize selection efficiency, and its prevailing criteria categories make it suitable for a broad range of structural proteomics projects.
Collapse
Affiliation(s)
- Gautier Robin
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Midgett CR, Madden DR. Breaking the bottleneck: Eukaryotic membrane protein expression for high-resolution structural studies. J Struct Biol 2007; 160:265-74. [PMID: 17702603 DOI: 10.1016/j.jsb.2007.07.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 06/26/2007] [Accepted: 07/06/2007] [Indexed: 10/23/2022]
Abstract
The recombinant expression of eukaryotic membrane proteins has been a major stumbling block in efforts to determine their structures. In the last two years, however, five such proteins have yielded high-resolution X-ray or electron diffraction data, opening the prospect of increased throughput for eukaryotic membrane protein structure determination. Here, we summarize the major expression systems available, and highlight technical advances that should facilitate more systematic screening of expression conditions for this physiologically important class of targets.
Collapse
Affiliation(s)
- Charles R Midgett
- Department of Biochemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, NH 03755, USA
| | | |
Collapse
|
94
|
Nyblom M, Oberg F, Lindkvist-Petersson K, Hallgren K, Findlay H, Wikström J, Karlsson A, Hansson O, Booth PJ, Bill RM, Neutze R, Hedfalk K. Exceptional overproduction of a functional human membrane protein. Protein Expr Purif 2007; 56:110-20. [PMID: 17869538 DOI: 10.1016/j.pep.2007.07.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 07/02/2007] [Accepted: 07/09/2007] [Indexed: 11/19/2022]
Abstract
Eukaryotic--especially human--membrane protein overproduction remains a major challenge in biochemistry. Heterologously overproduced and purified proteins provide a starting point for further biochemical, biophysical and structural studies, and the lack of sufficient quantities of functional membrane proteins is frequently a bottleneck hindering this. Here, we report exceptionally high production levels of a correctly folded and crystallisable recombinant human integral membrane protein in its active form; human aquaporin 1 (hAQP1) has been heterologously produced in the membranes of the methylotrophic yeast Pichia pastoris. After solubilisation and a two step purification procedure, at least 90 mg hAQP1 per liter of culture is obtained. Water channel activity of this purified hAQP1 was verified by reconstitution into proteoliposomes and performing stopped-flow vesicle shrinkage measurements. Mass spectrometry confirmed the identity of hAQP1 in crude membrane preparations, and also from purified protein reconstituted into proteoliposomes. Furthermore, crystallisation screens yielded diffraction quality crystals of untagged recombinant hAQP1. This study illustrates the power of the yeast P. pastoris as a host to produce exceptionally high yields of a functionally active, human integral membrane protein for subsequent functional and structural characterization.
Collapse
Affiliation(s)
- Maria Nyblom
- Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-405 30 Göteborg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Marques B, Liguori L, Paclet MH, Villegas-Mendéz A, Rothe R, Morel F, Lenormand JL. Liposome-mediated cellular delivery of active gp91(phox). PLoS One 2007; 2:e856. [PMID: 17848987 PMCID: PMC1955831 DOI: 10.1371/journal.pone.0000856] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 08/16/2007] [Indexed: 11/26/2022] Open
Abstract
Background Gp91phox is a transmembrane protein and the catalytic core of the NADPH oxidase complex of neutrophils. Lack of this protein causes chronic granulomatous disease (CGD), a rare genetic disorder characterized by severe and recurrent infections due to the incapacity of phagocytes to kill microorganisms. Methodology Here we optimize a prokaryotic cell-free expression system to produce integral mammalian membrane proteins. Conclusions Using this system, we over-express truncated forms of the gp91phox protein under soluble form in the presence of detergents or lipids resulting in active proteins with a “native-like” conformation. All the proteins exhibit diaphorase activity in the presence of cytosolic factors (p67phox, p47phox, p40phox and Rac) and arachidonic acid. We also produce proteoliposomes containing gp91phox protein and demonstrate that these proteins exhibit activities similar to their cellular counterpart. The proteoliposomes induce rapid cellular delivery and relocation of recombinant gp91phox proteins to the plasma membrane. Our data support the concept of cell-free expression technology for producing recombinant proteoliposomes and their use for functional and structural studies or protein therapy by complementing deficient cells in gp91phox protein.
Collapse
Affiliation(s)
- Bruno Marques
- HumProTher, UMR-CNRS 5525, Université Joseph Fourier, Centre Hospitalier Universitaire, Laboratoire d'Enzymologie/DBPC/BP 217, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Lavinia Liguori
- HumProTher, UMR-CNRS 5525, Université Joseph Fourier, Centre Hospitalier Universitaire, Laboratoire d'Enzymologie/DBPC/BP 217, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Marie-Hélène Paclet
- GREPI, TIMC-Imag, UMR-CNRS 5525, Université Joseph Fourier, Centre Hospitalier Universitaire, Laboratoire d'Enzymologie/DBPC/BP 217, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Ana Villegas-Mendéz
- HumProTher, UMR-CNRS 5525, Université Joseph Fourier, Centre Hospitalier Universitaire, Laboratoire d'Enzymologie/DBPC/BP 217, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Romy Rothe
- HumProTher, UMR-CNRS 5525, Université Joseph Fourier, Centre Hospitalier Universitaire, Laboratoire d'Enzymologie/DBPC/BP 217, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Françoise Morel
- GREPI, TIMC-Imag, UMR-CNRS 5525, Université Joseph Fourier, Centre Hospitalier Universitaire, Laboratoire d'Enzymologie/DBPC/BP 217, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Jean-Luc Lenormand
- HumProTher, UMR-CNRS 5525, Université Joseph Fourier, Centre Hospitalier Universitaire, Laboratoire d'Enzymologie/DBPC/BP 217, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
96
|
Geertsma ER, Poolman B. High-throughput cloning and expression in recalcitrant bacteria. Nat Methods 2007; 4:705-7. [PMID: 17643108 DOI: 10.1038/nmeth1073] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Accepted: 06/27/2007] [Indexed: 11/09/2022]
Abstract
We developed a generic method for high-throughput cloning in bacteria that are less amenable to conventional DNA manipulations. The method involves ligation-independent cloning in an intermediary Escherichia coli vector, which is rapidly converted via vector-backbone exchange (VBEx) into an organism-specific plasmid ready for high-efficiency transformation. We demonstrated VBEx proof of principle for Lactococcus lactis, but the method can be adapted to all organisms for which plasmids are available.
