51
|
Dueñas-García IE, Heres-Pulido ME, Arellano-Llamas MR, De la Cruz-Núñez J, Cisneros-Carrillo V, Palacios-López CS, Acosta-Anaya L, Santos-Cruz LF, Castañeda-Partida L, Durán-Díaz A. Lycopene, resveratrol, vitamin C and FeSO 4 increase damage produced by pro-oxidant carcinogen 4-nitroquinoline-1-oxide in Drosophila melanogaster: Xenobiotic metabolism implications. Food Chem Toxicol 2017; 103:233-245. [PMID: 28202360 DOI: 10.1016/j.fct.2017.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/27/2017] [Accepted: 02/05/2017] [Indexed: 12/12/2022]
Abstract
4-nitroquinoline-1-oxide (4-NQO) is a pro-oxidant carcinogen bioactivated by xenobiotic metabolism (XM). We investigated if antioxidants lycopene [0.45, 0.9, 1.8 μM], resveratrol [11, 43, 172 μM], and vitamin C [5.6 mM] added or not with FeSO4 [0.06 mM], modulate the genotoxicity of 4-NQO [2 mM] with the Drosophila wing spot test standard (ST) and high bioactivation (HB) crosses, with inducible and high levels of cytochromes P450, respectively. The genotoxicity of 4-NQO was higher when dissolved in an ethanol - acetone mixture. The antioxidants did not protect against 4-NQO in any of both crosses. In the ST cross, resveratrol [11 μM], vitamin C and FeSO4 resulted in genotoxicity; the three antioxidants and FeSO4 increased the damage of 4-NQO. In the HB cross, none of the antioxidants, neither FeSO4, were genotoxic. Only resveratrol [172 μM] + 4-NQO increased the genotoxic activity in both crosses. We concluded that the effects of the antioxidants, FeSO4 and the modulation of 4-NQO were the result of the difference of Cyp450s levels, between the ST and HB crosses. We propose that the basal levels of the XM's enzymes in the ST cross interacted with a putative pro-oxidant activity of the compounds added to the pro-oxidant effects of 4-NQO.
Collapse
Affiliation(s)
- I E Dueñas-García
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - M E Heres-Pulido
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico.
| | - M R Arellano-Llamas
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - J De la Cruz-Núñez
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - V Cisneros-Carrillo
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - C S Palacios-López
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - L Acosta-Anaya
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - L F Santos-Cruz
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - L Castañeda-Partida
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - A Durán-Díaz
- Mathematics, Biology, FES Iztacala, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
52
|
Tauheed AM, Shittu SH, Suleiman MM, Habibu B, Kawu MU, Kobo PI, Yusuf PO. In vivo ameliorative effects of methanol leaf extract of Lawsonia inermis Linn on experimental Trypanosoma congolense infection in Wistar rats. Int J Vet Sci Med 2016; 4:33-40. [PMID: 30255037 PMCID: PMC6149255 DOI: 10.1016/j.ijvsm.2016.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/19/2016] [Accepted: 10/19/2016] [Indexed: 12/02/2022] Open
Abstract
The aim of this study was to investigate the ameliorative effect of Lawsonia inermis Linn used traditionally against trypanosomosis. Twenty-five adult Wistar rats of both sex were individually infected intraperitoneally (IP) with 106Trypanosoma congolense per ml of blood. Following establishment of infection, the rats were randomly divided into five groups of 5 rats each. Rats in groups I, II, and III were treated with 125, 250 and 500 mg/kg of the extract, respectively, while rats in groups IV and V were treated with 3.5 mg/kg and 2 ml/kg of diminazene aceturate (DM) once and physiological buffered saline, respectively. All treatments except DM were given orally for 7 days IP. The antitrypanosomal effect of the plant was assessed by observing the level of parasitaemia daily, packed cell volume (PCV) weekly, erythrocyte osmotic fragility (EOF) and malondialdehyde (MDA) concentration on day 21. Phytochemical screening of the extract revealed the presence of alkaloids, carbohydrates, triterpenes, steroids, cardiac glycosides, saponins, tannins and flavonoids. The extract significantly (P < 0.05) reduced levels of parasitaemia at 250 mg/kg. PCV was higher (P > 0.05) in extract treated groups but significantly higher (P < 0.05) in group II at week 2 when compared to group V. Rats in group II had significantly lower values of EOF and MDA when compared with groups IV and V. Thus, the leaf of L. inermis has in addition to an antitrypanosomal effect against T. congolense in rats, an attenuating effect on the trypanosomosis pathology probably mediated via protection of the erythrocyte membrane against trypanosome-induced oxidative damage to the erythrocytes.
