51
|
Smolders S, Smolders SMT, Swinnen N, Gärtner A, Rigo JM, Legendre P, Brône B. Maternal immune activation evoked by polyinosinic:polycytidylic acid does not evoke microglial cell activation in the embryo. Front Cell Neurosci 2015; 9:301. [PMID: 26300736 PMCID: PMC4525016 DOI: 10.3389/fncel.2015.00301] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/22/2015] [Indexed: 12/13/2022] Open
Abstract
Several studies have indicated that inflammation during pregnancy increases the risk for the development of neuropsychiatric disorders in the offspring. Morphological brain abnormalities combined with deviations in the inflammatory status of the brain can be observed in patients of both autism and schizophrenia. It was shown that acute infection can induce changes in maternal cytokine levels which in turn are suggested to affect fetal brain development and increase the risk on the development of neuropsychiatric disorders in the offspring. Animal models of maternal immune activation reproduce the etiology of neurodevelopmental disorders such as schizophrenia and autism. In this study the poly (I:C) model was used to mimic viral immune activation in pregnant mice in order to assess the activation status of fetal microglia in these developmental disorders. Because microglia are the resident immune cells of the brain they were expected to be activated due to the inflammatory stimulus. Microglial cell density and activation level in the fetal cortex and hippocampus were determined. Despite the presence of a systemic inflammation in the pregnant mice, there was no significant difference in fetal microglial cell density or immunohistochemically determined activation level between the control and inflammation group. These data indicate that activation of the fetal microglial cells is not likely to be responsible for the inflammation induced deficits in the offspring in this model.
Collapse
Affiliation(s)
- Silke Smolders
- BIOMED - Hasselt University Hasselt, Belgium ; Laboratory of Neuronal Differentiation, VIB Center for the Biology of Disease, Leuven and Center for Human Genetics, KU Leuven Leuven, Belgium
| | - Sophie M T Smolders
- BIOMED - Hasselt University Hasselt, Belgium ; INSERM, UMR S 1130, Université Pierre et Marie Curie Paris, France ; CNRS, UMR 8246, Université Pierre et Marie Curie Paris, France ; UM 119 NPS, Université Pierre et Marie Curie Paris, France
| | | | - Annette Gärtner
- Laboratory of Neuronal Differentiation, VIB Center for the Biology of Disease, Leuven and Center for Human Genetics, KU Leuven Leuven, Belgium
| | | | - Pascal Legendre
- INSERM, UMR S 1130, Université Pierre et Marie Curie Paris, France ; CNRS, UMR 8246, Université Pierre et Marie Curie Paris, France ; UM 119 NPS, Université Pierre et Marie Curie Paris, France
| | - Bert Brône
- BIOMED - Hasselt University Hasselt, Belgium
| |
Collapse
|
52
|
Lack of galectin-3 improves the functional outcome and tissue sparing by modulating inflammatory response after a compressive spinal cord injury. Exp Neurol 2015; 271:390-400. [PMID: 26183316 DOI: 10.1016/j.expneurol.2015.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/04/2015] [Accepted: 07/07/2015] [Indexed: 01/21/2023]
Abstract
Spinal cord injury (SCI) is a traumatic event that results in motor, sensitive or autonomic function disturbances, which have direct impact on the life quality of the affected individual. Recent studies have shown that attenuation of the inflammatory response after SCI plays a key role in the reestablishment of motor function. Galectin-3 is a pleiotropic molecule belonging to the carbohydrate-ligand lectin family, which is expressed by different cells in different tissues. Studies have shown that galectin-3 induces the recruitment and activation of neutrophils, monocytes/macrophages, lymphocytes and microglia. Thus, the aim of this study was to evaluate the effects of the lack of galectin-3 on the functional outcome, cellular recruitment and morphological changes in tissue, after SCI. C57BL/6 wild-type and galectin-3 knockout mice were used in this study. A vascular clip was used for 1 min to generate a compressive SCI. By BMS we detected that the Gal-3(-/-) presented a better functional outcome during the studied period. This finding is related to a decrease in the injury length and a higher volume of spared white matter at 7 and 42 days post injury (dpi). Moreover, Gal-3(-/-) mice showed a higher number of spared fibers at 28 dpi. Because of the importance of the inflammatory response after SCI and the role that galectin-3 plays in it, we investigated possible differences in the inflammatory response between the analyzed groups. No differences in neutrophils were observed 24h after injury. However, at 3 dpi, the Gal-3(-/-) mice showed more neutrophils infiltrated into the spinal tissue when compared with the WT mice. At this same time point, no differences in the percentage of the CD11b/Arginase1 positive cells were observed. Remarkably, Gal-3(-/-) mice displayed a decrease in CD11b staining at 7 dpi, compared with the WT mice. At the same time, Gal-3(-/-) mice presented a more prominent Arginase1 stained area, suggesting an anti-inflammatory cell phenotype. Taken together, these results demonstrated that the lack of galectin-3 plays a key role in the inflammatory process triggered by SCI, leading to better and early recovery of locomotor function.
Collapse
|
53
|
Manouchehrian O, Arnér K, Deierborg T, Taylor L. Who let the dogs out?: detrimental role of Galectin-3 in hypoperfusion-induced retinal degeneration. J Neuroinflammation 2015; 12:92. [PMID: 25968897 PMCID: PMC4490716 DOI: 10.1186/s12974-015-0312-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/28/2015] [Indexed: 11/30/2022] Open
Abstract
Background Retinal ischemia results in a progressive degeneration of neurons and a pathological activation of glial cells, resulting in vision loss. In the brain, progressive damage after ischemic insult has been correlated to neuroinflammatory processes involving microglia. Galectin-3 has been shown to mediate microglial responses to ischemic injury in the brain. Therefore, we wanted to explore the contribution of Galectin-3 (Gal-3) to hypoperfusion-induced retinal degeneration in mice. Methods Gal-3 knockout (Gal-3 KO) and wildtype (WT) C57BL/6 mice were subjected to chronic cerebral hypoperfusion by bilateral narrowing of the common carotid arteries using metal coils resulting in a 30% reduction of blood flow. Sham operated mice served as controls. After 17 weeks, the mice were sacrificed and the eyes were analyzed for retinal architecture, neuronal cell survival, and glial reactivity using morphological staining and immunohistochemistry. Results Hypoperfusion caused a strong increase in Gal-3 expression and microglial activation in WT mice, coupled with severe degenerative damage to all retinal neuronal subtypes, remodeling of the retinal lamination and Müller cell gliosis. In contrast, hypoperfused Gal-3 KO mice displayed a retained laminar architecture, a significant preservation of photoreceptors and ganglion cell neurons, and an attenuation of microglial and Müller cell activation. Conclusion Moderate cerebral blood flow reduction in the mouse results in severe retinal degenerative damage. In mice lacking Gal-3 expression, pathological changes are significantly attenuated. Gal-3 is thereby a potential target for treatment and prevention of hypoperfusion-induced retinal degeneration and a strong candidate for further research as a factor behind retinal degenerative disease. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0312-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oscar Manouchehrian
- Department of Ophthalmology, BMC, Lund University, Klinikgatan 26, Lund, S-22184, Sweden.
| | - Karin Arnér
- Department of Ophthalmology, BMC, Lund University, Klinikgatan 26, Lund, S-22184, Sweden.
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, BMC, Lund University, Klinikgatan 26, Lund, S-22184, Sweden.
| | - Linnéa Taylor
- Department of Ophthalmology, BMC, Lund University, Klinikgatan 26, Lund, S-22184, Sweden.
| |
Collapse
|
54
|
Mietto BS, Mostacada K, Martinez AMB. Neurotrauma and inflammation: CNS and PNS responses. Mediators Inflamm 2015; 2015:251204. [PMID: 25918475 PMCID: PMC4397002 DOI: 10.1155/2015/251204] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/24/2015] [Accepted: 03/09/2015] [Indexed: 01/09/2023] Open
Abstract
Traumatic injury to the central nervous system (CNS) or the peripheral nervous system (PNS) triggers a cascade of events which culminate in a robust inflammatory reaction. The role played by inflammation in the course of degeneration and regeneration is not completely elucidated. While, in peripheral nerves, the inflammatory response is assumed to be essential for normal progression of Wallerian degeneration and regeneration, CNS trauma inflammation is often associated with poor recovery. In this review, we discuss key mechanisms that trigger the inflammatory reaction after nervous system trauma, emphasizing how inflammations in both CNS and PNS differ from each other, in terms of magnitude, cell types involved, and effector molecules. Knowledge of the precise mechanisms that elicit and maintain inflammation after CNS and PNS tissue trauma and their effect on axon degeneration and regeneration is crucial for the identification of possible pharmacological drugs that can positively affect the tissue regenerative capacity.
