51
|
Tariq M, Waseem M, Rasool MH, Zahoor MA, Hussain I. Isolation and molecular characterization of the indigenous Staphylococcus aureus strain K1 with the ability to reduce hexavalent chromium for its application in bioremediation of metal-contaminated sites. PeerJ 2019; 7:e7726. [PMID: 31616584 PMCID: PMC6791339 DOI: 10.7717/peerj.7726] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/22/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Urbanization and industrialization are the main anthropogenic activities that are adding toxic heavy metals to the environment. Among these, chromium (in hexavalent: Cr+6 and/or trivalent Cr+3) is being released abundantly in wastewater due to its uses in different industrial processes. It becomes highly mutagenic and carcinogenic once it enters the cell through sulfate uptake pathways after interacting with cellular proteins and nucleic acids. However, Cr+6 can be bio-converted into more stable, less toxic and insoluble trivalent chromium using microbes. Hence in this study, we have made efforts to utilize chromium tolerant bacteria for bio-reduction of Cr+6 to Cr+3. METHODS Bacterial isolate, K1, from metal contaminated industrial effluent from Kala Shah Kaku-Lahore Pakistan, which tolerated up to 22 mM of Cr6+ was evaluated for chromate reduction. It was further characterized biochemically and molecularly by VITEK®2 system and 16S rRNA gene sequencing respectively. Other factors affecting the reduction of chromium such as initial chromate ion concentration, pH, temperature, contact-time were also investigated. The role of cellular surface in sorption of Cr6+ ion was analyzed by FTIR spectroscopy. RESULTS Both biochemical and phylogenetic analyses confirmed that strain K1 was Staphylococcusaureus that could reduce 99% of Cr6+ in 24 hours at 35 °C (pH = 8.0; initial Cr6+ concentration = 100 mg/L). FTIR results assumed that carboxyl, amino and phosphate groups of cell wall were involved in complexation with chromium. Our results suggested that Staphylococcusaureus K1 could be a promising gram-positive bacterium that might be utilized to remove chromium from metal polluted environments.
Collapse
Affiliation(s)
- Muhammad Tariq
- Department of Microbiology, Government College University, Faisalabad, Punjab, Pakistan
| | - Muhammad Waseem
- Department of Microbiology, Government College University, Faisalabad, Punjab, Pakistan
| | | | - Muhammad Asif Zahoor
- Department of Microbiology, Government College University, Faisalabad, Punjab, Pakistan
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, The Lahore University of Management Sciences (LUMS), Lahore, Punjab, Pakistan
| |
Collapse
|
52
|
Chang J, Deng S, Liang Y, Chen J. Cr(VI) removal performance from aqueous solution by Pseudomonas sp. strain DC-B3 isolated from mine soil: characterization of both Cr(VI) bioreduction and total Cr biosorption processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28135-28145. [PMID: 31363968 DOI: 10.1007/s11356-019-06017-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Microbial methods are promising and environmentally friendly methods for remediating heavy metal contamination. In this study, a Cr(VI)-resistant bacterial strain, DC-B3, which was identified as Pseudomonas sp. by 16S rDNA gene sequencing, was isolated from heavy metal-contaminated mine soil, and its performance in Cr(VI) removal from wastewater in terms of Cr(VI) reduction and total Cr adsorption was assessed. This strain exhibited a high capability to reduce Cr(VI) to less toxic Cr(III) without the addition of an external electron donor at low pH (2.0). The Cr(VI) reduction capacity and rate both increased linearly with increasing Cr(VI) concentration, with a reduction capacity of 32.0 mg Cr(VI)·g-1 achieved at an initial concentration of 135.0 mg L-1 over 75 h. In addition, 41.0% of the total Cr was removed from the solution by biosorption, and equilibrium was reached within approximately 5 h. The total Cr sorption process was well described by the pseudo-second-order kinetic and Langmuir isotherm models. Desorption assays indicated that NaOH was the most efficient agent for total Cr desorption, and Cr(VI) and generated Cr(III) were both loaded on the DC-B3 biomass. The bacterial cells after Cr treatment were characterized by scanning electron microscopy-energy dispersive X-ray spectrometer and Fourier transform infrared spectroscopy analyses. Strain DC-B3 showed high potential for possible application in the remediation of Cr(VI) contamination in mine areas.