Collapse
Key Words
- ANOVA, analysis of variance
- Antioxidant
- Antitrypanosomal
- EOF, erythrocyte osmotic fragility
- Erythrocyte osmotic fragility
- IP, intraperitoneal
- L, lawsonia
- MDA, malondialdehyde
- Malondialdehyde
- PCV, packed cell volume
- PSS, physiological buffered saline
- Phytochemistry
- SEM, standard error of mean
- T, trypanosoma
- TBA, thiobarbituric acid
- TCA, trichloroacetic acid
- US, United States
- kDNA, kinetoplast deoxyribonucleic acid
Collapse
Affiliation(s)
| | - Salisu Hashim Shittu
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| | - Mohammed Musa Suleiman
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| | - Buhari Habibu
- Department of Veterinary Physiology, Ahmadu Bello University, Zaria, Nigeria
| | - Mohammed Umar Kawu
- Department of Veterinary Physiology, Ahmadu Bello University, Zaria, Nigeria
| | - Patricia Ishaku Kobo
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| | - Peter Ofemile Yusuf
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
53
|
Denardin CC, Martins LAM, Parisi MM, Vieira MQ, Terra SR, Barbé-Tuana FM, Borojevic R, Vizzotto M, Emanuelli T, Guma FCR. Autophagy induced by purple pitanga (Eugenia uniflora L.) extract triggered a cooperative effect on inducing the hepatic stellate cell death. Cell Biol Toxicol 2016; 33:197-206. [PMID: 27744523 DOI: 10.1007/s10565-016-9366-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 10/07/2016] [Indexed: 12/18/2022]
Abstract
Activated hepatic stellate cells (HSC) are the major source of collagen I in liver fibrosis. Eugenia uniflora L. is a tree species that is widely distributed in South America. E. uniflora L. fruit-popularly known as pitanga-has been shown to exert beneficial properties. Autophagy contributes to the maintenance of cellular homeostasis and survival under stress situation, but it has also been suggested to be an alternative cell death pathway. Mitochondria play a pivotal role on signaling cell death. Mitophagy of damaged mitochondria is an important cell defense mechanism against organelle-mediated cell death signaling. We previously found that purple pitanga extract induced mitochondrial dysfunction, cell cycle arrest, and death by apoptosis and necrosis in GRX cells, a well-established activated HSC line. We evaluated the effects of 72-h treatment with crescent concentrations of purple pitanga extract (5 to 100 μg/mL) on triggering autophagy in GRX cells, as this is an important mechanism to cells under cytotoxic conditions. We found that all treated cells presented an increase in the mRNA expression of autophagy-related protein 7 (ATG7). Concomitantly, flow cytometry and ultrastructural analysis of treated cells revealed an increase of autophagosomes/autolysosomes that consequentially led to an increased mitophagy. As purple pitanga extract was previously found to be broadly cytotoxic to GRX cells, we postulated that autophagy contributes to this scenario, where cell death seems to be an inevitable fate. Altogether, the effectiveness on inducing activated HSC death can make purple pitanga extract a good candidate on treating liver fibrosis.