Collapse
Affiliation(s)
- Bruno Siqueira Mietto
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Faculdade de Medicina, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, 21941-550 Rio de Janeiro, RJ, Brazil
| | - Klauss Mostacada
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Faculdade de Medicina, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, 21941-550 Rio de Janeiro, RJ, Brazil
| | - Ana Maria Blanco Martinez
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Faculdade de Medicina, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, 21941-550 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
55
|
Gu X, Cantle JP, Greiner ER, Lee CYD, Barth AM, Gao F, Park CS, Zhang Z, Sandoval-Miller S, Zhang RL, Diamond M, Mody I, Coppola G, Yang XW. N17 Modifies mutant Huntingtin nuclear pathogenesis and severity of disease in HD BAC transgenic mice. Neuron 2015; 85:726-41. [PMID: 25661181 PMCID: PMC4386927 DOI: 10.1016/j.neuron.2015.01.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 11/07/2014] [Accepted: 01/04/2015] [Indexed: 11/26/2022]
Abstract
The nucleus is a critical subcellular compartment for the pathogenesis of polyglutamine disorders, including Huntington’s disease (HD). Recent studies suggest the first 17-amino-acid domain (N17) of mutant Huntingtin (mHTT) mediates its nuclear exclusion in cultured cells. Here, we test whether N17 could be a molecular determinant of nuclear mHTT pathogenesis in vivo. BAC transgenic mice expressing mHTT lacking the N17 domain (BACHD-ΔN17) show dramatically accelerated mHTT pathology exclusively in the nucleus, which is associated with HD-like transcriptionopathy. Interestingly, BACHD-ΔN17 mice manifest more overt disease-like phenotypes than the original BACHD mice, including body weight loss, movement deficits, robust striatal neuronal loss, and neuroinflammation. Mechanistically, N17 is necessary for nuclear exclusion of small mHTT fragments that are part of nuclear pathology in HD. Together, our study suggests that N17 modifies nuclear pathogenesis and disease severity in HD mice by regulating subcellular localization of known nuclear pathogenic mHTT species.
Collapse
Affiliation(s)
- Xiaofeng Gu
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jeffrey P Cantle
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Erin R Greiner
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - C Y Daniel Lee
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Albert M Barth
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Fuying Gao
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chang Sin Park
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhiqiang Zhang
- Department of Neurology, Washington University School of Medicine St. Louis, MO 63110, USA; Department of Neurology and Neurotherapeutics, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA
| | - Susana Sandoval-Miller
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Richard L Zhang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marc Diamond
- Department of Neurology, Washington University School of Medicine St. Louis, MO 63110, USA; Department of Neurology and Neurotherapeutics, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA
| | - Istvan Mody
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Giovanni Coppola
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - X William Yang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
56
|
García-Mateo N, Ganfornina MD, Montero O, Gijón MA, Murphy RC, Sanchez D. Schwann cell-derived Apolipoprotein D controls the dynamics of post-injury myelin recognition and degradation. Front Cell Neurosci 2014; 8:374. [PMID: 25426024 PMCID: PMC4227524 DOI: 10.3389/fncel.2014.00374] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/21/2014] [Indexed: 01/29/2023] Open
Abstract
Management of lipids, particularly signaling lipids that control neuroinflammation, is crucial for the regeneration capability of a damaged nervous system. Knowledge of pro- and anti-inflammatory signals after nervous system injury is extensive, most of them being proteins acting through well-known receptors and intracellular cascades. However, the role of lipid binding extracellular proteins able to modify the fate of lipids released after injury is not well understood. Apolipoprotein D (ApoD) is an extracellular lipid binding protein of the Lipocalin family induced upon nervous system injury. Our previous study shows that axon regeneration is delayed without ApoD, and suggests its participation in early events during Wallerian degeneration. Here we demonstrate that ApoD is expressed by myelinating and non-myelinating Schwann cells and is induced early upon nerve injury. We show that ApoD, known to bind arachidonic acid (AA), also interacts with lysophosphatidylcholine (LPC) in vitro. We use an in vivo model of nerve crush injury, a nerve explant injury model, and cultured macrophages exposed to purified myelin, to uncover that: (i) ApoD regulates denervated Schwann cell-macrophage signaling, dampening MCP1- and Tnf-dependent macrophage recruitment and activation upon injury; (ii) ApoD controls the over-expression of the phagocytosis activator Galectin-3 by infiltrated macrophages; (iii) ApoD controls the basal and injury-triggered levels of LPC and AA; (iv) ApoD modifies the dynamics of myelin-macrophage interaction, favoring the initiation of phagocytosis and promoting myelin degradation. Regulation of macrophage behavior by Schwann-derived ApoD is therefore a key mechanism conditioning nerve injury resolution. These results place ApoD as a lipid binding protein controlling the signals exchanged between glia, neurons and blood-borne cells during nerve recovery after injury, and open the possibility for a therapeutic use of ApoD as a regeneration-promoting agent.
Collapse
Affiliation(s)
- Nadia García-Mateo
- Lazarillo Lab, Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC Valladolid, Spain
| | - Maria D Ganfornina
- Lazarillo Lab, Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC Valladolid, Spain
| | - Olimpio Montero
- Mass Spectrometry Unit, Center for Biotechnology Development (CDB), Consejo Superior de Investigaciones Científicas Valladolid, Spain
| | - Miguel A Gijón
- Department of Pharmacology, University of Colorado Denver Aurora, CO, USA
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver Aurora, CO, USA
| | - Diego Sanchez
- Lazarillo Lab, Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC Valladolid, Spain
| |
Collapse
|
57
|
Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency. PLoS Genet 2014; 10:e1004686. [PMID: 25299392 PMCID: PMC4191938 DOI: 10.1371/journal.pgen.1004686] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 08/19/2014] [Indexed: 01/15/2023] Open
Abstract
As part of the Nucleotide Excision Repair (NER) process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP) alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS), or the infantile lethal cerebro-oculo-facio-skeletal (COFS) syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional) Xpg−/− mouse model which -in a C57BL6/FVB F1 hybrid genetic background- displays many progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4–5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e.g. vascular abnormalities) and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg−/− mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging. Accumulation of DNA damage has been implicated in aging. Many premature aging syndromes are due to defective DNA repair systems. The endonuclease XPG is involved in repair of helix-distorting DNA lesions, and XPG defects cause the cancer-prone condition xeroderma pigmentosum (XP) alone or combined with the severe neurodevelopmental progeroid disorder Cockayne syndrome (CS). Here, we present a novel (conditional) Xpg−/− mouse model which -in a C57BL6/FVB F1 hybrid background- displays many progressive progeroid features, including early cessation of growth, cachexia, kyphosis, osteoporosis, neurodegeneration, liver aging, retinal degeneration, and reduced lifespan. In a constitutive mutant with a complex phenotype it is difficult to dissect cause and consequence. We have therefore generated liver- and forebrain-specific Xpg mutants and demonstrate that they exhibit progressive anisokaryosis and neurodegeneration, respectively, indicating that a cell-intrinsic repair defect in neurons can account for neuronal degeneration. These findings strengthen the link between DNA damage and the complex process of aging.
Collapse
|
58
|
Davis CHO, Kim KY, Bushong EA, Mills EA, Boassa D, Shih T, Kinebuchi M, Phan S, Zhou Y, Bihlmeyer NA, Nguyen JV, Jin Y, Ellisman MH, Marsh-Armstrong N. Transcellular degradation of axonal mitochondria. Proc Natl Acad Sci U S A 2014; 111:9633-8. [PMID: 24979790 PMCID: PMC4084443 DOI: 10.1073/pnas.1404651111] [Citation(s) in RCA: 498] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
It is generally accepted that healthy cells degrade their own mitochondria. Here, we report that retinal ganglion cell axons of WT mice shed mitochondria at the optic nerve head (ONH), and that these mitochondria are internalized and degraded by adjacent astrocytes. EM demonstrates that mitochondria are shed through formation of large protrusions that originate from otherwise healthy axons. A virally introduced tandem fluorophore protein reporter of acidified mitochondria reveals that acidified axonal mitochondria originating from the retinal ganglion cell are associated with lysosomes within columns of astrocytes in the ONH. According to this reporter, a greater proportion of retinal ganglion cell mitochondria are degraded at the ONH than in the ganglion cell soma. Consistently, analyses of degrading DNA reveal extensive mtDNA degradation within the optic nerve astrocytes, some of which comes from retinal ganglion cell axons. Together, these results demonstrate that surprisingly large proportions of retinal ganglion cell axonal mitochondria are normally degraded by the astrocytes of the ONH. This transcellular degradation of mitochondria, or transmitophagy, likely occurs elsewhere in the CNS, because structurally similar accumulations of degrading mitochondria are also found along neurites in superficial layers of the cerebral cortex. Thus, the general assumption that neurons or other cells necessarily degrade their own mitochondria should be reconsidered.