Collapse
Affiliation(s)
- Junjun Chang
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, People's Republic of China
| | - Shengjiong Deng
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, People's Republic of China
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yun Liang
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, People's Republic of China
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jinquan Chen
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
53
|
Huang XN, Min D, Liu DF, Cheng L, Qian C, Li WW, Yu HQ. Formation mechanism of organo-chromium (III) complexes from bioreduction of chromium (VI) by Aeromonas hydrophila. ENVIRONMENT INTERNATIONAL 2019; 129:86-94. [PMID: 31121519 DOI: 10.1016/j.envint.2019.05.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Chromium is a common heavy metal widely present in aquatic environments. Cost-effective remediation of chromium-contaminated environment can be realized by microbial reduction of Cr(VI) to Cr(III). The genus Aeromonas species is one of such Cr(VI) reducers, whose reduction mechanism remains unrevealed and the main factors governing the Cr(VI) reduction pathways are unknown yet. In this work, the performances and mechanisms of Cr(VI) anaerobic reduction by Aeromonas hydrophila ATCC 7966 were investigated. This strain exhibited excellent Cr(VI) resistance and could utilize a suite of electron donors to support Cr(VI) bioreduction. The Cr(VI) bioreduction processes involved both extracellular (the metal-reducing and respiratory pathway) and intracellular reaction pathways. Adding anthraquinone-2,6-disulfonate or humic acid as a mediator substantially enhanced the Cr(VI) bioreduction. The forms and distribution of the Cr(VI) bioreduction products were affected by the medium composition. Soluble organo-Cr(III) complexes were identified as the main Cr(VI) reduction products when basal salts medium was adopted. Given the environmental ubiquity of the genus Aeromonas, the findings in this work may facilitate a better understanding about the transformation behaviors and fates of Cr(VI) in environments and provide useful clues to tune the bioremediation of chromium-contaminated environments.
Collapse
Affiliation(s)
- Xue-Na Huang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Lei Cheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Chen Qian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
54
|
Shah S, Damare S. Proteomic response of marine-derived Staphylococcus cohnii #NIOSBK35 to varying Cr(vi) concentrations. Metallomics 2019; 11:1465-1471. [PMID: 31237606 DOI: 10.1039/c9mt00089e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chromium in its hexavalent state is a water-soluble and toxic element to living organisms present in the environment. However, some organisms are resistant and reduce the toxic forms of Cr(vi) to less toxic or non-toxic forms. A global proteomic analysis of Staphylococcus sp. #NIOSBK35 under different chromate concentrations (0, 100, 200 and 300 mg L-1) at different time points in its growth stages (6, 9, 12, 18, 24 and 36 h) resulted in the identification of 878 proteins. Of all the proteins expressed, 13 proteins [23 rDNA (uracil-5-) methyltransferase RumA, multidrug ABC transporter ATP binding protein, dihydroxy acid dehydratase, polysaccharide biosynthesis protein, etc.] were expressed only in the presence of chromium. 14 proteins were up-regulated in response to chromium(vi), namely, alkyl hydroperoxide reductase, ATP-dependent Zn metallopeptidase, hsp90- like protein, NAD (P)-dependent oxidoreductase, etc. Most of the proteins involved in normal cell functioning like 1-pyrroline-5-carboxylate dehydrogenase, ribosomal proteins (30S ribosomal protein S11, 30S ribosomal protein S2, and 50S ribosomal protein L32), aconitate hydratase, DNA primase, serine-tRNA ligase, phosphoenolpyruvate-protein phosphotransferase, enolase, sulfur transferase FdhD, etc. were found to be down-regulated. On grouping these proteins into their COG (cluster of orthologous groups) functional categories, they were found to be involved in translation, carbohydrate metabolism, stress proteins, amino acid transport and membrane transport mechanisms. The proteomic response given by Staphylococcus sp. #NIOSBK35 did not show expression of Cr-specific proteins, indicating a different mechanism of Cr-tolerance as the organism was able to survive and grow at high concentrations of Cr(vi).