Collapse
Affiliation(s)
- Cristiane C Denardin
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Curso de Farmácia, Universidade Federal do Pampa (UNIPAMPA), Campus Uruguaiana, Uruguaiana, RS, Brasil
| | - Leo A M Martins
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Mariana M Parisi
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Moema Queiroz Vieira
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Silvia R Terra
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Florencia M Barbé-Tuana
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Radovan Borojevic
- Departamento de Histologia e Embriologia, ICB, UFRJ, Rio de Janeiro, RJ, Brasil
| | - Márcia Vizzotto
- Empresa Brasileira de Pesquisa Agropecuária de Clima Temperado, Pelotas, RS, Brasil
| | - Tatiana Emanuelli
- Núcleo Integrado de Desenvolvimento em Análises Laboratoriais (NIDAL), Departamento de Tecnologia e Ciência de Alimentos, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - Fátima Costa Rodrigues Guma
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Lab 21, CEP: 90035-003, Porto Alegre, RS, Brasil.
- Centro de Microscopia e Microanálise, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.
| |
Collapse
|
54
|
Guzmán-Pérez V, Bumke-Vogt C, Schreiner M, Mewis I, Borchert A, Pfeiffer AFH. Benzylglucosinolate Derived Isothiocyanate from Tropaeolum majus Reduces Gluconeogenic Gene and Protein Expression in Human Cells. PLoS One 2016; 11:e0162397. [PMID: 27622707 PMCID: PMC5021297 DOI: 10.1371/journal.pone.0162397] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/22/2016] [Indexed: 01/11/2023] Open
Abstract
Nasturtium (Tropaeolum majus L.) contains high concentrations of benzylglcosinolate. We found that a hydrolysis product of benzyl glucosinolate-the benzyl isothiocyanate (BITC)-modulates the intracellular localization of the transcription factor Forkhead box O 1 (FOXO1). FoxO transcription factors can antagonize insulin effects and trigger a variety of cellular processes involved in tumor suppression, longevity, development and metabolism. The current study evaluated the ability of BITC-extracted as intact glucosinolate from nasturtium and hydrolyzed with myrosinase-to modulate i) the insulin-signaling pathway, ii) the intracellular localization of FOXO1 and, iii) the expression of proteins involved in gluconeogenesis, antioxidant response and detoxification. Stably transfected human osteosarcoma cells (U-2 OS) with constitutive expression of FOXO1 protein labeled with GFP (green fluorescent protein) were used to evaluate the effect of BITC on FOXO1. Human hepatoma HepG2 cell cultures were selected to evaluate the effect on gluconeogenic, antioxidant and detoxification genes and protein expression. BITC reduced the phosphorylation of protein kinase B (AKT/PKB) and FOXO1; promoted FOXO1 translocation from cytoplasm into the nucleus antagonizing the insulin effect; was able to down-regulate the gene and protein expression of gluconeogenic enzymes; and induced the gene expression of antioxidant and detoxification enzymes. Knockdown analyses with specific siRNAs showed that the expression of gluconeogenic genes was dependent on nuclear factor (erythroid derived)-like2 (NRF2) and independent of FOXO1, AKT and NAD-dependent deacetylase sirtuin-1 (SIRT1). The current study provides evidence that BITC might have a role in type 2 diabetes T2D by reducing hepatic glucose production and increasing antioxidant resistance.