Collapse
Affiliation(s)
- Chung-ha O Davis
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205;Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD 21205; and
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093
| | - Eric A Bushong
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093
| | - Elizabeth A Mills
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205;Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD 21205; and
| | - Daniela Boassa
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093
| | - Tiffany Shih
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093
| | - Mira Kinebuchi
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093
| | - Yi Zhou
- Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD 21205; and
| | - Nathan A Bihlmeyer
- Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD 21205; and
| | - Judy V Nguyen
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205;Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD 21205; and
| | - Yunju Jin
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093
| | - Nicholas Marsh-Armstrong
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205;Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD 21205; and
| |
Collapse
|
59
|
Fu R, Shen Q, Xu P, Luo JJ, Tang Y. Phagocytosis of microglia in the central nervous system diseases. Mol Neurobiol 2014; 49:1422-34. [PMID: 24395130 PMCID: PMC4012154 DOI: 10.1007/s12035-013-8620-6] [Citation(s) in RCA: 488] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/15/2013] [Indexed: 12/20/2022]
Abstract
Microglia, the resident macrophages of the central nervous system, rapidly activate in nearly all kinds of neurological diseases. These activated microglia become highly motile, secreting inflammatory cytokines, migrating to the lesion area, and phagocytosing cell debris or damaged neurons. During the past decades, the secretory property and chemotaxis of microglia have been well-studied, while relatively less attention has been paid to microglial phagocytosis. So far there is no obvious concordance with whether it is beneficial or detrimental in tissue repair. This review focuses on phagocytic phenotype of microglia in neurological diseases such as Alzheimer's disease, multiple sclerosis, Parkinson's disease, traumatic brain injury, ischemic and other brain diseases. Microglial morphological characteristics, involved receptors and signaling pathways, distribution variation along with time and space changes, and environmental factors that affecting phagocytic function in each disease are reviewed. Moreover, a comparison of contributions between macrophages from peripheral circulation and the resident microglia to these pathogenic processes will also be discussed.
Collapse
Affiliation(s)
- Ruying Fu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Number 107, Yan Jiang Xi Road, Guangzhou, 510120 Guangdong Province China
| | - Qingyu Shen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Number 107, Yan Jiang Xi Road, Guangzhou, 510120 Guangdong Province China
- Department of Neurology, Zengcheng People’s Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Pengfei Xu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Number 107, Yan Jiang Xi Road, Guangzhou, 510120 Guangdong Province China
| | - Jin Jun Luo
- Department of Neurology, School of Medicine, Temple University, Philadelphia, PA USA
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Number 107, Yan Jiang Xi Road, Guangzhou, 510120 Guangdong Province China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
60
|
Liu Y, Zhao T, Yang Z, Li Q. CX3CR1 RNAi inhibits hypoxia-induced microglia activation via p38MAPK/PKC pathway. Int J Exp Pathol 2014; 95:153-7. [PMID: 24628787 DOI: 10.1111/iep.12065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/16/2013] [Indexed: 12/26/2022] Open
Abstract
There is accumulating evidence which demonstrates that chronic cerebral ischaemia can induce white matter lesions (WMLs), and microglia-activation-mediated cytokines and proteases releasing during the ischaemia might play a vital role in pathogenesis. In addition, hypoxia-induced upregulated expression of fractalkine promotes the activation of microglia and their migration to the lesions through interaction with its receptor CX3CR1. However, the specific mechanisms involved in fractalkine/CX3CR1-mediated microglial activation have not been fully identified. In the present study, we constructed lentivirus encoding shRNA against CX3CR1 and transduced into microglial cells in under hypoxic conditions. Moreover, we analysed the proliferation, cytokine secretion and signal-pathway activation of the microglia. We found that CX3CR1 RNAi-mediated gene downregulation could attenuate hypoxic-induced microglial proliferation, cytokine secretion [including tumuor necrosis factor-α (TNF-α), interleukin-1β (IL-1β)] and matrix metalloproteinase-2 (MMP-2) synthesis. These effects were shown to be nediated through p38MAPK/PKC activation. Therefore, our results reveal a novel mechanism of fractalkine/CX3CR1 involvement in activation of microglia. Thus CX3CR1 RNAi might provide a therapeutic strategy which could be useful in chronic cerebral ischaemia.
Collapse
Affiliation(s)
- Yong Liu
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | | | | | | |
Collapse
|
61
|
Raj DDA, Jaarsma D, Holtman IR, Olah M, Ferreira FM, Schaafsma W, Brouwer N, Meijer MM, de Waard MC, van der Pluijm I, Brandt R, Kreft KL, Laman JD, de Haan G, Biber KPH, Hoeijmakers JHJ, Eggen BJL, Boddeke HWGM. Priming of microglia in a DNA-repair deficient model of accelerated aging. Neurobiol Aging 2014; 35:2147-60. [PMID: 24799273 DOI: 10.1016/j.neurobiolaging.2014.03.025] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/21/2014] [Accepted: 03/23/2014] [Indexed: 12/16/2022]
Abstract
Aging is associated with reduced function, degenerative changes, and increased neuroinflammation of the central nervous system (CNS). Increasing evidence suggests that changes in microglia cells contribute to the age-related deterioration of the CNS. The most prominent age-related change of microglia is enhanced sensitivity to inflammatory stimuli, referred to as priming. It is unclear if priming is due to intrinsic microglia ageing or induced by the ageing neural environment. We have studied this in Ercc1 mutant mice, a DNA repair-deficient mouse model that displays features of accelerated aging in multiple tissues including the CNS. In Ercc1 mutant mice, microglia showed hallmark features of priming such as an exaggerated response to peripheral lipopolysaccharide exposure in terms of cytokine expression and phagocytosis. Specific targeting of the Ercc1 deletion to forebrain neurons resulted in a progressive priming response in microglia exemplified by phenotypic alterations. Summarizing, these data show that neuronal genotoxic stress is sufficient to switch microglia from a resting to a primed state.
Collapse
Affiliation(s)
- Divya D A Raj
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Dick Jaarsma
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Inge R Holtman
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marta Olah
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Filipa M Ferreira
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Wandert Schaafsma
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Nieske Brouwer
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Michel M Meijer
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Monique C de Waard
- Department of Genetics, Cancer Genomics Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ingrid van der Pluijm
- Department of Genetics, Cancer Genomics Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Renata Brandt
- Department of Genetics, Cancer Genomics Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Karim L Kreft
- Department of Immunology, Erasmus University Medical Center and MS Center ErasMS, Rotterdam, the Netherlands; Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jon D Laman
- Department of Immunology, Erasmus University Medical Center and MS Center ErasMS, Rotterdam, the Netherlands
| | - Gerald de Haan
- Department of Cell Biology, European Research Institute on the Biology of Aging, University of Groningen, University Medical Center, Groningen, the Netherlands
| | - Knut P H Biber
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Psychiatry and Psychotherapy, University Medical Center, Freiburg, Germany
| | - Jan H J Hoeijmakers
- Department of Genetics, Cancer Genomics Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Bart J L Eggen
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hendrikus W G M Boddeke
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
62
|
Galectin-3 controls the response of microglial cells to limit cuprizone-induced demyelination. Neurobiol Dis 2014; 62:441-55. [DOI: 10.1016/j.nbd.2013.10.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/10/2013] [Accepted: 10/23/2013] [Indexed: 11/23/2022] Open
|
63
|
de Oliveira GP, Alves CJ, Chadi G. Early gene expression changes in spinal cord from SOD1(G93A) Amyotrophic Lateral Sclerosis animal model. Front Cell Neurosci 2013; 7:216. [PMID: 24302897 PMCID: PMC3831149 DOI: 10.3389/fncel.2013.00216] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/29/2013] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is an adult-onset and fast progression neurodegenerative disease that leads to the loss of motor neurons. Mechanisms of selective motor neuron loss in ALS are unknown. The early events occurring in the spinal cord that may contribute to motor neuron death are not described, neither astrocytes participation in the pre-symptomatic phases of the disease. In order to identify ALS early events, we performed a microarray analysis employing a whole mouse genome platform to evaluate the gene expression pattern of lumbar spinal cords of transgenic SOD1G93A mice and their littermate controls at pre-symptomatic ages of 40 and 80 days. Differentially expressed genes were identified by means of the Bioconductor packages Agi4×44Preprocess and limma. FunNet web based tool was used for analysis of over-represented pathways. Furthermore, immunolabeled astrocytes from 40 and 80 days old mice were submitted to laser microdissection and RNA was extracted for evaluation of a selected gene by qPCR. Statistical analysis has pointed to 492 differentially expressed genes (155 up and 337 down regulated) in 40 days and 1105 (433 up and 672 down) in 80 days old ALS mice. KEGG analysis demonstrated the over-represented pathways tight junction, antigen processing and presentation, oxidative phosphorylation, endocytosis, chemokine signaling pathway, ubiquitin mediated proteolysis and glutamatergic synapse at both pre-symptomatic ages. Ube2i gene expression was evaluated in astrocytes from both transgenic ages, being up regulated in 40 and 80 days astrocytes enriched samples. Our data points to important early molecular events occurring in pre-symptomatic phases of ALS in mouse model. Early SUMOylation process linked to astrocytes might account to non-autonomous cell toxicity in ALS. Further studies on the signaling pathways presented here may provide new insights to better understand the events triggering motor neuron death in this devastating disorder.