Collapse
Affiliation(s)
- Eric R Geertsma
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | | |
Collapse
|
97
|
Abstract
Structure determination has already proven useful for lead optimization and direct drug design. The number of high-resolution structures available in public databases today exceeds 30,000 and will definitely aid in structure-based drug design. Structural genomics approaches covering whole genomes, topologically similar proteins or gene families are great assets for further progress in the development of new drugs. However, membrane proteins representing 70% of current drug targets are poorly characterized structurally. The problems have been related to difficulties in obtaining large amount of recombinant membrane proteins as well as their purification and structure determination. Structural genomics has proven successful in developing new methods in areas from expression to structure determination by studying a large number of target proteins in parallel.
Collapse
Affiliation(s)
- K Lundstrom
- Flamel Technologies, 33 Avenue du Dr. Georges Lévy, 69693 Vénissieux, France.
| |
Collapse
|
98
|
Klammt C, Schwarz D, Eifler N, Engel A, Piehler J, Haase W, Hahn S, Dötsch V, Bernhard F. Cell-free production of G protein-coupled receptors for functional and structural studies. J Struct Biol 2007; 158:482-93. [PMID: 17350285 DOI: 10.1016/j.jsb.2007.01.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 01/12/2007] [Accepted: 01/16/2007] [Indexed: 11/25/2022]
Abstract
G-protein coupled receptors (GPCRs) are key elements in signal transduction pathways of eukaryotic cells and they play central roles in many human diseases. So far, most structural and functional approaches have been limited by the immense difficulties in the production of sufficient amounts of protein samples in conventional expression systems based on living cells. We report the high level production of six different GPCRs in an individual cell-free expression system based on Escherichia coli extracts. The open nature of cell-free systems allows the addition of detergents in order to provide an artificial hydrophobic environment for the reaction. This strategy defines a completely new technique for the production of membrane proteins that can directly associate with detergent micelles upon translation. We demonstrate the efficient overproduction of the human melatonin 1B receptor, the human endothelin B receptor, the human and porcine vasopressin type 2 receptors, the human neuropeptide Y4 receptor and the rat corticotropin releasing factor receptor by cell-free expression. In all cases, the long chain polyoxyethylene detergent Brij78 was found to be highly effective for solubilization and milligram amounts of soluble protein could be generated in less than 24 h. Single particle analysis indicated a homogenous distribution of predominantly protein dimers of the cell-free expressed GPCR samples, with dimensions similar to the related rhodopsin. Ligand interaction studies with the endothelin B receptor and a derivative of its peptide ligand ET-1 gave further evidence of a functional folding of the cell-free produced protein.
Collapse
Affiliation(s)
- Christian Klammt
- Centre for Biomolecular Magnetic Resonance, University of Frankfurt/Main, Institute for Biophysical Chemistry, Max-von-Laue-Str. 9, D-60438 Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Klammt C, Srivastava A, Eifler N, Junge F, Beyermann M, Schwarz D, Michel H, Doetsch V, Bernhard F. Functional analysis of cell-free-produced human endothelin B receptor reveals transmembrane segment 1 as an essential area for ET-1 binding and homodimer formation. FEBS J 2007; 274:3257-69. [PMID: 17535295 DOI: 10.1111/j.1742-4658.2007.05854.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The functional and structural characterization of G-protein-coupled receptors (GPCRs) still suffers from tremendous difficulties during sample preparation. Cell-free expression has recently emerged as a promising alternative approach for the synthesis of polytopic integral membrane proteins and, in particular, for the production of G-protein-coupled receptors. We have now analyzed the quality and functional folding of cell-free produced human endothelin type B receptor samples as an example of the rhodopsin-type family of G-protein-coupled receptors in correlation with different cell-free expression modes. Human endothelin B receptor was cell-free produced as a precipitate and subsequently solubilized in detergent, or was directly synthesized in micelles of various supplied mild detergents. Purified cell-free-produced human endothelin B receptor samples were evaluated by single-particle analysis and by ligand-binding assays. The soluble human endothelin B receptor produced is predominantly present as dimeric complexes without detectable aggregation, and the quality of the sample is very similar to that of the related rhodopsin isolated from natural sources. The binding of human endothelin B receptor to its natural peptide ligand endothelin-1 is demonstrated by coelution, pull-down assays, and surface plasmon resonance assays. Systematic functional analysis of truncated human endothelin B receptor derivatives confined two key receptor functions to the membrane-localized part of human endothelin B receptor. A 39 amino acid fragment spanning residues 93-131 and including the proposed transmembrane segment 1 was identified as a central area involved in endothelin-1 binding as well as in human endothelin B receptor homo-oligomer formation. Our approach represents an efficient expression technique for G-protein-coupled receptors such as human endothelin B receptor, and might provide a valuable tool for fast structural and functional characterizations.
Collapse
Affiliation(s)
- Christian Klammt
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, University of Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|