Collapse
Affiliation(s)
- Valentina Guzmán-Pérez
- Department of Clinical Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany
- Department of Nutrition and Biochemistry, Sciences Faculty—Pontificia Universidad Javeriana, Bogotá D.C, Colombia
- * E-mail:
| | - Christiane Bumke-Vogt
- Department of Clinical Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany
- Department of Endocrinology, Diabetes and Nutrition, Charité- Universitätsmedizin Berlin, Berlin, Germany
- Department of Plant Quality, Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V, Erfurt, Germany
| | - Monika Schreiner
- Department of Plant Quality, Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V, Erfurt, Germany
| | - Inga Mewis
- Department of Plant Quality, Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V, Erfurt, Germany
| | - Andrea Borchert
- Department of Clinical Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany
| | - Andreas F. H. Pfeiffer
- Department of Clinical Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany
- Department of Endocrinology, Diabetes and Nutrition, Charité- Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
55
|
Conte A, Kisslinger A, Procaccini C, Paladino S, Oliviero O, de Amicis F, Faicchia D, Fasano D, Caputo M, Matarese G, Pierantoni GM, Tramontano D. Convergent Effects of Resveratrol and PYK2 on Prostate Cells. Int J Mol Sci 2016; 17:ijms17091542. [PMID: 27649143 PMCID: PMC5037816 DOI: 10.3390/ijms17091542] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/31/2016] [Accepted: 09/07/2016] [Indexed: 01/03/2023] Open
Abstract
Resveratrol, a dietary polyphenol, is under consideration as chemopreventive and chemotherapeutic agent for several diseases, including cancer. However, its mechanisms of action and its effects on non-tumor cells, fundamental to understand its real efficacy as chemopreventive agent, remain largely unknown. Proline-rich tyrosine kinase 2 (PYK2), a non-receptor tyrosine kinase acting as signaling mediator of different stimuli, behaves as tumor-suppressor in prostate. Since, PYK2 and RSV share several fields of interaction, including oxidative stress, we have investigated their functional relationship in human non-transformed prostate EPN cells and in their tumor-prone counterpart EPN-PKM, expressing a PYK2 dead-kinase mutant. We show that RSV has a strong biological activity in both cell lines, decreasing ROS production, inducing morphological changes and reversible growth arrest, and activating autophagy but not apoptosis. Interestingly, the PYK2 mutant increases basal ROS and autophagy levels, and modulates the intensity of RSV effects. In particular, the anti-oxidant effect of RSV is more potent in EPN than in EPN-PKM, whereas its anti-proliferative and pro-autophagic effects are more significant in EPN-PKM. Consistently, PYK2 depletion by RNAi replicates the effects of the PKM mutant. Taken together, our results reveal that PYK2 and RSV act on common cellular pathways and suggest that RSV effects on prostate cells may depend on mutational-state or expression levels of PYK2 that emerges as a possible mediator of RSV mechanisms of action. Moreover, the observation that resveratrol effects are reversible and not associated to apoptosis in tumor-prone EPN-PKM cells suggests caution for its use in humans.
Collapse
Affiliation(s)
- Andrea Conte
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131 Naples, Italy.
- Institute of Experimental Oncology and Endocrinology, National Research Council of Italy, 80131 Naples, Italy.
| | - Annamaria Kisslinger
- Institute of Experimental Oncology and Endocrinology, National Research Council of Italy, 80131 Naples, Italy.
| | - Claudio Procaccini
- Institute of Experimental Oncology and Endocrinology, National Research Council of Italy, 80131 Naples, Italy.
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131 Naples, Italy.
- Centro di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, 80131 Naples, Italy.
| | - Olimpia Oliviero
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, 80131 Naples, Italy.
| | - Francesca de Amicis
- Centro Sanitario, University of Calabria, 87036 Rende (CS), Italy.
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, 87036 Rende (CS), Italy.
| | - Deriggio Faicchia
- Department of Medical and Translational Science, University Federico II of Naples, 80131 Naples, Italy.
| | - Dominga Fasano
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131 Naples, Italy.
| | - Marilena Caputo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131 Naples, Italy.
| | - Giuseppe Matarese
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131 Naples, Italy.
| | - Giovanna Maria Pierantoni
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131 Naples, Italy.
| | - Donatella Tramontano
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131 Naples, Italy.