Collapse
Affiliation(s)
- Shruti Shah
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Dona Paula, Goa 403004, India.
| | - Samir Damare
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Dona Paula, Goa 403004, India.
| |
Collapse
|
55
|
Artificial Neural Networks (ANNs) and Response Surface Methodology (RSM) Approach for Modelling the Optimization of Chromium (VI) Reduction by Newly Isolated Acinetobacter radioresistens Strain NS-MIE from Agricultural Soil. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5785387. [PMID: 31240217 PMCID: PMC6556361 DOI: 10.1155/2019/5785387] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/16/2019] [Accepted: 04/30/2019] [Indexed: 12/30/2022]
Abstract
Numerous technologies and approaches have been used in the past few decades to remove hexavalent chromium (Cr[VI]) in wastewater and the environment. However, these conventional technologies are not economical and efficient in removing Cr(VI) at a very low concentration (1-100 ppm). As an alternative, the utilization of bioremediation techniques which uses the potential of microorganisms could represent an effective technique for the detoxification of Cr(VI). In this study, we reported a newly isolated bacterium identified as Acinetobacter radioresistens sp. NS-MIE from Malaysian agricultural soil. The chromate reduction potential of strain NS-MIE was optimized using RSM and ANN techniques. The optimum condition predicted by RSM for the bacterium to reduce hexavalent chromium occurred at pH 6, 10 g/L ppm of nutrient broth (NB) concentration and 100 ppm of chromate concentration while the optimum condition predicted by ANN is at pH 6 and 10 g/L of NB concentration and of 60 ppm of chromate concentration with chromate reduction (%) of 75.13 % and 96.27 %, respectively. The analysis by the ANN model shows better prediction data with a higher R2 value of 0.9991 and smaller average absolute deviation (AAD) and root mean square error (RMSE) of 0.33 % and 0.302 %, respectively. Validation analysis showed the predicted values by RSM and ANN were close to the validation values, whereas the ANN showed the lowest deviation, 2.57%, compared to the RSM. This finding suggests that the ANN showed a better prediction and fitting ability compared to the RSM for the nonlinear regression analysis. Based on this study, A. radioresistens sp. NS-MIE exhibits strong potential characteristics as a candidate for the bioremediation of hexavalent chromium in the environment.
Collapse
|
56
|
Pereira EJ, Ramaiah N. Chromate detoxification potential of Staphylococcus sp. isolates from an estuary. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:457-466. [PMID: 30969406 DOI: 10.1007/s10646-019-02038-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/19/2019] [Indexed: 05/14/2023]
Abstract
Chromium (Cr) pollution is an emerging environmental problem. The present study was carried out to isolate Cr-resistant bacteria and characterize their Cr detoxification and resistance ability. Bacteria screened by exposure to chromate (Cr6+) were isolated from Mandovi estuary Goa, India. Two isolates expressed high resistance to Cr6+ (MIC ≥ 300 µg mL-1), Cr3+ (MIC ≥ 900 µg mL-1), other toxic heavy metals and displayed a pattern of resistance to cephalosporins and ß-lactams. Biochemical and 16 S rRNA gene sequence analysis indicated that both isolates tested belonged to the Staphylococcus genus and were closely related to S. saprophyticus and S. arlettae. Designated as strains NIOER176 and NIOER324, batch experiments demonstrated that both removed 100% of 20 and 50 µg mL-1 Cr6+ within 4 and 10 days, respectively. The rate of reduction in both peaked at 0.260 µg mL-1 h-1. ATP-binding cassette (ABC) transporter gene involved in transport of a variety of substrates including efflux of toxicants was present in strain NIOER176. Through SDS-PAGE analysis, whole-cell proteins extracted from both strains indicated chromium-induced specific induction and up-regulation of 24 and 40 kDa proteins. Since bacterial ability to ameliorate Cr6+ is of practical significance, these findings demonstrate strong potential of some estuarine bacteria to detoxify Cr6+ even when its concentrations far exceed the concentrations reported from many hazardous effluents and chromium contaminated natural habitats. Such potential of salt tolerant bacteria would help in Cr6+ bioremediation efforts.
