51
|
Karali A, Kao AP, Zekonyte J, Blunn G, Tozzi G. Micromechanical evaluation of cortical bone using in situ XCT indentation and digital volume correlation. J Mech Behav Biomed Mater 2021; 115:104298. [PMID: 33445104 DOI: 10.1016/j.jmbbm.2020.104298] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 11/29/2022]
Abstract
The overall mechanical behaviour of cortical bone is strongly dependant on its microstructure. X-ray computed tomography (XCT) has been widely used to identify the microstructural morphology of cortical tissue (i.e. pore network, Haversian and Volkmann's canals). However, the connection between microstructure and mechanics of cortical bone during plastic deformation is unclear. Hence, the purpose of this study is to provide an in-depth evaluation of the interplay of plastic strain building up in relation to changes in the canal network for cortical bone tissue. In situ step-wise XCT indentation was used to introduce a localised load on the surface of the tissue and digital volume correlation (DVC) was employed to assess the three-dimensional (3D) full-field plastic strain distribution in proximity of the indent. It was observed that regions adjacent to the imprint were under tensile strain, whereas the volume underneath experienced compressive strain. Canal loss and disruption was detected in regions of higher compressive strains exceeding -20000 με and crack formation occurred in specimens where Haversian canals were running parallel to the indentation tip. The results of this study outline the relationship between the micromechanical and structural behaviour of cortical bone during plastic deformation, providing information on cortical tissue fracture pathways.
Collapse
Affiliation(s)
- Aikaterina Karali
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK.
| | | | - Jurgita Zekonyte
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK.
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK.
| |
Collapse
|
52
|
Kochetkova T, Peruzzi C, Braun O, Overbeck J, Maurya AK, Neels A, Calame M, Michler J, Zysset P, Schwiedrzik J. Combining polarized Raman spectroscopy and micropillar compression to study microscale structure-property relationships in mineralized tissues. Acta Biomater 2021; 119:390-404. [PMID: 33122147 DOI: 10.1016/j.actbio.2020.10.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/07/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
Bone is a natural composite possessing outstanding mechanical properties combined with a lightweight design. The key feature contributing to this unusual combination of properties is the bone hierarchical organization ranging from the nano- to the macro-scale. Bone anisotropic mechanical properties from two orthogonal planes (along and perpendicular to the main bone axis) have already been widely studied. In this work, we demonstrate the dependence of the microscale compressive mechanical properties on the angle between loading direction and the mineralized collagen fibril orientation in the range between 0° and 82°. For this, we calibrated polarized Raman spectroscopy for quantitative collagen fibril orientation determination and validated the method using widely used techniques (small angle X-ray scattering, micro-computed tomography). We then performed compression tests on bovine cortical bone micropillars with known mineralized collagen fibril angles. A strong dependence of the compressive micromechanical properties of bone on the fibril orientation was found with a high degree of anisotropy for both the elastic modulus (Ea/Et=3.80) and the yield stress (σay/σty=2.54). Moreover, the post-yield behavior was found to depend on the MCF orientation with a transition between softening to hardening behavior at approximately 50°. The combination of methods described in this work allows to reliably determine structure-property relationships of bone at the microscale, which may be used as a measure of bone quality.
Collapse
|
53
|
Xiong Y, He T, Wang Y, Liu WV, Hu S, Zhang Y, Wen D, Hou B, Li Y, Zhang P, Liu J, He F, Li X. CKD Stages, Bone Metabolism Markers, and Cortical Porosity Index: Associations and Mediation Effects Analysis. Front Endocrinol (Lausanne) 2021; 12:775066. [PMID: 34803931 PMCID: PMC8602844 DOI: 10.3389/fendo.2021.775066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/20/2021] [Indexed: 01/02/2023] Open
Abstract
Chronic kidney disease (CKD) has a significant negative impact on bone health. However, the mechanisms of cortical bone deterioration and cortical porosity enlargement caused by CKD have not been fully described. We therefore examined the association of CKD stages with cortical porosity index (PI), and explored potential mediators of this association. Double-echo ultrashort echo-time magnetic resonance imaging (UTE MRI) provides the possibility of quantifying cortical porosity in vivo. A total of 95 patients with CKD stages 2-5 underwent 3D double-echo UTE-Cones MRI (3.0T) of the midshaft tibia to obtain the PI. PI was defined as the ratio of the image signal intensity of a sufficiently long echo time (TE) to the shortest achievable TE. Parathyroid hormone (PTH), β-CrossLaps (β-CTX), total procollagen type I amino-terminal propeptide (T-P1NP), osteocalcin (OC), 25-hydroxyvitamin D (25OHD), and lumbar bone mineral density (BMD) were measured within one week of the MRI. Partial correlation analysis was performed to address associations between PI, eGFR and potential mediators (PTH, β-CTX, T-P1NP, OC, 25OHD, BMD, and T-score). Multiple linear regression models were used to assess the association between CKD stages and PI value. Then, a separate exploratory mediation analysis was carried out to explore the impact of CKD stages and mediators on the PI value. The increasing CKD stages were associated with a higher PI value (Ptrend < 0.001). The association of CKD stages and PI mediated 34.4% and 30.8% of the total effect by increased PTH and β-CTX, respectively. Our study provides a new idea to monitor bone health in patients with CKD, and reveals the internal mechanism of bone deterioration caused by CKD to some extent.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongxiang He
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanan Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Shuang Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donglin Wen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bowen Hou
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yitong Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peisen Zhang
- Department of Rehabilitation Medicine, School of Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | | | - Fan He
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Fan He, ; Xiaoming Li,
| | - Xiaoming Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Fan He, ; Xiaoming Li,
| |
Collapse
|
54
|
Troy KL, Davis IS, Tenforde AS. A Narrative Review of Metatarsal Bone Stress Injury in Athletic Populations: Etiology, Biomechanics, and Management. PM R 2020; 13:1281-1290. [PMID: 33155355 DOI: 10.1002/pmrj.12518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 01/13/2023]
Abstract
Metatarsal bone stress injuries (BSIs) are common in athletic populations. BSIs are overuse injuries that result from an accumulation of microdamage that exceeds bone remodeling. Risk for metatarsal BSI is multifactorial and includes factors related to anatomy, biology, and biomechanics. In this article, anatomic factors including foot type, metatarsal length, bone density, bone geometry, and intrinsic muscle strength, which each influence how the foot responds to load, are discussed. Biologic factors such as low energy availability and impaired bone metabolism influence the quality of the bone. Finally, the influence of biomechanical loads to bone such as peak forces, load rates, and loading cycles are reviewed. General management of metatarsal BSI is discussed, including acute care, rehabilitation, treatment of refractory metatarsal BSI, and evaluation of healing/return to sport. Finally, we identify future research priorities and emerging treatments for metatarsal BSI.
Collapse
Affiliation(s)
- Karen L Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Irene S Davis
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Charlestown, MA, USA.,Spaulding National Running Center, Spaulding Hospital, Cambridge, MA, USA
| | - Adam S Tenforde
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Charlestown, MA, USA.,Spaulding National Running Center, Spaulding Hospital, Cambridge, MA, USA
| |
Collapse
|
55
|
Harrison KD, Hiebert BD, Panahifar A, Andronowski JM, Ashique AM, King GA, Arnason T, Swekla KJ, Pivonka P, Cooper DM. Cortical Bone Porosity in Rabbit Models of Osteoporosis. J Bone Miner Res 2020; 35:2211-2228. [PMID: 32614975 PMCID: PMC7702175 DOI: 10.1002/jbmr.4124] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 12/20/2022]
Abstract
Cortical bone porosity is intimately linked with remodeling, is of growing clinical interest, and is increasingly accessible by imaging. Thus, the potential of animal models of osteoporosis (OP) to provide a platform for studying how porosity develops and responds to interventions is tremendous. To date, rabbit models of OP have largely focused on trabecular microarchitecture or bone density; some such as ovariectomy (OVX) have uncertain efficacy and cortical porosity has not been extensively reported. Our primary objective was to characterize tibial cortical porosity in rabbit-based models of OP, including OVX, glucocorticoids (GC), and OVX + GC relative to controls (SHAM). We sought to: (i) test the hypothesis that intracortical remodeling is elevated in these models; (ii) contrast cortical remodeling and porosity in these models with that induced by parathyroid hormone (1-34; PTH); and (iii) contrast trabecular morphology in the proximal tibia across all groups. Evidence that an increase in cortical porosity occurred in all groups was observed, although this was the least robust for GC. Histomorphometric measures supported the hypothesis that remodeling rate was elevated in all groups and also revealed evidence of uncoupling of bone resorption and formation in the GC and OVX + GC groups. For trabecular bone, a pattern of loss was observed for OVX, GC, and OVX + GC groups, whereas the opposite was observed for PTH. Change in trabecular number best explained these patterns. Taken together, the findings indicated rabbit models provide a viable and varied platform for the study of OP and associated changes in cortical remodeling and porosity. Intriguingly, the evidence revealed differing effects on the cortical and trabecular envelopes for the PTH model. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR)..
Collapse
Affiliation(s)
- Kim D Harrison
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Beverly D Hiebert
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Arash Panahifar
- BioMedical Imaging and Therapy Beamline, Canadian Light Source, Saskatoon, Canada.,Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | | | - Gavin A King
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Terra Arnason
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Kurtis J Swekla
- Research Services and Ethics Office, Office of the Vice President of Research, University of Saskatchewan, Saskatoon, Canada
| | - Peter Pivonka
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane, Australia
| | - David Ml Cooper
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
56
|
Favier V, Gallet P, Ferry O, Jehl JP. Spherical depth-sensing nanoindentation of human anterior skull base bones: Establishment of a test protocol. J Mech Behav Biomed Mater 2020; 110:103954. [PMID: 32957246 DOI: 10.1016/j.jmbbm.2020.103954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/01/2020] [Accepted: 06/23/2020] [Indexed: 01/19/2023]
Abstract
The mechanical properties of anterior skull base (ASB) bones are not well understood due to their complex geometry and deep location. However, it is of particular interest for skull base surgeons to appraise the force range they can apply during procedures and know what kind of haptic feedback a simulation device should produce in order to be realistic for trainees. The aim of this study was to establish a measurement protocol to set the level of hydration state, temperature and curve analysis method for spherical depth sensing nanoindentation of ASB bones. A definitive screening design method was used to test the different possible combinations of these factors. Two samples of ASB bones from the heads of two human body donors (two specimens) were selected according to their microstructure as assessed by micro-CT (microtomography): low-porosity (16.87%, sphenoid bone) and high-porosity (79.85%, ethmoid bone). Depth measurement series of 36 nanoindentations (n = 288) were performed on specimen 1 according to the L8 Taguchi orthogonal array to study the effect of temperature (two levels: 20 or 37 °C), hydration state (dry or immerged in physiological saline sodium chloride), and loading curve analysis according to the Hertzian contact theory (fitting at the start or at the end). The mean values of reduced Young's (E*) modulus varied significantly depending on the hydration status and bone microstructure. In order to obtain the physiological properties of ASB bones, we thus propose performing immersion tests. To simplify the experimentation protocol, future experiments must include a room temperature level and a fit of the curve at the end of the load. A validation series was performed on the second specimen to assess the set of parameters. The E* in dry bone gave mean values of 994.68 MPa, versus 409.79 MPa in immerged bones (p < 0.00001). This is the first time a study has been carried out on ASB bones, defining the experimental parameters related to physiological conditions.