| |
Collapse
|
56
|
de Souza ICC, Martins LAM, de Vasconcelos M, de Oliveira CM, Barbé-Tuana F, Andrade CB, Pettenuzzo LF, Borojevic R, Margis R, Guaragna R, Guma FCR. Resveratrol Regulates the Quiescence-Like Induction of Activated Stellate Cells by Modulating the PPARγ/SIRT1 Ratio. J Cell Biochem 2016; 116:2304-12. [PMID: 25833683 DOI: 10.1002/jcb.25181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/31/2015] [Indexed: 01/27/2023]
Abstract
The activation of hepatic stellate cell (HSC), from a quiescent cell featuring cytoplasmic lipid droplets to a proliferative myofibroblast, plays an important role in liver fibrosis development. The GRX line is an activated HSC model that can be induced by all-trans-retinol to accumulate lipid droplets. Resveratrol is known for activating Sirtuin1 (SIRT1), a NAD(+)-dependent deacetylase that suppresses the activity of peroxisome proliferator-activated receptor gamma (PPARγ), an important adipogenic transcription factor involved in the quiescence maintenance of HSC. We evaluated the effects of 0.1 μM of resveratrol in retinol-induced GRX quiescence by investigating the interference of SIRT1 and PPARγ on cell lipogenesis. GRX lipid accumulation was evaluated through Oil-red O staining, triacylglycerides quantification, and [(14)C] acetate incorporation into lipids. mRNA expression and protein content of SIRT1 and PPARγ were measured by RT-PCR and immunoblotting, respectively. Resveratrol-mediated SIRT1 stimuli did not induce lipogenesis and reduced the retinol-mediated fat-storing capacity in GRX. In order to support our results, we established a cell culture model of transgenic super expression of PPARγ in GRX cells (GRXPγ). Resveratrol reduced lipid droplets accumulation in GRXPγ cells. These results suggest that the PPARγ/SIRT1 ratio plays an important role in the fate of HSC. Thus, whenever the PPARγ activity is greater than SIRT1 activity the lipogenesis is enabled.
Collapse
Affiliation(s)
- Izabel Cristina Custódio de Souza
- Departamento de Morfologia, IB, Universidade Federal de Pelotas (UFPel), av. Duque de Caxias, 250, CEP 96 030 000, Pelotas, RS, Brazil.,Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), rua Ramiro Barcelos, 2600-Anexo I, CEP 90035-003, Porto Alegre, RS, Brazil
| | - Leo Anderson Meira Martins
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), rua Ramiro Barcelos, 2600-Anexo I, CEP 90035-003, Porto Alegre, RS, Brazil
| | - Mariana de Vasconcelos
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), rua Ramiro Barcelos, 2600-Anexo I, CEP 90035-003, Porto Alegre, RS, Brazil
| | - Cleverson Moraes de Oliveira
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), rua Ramiro Barcelos, 2600-Anexo I, CEP 90035-003, Porto Alegre, RS, Brazil
| | - Florencia Barbé-Tuana
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), rua Ramiro Barcelos, 2600-Anexo I, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | - Letícia Ferreira Pettenuzzo
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), rua Ramiro Barcelos, 2600-Anexo I, CEP 90035-003, Porto Alegre, RS, Brazil
| | - Radovan Borojevic
- Departamento de Histologia e Embriologia, ICB, PABCAM, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Rogério Margis
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Regina Guaragna
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), rua Ramiro Barcelos, 2600-Anexo I, CEP 90035-003, Porto Alegre, RS, Brazil
| | - Fátima Costa Rodrigues Guma
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), rua Ramiro Barcelos, 2600-Anexo I, CEP 90035-003, Porto Alegre, RS, Brazil
| |
Collapse
|
57
|
The interplay between apoptosis, mitophagy and mitochondrial biogenesis induced by resveratrol can determine activated hepatic stellate cells death or survival. Cell Biochem Biophys 2016; 71:657-72. [PMID: 25234614 DOI: 10.1007/s12013-014-0245-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Resveratrol has been the focus of numerous studies reporting opposite effects that depend on its concentration. The GRX is an activated hepatic stellate cells model used to study liver fibrosis development and resolution. We recently showed that GRX treatment with RSV (0.1-50 µM) for 24 h triggered dose-dependent pro-oxidant effects, resulting in cytotoxicity and cell damage only at the highest concentration. Here, we evaluated whether the pro-oxidant effect of resveratrol treatment is accompanied by alterations on the GRX mitochondrial metabolism, and whether the concomitantly autophagy/mitophagy induction can influence on cell death or survival. We demonstrated that all concentrations of resveratrol promoted an increase of GRX cell death signals, altering the mitochondrial dynamics and function. Cells treated with all resveratrol concentrations presented higher autophagy/mitophagy features, but only treatments with 1 and 10 µM of resveratrol-induced mitochondrial biogenesis. Since cell damage was higher and there was no mitochondrial biogenesis in GRX treated with 50 µM of resveratrol, we suggest that these cells failed to remove and replace all damaged mitochondria. In conclusion, the cytotoxic effect of resveratrol that effectively promotes cell death could be related to the interrelation between the concomitant induction of apoptosis, autophagy/mitophagy and mitochondrial biogenesis in GRX.