Collapse
Affiliation(s)
- Gabriela P de Oliveira
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine São Paulo, Brazil
| | | | | |
Collapse
|
64
|
Immunohistochemical localization of galectin-3 in the brain with Theiler's murine encephalomyelitis virus (DA strain) infection. ACTA ACUST UNITED AC 2013. [DOI: 10.14405/kjvr.2013.53.3.159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
65
|
Shin T. The pleiotropic effects of galectin-3 in neuroinflammation: a review. Acta Histochem 2013; 115:407-11. [PMID: 23305876 DOI: 10.1016/j.acthis.2012.11.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/23/2012] [Accepted: 11/25/2012] [Indexed: 12/20/2022]
Abstract
The β-galactoside-binding lectin, galectin-3, is expressed in a variety of mammalian cells and tissues. It is involved in cell adhesion, activation, proliferation, apoptosis and cell migration. It also plays an important role in inflammation as a pro-inflammatory mediator. The involvement of galectin-3 in various inflammation models, including those of autoimmune disease, skin disease, and cancer, has been investigated extensively. Moreover, galectin-3 has been suggested to be a therapeutic target for various diseases. The present review deals with the expression of galectin-3 in central nervous system (CNS) tissues during normal development and in various models of inflammation. The available information indicates that galectin-3 is essential for normal brain development and plays diverse roles in CNS inflammation, combining pro-inflammatory roles with re-modeling capacity in damaged CNS tissues.
Collapse
Affiliation(s)
- Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 690-756, Republic of Korea.
| |
Collapse
|
66
|
Djogo N, Jakovcevski I, Müller C, Lee HJ, Xu JC, Jakovcevski M, Kügler S, Loers G, Schachner M. Adhesion molecule L1 binds to amyloid beta and reduces Alzheimer's disease pathology in mice. Neurobiol Dis 2013; 56:104-15. [PMID: 23639788 DOI: 10.1016/j.nbd.2013.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 03/10/2013] [Accepted: 04/09/2013] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder and the most common cause of elderly dementia. In an effort to contribute to the potential of molecular approaches to reduce degenerative processes we have tested the possibility that the neural adhesion molecule L1 ameliorates some characteristic cellular and molecular parameters associated with the disease in a mouse model of AD. Three-month-old mice overexpressing mutated forms of amyloid precursor protein and presenilin-1 under the control of a neuron-specific promoter received an injection of adeno-associated virus encoding the neuronal isoform of full-length L1 (AAV-L1) or, as negative control, green fluorescent protein (AAV-GFP) into the hippocampus and occipital cortex. Four months after virus injection, the mice were analyzed for histological and biochemical parameters of AD. AAV-L1 injection decreased the Aβ plaque load, levels of Aβ42, Aβ42/40 ratio and astrogliosis compared with AAV-GFP controls. AAV-L1 injected mice also had increased densities of inhibitory synaptic terminals on pyramidal cells in the hippocampus when compared with AAV-GFP controls. Numbers of microglial cells/macrophages were similar in both groups, but numbers of microglial cells/macrophages per plaque were increased in AAV-L1 injected mice. To probe for a molecular mechanism that may underlie these effects, we analyzed whether L1 would directly and specifically interact with Aβ. In a label-free binding assay, concentration dependent binding of the extracellular domain of L1, but not of the close homolog of L1 to Aβ40 and Aβ42 was seen, with the fibronectin type III homologous repeats 1-3 of L1 mediating this effect. Aggregation of Aβ42 in vitro was reduced in the presence of the extracellular domain of L1. The combined observations indicate that L1, when overexpressed in neurons and glia, reduces several histopathological hallmarks of AD in mice, possibly by reduction of Aβ aggregation. L1 thus appears to be a candidate molecule to ameliorate the pathology of AD, when applied in therapeutically viable treatment schemes.
Collapse
Affiliation(s)
- Nevena Djogo
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Sierra A, Abiega O, Shahraz A, Neumann H. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 2013. [PMID: 23386811 DOI: 10.3389/fncel.2013.00006/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Microglia are the resident brain macrophages and they have been traditionally studied as orchestrators of the brain inflammatory response during infections and disease. In addition, microglia has a more benign, less explored role as the brain professional phagocytes. Phagocytosis is a term coined from the Greek to describe the receptor-mediated engulfment and degradation of dead cells and microbes. In addition, microglia phagocytoses brain-specific cargo, such as axonal and myelin debris in spinal cord injury or multiple sclerosis, amyloid-β deposits in Alzheimer's disease, and supernumerary synapses in postnatal development. Common mechanisms of recognition, engulfment, and degradation of the different types of cargo are assumed, but very little is known about the shared and specific molecules involved in the phagocytosis of each target by microglia. More importantly, the functional consequences of microglial phagocytosis remain largely unexplored. Overall, phagocytosis is considered a beneficial phenomenon, since it eliminates dead cells and induces an anti-inflammatory response. However, phagocytosis can also activate the respiratory burst, which produces toxic reactive oxygen species (ROS). Phagocytosis has been traditionally studied in pathological conditions, leading to the assumption that microglia have to be activated in order to become efficient phagocytes. Recent data, however, has shown that unchallenged microglia phagocytose apoptotic cells during development and in adult neurogenic niches, suggesting an overlooked role in brain remodeling throughout the normal lifespan. The present review will summarize the current state of the literature regarding the role of microglial phagocytosis in maintaining tissue homeostasis in health as in disease.
Collapse
Affiliation(s)
- Amanda Sierra
- Achucarro-Basque Center for Neuroscience Zamudio, Spain ; Department of Neuroscience, University of the Basque Country EHU/UPV Leioa, Spain ; Ikerbasque-Basque Foundation for Science Bilbao, Spain
| | | | | | | |
Collapse
|
68
|
Sierra A, Abiega O, Shahraz A, Neumann H. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 2013; 7:6. [PMID: 23386811 PMCID: PMC3558702 DOI: 10.3389/fncel.2013.00006] [Citation(s) in RCA: 440] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/09/2013] [Indexed: 02/04/2023] Open
Abstract
Microglia are the resident brain macrophages and they have been traditionally studied as orchestrators of the brain inflammatory response during infections and disease. In addition, microglia has a more benign, less explored role as the brain professional phagocytes. Phagocytosis is a term coined from the Greek to describe the receptor-mediated engulfment and degradation of dead cells and microbes. In addition, microglia phagocytoses brain-specific cargo, such as axonal and myelin debris in spinal cord injury or multiple sclerosis, amyloid-β deposits in Alzheimer's disease, and supernumerary synapses in postnatal development. Common mechanisms of recognition, engulfment, and degradation of the different types of cargo are assumed, but very little is known about the shared and specific molecules involved in the phagocytosis of each target by microglia. More importantly, the functional consequences of microglial phagocytosis remain largely unexplored. Overall, phagocytosis is considered a beneficial phenomenon, since it eliminates dead cells and induces an anti-inflammatory response. However, phagocytosis can also activate the respiratory burst, which produces toxic reactive oxygen species (ROS). Phagocytosis has been traditionally studied in pathological conditions, leading to the assumption that microglia have to be activated in order to become efficient phagocytes. Recent data, however, has shown that unchallenged microglia phagocytose apoptotic cells during development and in adult neurogenic niches, suggesting an overlooked role in brain remodeling throughout the normal lifespan. The present review will summarize the current state of the literature regarding the role of microglial phagocytosis in maintaining tissue homeostasis in health as in disease.
Collapse
Affiliation(s)
- Amanda Sierra
- Achucarro-Basque Center for Neuroscience Zamudio, Spain ; Department of Neuroscience, University of the Basque Country EHU/UPV Leioa, Spain ; Ikerbasque-Basque Foundation for Science Bilbao, Spain
| | | | | | | |
Collapse
|
69
|
Microglia proliferation is controlled by P2X7 receptors in a Pannexin-1-independent manner during early embryonic spinal cord invasion. J Neurosci 2012; 32:11559-73. [PMID: 22915101 DOI: 10.1523/jneurosci.1042-12.2012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microglia are known to invade the mammalian spinal cord (SC) at an early embryonic stage. While the mechanisms underlying this early colonization of the nervous system are still unknown, we recently found that it is associated, at least partially, with the ability of microglia to proliferate at the onset of motoneuron developmental cell death and of synaptogenesis in mouse embryo (E13.5). In vitro studies have shown that the proliferation and activation of adult microglia can be influenced by the purinergic ionotropic receptor P2X7 via a coupling with Pannexin-1. By performing patch-clamp recordings in situ using a whole-mouse embryonic SC preparation, we show here that embryonic microglia already express functional P2X7R. P2X7R activation evoked a biphasic current in embryonic microglia, which is supposed to reflect large plasma membrane pore opening. However, although embryonic microglia express pannexin-1, this biphasic current was still recorded in microglia of pannexin-1 knock-out embryos, indicating that it rather reflected P2X7R intrinsic pore dilatation. More important, we found that proliferation of embryonic SC microglia, but not their activation state, depends almost entirely on P2X7R by comparing wild-type and P2X7R-/- embryos. Absence of P2X7R led also to a decrease in microglia density. Pannexin-1-/- embryos did not exhibit any difference in microglial proliferation, showing that the control of embryonic microglial proliferation by P2X7R does not depend on pannexin-1 expression. These results reveal a developmental role of P2X7R by controlling embryonic SC microglia proliferation at a critical developmental state in the SC of mouse embryos.