Collapse
Affiliation(s)
- Valentin Favier
- Aide à La Décision pour une Médecine Personnalisée, EA2415, Département MIPS, Université de Montpellier, Montpellier, France; Département D'ORL et Chirurgie Cervico-faciale, Centre Hospitalier Universitaire de Montpellier, Montpellier, France.
| | - Patrice Gallet
- Département D'ORL et Chirurgie Cervico-faciale, Hôpital Brabois, CHRU Nancy, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Olivier Ferry
- Institut Jean Lamour, Centre de Compétences Xj, CNRS UMR 7198, Université de Lorraine, Nancy, France
| | - Jean-Philippe Jehl
- Institut Jean Lamour, CNRS UMR 7198, Université de Lorraine, Nancy, France
| |
Collapse
|
57
|
Ebrahimi M, Botelho M, Lu W, Monmaturapoj N. Development of nanocomposite collagen/
HA
/
β‐TCP
scaffolds with tailored gradient porosity and permeability using vitamin E. J Biomed Mater Res A 2020; 108:2379-2394. [DOI: 10.1002/jbm.a.36990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/28/2020] [Accepted: 04/04/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Mehdi Ebrahimi
- Restorative Dental Sciences, Prince Philip Dental Hospital The University of Hong Kong Hong Kong
| | - Michael Botelho
- Restorative Dental Sciences, Prince Philip Dental Hospital The University of Hong Kong Hong Kong
| | - William Lu
- Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong
| | | |
Collapse
|
58
|
Nickolas TL, Chen N, McMahon DJ, Dempster D, Zhou H, Dominguez J, Aponte MA, Sung J, Evenepoel P, D'Haese PC, Mac-Way F, Moyses R, Moe S. A microRNA Approach to Discriminate Cortical Low Bone Turnover in Renal Osteodystrophy. JBMR Plus 2020; 4:e10353. [PMID: 32490328 PMCID: PMC7254487 DOI: 10.1002/jbm4.10353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/31/2020] [Accepted: 02/18/2020] [Indexed: 01/03/2023] Open
Abstract
A main obstacle to diagnose and manage renal osteodystrophy (ROD) is the identification of intracortical bone turnover type (low, normal, high). The gold standard, tetracycline‐labeled transiliac crest bone biopsy, is impractical to obtain in most patients. The Kidney Disease Improving Global Outcomes Guidelines recommend PTH and bone‐specific alkaline phosphatase (BSAP) for the diagnosis of turnover type. However, PTH and BSAP have insufficient diagnostic accuracy to differentiate low from non‐low turnover and were validated for trabecular turnover. We hypothesized that four circulating microRNAs (miRNAs) that regulate osteoblast (miRNA‐30b, 30c, 125b) and osteoclast development (miRNA‐155) would provide superior discrimination of low from non‐low turnover than biomarkers in clinical use. In 23 patients with CKD 3‐5D, we obtained tetracycline‐labeled transiliac crest bone biopsy and measured circulating levels of intact PTH, BSAP, and miRNA‐30b, 30c, 125b, and 155. Spearman correlations assessed relationships between miRNAs and histomorphometry and PTH and BSAP. Diagnostic test characteristics for discriminating low from non‐low intracortical turnover were determined by receiver operator curve analysis; areas under the curve (AUC) were compared by χ2 test. In CKD rat models of low and high turnover ROD, we performed histomorphometry and determined the expression of bone tissue miRNAs. Circulating miRNAs moderately correlated with bone formation rate and adjusted apposition rate at the endo‐ and intracortical envelopes (ρ = 0.43 to 0.51; p < 0.05). Discrimination of low versus non‐low turnover was 0.866, 0.813, 0.813, and 0.723 for miRNA‐30b, 30c, 125b, and 155, respectively, and 0.509 and 0.589 for PTH and BSAP, respectively. For all four miRNAs combined, the AUC was 0.929, which was superior to that of PTH and BSAP alone and together (p < 0.05). In CKD rats, bone tissue levels of the four miRNAs reflected the findings in human serum. These data suggest that a panel of circulating miRNAs provide accurate noninvasive identification of bone turnover in ROD. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Thomas L Nickolas
- Department of Medicine Columbia University Medical Center New York NY USA
| | - Neal Chen
- Division of Nephrology Indiana University School of Medicine Indianapolis IN USA
| | - Donald J McMahon
- Department of Medicine Columbia University Medical Center New York NY USA
| | - David Dempster
- Department of Pathology and Cell Biology Columbia University New York NY USA.,Regional Bone Center Helen Hayes Hospital New York NY USA
| | - Hua Zhou
- Regional Bone Center Helen Hayes Hospital New York NY USA
| | - James Dominguez
- Division of Nephrology Indiana University School of Medicine Indianapolis IN USA
| | - Maria A Aponte
- Department of Medicine Columbia University Medical Center New York NY USA
| | - Joshua Sung
- Department of Medicine Columbia University Medical Center New York NY USA
| | - Pieter Evenepoel
- Department of Microbiology and Immunology, Laboratory of Nephrology Katholieke Universiteit Leuven, University of Leuven Leuven Belgium
| | - Patrick C D'Haese
- Department of Biomedical Sciences, Laboratory of Pathophysiology Antwerp University Wilrijk Belgium
| | - Fabrice Mac-Way
- CHU de Québec Research Center, L'Hôtel-Dieu de Québec Hospital, Endocrinology and Nephrology Axis, Faculty and Department of Medicine Université Laval Quebec City Canada
| | - Rosa Moyses
- Laboratório de Investigação Médica 16 Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo Sao Paulo Brazil
| | - Sharon Moe
- Division of Nephrology Indiana University School of Medicine Indianapolis IN USA.,Department of Medicine Roudebush Veterans Administration Medical Center Indianapolis IN USA
| |
Collapse
|
59
|
Andreasen CM, Bakalova LP, Brüel A, Hauge EM, Kiil BJ, Delaisse JM, Kersh ME, Thomsen JS, Andersen TL. The generation of enlarged eroded pores upon existing intracortical canals is a major contributor to endocortical trabecularization. Bone 2020; 130:115127. [PMID: 31689525 DOI: 10.1016/j.bone.2019.115127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 02/04/2023]
Abstract
The gradual conversion of cortical bone into trabecular bone on the endocortical surface contributes substantially to thinning of the cortical bone. The purpose of the present study was to characterize the intracortical canals (3D) and pores (2D) in human fibular bone, to identify the intracortical remodeling events leading to this endocortical trabecularization. The analysis was conducted in fibular diaphyseal bone specimens obtained from 20 patients (6 women and 14 men, age range 41-75 years). μCT revealed that endosteal bone had a higher cortical porosity (p< 0.05) and canals with a larger diameter (p< 0.05) than periosteal bone, while the canal spacing and number were similar in the endosteal and periosteal half. Histological analysis showed that the endosteal half versus the periosteal half: (i) had a higher likelihood of being non-quiescent type 2 pores (i.e. remodeling of existing pores) than other pore types (OR = 1.6, p< 0.01); (ii) that the non-quiescent type 2 pores contributed to a higher porosity (p< 0.001); and that (iii) amongst these pores especially eroded type 2 pores contributed to the elevated cortical porosity (p< 0.001). In conclusion, we propose that endocortical trabecularization results from the accumulation of eroded cavities upon existing intracortical canals, favored by delayed initiation of bone formation.
Collapse
Affiliation(s)
- Christina Møller Andreasen
- Department of Orthopedic Surgery & Traumatology, Odense University Hospital, Odense, Denmark; Clinical Cell Biology, Research Unit of Pathology, Department of Clinical Research, University of Southern Denmark and Department of Pathology, Odense University Hospital, Odense, Denmark; Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Lydia Peteva Bakalova
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, IL, USA.
| | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Ellen Margrethe Hauge
- Department of Rheumatology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Birgitte Jul Kiil
- Department of Plastic Surgery, Aarhus University Hospital, Aarhus, Denmark.
| | - Jean-Marie Delaisse
- Clinical Cell Biology, Research Unit of Pathology, Department of Clinical Research, University of Southern Denmark and Department of Pathology, Odense University Hospital, Odense, Denmark; Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Clinical Cell Biology, Vejle Hospital - Lillebælt Hospital, University of Southern Denmark, Vejle, Denmark.
| | - Mariana Elizabeth Kersh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, IL, USA.
| | | | - Thomas Levin Andersen
- Clinical Cell Biology, Research Unit of Pathology, Department of Clinical Research, University of Southern Denmark and Department of Pathology, Odense University Hospital, Odense, Denmark; Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Clinical Cell Biology, Vejle Hospital - Lillebælt Hospital, University of Southern Denmark, Vejle, Denmark; Department of Forensic Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
60
|
Ham J, Lever L, Fox M, Reagan MR. In Vitro 3D Cultures to Reproduce the Bone Marrow Niche. JBMR Plus 2019; 3:e10228. [PMID: 31687654 PMCID: PMC6820578 DOI: 10.1002/jbm4.10228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 12/30/2022] Open
Abstract
Over the past century, the study of biological processes in the human body has progressed from tissue culture on glass plates to complex 3D models of tissues, organs, and body systems. These dynamic 3D systems have allowed for more accurate recapitulation of human physiology and pathology, which has yielded a platform for disease study with a greater capacity to understand pathophysiology and to assess pharmaceutical treatments. Specifically, by increasing the accuracy with which the microenvironments of disease processes are modeled, the clinical manifestation of disease has been more accurately reproduced in vitro. The application of these models is crucial in all realms of medicine, but they find particular utility in diseases related to the complex bone marrow niche. Osteoblast, osteoclasts, bone marrow adipocytes, mesenchymal stem cells, and red and white blood cells represent some of cells that call the bone marrow microenvironment home. During states of malignant marrow disease, neoplastic cells migrate to and join this niche. These cancer cells both exploit and alter the niche to their benefit and to the patient's detriment. Malignant disease of the bone marrow, both primary and secondary, is a significant cause of morbidity and mortality today. Innovative study methods are necessary to improve patient outcomes. In this review, we discuss the evolution of 3D models and compare them to the preceding 2D models. With a specific focus on malignant bone marrow disease, we examine 3D models currently in use, their observed efficacy, and their potential in developing improved treatments and eventual cures. Finally, we comment on the aspects of 3D models that must be critically examined as systems continue to be optimized so that they can exert greater clinical impact in the future. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Justin Ham
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMEUSA,University of New EnglandBiddefordMEUSA
| | - Lauren Lever
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMEUSA,University of New EnglandBiddefordMEUSA
| | - Maura Fox
- University of New EnglandBiddefordMEUSA
| | - Michaela R Reagan
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMEUSA,University of Maine Graduate School of Biomedical Science and EngineeringOronoMEUSA,Sackler School of Graduate Biomedical SciencesTufts UniversityBostonMAUSA
| |
Collapse
|
61
|
Schafrum Macedo A, Cezaretti Feitosa C, Yoiti Kitamura Kawamoto F, Vinicius Tertuliano Marinho P, dos Santos Dal‐Bó Í, Fiuza Monteiro B, Prado L, Bregadioli T, Antonio Covino Diamante G, Ricardo Auada Ferrigno C. Animal modeling in bone research-Should we follow the White Rabbit? Animal Model Exp Med 2019; 2:162-168. [PMID: 31773091 PMCID: PMC6762042 DOI: 10.1002/ame2.12083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/30/2023] Open
Abstract
Animal models are live subjects applied to translational research. They provide insights into human diseases and enhance biomedical knowledge. Livestock production has favored the pace of human social development over millennia. Today's society is more aware of animal welfare than past generations. The general public has marked objections to animal research and many species are falling into disuse. The search for an ideal methodology to replace animal use is on, but animal modeling still holds great importance to human health. Bone research, in particular, has unmet requirements that in vitro technologies cannot yet fully address. In that sense, standardizing novel models remains necessary and rabbits are gaining in popularity as potential bone models. Our aim here is to provide a broad overview of animal modeling and its ethical implications, followed by a narrower focus on bone research and the role rabbits are playing in the current scenario.