Collapse
Affiliation(s)
- Elroy Joe Pereira
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Nagappa Ramaiah
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India.
| |
Collapse
|
57
|
Tamindžija D, Chromikova Z, Spaić A, Barak I, Bernier-Latmani R, Radnović D. Chromate tolerance and removal of bacterial strains isolated from uncontaminated and chromium-polluted environments. World J Microbiol Biotechnol 2019; 35:56. [PMID: 30900044 DOI: 10.1007/s11274-019-2638-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
Abstract
Investigation of bacterial chromate tolerance has mostly focused on strains originating from polluted sites. In the present study, we isolated 33 chromate tolerant strains from diverse environments harbouring varying concentrations of chromium (Cr). All of these strains were able to grow on minimal media with at least 2 mM hexavalent chromium (Cr(VI)) and their classification revealed that they belonged to 12 different species and 8 genera, with a majority (n = 20) being affiliated to the Bacillus cereus group. Selected B. cereus group strains were further characterised for their chromate tolerance level and the ability to remove toxic Cr(VI) from solution. A similar level of chromate tolerance was observed in isolates originating from environments harbouring high or low Cr. Reference B. cereus strains exhibited the same Cr(VI) tolerance which indicates that a high chromate tolerance could be an intrinsic group characteristic. Cr(VI) removal varied from 22.9% (strain PCr2a) to 98.5% (strain NCr4). Strains NCr1a and PCr12 exhibited the ability to grow to the greatest extent in Cr(VI) containing media (maximum growth of 65.3% and 64.9% relative to that in the absence of Cr(VI), respectively) accompanied with high chromate removal activity (73.7% and 74.4%, respectively), making them prime candidates for the investigation of chromate tolerance mechanisms in Gram-positive bacteria and Cr(VI) bioremediation applications.
Collapse
Affiliation(s)
- Dragana Tamindžija
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
| | - Zuzana Chromikova
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, Bratislava, 845 51, Slovakia
| | - Andrea Spaić
- Faculty of Sciences, Department of Biology and Ecology, University of Novi Sad, Trg Dositeja Obradovića 2, Novi Sad, 21000, Serbia
| | - Imrich Barak
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, Bratislava, 845 51, Slovakia
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Dragan Radnović
- Faculty of Sciences, Department of Biology and Ecology, University of Novi Sad, Trg Dositeja Obradovića 2, Novi Sad, 21000, Serbia.
| |
Collapse
|
58
|
Liu C, Zhu Y, Mu K, Liu Q, Yue H, Jiang W. Turning Waste to Resource: An Example of Dehydrogenation Catalyst Cr/ZrO2 Derived from Photoreduction Treatment of Chromium-Containing Wastewater with ZrO2. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Changjun Liu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yingming Zhu
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, P. R. China
| | - Kequan Mu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Qiang Liu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Hairong Yue
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Wei Jiang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
59
|
Recognition of a New Cr(VI)-Reducing Strain and Study of the Potential Capacity for Reduction of Cr(VI) of the Strain. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5135017. [PMID: 30881989 PMCID: PMC6387719 DOI: 10.1155/2019/5135017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/14/2018] [Accepted: 01/22/2019] [Indexed: 12/14/2022]
Abstract
The biotransformation of hexavalent chromium [Cr(VI)] via Cr(VI)-reducing microorganisms is considered an ecofriendly approach to detoxify Cr(VI). A new Cr(VI)-reducing bacterium named Microbacterium sp. QH-2 was isolated in this study. Scanning electron microscopy (SEM) images showed protrusions on the bacterial surface of strain QH-2 after an 18 h incubation in media under 10 mM Cr(VI) treatment. Results of the experiments on the capacity of reducing Cr(VI) indicated that strain QH-2 could reduce 100% Cr(VI) less than 48-96 h. When media with 4 mM Cr(VI) were incubated, the fastest reduction rate of strain QH-2 could come up to 2.17 mg/L Cr(VI) h−1. Furthermore, strain QH-2 could reduce Cr(VI) over the pH between 7 and 10. The optimum pH to reduce Cr(VI) by strain QH-2 was 9. Strain QH-2 also exhibited a relatively high tolerance even to 20 mM Cr(VI). These results declared that strain QH-2 had the potential to detoxify Cr(VI) in the Cr(VI)-contaminated soil or effluent.