Collapse
|
70
|
Galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury. J Neurosci 2012; 32:10383-95. [PMID: 22836271 DOI: 10.1523/jneurosci.1498-12.2012] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Growing evidence suggests that galectin-3 is involved in fine tuning of the inflammatory responses at the periphery, however, its role in injured brain is far less clear. Our previous work demonstrated upregulation and coexpression of galectin-3 and IGF-1 in a subset of activated/proliferating microglial cells after stroke. Here, we tested the hypothesis that galectin-3 plays a pivotal role in mediating injury-induced microglial activation and proliferation. By using a galectin-3 knock-out mouse (Gal-3KO), we demonstrated that targeted disruption of the galectin-3 gene significantly alters microglia activation and induces ∼4-fold decrease in microglia proliferation. Defective microglia activation/proliferation was further associated with significant increase in the size of ischemic lesion, ∼2-fold increase in the number of apoptotic neurons, and a marked deregulation of the IGF-1 levels. Next, our results revealed that contrary to WT cells, the Gal3-KO microglia failed to proliferate in response to IGF-1. Moreover, the IGF-1-mediated mitogenic microglia response was reduced by N-glycosylation inhibitor tunicamycine while coimmunoprecipitation experiments revealed galectin-3 binding to IGF-receptor 1 (R1), thus suggesting that interaction of galectin-3 with the N-linked glycans of receptors for growth factors is involved in IGF-R1 signaling. While the canonical IGF-1 signaling pathways were not affected, we observed an overexpression of IL-6 and SOCS3, suggesting an overactivation of JAK/STAT3, a shared signaling pathway for IGF-1/IL-6. Together, our findings suggest that galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury.
Collapse
|
71
|
Hadas S, Spira M, Hanisch UK, Reichert F, Rotshenker S. Complement receptor-3 negatively regulates the phagocytosis of degenerated myelin through tyrosine kinase Syk and cofilin. J Neuroinflammation 2012; 9:166. [PMID: 22776089 PMCID: PMC3418574 DOI: 10.1186/1742-2094-9-166] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/07/2012] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Intact myelin, which normally surrounds axons, breaks down in Wallerian degeneration following axonal injury and during neurodegenerative diseases such as multiple sclerosis. Clearance of degenerated myelin by phagocytosis is essential since myelin impedes repair and exacerbates damage. CR3 (complement receptor-3) is a principal phagocytic receptor in myelin phagocytosis. We studied how tyrosine kinase Syk (spleen tyrosine kinase) and cofilin control phagocytosis of degenerated myelin by CR3 in microglia and macrophages. Syk is a non-receptor tyrosine kinase that CR3 recruits to convey cellular functions. Cofilin is an actin-depolymerizing protein that controls F-actin (filamentous actin) remodeling (i.e., disassembly and reassembly) by shifting between active unphosphorylated and inactive phosphorylated states. RESULTS Syk was continuously activated during prolonged phagocytosis. Phagocytosis increased when Syk activity and expression were reduced, suggesting that normally Syk down regulates CR3-mediated myelin phagocytosis. Levels of inactive p-cofilin (phosphorylated cofilin) decreased transiently during prolonged phagocytosis. In contrast, p-cofilin levels decreased continuously when Syk activity and expression were continuously reduced, suggesting that normally Syk advances the inactive state of cofilin. Observations also revealed inverse relationships between levels of phagocytosis and levels of inactive p-cofilin, suggesting that active unphosphorylated cofilin advances phagocytosis. Active cofilin could advance phagocytosis by promoting F-actin remodeling, which supports the production of membrane protrusions (e.g., filopodia), which, as we also revealed, are instrumental in myelin phagocytosis. CONCLUSIONS CR3 both activates and downregulates myelin phagocytosis at the same time. Activation was previously documented. We presently demonstrate that downregulation is mediated through Syk, which advances the inactive phosphorylated state of cofilin. Self-negative control of phagocytosis by the phagocytic receptor can be useful in protecting phagocytes from excessive phagocytosis (i.e., "overeating") during extended exposure to particles that are destined for ingestion.
Collapse
Affiliation(s)
- Smadar Hadas
- Dept. of Medical Neurobiology, IMRIC, Hebrew University Faculty of Medicine, Ein-Kerem, 12272, Jerusalem, 91120, Israel
| | - Maya Spira
- Dept. of Medical Neurobiology, IMRIC, Hebrew University Faculty of Medicine, Ein-Kerem, 12272, Jerusalem, 91120, Israel
- Sheba Medical Center, Ramat-Gan, Israel
| | | | - Fanny Reichert
- Dept. of Medical Neurobiology, IMRIC, Hebrew University Faculty of Medicine, Ein-Kerem, 12272, Jerusalem, 91120, Israel
| | - Shlomo Rotshenker
- Dept. of Medical Neurobiology, IMRIC, Hebrew University Faculty of Medicine, Ein-Kerem, 12272, Jerusalem, 91120, Israel
| |
Collapse
|
72
|
Ferretti MT, Bruno MA, Ducatenzeiler A, Klein WL, Cuello AC. Intracellular Aβ-oligomers and early inflammation in a model of Alzheimer's disease. Neurobiol Aging 2012; 33:1329-42. [DOI: 10.1016/j.neurobiolaging.2011.01.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 01/21/2011] [Accepted: 01/26/2011] [Indexed: 12/21/2022]
|
73
|
Gensel J, Kigerl K, Mandrekar-Colucci S, Gaudet A, Popovich P. Achieving CNS axon regeneration by manipulating convergent neuro-immune signaling. Cell Tissue Res 2012; 349:201-13. [PMID: 22592625 PMCID: PMC10881271 DOI: 10.1007/s00441-012-1425-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 04/02/2012] [Indexed: 12/20/2022]
Abstract
After central nervous system (CNS) trauma, axons have a low capacity for regeneration. Regeneration failure is associated with a muted regenerative response of the neuron itself, combined with a growth-inhibitory and cytotoxic post-injury environment. After spinal cord injury (SCI), resident and infiltrating immune cells (especially microglia/macrophages) contribute significantly to the growth-refractory milieu near the lesion. By targeting both the regenerative potential of the axon and the cytotoxic phenotype of microglia/macrophages, we may be able to improve CNS repair after SCI. In this review, we discuss molecules shown to impact CNS repair by affecting both immune cells and neurons. Specifically, we provide examples of pattern recognition receptors, integrins, cytokines/chemokines, nuclear receptors and galectins that could improve CNS repair. In many cases, signaling by these molecules is complex and may have contradictory effects on recovery depending on the cell types involved or the model studied. Despite this caveat, deciphering convergent signaling pathways on immune cells (which affect axon growth indirectly) and neurons (direct effects on axon growth) could improve repair and recovery after SCI. Future studies must continue to consider how regenerative therapies targeting neurons impact other cells in the pathological CNS. By identifying molecules that simultaneously improve axon regenerative capacity and drive the protective, growth-promoting phenotype of immune cells, we may discover SCI therapies that act synergistically to improve CNS repair and functional recovery.
Collapse
Affiliation(s)
- J.C. Gensel
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - K.A. Kigerl
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - S. Mandrekar-Colucci
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - A.D. Gaudet
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - P.G. Popovich
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| |
Collapse
|
74
|
Lepur A, Carlsson MC, Novak R, Dumić J, Nilsson UJ, Leffler H. Galectin-3 endocytosis by carbohydrate independent and dependent pathways in different macrophage like cell types. Biochim Biophys Acta Gen Subj 2012; 1820:804-18. [PMID: 22450157 DOI: 10.1016/j.bbagen.2012.02.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/27/2012] [Accepted: 02/24/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Galectin-3 (the Mac-2 antigen) is abundantly expressed in both macrophage like cells and certain non-macrophage cells. We have studied endocytosis of galectin-3 as one important step relevant for its function, and compared it between variants of a macrophage like cell line, and non-macrophage cells. METHODS Endocytosis of galectin-3 was observed by fluorescence microscopy and measured by flow cytometry. The endocytosis mechanism was analysed using galectin-3 mutants, galectin-3 inhibitors and endocytic pathways inhibitors in the human leukaemia THP-1 cell line differentiated into naïve (M0), classical (M1) or alternatively activated (M2) macrophage like cells, and the non-macrophage cell lines HFL-1 fibroblasts and SKBR3 breast carcinoma. RESULTS Galectin-3 endocytosis in non-macrophage cells and M2 cells was blocked by lactose and a potent galectin-3 inhibitor TD139, and also by the R186S mutation in the galectin-3 carbohydrate recognition domain (CRD). In M1 cells galectin-3 endocytosis could be inhibited only by chlorpromazine and by interference with the non-CRD N-terminal part of galectin-3. In all the cell types galectin-3 entered early endosomes within 5-10 min, to be subsequently targeted mainly to non-degradative vesicles, where it remained even after 24 h. CONCLUSIONS Galectin-3 endocytosis in M1 cells is receptor mediated and carbohydrate independent, while in M2 cells it is CRD mediated, although the non-CRD galectin-3 domain is also involved. General significance The demonstration that galectin-3 endocytosis in M1 macrophages is carbohydrate independent and different from M2 macrophages and non-macrophage cells, suggests novel, immunologically significant interactions between phagocytic cells, galectin-3 and its ligands.