Collapse
Affiliation(s)
- Aline Schafrum Macedo
- Department of Veterinary SurgerySchool of Veterinary Medicine and Animal SciencesUniversity of São Paulo, USPSão PauloSPBrazil
| | - Caroline Cezaretti Feitosa
- Department of Veterinary SurgerySchool of Veterinary Medicine and Animal SciencesUniversity of São Paulo, USPSão PauloSPBrazil
| | - Fernando Yoiti Kitamura Kawamoto
- Department of Veterinary SurgerySchool of Agricultural and Veterinarian SciencesSão Paulo State UniversityUNESPJaboticabalSPBrazil
| | - Paulo Vinicius Tertuliano Marinho
- Department of Veterinary SurgeryFederal Institute of Education, Science, and Technology of Southern Minas GeraisIFSULDEMINASMuzambinhoMGBrazil
| | - Ísis dos Santos Dal‐Bó
- Department of Veterinary SurgerySchool of Veterinary Medicine and Animal SciencesUniversity of São Paulo, USPSão PauloSPBrazil
| | - Bianca Fiuza Monteiro
- Department of Veterinary SurgerySchool of Veterinary Medicine and Animal SciencesUniversity of São Paulo, USPSão PauloSPBrazil
| | - Leonardo Prado
- Department of Veterinary SurgerySchool of Veterinary Medicine and Animal SciencesUniversity of São Paulo, USPSão PauloSPBrazil
| | - Thales Bregadioli
- Department of Veterinary SurgerySchool of Veterinary Medicine and Animal SciencesUniversity of São Paulo, USPSão PauloSPBrazil
| | - Gabriel Antonio Covino Diamante
- Department of Veterinary SurgerySchool of Veterinary Medicine and Animal SciencesUniversity of São Paulo, USPSão PauloSPBrazil
| | - Cassio Ricardo Auada Ferrigno
- Department of Veterinary SurgerySchool of Veterinary Medicine and Animal SciencesUniversity of São Paulo, USPSão PauloSPBrazil
| |
Collapse
|
62
|
Minonzio JG, Bochud N, Vallet Q, Ramiandrisoa D, Etcheto A, Briot K, Kolta S, Roux C, Laugier P. Ultrasound-Based Estimates of Cortical Bone Thickness and Porosity Are Associated With Nontraumatic Fractures in Postmenopausal Women: A Pilot Study. J Bone Miner Res 2019; 34:1585-1596. [PMID: 30913320 DOI: 10.1002/jbmr.3733] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/21/2019] [Accepted: 03/10/2019] [Indexed: 01/02/2023]
Abstract
Recent ultrasound (US) axial transmission techniques exploit the multimode waveguide response of long bones to yield estimates of cortical bone structure characteristics. This pilot cross-sectional study aimed to evaluate the performance at the one-third distal radius of a bidirectional axial transmission technique (BDAT) to discriminate between fractured and nonfractured postmenopausal women. Cortical thickness (Ct.Th) and porosity (Ct.Po) estimates were obtained for 201 postmenopausal women: 109 were nonfractured (62.6 ± 7.8 years), 92 with one or more nontraumatic fractures (68.8 ± 9.2 years), 17 with hip fractures (66.1 ± 10.3 years), 32 with vertebral fractures (72.4 ± 7.9 years), and 17 with wrist fractures (67.8 ± 9.6 years). The areal bone mineral density (aBMD) was obtained using DXA at the femur and spine. Femoral aBMD correlated weakly, but significantly with Ct.Th (R = 0.23, p < 0.001) and Ct.Po (R = -0.15, p < 0.05). Femoral aBMD and both US parameters were significantly different between the subgroup of all nontraumatic fractures combined and the control group (p < 0.05). The main findings were that (1) Ct.Po was discriminant for all nontraumatic fractures combined (OR = 1.39; area under the receiver operating characteristic curve [AUC] equal to 0.71), for vertebral (OR = 1.96; AUC = 0.84) and wrist fractures (OR = 1.80; AUC = 0.71), whereas Ct.Th was discriminant for hip fractures only (OR = 2.01; AUC = 0.72); there was a significant association (2) between increased Ct.Po and vertebral and wrist fractures when these fractures were not associated with any measured aBMD variables; (3) between increased Ct.Po and all nontraumatic fractures combined independently of aBMD neck; and (4) between decreased Ct.Th and hip fractures independently of aBMD femur. BDAT variables showed comparable performance to that of aBMD neck with all types of fractures (OR = 1.48; AUC = 0.72) and that of aBMD femur with hip fractures (OR = 2.21; AUC = 0.70). If these results are confirmed in prospective studies, cortical BDAT measurements may be considered useful for assessing fracture risk in postmenopausal women. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- J-G Minonzio
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, Paris, France
| | - N Bochud
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, Paris, France
| | - Q Vallet
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, Paris, France
| | - D Ramiandrisoa
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, Paris, France
| | - A Etcheto
- Department of Rheumatology, Cochin Hospital, Epidemiology and Biostatistics Sorbonne Paris Cité, Research Center, INSERM U1153, Paris Descartes University, Paris, France
| | - K Briot
- Department of Rheumatology, Cochin Hospital, Epidemiology and Biostatistics Sorbonne Paris Cité, Research Center, INSERM U1153, Paris Descartes University, Paris, France
| | - S Kolta
- Department of Rheumatology, Cochin Hospital, Epidemiology and Biostatistics Sorbonne Paris Cité, Research Center, INSERM U1153, Paris Descartes University, Paris, France
| | - C Roux
- Department of Rheumatology, Cochin Hospital, Epidemiology and Biostatistics Sorbonne Paris Cité, Research Center, INSERM U1153, Paris Descartes University, Paris, France
| | - P Laugier
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, Paris, France
| |
Collapse
|
63
|
Karbalaeisadegh Y, Yousefian O, Iori G, Raum K, Muller M. Acoustic diffusion constant of cortical bone: Numerical simulation study of the effect of pore size and pore density on multiple scattering. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:1015. [PMID: 31472561 PMCID: PMC6687498 DOI: 10.1121/1.5121010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/15/2019] [Accepted: 07/20/2019] [Indexed: 06/01/2023]
Abstract
While osteoporosis assessment has long focused on the characterization of trabecular bone, the cortical bone micro-structure also provides relevant information on bone strength. This numerical study takes advantage of ultrasound multiple scattering in cortical bone to investigate the effect of pore size and pore density on the acoustic diffusion constant. Finite-difference time-domain simulations were conducted in cortical microstructures that were derived from acoustic microscopy images of human proximal femur cross sections and modified by controlling the density (Ct.Po.Dn) ∈[5-25] pore/mm2 and size (Ct.Po.Dm) ∈[30-100] μm of the pores. Gaussian pulses were transmitted through the medium and the backscattered signals were recorded to obtain the backscattered intensity. The incoherent contribution of the backscattered intensity was extracted to give access to the diffusion constant D. At 8 MHz, significant differences in the diffusion constant were observed in media with different porous micro-architectures. The diffusion constant was monotonously influenced by either pore diameter or pore density. An increase in pore size and pore density resulted in a decrease in the diffusion constant (D =285.9Ct.Po.Dm-1.49, R2=0.989 , p=4.96×10-5,RMSE=0.06; D=6.91Ct.Po.Dn-1.01, R2=0.94, p=2.8×10-3 , RMSE=0.09), suggesting the potential of the proposed technique for the characterization of the cortical microarchitecture.
Collapse
Affiliation(s)
- Yasamin Karbalaeisadegh
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695-8212, USA
| | - Omid Yousefian
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695-8212, USA
| | - Gianluca Iori
- Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Kay Raum
- Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marie Muller
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695-8212, USA
| |
Collapse
|
64
|
Potsika VT, Tachos N, Pakos EE, Fotiadis DI. Numerical evaluation of the mechanical environment of a fractured long bone for osteoporotic and non-osteoporotic subjects. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2019:6960-6963. [PMID: 31947440 DOI: 10.1109/embc.2019.8856605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Competent fracture healing monitoring requires an extensive knowledge of the evolution of the mechanical environment of the healing bone during daily-life activities such as walking. Fractures are caused due to a traumatic incidence, while low trauma or fragility fractures can also occur due to osteoporosis. It is expected that the mechanical behavior of healing bones differs among osteoporotic and non-osteoporotic subjects. This work presents finite element simulations of gait analysis considering a fractured long bone at the hematoma stage. The aim is to investigate the evolution of the mechanical environment of the femur for an osteoporotic and a non-osteoporotic subject. This is the first computational study providing quantitative information for the impact of osteoporosis on the mechanical environment of the femur. It was shown, that higher deformation and equivalent stress values are calculated for osteoporotic bones during a gait cycle, while the highest values were observed in the femoral head.
Collapse
|
65
|
Leong AFT, Asare E, Rex R, Xiao XH, Ramesh KT, Hufnagel TC. Determination of size distributions of non-spherical pores or particles from single x-ray phase contrast images. OPTICS EXPRESS 2019; 27:17322-17347. [PMID: 31252944 DOI: 10.1364/oe.27.017322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Although x-ray tomography is commonly used to characterize the three-dimensional structure of materials, sometimes this is impractical due either to limited time for data collection (such as in rapidly-evolving systems) or the need to limit the radiation exposure of the sample. In such situations, it is desirable to extract as much information as possible from a more limited data set. In this paper, we describe how to extract the size distribution of non-spherical pores (or, equivalently, particles) from single x-ray phase contrast imaging (XPCI). Because the pores overlap in projection, interpreting the images and extracting quantitative information about the size distribution is non-trivial. In this paper we extend a previously-developed Fourier-based framework for interpreting the speckle pattern of XPCI images from materials with spherical pores to the more challenging case of non-spherical pores. We develop an analytical expression for the XPCI image from a distribution of randomly-oriented ellipsoidal pores, and show that we can use this expression to extract quantitative information about the size distribution from single images. We discuss three approaches to evaluating this expression, corresponding to different assumptions about the nature of the size distribution, and validate our results with simulated XPCI images and experimental data from Berea sandstone.