Collapse
|
60
|
Bilal S, Khan AL, Shahzad R, Kim YH, Imran M, Khan MJ, Al-Harrasi A, Kim TH, Lee IJ. Mechanisms of Cr(VI) resistance by endophytic Sphingomonas sp. LK11 and its Cr(VI) phytotoxic mitigating effects in soybean (Glycine max L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:648-658. [PMID: 30170313 DOI: 10.1016/j.ecoenv.2018.08.043] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/11/2018] [Accepted: 08/14/2018] [Indexed: 05/27/2023]
Abstract
Chromium Cr(VI) is highly toxic and leads to impaired phenotypic plasticity of economically important crops. The current study assessed an endophytic-bacteria assisted metal bio-remediation strategy to understand stress-alleviating mechanisms in Glycine max L (soybean) plants inoculated with Sphingomonas sp. LK11 under severe Cr(VI) toxicity. The screening analysis showed that high Cr concentrations (5.0 mM) slightly suppressed LK11 growth and metal uptake by LK11 cells, while significantly enhancing indole-3-acetic acid (IAA) production. Endophytic LK11 significantly upregulated its antioxidant system compared to control by enhancing reduced glutathione (GSH), catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activities to counteract Cr-induced oxidative stress. Cr toxicity induced cell morphological alteration, as shown by SEM-EDX analysis and triggered significant lipid peroxidation. The interaction between LK11 and soybean in Cr-contaminated soil significantly increased plant growth attributes and down-regulated the synthesis of endogenous defense-related phytohormones, salicylic acid and abscisic acid, by 20% and 37%, respectively, and reduced Cr translocation to the roots, shoot, and leaves. Additionally, Cr-induced oxidative stress was significantly reduced in LK11-inoculated soybean, regulating metal responsive reduced GSH and enzymatic antioxidant CAT. Current findings indicate that LK11 may be a suitable candidate for the bioremediation of Cr-contaminated soil and stimulation of host physiological homeostasis.
Collapse
Affiliation(s)
- Saqib Bilal
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Raheem Shahzad
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yoon-Ha Kim
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Muhammad Jamil Khan
- Institute of Soil and Environmental Sciences, Gomal University DI Khan, Pakistan; Department of Biological Sciences, The University of Lakki Marwat, Kyber Pukhtunkhwa, Pakistan
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Tae Han Kim
- School of agricultural civil & bio-industrial machinery engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
61
|
Ontañon OM, Landi C, Carleo A, Gagliardi A, Bianchi L, González PS, Agostini E, Bini L. What makes A. guillouiae SFC 500-1A able to co-metabolize phenol and Cr(VI)? A proteomic approach. JOURNAL OF HAZARDOUS MATERIALS 2018; 354:215-224. [PMID: 29753190 DOI: 10.1016/j.jhazmat.2018.04.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Acinetobacter guillouiae SFC 500-1A is an environmental bacterium able to efficiently co-remediate phenol and Cr(VI). To further understand the molecular mechanisms triggered in this strain during the bioremediation process, variations in the proteomic profile after treatment with phenol and phenol plus Cr(VI) were evaluated. The proteomic analysis revealed the induction of the β-ketoadipate pathway for phenol oxidation and the assimilation of degradation products through TCA cycle and glyoxylate shunt. Phenol exposure increased the abundance of proteins associated to energetic processes and ATP synthesis, but it also triggered cellular stress. The lipid bilayer was suggested as a target of phenol toxicity, and changing fatty acids composition seemed to be the bacterial response to protect the membrane integrity. The involvement of two flavoproteins in Cr(VI) reduction to Cr(III) was also proposed. The results suggested the important role of chaperones, antioxidant response and SOS-induced proteins in the ability of the strain to mitigate the damage generated by phenol and Cr(VI). This research contributes to elucidate the mechanisms involved in A. guillouiae SFC 500-1A tolerance and co-remediation of phenol and Cr(VI). Such information may result useful not only to improve its bioremediation efficiency but also to identify putative markers of resistance in environmental bacteria.