Collapse
|
58
|
Pignitter M, Schueller K, Burkon A, Knorr V, Esefelder L, Doberer D, Wolzt M, Somoza V. Concentration-dependent effects of resveratrol and metabolites on the redox status of human erythrocytes in single-dose studies. J Nutr Biochem 2016; 27:164-70. [DOI: 10.1016/j.jnutbio.2015.08.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 08/23/2015] [Accepted: 08/26/2015] [Indexed: 01/23/2023]
|
59
|
Combination of diminazene aceturate and resveratrol reduces the toxic effects of chemotherapy in treating Trypanosoma evansi infection. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s00580-015-2154-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
60
|
Pereira S, Park E, Moore J, Faubert B, Breen DM, Oprescu AI, Nahle A, Kwan D, Giacca A, Tsiani E. Resveratrol prevents insulin resistance caused by short-term elevation of free fatty acids in vivo. Appl Physiol Nutr Metab 2015; 40:1129-36. [PMID: 26455923 DOI: 10.1139/apnm-2015-0075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Elevated levels of plasma free fatty acids (FFA), which are commonly found in obesity, induce insulin resistance. FFA activate protein kinases including the proinflammatory IκBα kinase β (IKKβ), leading to serine phosphorylation of insulin receptor substrate 1 (IRS-1) and impaired insulin signaling. To test whether resveratrol, a polyphenol found in red wine, prevents FFA-induced insulin resistance, we used a hyperinsulinemic-euglycemic clamp with a tracer to assess hepatic and peripheral insulin sensitivity in overnight-fasted Wistar rats infused for 7 h with saline, Intralipid plus 20 U·mL(-1) heparin (IH; triglyceride emulsion that elevates FFA levels in vivo; 5.5 μL·min(-1)) with or without resveratrol (3 mg·kg(-1)·h(-1)), or resveratrol alone. Infusion of IH significantly decreased glucose infusion rate (GIR; P < 0.05) and peripheral glucose utilization (P < 0.05) and increased endogenous glucose production (EGP; P < 0.05) during the clamp compared with saline infusion. Resveratrol co-infusion, however, completely prevented the effects induced by IH infusion: it prevented the decreases in GIR (P < 0.05 vs. IH), peripheral glucose utilization (P < 0.05 vs. IH), and insulin-induced suppression of EGP (P < 0.05 vs. IH). Resveratrol alone had no effect. Furthermore, IH infusion increased serine (307) phosphorylation of IRS-1 in soleus muscle (∼30-fold, P < 0.001), decreased total IRS-1 levels, and decreased IκBα content, consistent with activation of IKKβ. Importantly, all of these effects were abolished by resveratrol (P < 0.05 vs. IH). These results suggest that resveratrol prevents FFA-induced hepatic and peripheral insulin resistance and, therefore, may help mitigate the health consequences of obesity.