Collapse
|
66
|
|
67
|
Boughton OR, Ma S, Cai X, Yan L, Peralta L, Laugier P, Marrow J, Giuliani F, Hansen U, Abel RL, Grimal Q, Cobb JP. Computed tomography porosity and spherical indentation for determining cortical bone millimetre-scale mechanical properties. Sci Rep 2019; 9:7416. [PMID: 31092837 PMCID: PMC6520408 DOI: 10.1038/s41598-019-43686-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
The cortex of the femoral neck is a key structural element of the human body, yet there is not a reliable metric for predicting the mechanical properties of the bone in this critical region. This study explored the use of a range of non-destructive metrics to measure femoral neck cortical bone stiffness at the millimetre length scale. A range of testing methods and imaging techniques were assessed for their ability to measure or predict the mechanical properties of cortical bone samples obtained from the femoral neck of hip replacement patients. Techniques that can potentially be applied in vivo to measure bone stiffness, including computed tomography (CT), bulk wave ultrasound (BWUS) and indentation, were compared against in vitro techniques, including compression testing, density measurements and resonant ultrasound spectroscopy. Porosity, as measured by micro-CT, correlated with femoral neck cortical bone's elastic modulus and ultimate compressive strength at the millimetre length scale. Large-tip spherical indentation also correlated with bone mechanical properties at this length scale but to a lesser extent. As the elastic mechanical properties of cortical bone correlated with porosity, we would recommend further development of technologies that can safely measure cortical porosity in vivo.
Collapse
Affiliation(s)
- Oliver R Boughton
- The MSk Lab, Department of Surgery and Cancer, Imperial College London, London, United Kingdom.
- The Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom.
| | - Shaocheng Ma
- The MSk Lab, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- The Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Xiran Cai
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, F-75006, Paris, France
| | - Liye Yan
- Department of Materials, University of Oxford, Oxford, United Kingdom
| | - Laura Peralta
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, F-75006, Paris, France
| | - Pascal Laugier
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, F-75006, Paris, France
| | - James Marrow
- Department of Materials, University of Oxford, Oxford, United Kingdom
| | - Finn Giuliani
- Centre for Advanced Structural Ceramics, Department of Materials, Imperial College London, London, United Kingdom
| | - Ulrich Hansen
- The Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Richard L Abel
- The MSk Lab, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Quentin Grimal
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, F-75006, Paris, France
| | - Justin P Cobb
- The MSk Lab, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
68
|
Schneider J, Ramiandrisoa D, Armbrecht G, Ritter Z, Felsenberg D, Raum K, Minonzio JG. In Vivo Measurements of Cortical Thickness and Porosity at the Proximal Third of the Tibia Using Guided Waves: Comparison with Site-Matched Peripheral Quantitative Computed Tomography and Distal High-Resolution Peripheral Quantitative Computed Tomography. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1234-1242. [PMID: 30777311 DOI: 10.1016/j.ultrasmedbio.2019.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/20/2018] [Accepted: 01/08/2019] [Indexed: 05/09/2023]
Abstract
The aim of this study was to estimate cortical porosity (Ct.Po) and cortical thickness (Ct.Th) using 500-kHz bi-directional axial transmission (AT). Ct.ThAT and Ct.PoAT were obtained at the tibia in 15 patients from a 2-D transverse isotropic free plate model fitted to measured guided wave dispersion curves. The velocities of the first arriving signal (υFAS) and A0 mode (υA0) were also determined. Site-matched peripheral quantitative computed tomography (pQCT) provided volumetric cortical bone mineral density (Ct.vBMDpQCT) and Ct.ThpQCT. Good agreement was found between Ct.ThAT and Ct.ThpQCT (R2 = 0.62, root mean square error [RMSE] = 0.39 mm). Ct.vBMDpQCT correlated with Ct.PoAT (R2 = 0.57), υFAS (R2 = 0.43) and υA0 (R2 = 0.28). Furthermore, a significant correlation was found between AT and distal high-resolution pQCT. The measurement ofcortical parameters at the tibia using guided waves might improve the prediction of bone fractures in a cost-effective and radiation-free manner.
Collapse
Affiliation(s)
- Johannes Schneider
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Donatien Ramiandrisoa
- Laboratoire d'Imagerie Biomédicale (LIB), Sorbonne University, CNRS, INSERM, Paris, France; BleuSolid, Pomponne, France
| | - Gabriele Armbrecht
- Center for Muscle and Bone Research (ZMK), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Zully Ritter
- Center for Muscle and Bone Research (ZMK), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dieter Felsenberg
- Center for Muscle and Bone Research (ZMK), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kay Raum
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Jean-Gabriel Minonzio
- Laboratoire d'Imagerie Biomédicale (LIB), Sorbonne University, CNRS, INSERM, Paris, France; Escuela de Ingeniería Civil en Informática, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
69
|
Bowman L, Ellerbrock ER, Hausfeld GC, Neumeyer JM, Loucks AB. A new noninvasive mechanical bending test accurately predicts ulna bending strength in cadaveric human arms. Bone 2019; 120:336-346. [PMID: 30496886 DOI: 10.1016/j.bone.2018.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/05/2018] [Accepted: 11/25/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND High error rates in the prediction of fragility fractures by bone mineral density have motivated searches for better clinical indicators of bone strength, and the high incidence of non-hip, non-spine fractures has raised interest in cortical bone. The aim of this study was to assess the accuracy of Cortical Bone Mechanics Technology™. CBMT is a new non-invasive 3-point bending technique for measuring the mechanical properties of cortical bone in the ulnas of living humans. METHODS 35 cadaveric human arms were obtained from small women and large men ranging widely in age (17 < Age < 99 years) and body size (14 < BMI < 40 kg/m2). Noninvasive CBMT measurements of the flexural rigidity of the ulna bones within these arms (EICBMT) were compared to measurements of EI by Quasistatic Mechanical Testing in the ulnas excised from those arms (EIQMT). Ulna bending strength was also measured by QMT as the peak moment before fracture (Mpeak). The open source BoneJ plugin to ImageJ image processing software was used to calculate cortical porosity (CP) in micro-computed tomography images of a 2 mm length of the mid-shaft of each fractured ulna, and the interosseous diameter (IOD) of each ulna was also measured in those images. RESULTS EICBMT measurements (13 < EICBMT < 97 Nm2) explained 99% of the variance in QMT measurements of ulna bending strength (11 < Mpeak < 90 Nm), but EICBMT was biased high by 30% (p < 0.0001) relative to EIQMT (11 < EIQMT < 69 Nm2). After correcting this bias, EICBMT and EIQMT measurements lay along the identity line (y = 1.00x, R2 = 0.99, SEE = 3.1 Nm2). Predictions of Mpeak by EICBMT were less accurate than predictions by EIQMT (both R2 = 0.99; SEECBMT = 5.9 Nm vs SEEQMT = 4.5 Nm, F = 2.92, p = 0.001), but EICBMT predictions were substantially more accurate than those by IOD (R2 = 0.79; SEEIOD = 10.6 Nm, F = 3.30, p < 0.001) and CP (R2 = 0.35; SEECP = 18.9 Nm, F = 10.45, p < 10-9). Predictions by EICBMT were also more accurate than predictions by arm donor height (R2 = 0.63; SEE = 14.3 Nm, F = 5.87, p < 10-6), body weight (R2 = 0.77; SEE = 11.1 Nm, F = 3.54, p < 0.001) and BMI (R2 = 0.64; SEE = 14.1 Nm, F = 2.39, p < 0.01). In forward stepwise multiple regression beginning with EICBMT, only age explained any additional variance in ulna bending strength (ΔR2 = 0.3%, F = 8.03, p = 0.008). CONCLUSION Noninvasive CBMT measurements of ulna EI explain 99% of individual differences in QMT measurements of ulna bending strength in cadaveric human arms.
Collapse
Affiliation(s)
- Lyn Bowman
- Department of Biological Sciences, Ohio University, Athens, OH 45701, United States of America; Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH 45701, United States of America
| | - Emily R Ellerbrock
- Department of Biological Sciences, Ohio University, Athens, OH 45701, United States of America
| | - Gabrielle C Hausfeld
- Honors Tutorial College, Ohio University, Athens, OH 45701, United States of America
| | - Jennifer M Neumeyer
- Department of Biological Sciences, Ohio University, Athens, OH 45701, United States of America
| | - Anne B Loucks
- Department of Biological Sciences, Ohio University, Athens, OH 45701, United States of America; Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH 45701, United States of America.
| |
Collapse
|
70
|
Soltan N, Kawalilak CE, Cooper DM, Kontulainen SA, Johnston JD. Cortical porosity assessment in the distal radius: A comparison of HR-pQCT measures with Synchrotron-Radiation micro-CT-based measures. Bone 2019; 120:439-445. [PMID: 30553853 DOI: 10.1016/j.bone.2018.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To determine the agreement between cortical porosity derived from high resolution peripheral quantitative computed tomography (HR-pQCT) (via standard threshold, mean density and density inhomogeneity methods) and synchrotron radiation micro-CT (SR-μCT) derived porosity at the distal radius. METHODS We scanned 10 cadaveric radii (mean donor age: 79, SD 11 years) at the standard distal region using HR-pQCT and SR-μCT at voxel sizes of 82 μm and 17.7 μm, respectively. Common cortical regions were delineated for each specimen in both imaging modalities. HR-pQCT images were analyzed for cortical porosity using the following methods: Standard threshold, mean density, and density inhomogeneity (via recommended and optimized equations). We assessed agreement in porosity measures between HR-pQCT methods and SR-μCT by reporting predicted variance from linear regression and mean bias with limits of agreement (LOA). RESULTS The standard threshold and mean density methods predicted 85% and 89% of variance and indicated underestimation (mean bias -9.1%, LOA -15.9% to -2.2%) and overestimation (10.4%, 4.6% to 16.2%) of porosity, respectively. The density inhomogeneity method with recommended equation predicted 89% of variance and mean bias of 14.9% (-4.3 to 34.2) with systematic over-estimation of porosity in more porous specimens. The density inhomogeneity method with optimized equation predicted 91% of variance without bias (0.0%, -5.3 to 5.2). CONCLUSION HR-pQCT imaged porosity assessed with the density inhomogeneity method with optimized equation indicated the best agreement with SR-μCT derived porosity.