Collapse
Affiliation(s)
- Ornella Mailén Ontañon
- Department of Molecular Biology, National University of Rio Cuarto, Córdoba, Argentina; National Council for Scientific and Technological Research (CONICET), Argentina.
| | - Claudia Landi
- Laboratory of Functional Proteomics, Department of Life Sciences, University of Siena, Siena, Italy
| | - Alfonso Carleo
- Laboratory of Functional Proteomics, Department of Life Sciences, University of Siena, Siena, Italy; Current address: Department of Pulmonology, Hannover Medical School, Hannover, Germany
| | - Assunta Gagliardi
- Laboratory of Functional Proteomics, Department of Life Sciences, University of Siena, Siena, Italy; Current address: Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Laura Bianchi
- Laboratory of Functional Proteomics, Department of Life Sciences, University of Siena, Siena, Italy
| | - Paola Solange González
- Department of Molecular Biology, National University of Rio Cuarto, Córdoba, Argentina; National Council for Scientific and Technological Research (CONICET), Argentina
| | - Elizabeth Agostini
- Department of Molecular Biology, National University of Rio Cuarto, Córdoba, Argentina; National Council for Scientific and Technological Research (CONICET), Argentina
| | - Luca Bini
- Laboratory of Functional Proteomics, Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
62
|
Ontañon OM, Fernandez M, Agostini E, González PS. Identification of the main mechanisms involved in the tolerance and bioremediation of Cr(VI) by Bacillus sp. SFC 500-1E. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16111-16120. [PMID: 29594905 DOI: 10.1007/s11356-018-1764-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
Chromium pollution is a problem that affects different areas worldwide and, therefore, must be solved. Bioremediation is a promising alternative to treat environmental contamination, but finding bacterial strains able to tolerate and remove different contaminants is a major challenge, since most co-polluted sites contain mixtures of organic and inorganic substances. In the present work, Bacillus sp. SFC 500-1E, isolated from the bacterial consortium SFC 500-1 native to tannery sediments, showed tolerance to various concentrations of different phenolic compounds and heavy metals, such as Cr(VI). This strain was able to efficiently remove Cr(VI), even in the presence of phenol. The detection of the chrA gene suggested that Cr(VI) extrusion could be a mechanism that allowed this strain to tolerate the heavy metal. However, reduction through cytosolic NADH-dependent chromate reductases may be the main mechanism involved in the remediation. The information provided in this study about the mechanisms through which Bacillus sp. SFC 500-1E removes Cr(VI) should be taken into account for the future application of this strain as a possible candidate to remediate contaminated environments.
Collapse
Affiliation(s)
- Ornella M Ontañon
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina
| | - Marilina Fernandez
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina
| | - Paola S González
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
63
|
Durán U, Coronado-Apodaca KG, Meza-Escalante ER, Ulloa-Mercado G, Serrano D. Two combined mechanisms responsible to hexavalent chromium removal on active anaerobic granular consortium. CHEMOSPHERE 2018; 198:191-197. [PMID: 29421729 DOI: 10.1016/j.chemosphere.2018.01.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/17/2017] [Accepted: 01/06/2018] [Indexed: 06/08/2023]
Abstract
Hexavalent chromium (Cr VI) from industrial wastewaters represents a highly toxic source at low concentrations. Biological treatments with anaerobic granular biomass are a promising alternative for the Cr VI bioremediation. This study evaluated the Cr VI removal in a range of 5-500 mg/L, using an active anaerobic granular consortium. Two removal mechanisms were differentiated from the assays: 1) biological reduction of 70 mg/L to Cr III at a concentration of 250 mg Cr VI/L and 2) physical bioadsorption of 297 mg of Cr VI/L or 31.39 mg of Cr VI/gbiomass at concentration of 500 mg Cr VI /L. The half-maximal inhibitory concentration (IC50) values for the rate and production of methane were 1.4 and 253 mg/L, respectively. In addition, Cr VI is a biostimulant that increase the methane production, in a range from 5 to 100 mg/L, of the anaerobic consortium. This work demonstrates the potential application of the anaerobic granular consortium in metal bioremediation.
Collapse
Affiliation(s)
- U Durán
- Instituto de Ingeniería, UNAM, P.O. Box 70-186, Mexico City, Mexico
| | - K G Coronado-Apodaca
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora (ITSON), 5 de Febrero 818 Sur, C.P. 85000 Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - E R Meza-Escalante
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora (ITSON), 5 de Febrero 818 Sur, C.P. 85000 Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - G Ulloa-Mercado
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (ITSON), 5 de Febrero 818 Sur, C.P. 85000 Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - D Serrano
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora (ITSON), 5 de Febrero 818 Sur, C.P. 85000 Col. Centro, Ciudad Obregón, Sonora, Mexico.