Collapse
Affiliation(s)
- Adriana Lepur
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, 223 62 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
75
|
Murgas P, Godoy B, von Bernhardi R. Aβ potentiates inflammatory activation of glial cells induced by scavenger receptor ligands and inflammatory mediators in culture. Neurotox Res 2012; 22:69-78. [PMID: 22237943 DOI: 10.1007/s12640-011-9306-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 12/23/2011] [Accepted: 12/29/2011] [Indexed: 12/11/2022]
Abstract
Alzheimer disease (AD) is a neurodegenerative disorder characterized by the accumulation of β amyloid (Aβ) aggregates. Aβ induces the inflammatory activation of glia, inducing secretion of Interleukin 1β (IL1β), nitric oxide (NO) and superoxide radicals. The specific receptor responsible for the induction of inflammatory activation by Aβ, is still an open question. We propose that scavenger receptors (SR) participate in the activation of glia by Aβ. We assessed production of NO, synthesis of IL1β and activation of ERK, JNK and NF-κB signaling pathways by Western blot, in primary rat glial cultures exposed to SR ligands (fucoidan and Poly I), LPS + IFNγ (LI), and Aβ. Poly I but not fucoidan nor fibrillar Aβ increased threefold NO production by astrocytes in a time-dependent manner. Fucoidan and Poly I increased 5.5- and 3.5-fold NO production by microglia, and co-stimulation with Aβ increased an additional 60% NO induced by SR ligands. Potentiation by Aβ was observed later for astrocytes than for microglia. In astrocytes, co-stimulation with Aβ potentiated ERK and JNK activation in response to Fucoidan and Poly I, whereas it reduced induction of JNK activation by LI and left unaffected NF-κB activation induced by LI. Levels of pro-IL1β in astrocytes increased with Aβ, SR ligands and LI, and were potentiated by co-stimulation with Aβ. Our results suggest that SRs play a role on inflammatory activation, inducing production of NO and IL1β, and show potentiation by Aβ. Potentiation of the inflammatory response of Aβ could be meaningful for the activation of glia observed in AD.
Collapse
Affiliation(s)
- P Murgas
- Laboratory of Neuroscience, Department of Neurology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | | | | |
Collapse
|
76
|
Animal Models of MS Reveal Multiple Roles of Microglia in Disease Pathogenesis. Neurol Res Int 2011; 2011:383087. [PMID: 22203900 PMCID: PMC3238412 DOI: 10.1155/2011/383087] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/05/2011] [Accepted: 09/05/2011] [Indexed: 12/25/2022] Open
Abstract
Multiple sclerosis (MS) is a progressive inflammatory and demyelinating disease that affects more than 2.5 million people worldwide every year. Current therapies use mostly disease-modifying drugs, focusing on blocking and regulating systemic functions and the central nervous system (CNS) infiltration of immune cells; however, these therapies only attenuate or delay MS symptoms, but are not effective in halting the disease progression. More recent evidence indicated that regulation of inflammation within the CNS might be a better way to approach the treatment of the disease and microglia, the resident immune cells, may be a promising target of therapeutic studies. Microglia activation classically accompanies MS development, and regulation of microglia function changes the outcome of the disease. In this paper, we review the contributions of microglia to MS pathogenesis and discuss microglial functions in antigen presentation, cytokine release, and phagocytosis. We describe data both from animal and human studies. The significant impact of the timing, intensity, and differentiation fate of activated microglia is discussed, as they can modulate MS outcomes and potentially be critically modified for future therapeutic studies.
Collapse
|
77
|
Hanke ML, Kielian T. Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci (Lond) 2011; 121:367-87. [PMID: 21745188 PMCID: PMC4231819 DOI: 10.1042/cs20110164] [Citation(s) in RCA: 384] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The discovery of mammalian TLRs (Toll-like receptors), first identified in 1997 based on their homology with Drosophila Toll, greatly altered our understanding of how the innate immune system recognizes and responds to diverse microbial pathogens. TLRs are evolutionarily conserved type I transmembrane proteins expressed in both immune and non-immune cells, and are typified by N-terminal leucine-rich repeats and a highly conserved C-terminal domain termed the TIR [Toll/interleukin (IL)-1 receptor] domain. Upon stimulation with their cognate ligands, TLR signalling elicits the production of cytokines, enzymes and other inflammatory mediators that can have an impact on several aspects of CNS (central nervous system) homoeostasis and pathology. For example, TLR signalling plays a crucial role in initiating host defence responses during CNS microbial infection. Furthermore, TLRs are targets for many adjuvants which help shape pathogen-specific adaptive immune responses in addition to triggering innate immunity. Our knowledge of TLR expression and function in the CNS has greatly expanded over the last decade, with new data revealing that TLRs also have an impact on non-infectious CNS diseases/injury. In particular, TLRs recognize a number of endogenous molecules liberated from damaged tissues and, as such, influence inflammatory responses during tissue injury and autoimmunity. In addition, recent studies have implicated TLR involvement during neurogenesis, and learning and memory in the absence of any underlying infectious aetiology. Owing to their presence and immune-regulatory role within the brain, TLRs represent an attractive therapeutic target for numerous CNS disorders and infectious diseases. However, it is clear that TLRs can exert either beneficial or detrimental effects in the CNS, which probably depend on the context of tissue homoeostasis or pathology. Therefore any potential therapeutic manipulation of TLRs will require an understanding of the signals governing specific CNS disorders to achieve tailored therapy.
Collapse
Affiliation(s)
- Mark L. Hanke
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
78
|
Rotshenker S. Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflammation 2011; 8:109. [PMID: 21878125 PMCID: PMC3179447 DOI: 10.1186/1742-2094-8-109] [Citation(s) in RCA: 346] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 08/30/2011] [Indexed: 12/23/2022] Open
Abstract
Traumatic injury to peripheral nerves results in the loss of neural functions. Recovery by regeneration depends on the cellular and molecular events of Wallerian degeneration that injury induces distal to the lesion site, the domain through which severed axons regenerate back to their target tissues. Innate-immunity is central to Wallerian degeneration since innate-immune cells, functions and molecules that are produced by immune and non-immune cells are involved. The innate-immune response helps to turn the peripheral nerve tissue into an environment that supports regeneration by removing inhibitory myelin and by upregulating neurotrophic properties. The characteristics of an efficient innate-immune response are rapid onset and conclusion, and the orchestrated interplay between Schwann cells, fibroblasts, macrophages, endothelial cells, and molecules they produce. Wallerian degeneration serves as a prelude for successful repair when these requirements are met. In contrast, functional recovery is poor when injury fails to produce the efficient innate-immune response of Wallerian degeneration.
Collapse
Affiliation(s)
- Shlomo Rotshenker
- Dept. of Medical Neurobiology, IMRIC, Hebrew University, Faculty of Medicine, Jerusalem, Israel.
| |
Collapse
|
79
|
Abstract
Microglial cells are the resident macrophages in the central nervous system. These cells of mesodermal/mesenchymal origin migrate into all regions of the central nervous system, disseminate through the brain parenchyma, and acquire a specific ramified morphological phenotype termed "resting microglia." Recent studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains. By a large number of signaling pathways they can communicate with macroglial cells and neurons and with cells of the immune system. Likewise, microglial cells express receptors classically described for brain-specific communication such as neurotransmitter receptors and those first discovered as immune cell-specific such as for cytokines. Microglial cells are considered the most susceptible sensors of brain pathology. Upon any detection of signs for brain lesions or nervous system dysfunction, microglial cells undergo a complex, multistage activation process that converts them into the "activated microglial cell." This cell form has the capacity to release a large number of substances that can act detrimental or beneficial for the surrounding cells. Activated microglial cells can migrate to the site of injury, proliferate, and phagocytose cells and cellular compartments.