Collapse
Affiliation(s)
- Nikoo Soltan
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Chantal E Kawalilak
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - David M Cooper
- Department of Anatomy & Cellular Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - James D Johnston
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
71
|
Cai X, Brenner R, Peralta L, Olivier C, Gouttenoire PJ, Chappard C, Peyrin F, Cassereau D, Laugier P, Grimal Q. Homogenization of cortical bone reveals that the organization and shape of pores marginally affect elasticity. J R Soc Interface 2019; 16:20180911. [PMID: 30958180 PMCID: PMC6408344 DOI: 10.1098/rsif.2018.0911] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022] Open
Abstract
With ageing and various diseases, the vascular pore volume fraction (porosity) in cortical bone increases, and the morphology of the pore network is altered. Cortical bone elasticity is known to decrease with increasing porosity, but the effect of the microstructure is largely unknown, while it has been thoroughly studied for trabecular bone. Also, popular micromechanical models have disregarded several micro-architectural features, idealizing pores as cylinders aligned with the axis of the diaphysis. The aim of this paper is to quantify the relative effects on cortical bone anisotropic elasticity of porosity and other descriptors of the pore network micro-architecture associated with pore number, size and shape. The five stiffness constants of bone assumed to be a transversely isotropic material were measured with resonant ultrasound spectroscopy in 55 specimens from the femoral diaphysis of 29 donors. The pore network, imaged with synchrotron radiation X-ray micro-computed tomography, was used to derive the pore descriptors and to build a homogenization model using the fast Fourier transform (FFT) method. The model was calibrated using experimental elasticity. A detailed analysis of the computed effective elasticity revealed in particular that porosity explains most of the variations of the five stiffness constants and that the effects of other micro-architectural features are small compared to usual experimental errors. We also have evidence that modelling the pore network as an ensemble of cylinders yields biased elasticity values compared to predictions based on the real micro-architecture. The FFT homogenization method is shown to be particularly efficient to model cortical bone.
Collapse
Affiliation(s)
- Xiran Cai
- Laboratoire d’Imagerie Biomédicale, Sorbonne Université, INSERM UMR S 1146, CNRS UMR 7371, 75006 Paris, France
| | - Renald Brenner
- Institut Jean le Rond ∂’Alembert, Sorbonne Université, CNRS UMR 7190, 75005 Paris, France
| | - Laura Peralta
- Laboratoire d’Imagerie Biomédicale, Sorbonne Université, INSERM UMR S 1146, CNRS UMR 7371, 75006 Paris, France
| | - Cécile Olivier
- CREATIS, Université de Lyon, INSERM U1206, CNRS UMR 5220 , INSA-Lyon, UCBL, 69621 Villeurbanne, France
- ESRF, 38043 Grenoble, France
| | | | | | - Françoise Peyrin
- CREATIS, Université de Lyon, INSERM U1206, CNRS UMR 5220 , INSA-Lyon, UCBL, 69621 Villeurbanne, France
- ESRF, 38043 Grenoble, France
| | - Didier Cassereau
- Laboratoire d’Imagerie Biomédicale, Sorbonne Université, INSERM UMR S 1146, CNRS UMR 7371, 75006 Paris, France
| | - Pascal Laugier
- Laboratoire d’Imagerie Biomédicale, Sorbonne Université, INSERM UMR S 1146, CNRS UMR 7371, 75006 Paris, France
| | - Quentin Grimal
- Laboratoire d’Imagerie Biomédicale, Sorbonne Université, INSERM UMR S 1146, CNRS UMR 7371, 75006 Paris, France
| |
Collapse
|
72
|
Jerban S, Ma Y, Wan L, Searleman AC, Jang H, Sah RL, Chang EY, Du J. Collagen proton fraction from ultrashort echo time magnetization transfer (UTE-MT) MRI modelling correlates significantly with cortical bone porosity measured with micro-computed tomography (μCT). NMR IN BIOMEDICINE 2019; 32:e4045. [PMID: 30549338 PMCID: PMC6324959 DOI: 10.1002/nbm.4045] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 05/08/2023]
Abstract
Intracortical bone porosity is a key microstructural parameter that determines bone mechanical properties. While clinical MRI visualizes the cortical bone with a signal void, ultrashort echo time (UTE) MRI can acquire high signal from cortical bone, thus enabling quantitative assessments. Magnetization transfer (MT) imaging combined with UTE-MRI can indirectly assess protons in the bone collagenous matrix, which are inversely related to porosity. This study aimed to examine UTE-MT MRI techniques to evaluate intracortical bone porosity. Eighteen human cortical bone specimens from the tibial and fibular midshafts were scanned using UTE-MT sequences on a clinical 3 T MRI scanner and on a high-resolution micro-computed tomography (μCT) scanner. A series of MT pulse saturation powers (500°, 1000°, 1500°) and frequency offsets (2, 5, 10, 20, 50 kHz) were used to measure the macromolecular fraction (MMF) and macromolecular T2 (T2MM ) using a two-pool MT model. The measurements were made on 136 different regions of interest (ROIs). ROIs were selected at three cortical bone layers (from endosteum to periosteum) and four anatomical sites (anterior, mid-medial, mid-lateral, and posterior) to provide a wide range of porosity. MMF showed moderate to strong correlations with intracortical bone porosity (R = -0.67 to -0.73, p < 0.01) and bone mineral density (BMD) (R = +0.46 to +0.70, p < 0.01). Comparing the average MMF between cortical bone layers revealed a significant increase from the endosteum towards the periosteum. Such a pattern was in agreement with porosity reduction and BMD increase towards the periosteum. These results suggest that the two-pool UTE-MT technique can potentially serve as a novel and accurate tool to assess intracortical bone porosity.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, CA, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA, USA
| | - Lidi Wan
- Department of Radiology, University of California, San Diego, CA, USA
| | - Adam C. Searleman
- Department of Radiology, University of California, San Diego, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, CA, USA
| | - Robert L. Sah
- Department of Bioengineering, University of California, San Diego, CA, USA
- Department of Orthopaedic Surgery, University of California, San Diego, CA, USA
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, CA, USA
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, USA
| |
Collapse
|
73
|
Grimal Q, Laugier P. Quantitative Ultrasound Assessment of Cortical Bone Properties Beyond Bone Mineral Density. Ing Rech Biomed 2019. [DOI: 10.1016/j.irbm.2018.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
74
|
Raad M, Amin R, Jain A, Frank SM, Kebaish KM. Multilevel Arthrodesis for Adult Spinal Deformity: When Should We Anticipate Major Blood Loss? Spine Deform 2019; 7:141-145. [PMID: 30587307 DOI: 10.1016/j.jspd.2018.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/18/2018] [Accepted: 06/23/2018] [Indexed: 11/29/2022]
Abstract
STUDY DESIGN Retrospective study. OBJECTIVES To analyze predictors of major blood loss (MBL) during multilevel arthrodesis for adult spinal deformity (ASD). SUMMARY OF BACKGROUND DATA ASD surgery is associated with substantial blood loss. METHODS We identified 237 patients with ASD who underwent spinal arthrodesis of five or more levels by one surgeon and who had complete data on blood loss. MBL was defined as normalized blood loss above the 75th percentile (ie, >49%). Patients with MBL were compared with those without MBL with respect to baseline characteristics, preoperative laboratory values, and surgical factors. Alpha level = 0.05. RESULTS A total of 176 patients (74%) had MBL. On univariate analysis, the MBL and non-MBL groups differed with respect to diagnosis of osteoporosis (p = .002), curve type (p = .012), number of levels fused (p < .001), and presence/type of osteotomy (p < .001). The groups were similar in age (p = .605) and proportion of patients undergoing revision surgery (p = .410). Multivariate analysis identified the following predictors of MBL: three-column osteotomy (odds ratio [OR] = 4.1, 95% confidence interval [CI] = 1.7, 9.7), arthrodesis of 11 or more levels (OR = 3.2, 95% CI = 1.4, 7.6), malalignment in both coronal and sagittal planes (OR = 3.2, 95% CI = 1.4, 7.3), and osteoporosis (OR = 2.4, 95% CI = 1.1, 5.4). CONCLUSION Patients with ASD undergoing spinal arthrodesis of five or more levels are at risk for MBL. Three-column osteotomy, arthrodesis of ≥11 levels, malalignment in both coronal and sagittal planes, and osteoporosis appear to be risk factors for MBL. LEVEL OF EVIDENCE Level III.
Collapse
Affiliation(s)
- Micheal Raad
- Department of Orthopaedic Surgery, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Raj Amin
- Department of Orthopaedic Surgery, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Amit Jain
- Department of Orthopaedic Surgery, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Steven M Frank
- Department of Anesthesiology/Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Khaled M Kebaish
- Department of Orthopaedic Surgery, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.
| |
Collapse
|
75
|
Rosales Rocabado JM, Kaku M, Nozaki K, Ida T, Kitami M, Aoyagi Y, Uoshima K. A multi-factorial analysis of bone morphology and fracture strength of rat femur in response to ovariectomy. J Orthop Surg Res 2018; 13:318. [PMID: 30545382 PMCID: PMC6293566 DOI: 10.1186/s13018-018-1018-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/26/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Postmenopausal osteoporosis develops due to a deficiency of estrogen that causes a decrease in bone mass and changes in the macro- and micro-architectural structure of the bone, leading to the loss of mechanical strength and an increased risk of fracture. Although the assessment of bone mineral density (BMD) has been widely used as a gold standard for diagnostic screening of bone fracture risks, it accounts for only a part of the variation in bone fragility; thus, it is necessary to consider other determinants of bone strength. Therefore, we aimed to comprehensively evaluate the architectural changes of the bone that influence bone fracture strength, together with the different sensitivities of cortical and trabecular bone in response to ovariectomy (OVX). METHODS Bone morphology parameters were separately analyzed both in cortical and in trabecular bones, at distal-metaphysis, and mid-diaphysis of OVX rat femurs. Three-point bending test was performed at mid-diaphysis of the femurs. Correlation of OVX-induced changes of morphological parameters with breaking force was analyzed using Pearson's correlation coefficient. RESULTS OVX resulted in a decline in the bone volume of distal-metaphysis trabecular bone, but an increase in distal-metaphysis and mid-diaphysis cortical bone volume. Tissue mineral density (TMD) remained unchanged in both the trabecular and cortical bone of the distal metaphysis but decreased in cortical bone of the mid-diaphysis. The OVX significantly increased the breaking force at mid-diaphysis of the femurs. CONCLUSIONS OVX decreased the trabecular bone volume of the distal-metaphysis and increased the cortical bone volume of the distal-metaphysis and mid-diaphysis. Despite the reduction in TMD and increased cortical porosity, bone fracture strength increased in the mid-diaphysis after OVX. These results indicate that analyzing a single factor, i.e., BMD, is not sufficient to predict the absolute fracture risk of the bone, as OVX-induced bone response vary, depending on the bone type and location. Our results strongly support the necessity of analyzing bone micro-architecture and site specificity to clarify the true etiology of osteoporosis in a clinical setting.