Collapse
Affiliation(s)
- Sandra Pereira
- a Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Edward Park
- a Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jessy Moore
- b Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Brandon Faubert
- b Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Danna M Breen
- a Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Andrei I Oprescu
- c Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ashraf Nahle
- a Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Denise Kwan
- a Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Adria Giacca
- a Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,c Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada.,d Department of Medicine, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Evangelia Tsiani
- b Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
61
|
Improvement of pro-oxidant capacity of protocatechuic acid by esterification. PLoS One 2014; 9:e110277. [PMID: 25340774 PMCID: PMC4207763 DOI: 10.1371/journal.pone.0110277] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/14/2014] [Indexed: 01/26/2023] Open
Abstract
Pro-oxidant effects of phenolic compounds are usually correlated to the one-electron redox potential of the phenoxyl radicals. Here we demonstrated that, besides their oxidizability, hydrophobicity can also be a decisive factor. We found that esterification of protocatechuic acid (P0) provoked a profound influence in its pro-oxidant capacity. The esters bearing alkyl chains containing two (P2), four (P4) and seven (P7) carbons, but not the acid precursor (P0), were able to exacerbate the oxidation of trolox, α-tocopherol and rifampicin. This effect was also dependent on the catechol moiety, since neither gallic acid nor butyl gallate showed any pro-oxidant effects. A comparison was also made with apocynin, which is well-characterized regarding its pro-oxidant properties. P7 was more efficient than apocynin regarding co-oxidation of trolox. However, P7 was not able to co-oxidize glutathione and NADH, which are targets of the apocynin radical. A correlation was found between pro-oxidant capacity and the stability of the radicals, as suggested by the intensity of the peak current in the differential pulse voltammetry experiments. In conclusion, taking into account that hydroquinone and related moieties are frequently found in biomolecules and quinone-based chemotherapeutics, our demonstration that esters of protocatechuic acid are specific and potent co-catalysts in their oxidations may be very relevant as a pathway to exacerbate redox cycling reactions, which are usually involved in their biological and pharmacological mechanisms of action.
Collapse
|
62
|
Yun H, Park S, Kim MJ, Yang WK, Im DU, Yang KR, Hong J, Choe W, Kang I, Kim SS, Ha J. AMP-activated protein kinase mediates the antioxidant effects of resveratrol through regulation of the transcription factor FoxO1. FEBS J 2014; 281:4421-38. [DOI: 10.1111/febs.12949] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 07/18/2014] [Accepted: 07/24/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Hee Yun
- Department of Biochemistry and Molecular Biology; Medical Research Center and Biomedical Science Institute; School of Medicine; Kyung Hee University; Seoul Korea
| | - Seolhui Park
- Department of Biochemistry and Molecular Biology; Medical Research Center and Biomedical Science Institute; School of Medicine; Kyung Hee University; Seoul Korea
| | - Min-Jung Kim
- Department of Biochemistry and Molecular Biology; Medical Research Center and Biomedical Science Institute; School of Medicine; Kyung Hee University; Seoul Korea
| | - Woo Kyeom Yang
- Department of Biochemistry and Molecular Biology; Medical Research Center and Biomedical Science Institute; School of Medicine; Kyung Hee University; Seoul Korea
| | - Dong Uk Im
- Department of Biochemistry and Molecular Biology; Medical Research Center and Biomedical Science Institute; School of Medicine; Kyung Hee University; Seoul Korea
| | - Ki Ryeol Yang
- College of Pharmacy; Kyung Hee University; Seoul Korea
| | - Jongki Hong
- College of Pharmacy; Kyung Hee University; Seoul Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology; Medical Research Center and Biomedical Science Institute; School of Medicine; Kyung Hee University; Seoul Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology; Medical Research Center and Biomedical Science Institute; School of Medicine; Kyung Hee University; Seoul Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology; Medical Research Center and Biomedical Science Institute; School of Medicine; Kyung Hee University; Seoul Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology; Medical Research Center and Biomedical Science Institute; School of Medicine; Kyung Hee University; Seoul Korea
| |
Collapse
|