| |
Collapse
|
64
|
Gupta P, Rani R, Chandra A, Varjani SJ, Kumar V. Effectiveness of Plant Growth-Promoting Rhizobacteria in Phytoremediation of Chromium Stressed Soils. ENERGY, ENVIRONMENT, AND SUSTAINABILITY 2018. [DOI: 10.1007/978-981-10-7413-4_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
65
|
Copper (II) binding of NAD(P)H- flavin oxidoreductase (NfoR) enhances its Cr (VI)-reducing ability. Sci Rep 2017; 7:15481. [PMID: 29133854 PMCID: PMC5684319 DOI: 10.1038/s41598-017-15588-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/23/2017] [Indexed: 12/16/2022] Open
Abstract
Microbes can reduce hexavalent chromium Cr (VI) to the less toxic and soluble trivalent Cr (III). Copper stimulates microbial reduction of Cr (VI) by the Bacillus, Ochrobactrum, and Gluconobacter species; however, the mechanism remains unclear. In our study, the rate of Cr (VI) reduction by Staphylococcus aureus LZ-01 was increased by 210 % when supplemented with 60 μM Cu (II). A putative NAD(P)H-flavin oxidoreductase gene (nfoR) was upregulated under Cr (VI) stress. NfoR-knockout mutant displayed impaired reduction of Cr (VI) and Cu (II)-enhanced Cr (VI) reduction by nfoR isogenic mutant was attenuated in the presence of Cu (II). In vitro tests showed an increased Vmax value of 25.22 μM min−1 mg−1 NfoR in the presence of Cu (II). Together, these results indicate that NfoR is responsible for Cu (II) enhancement. Isothermal titration calorimetry (ITC) assays confirmed the interaction of NfoR with Cu (II) at the dissociation constant of 85.5 μM. Site-directed mutagenesis indicates that His100, His128, and Met165 residues may be important for Cu (II) binding, while Cys163 is necessary for the FMN binding of NfoR. These findings show that Cu (II)-enhanced NfoR belongs to a new branch of Cr (VI) reductases and profoundly influences Cr (VI) reduction.
Collapse
|
66
|
Pereira EJ, Fonseca S, Meena RM, Ramaiah N. Improved Sprouting and Growth of Mung Plants in Chromate Contaminated Soils Treated with Marine Strains of Staphylococcus Species. Indian J Microbiol 2017; 57:400-408. [PMID: 29151640 DOI: 10.1007/s12088-017-0668-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/02/2017] [Indexed: 11/25/2022] Open
Abstract
Marine bacteria possess a wide variety of bioremediation potential which is beneficial environmentally and economically. In this study, bacterial isolates from marine waters were screened for tolerance and growth in high concentrations of chromate (Cr6+). Two isolates, capable of tolerating Cr6+ concentrations 300 µg mL-1 or higher, and found to completely reduce 20 µg mL-1 Cr6+ were grown in Cr6+ (50 and 100 mg kg-1) spiked garden soil. Notably, both facilitated normal germination and growth of mung (Vigna radiata) seeds, which could hardly germinate in Cr6+ spiked garden soil without either of these bacteria. In fact, large percent of mung seeds failed to sprout in the Cr6+ spiked garden soil and could not grow any further. Apparently, chromate detoxification by marine bacterial isolates and the ability of mung plants to deal with the reduced form appear to work complementarily. This study provides an insight into marine bacterial abilities with respect to chromium and potential applications in promoting growth of leguminous plants-similar to mung in particular-in Cr6+ contaminated soil.