Collapse
Affiliation(s)
| | - Masaru Kaku
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kosuke Nozaki
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takako Ida
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Megumi Kitami
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yujin Aoyagi
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Katsumi Uoshima
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
76
|
Andreasen CM, Delaisse JM, van der Eerden BCJ, van Leeuwen JPTM, Ding M, Andersen TL. Understanding age-induced cortical porosity in women: Is a negative BMU balance in quiescent osteons a major contributor? Bone 2018; 117:70-82. [PMID: 30240959 DOI: 10.1016/j.bone.2018.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/10/2018] [Accepted: 09/16/2018] [Indexed: 01/18/2023]
Abstract
Cortical bone is remodeled by intracortical basic multicellular units (BMUs), whose end result can be observed as quiescent osteons in histological sections. These osteons offer a unique opportunity to investigate the BMU balance between the magnitude of bone resorption and subsequent bone formation at the BMU level. Our main objective was to investigate whether the latter parameters change between defined categories of osteons and with age, and to which extend these changes contribute to age-induced cortical porosity. Cortices of iliac bone specimens from 35 women (aged 16-78 years) with a higher porosity with age were investigated. A total of 3084 quiescent osteons reflecting 75% of the intracortical pores were histological examined. The osteons diameter, pore diameter, wall thickness, prevalence and contribution to the porosity were highly variable, but unchanged with age. Next, the osteons were categorized according to whether they reflected the remodeling of existing canals (type 2Q osteons) or the generation of new canals (type 1Q osteons). Type 2Q osteons versus type 1Q osteons: (i) had more frequently a pore diameter > 75 μm (7.4 vs. 1.3%; p < 0.001); (ii) had a larger mean pore diameter (40 ± 10 vs. 25 ± 4 μm; p < 0.001), osteon diameter (120 ± 21 vs. 94 ± 21 μm; p < 0.001) and wall thickness (40 ± 10 vs. 35 ± 9; p < 0.05); (iii) had a larger contribution to the cortical porosity (29 ± 18 vs. 8 ± 8%; p < 0.001); (iv) were more prevalent (44 ± 10 vs. 31 ± 11%; p < 0.001); and (v) were more prevalent with age. Collectively, this study demonstrates that quiescent osteons with age more frequently result from remodeling of existing canals, which in some cases had a more negative BMU balance. Still, the osteons showed no overall age-related change in their pore diameter i.e. BMU balance. In contrast to conventional wisdom, these data show that non-quiescent pores, not pores of quiescent osteons, were the main contributor to a higher cortical porosity.
Collapse
Affiliation(s)
- Christina M Andreasen
- Clinical Cell Biology, Vejle Hospital - Lillebaelt Hospital, Department of Regional Health Research, University of Southern Denmark, Vejle, Denmark; Orthopaedic Research Laboratory, Department of Orthopaedic Surgery & Traumatology, Odense University Hospital, Department of Clinical Research, University of Southern Denmark, Denmark.
| | - Jean-Marie Delaisse
- Clinical Cell Biology, Vejle Hospital - Lillebaelt Hospital, Department of Regional Health Research, University of Southern Denmark, Vejle, Denmark.
| | - Bram C J van der Eerden
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands.
| | - Johannes P T M van Leeuwen
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands.
| | - Ming Ding
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery & Traumatology, Odense University Hospital, Department of Clinical Research, University of Southern Denmark, Denmark.
| | - Thomas L Andersen
- Clinical Cell Biology, Vejle Hospital - Lillebaelt Hospital, Department of Regional Health Research, University of Southern Denmark, Vejle, Denmark.
| |
Collapse
|
77
|
Diversity in intracortical remodeling in the human femoral bone: A novel view point with the morphological analysis of secondary osteons. J Orthop Sci 2018; 23:1079-1086. [PMID: 30145105 DOI: 10.1016/j.jos.2018.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 06/18/2018] [Accepted: 07/31/2018] [Indexed: 02/09/2023]
Abstract
INTRODUCTION In humans, intracortical bone remodeling is performed by a basic multicellular unit (BMU) composed of osteoclasts and osteoblasts penetrating through cortical bones. As a result, secondary osteons and their boundaries, cement lines, can be observed on the transverse section. There have been few reports mention whether there is diversity within a single individual and on the relevance to bone remodeling. The purpose of this study is to investigate the morphological diversity of secondary osteons in human femoral bone and to examine the relationship with bone remodeling. MATERIAL AND METHODS First of all, we developed an original method to get the cross-sectional images of the cortical bones around the whole circumference for the purpose of evaluating the morphology of the secondary osteon exhaustively. Then, a total of ten cross-sectional slices from one right human femoral bone of male were prepared and stained with this method. The osteon population density and complexity of cement lines in osteons were evaluated in detail. RESULTS Within this femoral bone, the osteon population density was significantly higher in the periosteal side and in the posterior area. Conversely, the cement line density and the osteon complexity were higher in the endosteal side; the proportion of complexed osteon significantly increased from the periosteal side toward the endosteal side. DISCUSSION The results suggested that there were diversities in osteon population densities and osteon morphological pattern within one human femoral bone. It seemed that the BMUs ran to avoid the existing regions of osteon in the periosteal sides and to overlap the existing osteon in the endosteal sides. This seemed to be one of the novel viewpoints in the morphological analysis of secondary osteons. It might be better for the orthopedic surgeons to be aware that the osteon distribution in the cortical bone is not uniform.
Collapse
|
78
|
Minonzio JG, Bochud N, Vallet Q, Bala Y, Ramiandrisoa D, Follet H, Mitton D, Laugier P. Bone cortical thickness and porosity assessment using ultrasound guided waves: An ex vivo validation study. Bone 2018; 116:111-119. [PMID: 30056165 DOI: 10.1016/j.bone.2018.07.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/13/2018] [Accepted: 07/23/2018] [Indexed: 11/21/2022]
Abstract
Several studies showed the ability of the cortex of long bones such as the radius and tibia to guide mechanical waves. Such experimental evidence has given rise to the emergence of a category of quantitative ultrasound techniques, referred to as the axial transmission, specifically developed to measure the propagation of ultrasound guided waves in the cortical shell along the axis of long bones. An ultrasound axial transmission technique, with an automated approach to quantify cortical thickness and porosity is described. The guided modes propagating in the cortex are recorded with a 1-MHz custom made linear transducer array. Measurement of the dispersion curves is achieved using a two-dimensional spatio-temporal Fourier transform combined with singular value decomposition. Automatic parameters identification is obtained through the solution of an inverse problem in which the dispersion curves are predicted with a two-dimensional transverse isotropic free plate model. Thirty-one radii and fifteen tibiae harvested from human cadavers underwent axial transmission measurements. Estimates of cortical thickness and porosity were obtained on 40 samples out of 46. The reproducibility, given by the root mean square error of the standard deviation of estimates, was 0.11 mm for thickness and 1.9% for porosity. To assess accuracy, site-matched micro-computed tomography images of the bone specimens imaged at 9 μm voxel size served as the gold standard. Agreement between micro-computed tomography and axial transmission for quantification of thickness and porosity at the radius and tibia ranged from R2=0.63 for porosity (root mean square error RMSE=1.8%) to 0.89 for thickness (RMSE=0.3 mm). Despite an overall good agreement for porosity, the method performs less well for porosities lower than 10%. The heterogeneity and general complexity of cortical bone structure, which are not fully accounted for by our model, are suspected to weaken the model approximation. This study presents the first validation study for assessing cortical thickness and porosity using the axial transmission technique. The automatic signal processing minimizes operator-dependent errors for parameters determination. Recovering the waveguide characteristics, that is to say cortical thickness and porosity, could provide reliable information about skeletal status and future fracture risk.
Collapse
Affiliation(s)
- J-G Minonzio
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale LIB, Paris F-75006, France
| | - N Bochud
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale LIB, Paris F-75006, France.
| | - Q Vallet
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale LIB, Paris F-75006, France
| | - Y Bala
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM Unit UMR1033, F-69622 Lyon, France
| | - D Ramiandrisoa
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale LIB, Paris F-75006, France
| | - H Follet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM Unit UMR1033, F-69622 Lyon, France
| | - D Mitton
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR T9406, Lyon F-69622, France
| | - P Laugier
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale LIB, Paris F-75006, France
| |
Collapse
|
79
|
Yin X, Maharjan A, Fang L, Wu L, Zhang L, Shakya S, Qin W, Regmi B, York P, Sun H, Zhang J. Cavities spatial distribution confined by microcrystalline cellulose particles determines tablet disintegration patterns. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.08.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
80
|
White RD, Yousefian O, Banks HT, Muller M. Inferring porosity from frequency dependent attenuation in cortical bone mimicking porous media. IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM : [PROCEEDINGS]. IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM 2018; 2018:10.1109/ultsym.2018.8579776. [PMID: 39070156 PMCID: PMC11281349 DOI: 10.1109/ultsym.2018.8579776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Osteoporosis affects porosity in cortical bone. Quantifying levels of osteoporosis by inferring the micro-architectural properties from ultrasonic wave attenuation in cortical bone has yet to be done. In this work we use a phenomenological, power law model to describe the frequency dependent attenuation in non-absorbing porous media mimicking a simplified cortical bone structure. We optimize this model to fit data generated using a finite-difference, time domain (FDTD) numerical simulation. Model parameters are estimated using an ordinary least squares (OLS) formulation of the inverse problem. With these we determine linear, functional relationships between the model parameter estimates and the micro-architectural parameters, pore density and pore diameter. These relationships allow us to infer ranges of porosity from simulated attenuation data. Repeating this process for attenuation data collected from cortical bone samples could allow one to characterize the micro-architectural properties of bone.
Collapse
Affiliation(s)
- R D White
- Mathematics Department, CRSC North Carolina State University, Raleigh, NC 27695-8212, USA
| | - Omid Yousefian
- Mechanical and Aerospace Engineering Department North Carolina State University Raleigh, NC 27695-8212, USA
| | - H T Banks
- Mathematics Department, CRSC North Carolina State University, Raleigh, NC 27695-8212, USA
| | - Marie Muller
- Mechanical and Aerospace Engineering Department North Carolina State University, Raleigh, NC 27695-8212, USA
| |
Collapse
|
81
|
Karbalaeisadegh Y, Yousefian O, Muller M. Influence of micro-structural parameters on apparent absorption coefficient in porous structures mimicking cortical bone. IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM : [PROCEEDINGS]. IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM 2018; 2018:10.1109/ultsym.2018.8579610. [PMID: 39092167 PMCID: PMC11293489 DOI: 10.1109/ultsym.2018.8579610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Ultrasound wave propagation in porous media is associated with energy loss and attenuation. Attenuation is caused by both scattering and absorption, and is influenced by the microstructure as well as the operating frequency. In the present simulation study, we calculate the attenuation coefficient in porous structures mimicking cortical bone both in presence and absence of absorption to isolate the effects of scattering and absorption on the total attenuation. A parameter called apparent absorptionα a p p . a b s is defined as the difference between the total attenuationα total and the attenuation exclusively due to scatteringα scat .α total , α scat andα app.abs are estimated in porous structures with varying pore diameters ( ϕ ∈ [ 40, 120 ] μ m ) and pore densities ( ρ ∈ [ 5, 25 ] pore / m m 2 ) at 5MHz and 8MHz. Results show that both scattering and absorption contribute to the total attenuation. They also illustrate that, although absorption only occurs in the solid matrix, the apparent absorptionα a p p . a b s is a function of porosity, presumably due to the presence of multiple scattering. For large values of k ϕ , an increase in pore size or density does not lead to increase inα s c a t and only results in an increase of the total attenuation as a result of increase inα app.abs. . On the other hand, in low/intermediate scattering regimes ( k ϕ ≤ 1 ) , an increase in either pore size or pore density results in increase inα scat whileα app.abs remains constant.