Collapse
|
80
|
Wisor JP, Schmidt MA, Clegern WC. Evidence for neuroinflammatory and microglial changes in the cerebral response to sleep loss. Sleep 2011; 34:261-72. [PMID: 21358843 DOI: 10.1093/sleep/34.3.261] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
STUDY OBJECTIVES Sleep loss has pro-inflammatory effects, but the roles of specific cell populations in mediating these effects have not been delineated. We assessed the modulation of the electroencephalographic and molecular responses to sleep deprivation (S-DEP) by minocycline, a compound that attenuates microglial activation occurring in association with neuroinflammatory events. DESIGN Laboratory rodents were subjected to assessment of sleep and wake in baseline and sleep deprived conditions. PARTICIPANTS Adult male CD-1 mice (30-35 g) subjected to telemetric electroencephalography. INTERVENTIONS Minocycline was administered daily. Mice were subjected to baseline data collection on the first day of minocycline administration and, on subsequent days, 2 S-DEP sessions, 1 and 3 h in duration, followed by recovery sleep. Following EEG studies, mice were euthanized either at the end of a 3 h S-DEP or as time-of day controls for sampling of brain messenger RNAs. Gene expression was measured by real-time polymerase chain reaction. MEASUREMENTS AND RESULTS Minocycline-treated mice exhibited a reduction in time spent asleep, relative to saline-treated mice, in the 3-h interval immediately after administration. S-DEP resulted in an increase in EEG slow wave activity relative to baseline in saline-treated mice. This response to S-DEP was abolished in animals subjected to chronic minocycline administration. S-DEP suppressed the expression of the microglial-specific transcript cd11b and the neuroinflammation marker peripheral benzodiazepine receptor, in the brain at the mRNA level. Minocycline attenuated the elevation of c-fos expression by S-DEP. Brain levels of pro-inflammatory cytokine mRNAs interleukin-1β (il-1β), interleukin-6 (il-6), and tumor necrosis factor-α (tnfα) were unaffected by S-DEP, but were elevated in minocycline-treated mice relative to saline-treated mice. CONCLUSIONS The anti-neuroinflammatory agent minocycline prevents either the buildup or expression of sleep need in rodents. The molecular mechanism underlying this effect is not known, but it is not mediated by suppression of il-1β, il-6, and tnfα at the transcript level.
Collapse
Affiliation(s)
- Jonathan P Wisor
- WWAMI Medical Education Program and Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Spokane, WA, USA.
| | | | | |
Collapse
|
81
|
Wang CY, Chen JK, Wu YT, Tsai MJ, Shyue SK, Yang CS, Tzeng SF. Reduction in antioxidant enzyme expression and sustained inflammation enhance tissue damage in the subacute phase of spinal cord contusive injury. J Biomed Sci 2011; 18:13. [PMID: 21299884 PMCID: PMC3040708 DOI: 10.1186/1423-0127-18-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 02/07/2011] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) forms a disadvantageous microenvironment for tissue repair at the lesion site. To consider an appropriate time window for giving a promising therapeutic treatment for subacute and chronic SCI, global changes of proteins in the injured center at the longer survival time points after SCI remains to be elucidated. METHODS Through two-dimensional electrophoresis (2DE)-based proteome analysis and western blotting, we examined the differential expression of the soluble proteins isolated from the lesion center (LC) at day 1 (acute) and day 14 (subacute) after a severe contusive injury to the thoracic spinal cord at segment 10. In situ apoptotic analysis was used to examine cell apoptosis in injured spinal cord after adenoviral gene transfer of antioxidant enzymes. In addition, administration of chondroitinase ABC (chABC) was performed to analyze hindlimb locomotor recovery in rats with SCI using Basso, Beattie and Bresnahan (BBB) locomotor rating scale. RESULTS Our results showed a decline in catalase (CAT) and Mn-superoxide dismutase (MnSOD) found at day 14 after SCI. Accordingly, gene transfer of SOD was introduced in the injured spinal cord and found to attenuate cell apoptosis. Galectin-3, β-actin, actin regulatory protein (CAPG), and F-actin-capping protein subunit β (CAPZB) at day 14 were increased when compared to that detected at day 1 after SCI or in sham-operated control. Indeed, the accumulation of β-actin+ immune cells was observed in the LC at day 14 post SCI, while most of reactive astrocytes were surrounding the lesion center. In addition, chondroitin sulfate proteoglycans (CSPG)-related proteins with 40-kDa was detected in the LC at day 3-14 post SCI. Delayed treatment with chondroitinase ABC (chABC) at day 3 post SCI improved the hindlimb locomotion in SCI rats. CONCLUSIONS Our findings demonstrate that the differential expression in proteins related to signal transduction, oxidoreduction and stress contribute to extensive inflammation, causing time-dependent spread of tissue damage after severe SCI. The interventions by supplement of anti-oxidant enzymes right after SCI or delayed administration with chABC can facilitate spinal neural cell survival and tissue repair.
Collapse
Affiliation(s)
- Chih-Yen Wang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
82
|
Redensek A, Rathore KI, Berard JL, López-Vales R, SWAYNE LA, Bennett SA, Mohri I, Taniike M, Urade Y, David S. Expression and detrimental role of hematopoietic prostaglandin D synthase in spinal cord contusion injury. Glia 2011; 59:603-14. [DOI: 10.1002/glia.21128] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 11/30/2010] [Indexed: 01/03/2023]
|
83
|
Farfel-Becker T, Vitner EB, Pressey SNR, Eilam R, Cooper JD, Futerman AH. Spatial and temporal correlation between neuron loss and neuroinflammation in a mouse model of neuronopathic Gaucher disease. Hum Mol Genet 2011; 20:1375-86. [DOI: 10.1093/hmg/ddr019] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
84
|
Myelination transition zone astrocytes are constitutively phagocytic and have synuclein dependent reactivity in glaucoma. Proc Natl Acad Sci U S A 2011; 108:1176-81. [PMID: 21199938 DOI: 10.1073/pnas.1013965108] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Optic nerve head (ONH) astrocytes have been proposed to play both protective and deleterious roles in glaucoma. We now show that, within the postlaminar ONH myelination transition zone (MTZ), there are astrocytes that normally express Mac-2 (also known as Lgals3 or galectin-3), a gene typically expressed only in phagocytic cells. Surprisingly, even in healthy mice, MTZ and other ONH astrocytes constitutive internalize large axonal evulsions that contain whole organelles. In mouse glaucoma models, MTZ astrocytes further up-regulate Mac-2 expression. During glaucomatous degeneration, there are dystrophic processes in the retina and optic nerve, including the MTZ, which contain protease resistant γ-synuclein. The increased Mac-2 expression by MTZ astrocytes during glaucoma likely depends on this γ-synuclein, as mice lacking γ-synuclein fail to up-regulate Mac-2 at the MTZ after elevation of intraocular pressure. These results suggest the possibility that a newly discovered normal degradative pathway for axons might contribute to glaucomatous neurodegeneration.
Collapse
|
85
|
Cerliani JP, Stowell SR, Mascanfroni ID, Arthur CM, Cummings RD, Rabinovich GA. Expanding the universe of cytokines and pattern recognition receptors: galectins and glycans in innate immunity. J Clin Immunol 2010; 31:10-21. [PMID: 21184154 DOI: 10.1007/s10875-010-9494-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 12/03/2010] [Indexed: 12/31/2022]
Abstract
Effective immunity relies on the recognition of pathogens and tumors by innate immune cells through diverse pattern recognition receptors (PRRs) that lead to initiation of signaling processes and secretion of pro- and anti-inflammatory cytokines. Galectins, a family of endogenous lectins widely expressed in infected and neoplastic tissues have emerged as part of the portfolio of soluble mediators and pattern recognition receptors responsible for eliciting and controlling innate immunity. These highly conserved glycan-binding proteins can control immune cell processes through binding to specific glycan structures on pathogens and tumors or by acting intracellularly via modulation of selective signaling pathways. Recent findings demonstrate that various galectin family members influence the fate and physiology of different innate immune cells including polymorphonuclear neutrophils, mast cells, macrophages, and dendritic cells. Moreover, several pathogens may actually utilize galectins as a mechanism of host invasion. In this review, we aim to highlight and integrate recent discoveries that have led to our current understanding of the role of galectins in host-pathogen interactions and innate immunity. Challenges for the future will embrace the rational manipulation of galectin-glycan interactions to instruct and shape innate immunity during microbial infections, inflammation, and cancer.
Collapse
Affiliation(s)
- Juan P Cerliani
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
86
|
Effects of combinatorial treatment with pituitary adenylate cyclase activating peptide and human mesenchymal stem cells on spinal cord tissue repair. PLoS One 2010; 5:e15299. [PMID: 21187959 PMCID: PMC3004866 DOI: 10.1371/journal.pone.0015299] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 11/10/2010] [Indexed: 12/11/2022] Open
Abstract
The aim of this study is to understand if human mesenchymal stem cells (hMSCs) and neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) have synergistic protective effect that promotes functional recovery in rats with severe spinal cord injury (SCI). To evaluate the effect of delayed combinatorial therapy of PACAP and hMSCs on spinal cord tissue repair, we used the immortalized hMSCs that retain their potential of neuronal differentiation under the stimulation of neurogenic factors and possess the properties for the production of several growth factors beneficial for neural cell survival. The results indicated that delayed treatment with PACAP and hMSCs at day 7 post SCI increased the remaining neuronal fibers in the injured spinal cord, leading to better locomotor functional recovery in SCI rats when compared to treatment only with PACAP or hMSCs. Western blotting also showed that the levels of antioxidant enzymes, Mn-superoxide dismutase (MnSOD) and peroxiredoxin-1/6 (Prx-1 and Prx-6), were increased at the lesion center 1 week after the delayed treatment with the combinatorial therapy when compared to that observed in the vehicle-treated control. Furthermore, in vitro studies showed that co-culture with hMSCs in the presence of PACAP not only increased a subpopulation of microglia expressing galectin-3, but also enhanced the ability of astrocytes to uptake extracellular glutamate. In summary, our in vivo and in vitro studies reveal that delayed transplantation of hMSCs combined with PACAP provides trophic molecules to promote neuronal cell survival, which also foster beneficial microenvironment for endogenous glia to increase their neuroprotective effect on the repair of injured spinal cord tissue.