Collapse
Affiliation(s)
- Yasamin Karbalaeisadegh
- Mechanical and Aerospace Engineering Department, North Carolina State University, Raleigh, NC 27695-8212, USA
| | - Omid Yousefian
- Mechanical and Aerospace Engineering Department, North Carolina State University, Raleigh, NC 27695-8212, USA
| | - Marie Muller
- Mechanical and Aerospace Engineering Department, North Carolina State University, Raleigh, NC 27695-8212, USA
| |
Collapse
|
82
|
Iori G, Heyer F, Kilappa V, Wyers C, Varga P, Schneider J, Gräsel M, Wendlandt R, Barkmann R, van den Bergh JP, Raum K. BMD-based assessment of local porosity in human femoral cortical bone. Bone 2018; 114:50-61. [PMID: 29860154 DOI: 10.1016/j.bone.2018.05.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/09/2018] [Accepted: 05/25/2018] [Indexed: 10/14/2022]
Abstract
Cortical pores are determinants of the elastic properties and of the ultimate strength of bone tissue. An increase of the overall cortical porosity (Ct.Po) as well as the local coalescence of large pores cause an impairment of the mechanical competence of bone. Therefore, Ct.Po represents a relevant target for identifying patients with high fracture risk. However, given their small size, the in vivo imaging of cortical pores remains challenging. The advent of modern high-resolution peripheral quantitative computed tomography (HR-pQCT) triggered new methods for the clinical assessment of Ct.Po at the peripheral skeleton, either by pore segmentation or by exploiting local bone mineral density (BMD). In this work, we compared BMD-based Ct.Po estimates with high-resolution reference values measured by scanning acoustic microscopy. A calibration rule to estimate local Ct.Po from BMD as assessed by HR-pQCT was derived experimentally. Within areas of interest smaller than 0.5 mm2, our model was able to estimate the local Ct.Po with an error of 3.4%. The incorporation of the BMD inhomogeneity and of one parameter from the BMD distribution of the entire scan volume led to a relative reduction of the estimate error of 30%, if compared to an estimate based on the average BMD. When applied to the assessment of Ct.Po within entire cortical bone cross-sections, the proposed BMD-based method had better accuracy than measurements performed with a conventional threshold-based approach.
Collapse
Affiliation(s)
- Gianluca Iori
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany
| | - Frans Heyer
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands
| | | | - Caroline Wyers
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands
| | - Peter Varga
- AO Research Institute Davos, Davos, Switzerland
| | - Johannes Schneider
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany
| | - Melanie Gräsel
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Germany
| | | | - Reinhard Barkmann
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Germany
| | - J P van den Bergh
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands
| | - Kay Raum
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany.
| |
Collapse
|
83
|
A three-dimensional geometric quantification of human cortical canals using an innovative method with micro-computed tomographic data. Micron 2018; 114:62-71. [PMID: 30103076 DOI: 10.1016/j.micron.2018.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 11/23/2022]
Abstract
The complex architecture of bone has been investigated for several decades. Some pioneer works proved an existing link between microstructure and external mechanical loading applied on bone. Due to sinuous network of canals and limitations of experimental acquisition technique, there has been little quantitative analysis of three-dimensional description of cortical network. The aim of this study is to provide an algorithmic process, using Python 3.5, in order to identify 3D geometrical characteristics of voids considered as canals. This script is based on micro-computed tomographic slices of two bone samples harvested from the humerus and femur of male cadaveric subject. Slice images are obtained from 2.94 μm isotropic resolution. This study provides a generic method of image processing which considers beam hardening artefact so as to avoid heuristic choice of global threshold value. The novelty of this work is the quantification of numerous three-dimensional canals features, such as orientation or canal length, but also connectivity features, such as opening angle, and the accurate definition of canals as voids which ranges from connectivity to possibly another intersection. The script was applied to one humeral and one femoral samples in order to analyse the difference in architecture between bearing and non-bearing cortical bones. This preliminary study reveals that the femoral specimen is more porous than the humeral one whereas the canal network is denser and more connected.
Collapse
|
84
|
Pratt IV, Cooper DML. The effect of growth rate on the three-dimensional orientation of vascular canals in the cortical bone of broiler chickens. J Anat 2018; 233:531-541. [PMID: 30022496 PMCID: PMC6131975 DOI: 10.1111/joa.12847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2018] [Indexed: 11/28/2022] Open
Abstract
Vascular canals in cortical bone during growth and development typically show an anisotropic pattern with canals falling into three main categories: circumferential, radial, and longitudinal. Two major hypotheses attempt to explain the preferred orientations in bone: that vascular canal orientation is optimized to resist a predominant strain direction from functional loading, or that it reflects growth requirements and velocity. We use a controlled growth experiment in broiler chickens to investigate the effect of growth rate on vascular canal orientation. Using feed restriction we set up a fast growing control group and a slow growing restricted group. We compared the microstructure in the humerus and the femur at 42 days of age using synchrotron micro‐computed tomography (micro‐CT), a three‐dimensional (3D) method that visualizes the full canal network. We measured the 3D orientation of each canal in the whole cross‐section of the bone cortex using a set of custom imagej scripts. Using these orientations we compute laminar, radial, and longitudinal indices that measure the proportion of circumferential, radial, and longitudinal canals, by unit of length, in the cortex. Following previous studies we hypothesized that vascular canal orientation is related to growth, with radial canals linked to a faster growth rate and related to functional loading through a high laminar index in flight bones which reflects torsional loading resulting from active flight. The control group had final body weights that were nearly twice the final weights of the restricted group and higher absolute growth rates. We found consistent patterns in the comparison between the humerus and the femur in both groups, with the humerus having higher laminar and longitudinal indices, and a lower radial index than the femur. The control group had higher radial indices and lower laminar and longitudinal indices in both the humerus and the femur than the restricted group. The higher radial indices in our control group point to a link between radial canals and faster growth, and between laminar canals and slower growth, while the higher laminar indices in the humerus point to a link between circumferential canals and torsional loading. Overall, our results indicate that the orientation of the cortical canal network in a bone is the consequence of a complex interaction between the growth rate of that bone and functional loading environment.
Collapse
Affiliation(s)
- Isaac V Pratt
- Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - David M L Cooper
- Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
85
|
Ensrud KE, Vo TN, Burghardt AJ, Schousboe JT, Cauley JA, Taylor BC, Hoffman AR, Orwoll ES, Lane NE, Langsetmo L. Weight loss in men in late life and bone strength and microarchitecture: a prospective study. Osteoporos Int 2018; 29:1549-1558. [PMID: 29572622 PMCID: PMC6035779 DOI: 10.1007/s00198-018-4489-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/12/2018] [Indexed: 01/22/2023]
Abstract
UNLABELLED Weight loss in men in late life was associated with lower bone strength. In contrast, weight gain was not associated with a commensurate increase in bone strength. Future studies should measure concurrent changes in weight and parameters of bone strength and microarchitecture and evaluate potential causal pathways underlying these associations. INTRODUCTION Our aim was to determine associations of weight loss with bone strength and microarchitecture. METHODS We used data from 1723 community-dwelling men (mean age 84.5 years) who attended the MrOS study Year (Y) 14 exam and had high-resolution peripheral quantitative computed tomography (HR-pQCT) scans at ≥ 1 skeletal sites (distal tibia, distal radius, or diaphyseal tibia). Weight change from Y7 to Y14 exams (mean 7.3 years between exams) was classified as moderate weight loss (loss ≥ 10%), mild weight loss (loss 5 to < 10%), stable weight (< 5% change), or weight gain (gain ≥ 5%). Mean HR-pQCT parameters (95%CI) were calculated by weight change category using linear regression models adjusted for age, race, site, health status, body mass index, limb length, and physical activity. The primary outcome measure was estimated failure load. RESULTS There was a nonlinear association of weight change with failure load at each skeletal site with different associations for weight loss vs. weight gain (p < 0.03). Failure load and total bone mineral density (BMD) at distal sites were lower with greater weight loss with 7.0-7.6% lower failure loads and 4.3-5.8% lower BMDs among men with moderate weight loss compared to those with stable weight (p < 0.01, both comparisons). Cortical, but not trabecular, BMDs at distal sites were lower with greater weight loss. Greater weight loss was associated with lower cortical thickness at all three skeletal sites. CONCLUSION Weight loss in men in late life is associated with lower peripheral bone strength and total BMD with global measures reflecting cortical but not trabecular parameters.
Collapse
Affiliation(s)
- K E Ensrud
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
- Division of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN, USA.
- Center for Chronic Disease Outcomes Research, VA Health Care System, One Veterans Drive (111-0), Minneapolis, MN, 55417, USA.
| | - T N Vo
- Division of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN, USA
| | - A J Burghardt
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - J T Schousboe
- HealthPartners Institute, Bloomington, MN, USA
- Division of Health Policy and Management, University of Minnesota, Minneapolis, MN, USA
| | - J A Cauley
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - B C Taylor
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Division of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN, USA
- Center for Chronic Disease Outcomes Research, VA Health Care System, One Veterans Drive (111-0), Minneapolis, MN, 55417, USA
| | - A R Hoffman
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - E S Orwoll
- Bone and Mineral Unit, Oregon Health & Science University, Portland, OR, USA
| | - N E Lane
- Department of Medicine, University of California, Davis, CA, USA
| | - L Langsetmo
- Division of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
86
|
Brommage R, Ohlsson C. Translational studies provide insights for the etiology and treatment of cortical bone osteoporosis. Best Pract Res Clin Endocrinol Metab 2018; 32:329-340. [PMID: 29779585 DOI: 10.1016/j.beem.2018.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Increasing attention is being focused on the important contributions of cortical bone to bone strength, fractures and osteoporosis therapies. Recent progress in human genome wide association studies in combination with high-throughput mouse gene knockout phenotyping efforts of multiple genes and advanced conditional gene inactivation in mouse models have successfully identified genes with crucial roles in cortical bone homeostasis. Particular attention in this review is given to genes, such as WNT16, POSTN and SFRP4, that differentially affect cortical and trabecular bone architecture. We propose that animal models of cortical bone metabolism will substantially contribute to developing anabolic osteoporosis therapies that improve cortical bone mass and reduce non-vertebral fracture risk.
Collapse
Affiliation(s)
- Robert Brommage
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
87
|
Pratt IV, Johnston JD, Walker E, Cooper DML. Interpreting the three-dimensional orientation of vascular canals and cross-sectional geometry of cortical bone in birds and bats. J Anat 2018; 232:931-942. [PMID: 29520776 PMCID: PMC5979616 DOI: 10.1111/joa.12803] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 01/01/2023] Open
Abstract
Cortical bone porosity and specifically the orientation of vascular canals is an area of growing interest in biomedical research and comparative/paleontological anatomy. The potential to explain microstructural adaptation is of great interest. However, the determinants of the development of canal orientation remain unclear. Previous studies of birds have shown higher proportions of circumferential canals (called laminarity) in flight bones than in hindlimb bones, and interpreted this as a sign that circumferential canals are a feature for resistance to the torsional loading created by flight. We defined the laminarity index as the percentage of circumferential canal length out of the total canal length. In this study we examined the vascular canal network in the humerus and femur of a sample of 31 bird and 24 bat species using synchrotron micro-computed tomography (micro-CT) to look for a connection between canal orientation and functional loading. The use of micro-CT provides a full three-dimensional (3D) map of the vascular canal network and provides measurements of the 3D orientation of each canal in the whole cross-section of the bone cortex. We measured several cross-sectional geometric parameters and strength indices including principal and polar area moments of inertia, principal and polar section moduli, circularity, buckling ratio, and a weighted cortical thickness index. We found that bat cortices are relatively thicker and poorly vascularized, whereas those of birds are thinner and more highly vascularized, and that according to our cross-sectional geometric parameters, bird bones have a greater resistance to torsional stress than the bats; in particular, the humerus in birds is more adapted to resist torsional stresses than the femur. Our results show that birds have a significantly (P = 0.031) higher laminarity index than bats, with birds having a mean laminarity index of 0.183 in the humerus and 0.232 in the femur, and bats having a mean laminarity index of 0.118 in the humerus and 0.119 in the femur. Counter to our expectation, the birds had a significantly higher laminarity index in the femur than in the humerus (P = 0.035). To evaluate whether this discrepancy was a consequence of methodology we conducted a comparison between our 3D method and an analogue to two-dimensional (2D) histological measurements. This comparison revealed that 2D methods significantly underestimate (P < 0.001) the amount of longitudinal canals by an average of 20% and significantly overestimate (P < 0.001) the laminarity index by an average of 7.7%, systematically mis-estimating indices of vascular canal orientations. In comparison with our 3D results, our approximated 2D measurement had the same results for comparisons between the birds and bats but found significant differences only in the longitudinal index between the humerus and the femur for both groups. The differences between our 3D and pseudo-2D results indicate that differences between our findings and the literature may be partially based in methodology. Overall, our results do not support the hypothesis that the bones of flight are more laminar, suggesting a complex relation between functional loading and microstructural adaptation.
Collapse
Affiliation(s)
- Isaac V. Pratt
- Department of Anatomy & Cell BiologyUniversity of SaskatchewanSaskatoonSKCanada
| | - James D. Johnston
- Department of Mechanical EngineeringUniversity of SaskatchewanSaskatoonSKCanada
| | - Ernie Walker
- Department of Archaeology & AnthropologyUniversity of SaskatchewanSaskatoonSKCanada
| | - David M. L. Cooper
- Department of Anatomy & Cell BiologyUniversity of SaskatchewanSaskatoonSKCanada
| |
Collapse
|
88
|
Sharma AK, Toussaint ND, Masterson R, Holt SG, Rajapakse CS, Ebeling PR, Mohanty ST, Baldock P, Elder GJ. Deterioration of Cortical Bone Microarchitecture: Critical Component of Renal Osteodystrophy Evaluation. Am J Nephrol 2018; 47:376-384. [PMID: 29791896 DOI: 10.1159/000489671] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/27/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Cortical bone is a significant determinant of bone strength and its deterioration contributes to bone fragility. Thin cortices and increased cortical porosity have been noted in patients with chronic kidney disease (CKD), but the "Turnover Mineralization Volume" classification of renal osteodystrophy does not emphasize cortical bone as a key parameter. We aimed to assess trabecular and cortical bone microarchitecture by histomorphometry and micro-CT in patients with CKD G5 and 5D (dialysis). METHODS Transiliac bone biopsies were performed in 14 patients undergoing kidney transplantation (n = 12) and parathyroidectomy (n = 2). Structural parameters were analysed by histomorphometry and micro-CT including trabecular bone volume, thickness (TbTh), number (TbN) and separation and cortical thickness (CtTh) and porosity (CtPo). Indices of bone remodelling and mineralisation were obtained and relationships to bone biomarkers examined. Associations were determined by Spearman's or Pearson's rank correlation coefficients. RESULTS By micro-CT, trabecular parameters were within normal ranges in most patients, but all patients showed very low CtTh (127 ± 44 µm) and high CtPo (60.3 ± 22.5%). CtPo was inversely related to TbN (r = -0.56; p = 0.03) by micro-CT and to TbTh (r = -0.60; p = 0.024) by histomorphometry and correlated to parathyroid hormone values (r = 0.62; p = 0.021). By histomorphometry, bone turnover was high in 50%, low in 21% and normal in 29%, while 36% showed abnormal patterns of mineralization. Significant positive associations were observed between osteoblast surface, osteoclast surface, mineralization surface and bone turnover markers. CONCLUSIONS Deterioration of cortical -microarchitecture despite predominantly normal trabecular parameters reinforces the importance of comprehensive cortical evaluation in patients with CKD.
Collapse
Affiliation(s)
- Ashish K Sharma
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine (RMH), University of Melbourne, Parkville, Victoria, Australia
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine (RMH), University of Melbourne, Parkville, Victoria, Australia
| | - Rosemary Masterson
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine (RMH), University of Melbourne, Parkville, Victoria, Australia
| | - Stephen G Holt
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine (RMH), University of Melbourne, Parkville, Victoria, Australia
| | - Chamith S Rajapakse
- Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Sindhu T Mohanty
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Paul Baldock
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Grahame J Elder
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
89
|
Mayya A, Banerjee A, Rajesh R. Role of porosity and matrix behavior on compressive fracture of Haversian bone using random spring network model. J Mech Behav Biomed Mater 2018; 83:108-119. [PMID: 29698930 DOI: 10.1016/j.jmbbm.2018.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/18/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
Haversian remodeling is known to result in improved resistance to compressive fracture in healthy cortical bone. Here, we examine the individual roles of the mean porosity, structure of the network of pores and remodeled bone matrix properties in the fracture behavior of Haversian bone. The detailed structure of porosity network is obtained both pre- and post-testing of dry cubical bone samples using micro-Computed Tomography. Based on the periodicity in the features of porosity along tangential direction, we develop a two dimensional porosity-based random spring network model for Haversian bone. The model is shown to capture well the macroscopic response and reproduce the avalanche statistics similar to recently reported experiments on porcine bone. The predictions suggest that at the millimeter scale, the remodeled bone matrix of Haversian bone is less stiff but tougher than that of plexiform/primary bone.
Collapse
Affiliation(s)
- Ashwij Mayya
- Department of Applied Mechanics, IIT-Madras, Chennai 600036, India
| | | | - R Rajesh
- The Institute of Mathematical Sciences, Tharamani, Chennai 600113, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
90
|
Singh S, Bray T, Hall-Craggs M. Quantifying bone structure, micro-architecture, and pathophysiology with MRI. Clin Radiol 2018; 73:221-230. [DOI: 10.1016/j.crad.2017.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/18/2017] [Indexed: 02/07/2023]
|
91
|
Lassen NE, Andersen TL, Pløen GG, Søe K, Hauge EM, Harving S, Eschen GET, Delaisse JM. Coupling of Bone Resorption and Formation in Real Time: New Knowledge Gained From Human Haversian BMUs. J Bone Miner Res 2017; 32:1395-1405. [PMID: 28177141 DOI: 10.1002/jbmr.3091] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 01/31/2023]
Abstract
It is well known that bone remodeling starts with a resorption event and ends with bone formation. However, what happens in between and how resorption and formation are coupled remains mostly unknown. Remodeling is achieved by so-called basic multicellular units (BMUs), which are local teams of osteoclasts, osteoblasts, and reversal cells recently proven identical with osteoprogenitors. Their organization within a BMU cannot be appropriately analyzed in common histology. The originality of the present study is to capture the events ranging from initiation of resorption to onset of formation as a functional continuum. It was based on the position of specific cell markers in longitudinal sections of Haversian BMUs generating new canals through human long bones. It showed that initial resorption at the tip of the canal is followed by a period where newly recruited reversal/osteoprogenitor cells and osteoclasts alternate, thus revealing the existence of a mixed "reversal-resorption" phase. Three-dimensional reconstructions obtained from serial sections indicated that initial resorption is mainly involved in elongating the canal and the additional resorption events in widening it. Canal diameter measurements show that the latter contribute the most to overall resorption. Of note, the density of osteoprogenitors continuously grew along the "reversal/resorption" surface, reaching at least 39 cells/mm on initiation of bone formation. This value was independent of the length of the reversal/resorption surface. These observations strongly suggest that bone formation is initiated only above a threshold cell density, that the length of the reversal/resorption period depends on how fast osteoprogenitor recruitment reaches this threshold, and thus that the slower the rate of osteoprogenitor recruitment, the more bone is degraded. They lead to a model where the newly recognized reversal/resorption phase plays a central role in the mechanism linking osteoprogenitor recruitment and the resorption-formation switch. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Nicolai Ernlund Lassen
- Clinical Cell Biology, Institute of Regional Health Research, University of Southern Denmark, Vejle/Lillebaelt Hospital, Vejle, Denmark
| | - Thomas Levin Andersen
- Clinical Cell Biology, Institute of Regional Health Research, University of Southern Denmark, Vejle/Lillebaelt Hospital, Vejle, Denmark
| | - Gro Grunnet Pløen
- Clinical Cell Biology, Institute of Regional Health Research, University of Southern Denmark, Vejle/Lillebaelt Hospital, Vejle, Denmark
| | - Kent Søe
- Clinical Cell Biology, Institute of Regional Health Research, University of Southern Denmark, Vejle/Lillebaelt Hospital, Vejle, Denmark
| | | | - Søren Harving
- Department of Orthopaedic Surgery, Aalborg University Hospital, Aalborg, Denmark
| | | | - Jean-Marie Delaisse
- Clinical Cell Biology, Institute of Regional Health Research, University of Southern Denmark, Vejle/Lillebaelt Hospital, Vejle, Denmark
| |
Collapse
|
92
|
Chen M, Yuan H. Assessment of porosity index of the femoral neck and tibia by 3D ultra-short echo-time MRI. J Magn Reson Imaging 2017; 47:820-828. [PMID: 28561910 DOI: 10.1002/jmri.25782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/19/2017] [Indexed: 12/23/2022] Open
Affiliation(s)
- Min Chen
- Department of Radiology; Peking University Third Hospital; Beijing P.R. China
| | - Huishu Yuan
- Department of Radiology; Peking University Third Hospital; Beijing P.R. China
| |
Collapse
|