Collapse
|
87
|
Son JL, Soto I, Oglesby E, Lopez-Roca T, Pease ME, Quigley HA, Marsh-Armstrong N. Glaucomatous optic nerve injury involves early astrocyte reactivity and late oligodendrocyte loss. Glia 2010; 58:780-9. [PMID: 20091782 DOI: 10.1002/glia.20962] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glaucoma, a neurodegenerative disease affecting retinal ganglion cells (RGC), is a leading cause of blindness. Since gliosis is common in neurodegenerative disorders, it is important to describe the changes occurring in various glial populations in glaucoma animal models in relation to axon loss, as only changes that occur early are likely to be useful therapeutic targets. Here, we describe changes occurring in glia within the myelinated portion of the optic nerve (ON) in both DBA/2J mice and in a rat ocular hypertension model. In both glaucoma animal models, we found only a modest loss of oligodendrocytes that occurred after axons had already degenerated. In DBA/2J mice there was proliferation of oligodendrocyte precursor cells (OPCs) and new oligodendrocyte generation. Activation of microglia was detected only in highly degenerated DBA/2J ONs. In contrast, a large increase in astrocyte reactivity occurred early in both animal models. These results are consistent with astrocytes playing a prominent role in regulating axon loss in glaucoma.
Collapse
Affiliation(s)
- Janice L Son
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
88
|
Venkatesan C, Chrzaszcz M, Choi N, Wainwright MS. Chronic upregulation of activated microglia immunoreactive for galectin-3/Mac-2 and nerve growth factor following diffuse axonal injury. J Neuroinflammation 2010; 7:32. [PMID: 20507613 PMCID: PMC2891720 DOI: 10.1186/1742-2094-7-32] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 05/27/2010] [Indexed: 01/01/2023] Open
Abstract
Background Diffuse axonal injury in patients with traumatic brain injury (TBI) can be associated with morbidity ranging from cognitive difficulties to coma. Magnetic resonance imaging scans now allow early detection of axonal injury following TBI, and have linked cognitive disability in these patients to white matter signal changes. However, little is known about the pathophysiology of this white matter injury, and the role of microglial activation in this process. It is increasingly recognized that microglia constitute a heterogeneous population with diverse roles following injury. In the present studies, we tested the hypothesis that following diffuse axonal injury involving the corpus callosum, there is upregulation of a subpopulation of microglia that express the lectin galectin-3/Mac-2 and are involved in myelin phagocytosis. Methods Adult mice were subject to midline closed skull injury or sham operation and were sacrificed 1, 8, 14 or 28 days later. Immunohistochemistry and immunofluorescence techniques were used to analyze patterns of labelling within the corpus callosum qualitatively and quantitatively. Results Activated microglia immunoreactive for galectin-3/Mac-2 were most abundant 1 day following injury. Their levels were attenuated at later time points after TBI but still were significantly elevated compared to sham animals. Furthermore, the majority of galectin-3/Mac-2+ microglia were immunoreactive for nerve growth factor in both sham and injured animals. Conclusions Our results suggest that galectin-3/Mac-2+ microglia play an important role in the pathogenesis of diffuse axonal injury both acutely and chronically and that they mediate their effects, at least in part by releasing nerve growth factor.
Collapse
Affiliation(s)
- Charu Venkatesan
- Division of Neurology, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA.
| | | | | | | |
Collapse
|
89
|
Nio-Kobayashi J, Iwanaga T. Differential cellular localization of galectin-1 and galectin-3 in the regressing corpus luteum of mice and their possible contribution to luteal cell elimination. J Histochem Cytochem 2010; 58:741-9. [PMID: 20421595 DOI: 10.1369/jhc.2010.956227] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Galectin-1 and galectin-3, beta-galactoside-binding lectins, are predominantly expressed in the regressing corpus luteum (CL) of mouse ovary. This study revealed the expression patterns and cellular localizations of galectins during CL formation and regression by ISH and IHC. Galectin-1 mRNA expression temporarily increased in active CL, preceding the expression of progesterone degradation enzyme 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD), which represents functional luteolysis. The expressions of both galectin-1 and galectin-3 remarkably increased in the structurally regressing CL, which vigorously expressed 20alpha-HSD and contained abundant apoptotic luteal cells. Ultrastructurally, galectin-1- and galectin-3-immunoreactive cells were identified as fibroblasts and infiltrating macrophages, respectively. In addition, some populations of luteal cells themselves expressed galectin-3 in regressing CL and formed unique demarcation membranes in the cytoplasm, showing a non-typical apoptotic feature. Ovary of adult mice with repeated estrus cycles contained CL of three different generations. Among them, the old CL formed during previous estrus cycles consisted of galectin-3-positive luteal cells. The galectin-3-positive old CL was resistant to apoptosis and seemed to be eliminated by a mechanism different from apoptosis. The stage- and cell-specific expression of galectin in CL suggests its differential contribution to luteolysis, and this expression may be mediated by major regulatory molecules of CL function, prolactin and/or prostaglandin F2alpha.
Collapse
Affiliation(s)
- Junko Nio-Kobayashi
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan.
| | | |
Collapse
|
90
|
Gitik M, Reichert F, Rotshenker S. Cytoskeleton plays a dual role of activation and inhibition in myelin and zymosan phagocytosis by microglia. FASEB J 2010; 24:2211-21. [PMID: 20179145 DOI: 10.1096/fj.09-146118] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A major innate immune function of microglia in the central nervous system is receptor-mediated phagocytosis of tissue debris and pathogens. We studied how phagocytosis of degenerated myelin (i.e., tissue debris) and zymosan (i.e., yeast pathogen) is regulated by the cytoskeleton through myosin light chain kinase (MLCK) and the small GTPase Rho and its effector Rho-kinase (ROCK) in primary mouse microglia. Our observations suggest a dual role of activation and inhibition of phagocytosis by MLCK and Rho/ROCK signaling. MLCK activated, whereas Rho/ROCK down-regulated complement receptor-3 (CR3) mediated, phagocytosis of C3bi-opsonized and nonopsonized myelin. These opposing roles of MLCK and Rho/ROCK depended on the preferential spatial localization of their distinctive functions. MLCK further activated, and Rho/ROCK down-regulated, phagocytosis of nonopsonized zymosan by nonopsonic receptors (e.g., Dectin-1). In contrast, MLCK down-regulated, but Rho/ROCK activated, CR3-mediated phagocytosis of C3bi-opsonized zymosan. Thus MLCK and Rho/ROCK can each activate or inhibit phagocytosis but always act in opposition. Whether activation or inhibition occurs depends on the nature of the phagocytosed particle (C3bi-opsonized or nonopsonized myelin or zymosan) and the receptors mediating each phagocytosis.
Collapse
Affiliation(s)
- Miri Gitik
- Department of Medical Neurobiology, Hebrew University-Hadassah Medical School, P.O.B. 12272, Jerusalem 91120, Israel
| | | | | |
Collapse
|
91
|
|
92
|
Armien AG, Hu S, Little MR, Robinson N, Lokensgard JR, Low WC, Cheeran MCJ. Chronic cortical and subcortical pathology with associated neurological deficits ensuing experimental herpes encephalitis. Brain Pathol 2009; 20:738-50. [PMID: 20002440 DOI: 10.1111/j.1750-3639.2009.00354.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Long-term neurological sequela is common among herpes simplex encephalitis (HSE) survivors. Animal models for HSE are used to investigate mechanisms of acute disease, but little has been done to model chronic manifestations of HSE. The current study presents a detailed, systematic analysis of chronic neuropathology, including characterization of topography and sequential progression of degenerative lesions and inflammation. Subsequent to intranasal HSV-1 infection, inflammatory responses that were temporally and spatially distinct persisted in infected cortical and brain stem regions. Neutrophils were present exclusively within the olfactory bulb and brain stem regions during the acute phase of infection, while the chronic inflammation was marked by plasma cells, lymphocytes and activated microglia. The chronic lymphocytic infiltrate, cytokine production, and activated microglia were associated with the loss of cortical neuropile in the entorhinal cortex and hippocampus. Animals surviving the acute infection showed a spectrum of chronic lesions from decreased brain volume, neuronal loss, activated astrocytes, and glial scar formation to severe atrophy and cavitations of the cortex. These lesions were also associated with severe spatial memory deficits in surviving animals. Taken together, this model can be utilized to further investigate the mechanisms of neurological defects that follow in the wake of HSE.
Collapse
Affiliation(s)
- Anibal G Armien
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, MN, USA
| | | | | | | | | | | | | |
Collapse
|