Collapse
Affiliation(s)
- Elroy J Pereira
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004 India
| | - Suzana Fonseca
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004 India
- Life Science, Cactus Communications, Mumbai, Maharashtra 400053 India
| | - Ram M Meena
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004 India
| | - Nagappa Ramaiah
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004 India
| |
Collapse
|
67
|
Yu X, Jiang Y, Huang H, Shi J, Wu K, Zhang P, Lv J, Li H, He H, Liu P, Li X. Simultaneous aerobic denitrification and Cr(VI) reduction by Pseudomonas brassicacearum LZ-4 in wastewater. BIORESOURCE TECHNOLOGY 2016; 221:121-129. [PMID: 27639231 DOI: 10.1016/j.biortech.2016.09.037] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 06/06/2023]
Abstract
Inorganic nitrogen and heavy metals pervasively co-exist in industrial and domestic wastewaters. In this work, Pseudomonas brassicacearum LZ-4 was tested for the simultaneous reduction of Cr(VI) and nitrate. Nitrate was found to be the best inorganic nitrogen source for strain LZ-4, and could promote Cr(VI) reduction. Cr(VI) had a low degree of inhibition on denitrification, and even 50mgL-1 Cr(VI) did not inhibit reduction of 100mgL-1 NO3--N. The capability of simultaneous reduction of Cr(VI) and nitrate was illustrated by the reductase genes contained in the LZ-4 genome. Application in a batch membrane bioreactor showed that the immobilized strain LZ-4 could remove over 95% of 500mgL-1 NO3--N, 80% of 10mgL-1 Cr(VI), and 96% of 5000mgL-1 COD in each batch of 46days. In summary, the strain LZ-4 is an ideal candidate for remediation of co-contaminants.
Collapse
Affiliation(s)
- Xuan Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China; Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, Gansu 730020, PR China; School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, PR China
| | - Yiming Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Haiying Huang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Juanjuan Shi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Kejia Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Pengyun Zhang
- Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, Gansu 730020, PR China
| | - Jianguo Lv
- Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, Gansu 730020, PR China
| | - Hongli Li
- PetroChina Lanzhou Petrochemical Company, Yumenjie #10, Lanzhou, Gansu 730060, PR China
| | - Huan He
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, PR China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
68
|
Cr(VI) removal from aqueous solution by thermophilic denitrifying bacterium Chelatococcus daeguensis TAD1 in the presence of single and multiple heavy metals. J Microbiol 2016; 54:602-610. [DOI: 10.1007/s12275-016-5295-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 11/25/2022]
|
69
|
Han R, Li F, Liu T, Li X, Wu Y, Wang Y, Chen D. Effects of Incubation Conditions on Cr(VI) Reduction by c-type Cytochromes in Intact Shewanella oneidensis MR-1 Cells. Front Microbiol 2016; 7:746. [PMID: 27242759 PMCID: PMC4872037 DOI: 10.3389/fmicb.2016.00746] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 05/03/2016] [Indexed: 11/13/2022] Open
Abstract
It is widely recognized that the outer membrane c-type cytochromes (OM c-Cyts) of metal-reducing bacteria play a key role in microbial metal reduction processes. However, the in situ redox status of OM c-Cyts during microbial metal reduction processes remain poorly understood. In this study, diffuse-transmission UV/Vis spectroscopy is used to investigate the in situ spectral reaction of Cr(VI) reduction by c-Cyts in intact Shewanella oneidensis MR-1 cells under different incubation conditions. The reduced c-Cyts decreased transiently at the beginning and then recovered gradually over time. The Cr(VI) reduction rates decreased with increasing initial Cr(VI) concentrations, and Cr(III) was identified as a reduced product. The presence of Cr(III) substantially inhibited Cr(VI) reduction and the recovery of reduced c-Cyts, indicating that Cr(III) might inhibit cell growth. Cr(VI) reduction rates increased with increasing cell density. The highest Cr(VI) reduction rate and fastest recovery of c-Cyts were obtained at pH 7.0 and 30°C, with sodium lactate serving as an electron donor. The presence of O2 strongly inhibited Cr(VI) reduction, suggesting that O2 might compete with Cr(VI) as an electron acceptor in cells. This study provides a case of directly examining in vivo reaction properties of an outer-membrane enzyme during microbial metal reduction processes under non-invasive physiological conditions.
Collapse
Affiliation(s)
- Rui Han
- School of Environment and Energy, South China University of TechnologyGuangzhou, China; Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil SciencesGuangzhou, China
| | - Fangbai Li
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences Guangzhou, China
| | - Tongxu Liu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences Guangzhou, China
| | - Xiaomin Li
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences Guangzhou, China
| | - Yundang Wu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences Guangzhou, China
| | - Ying Wang
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences Guangzhou, China
| | - Dandan Chen
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences Guangzhou, China
| |
Collapse
|
70
|
Ge S, Ge SC. Simultaneous Cr(VI) reduction and Zn(II) biosorption by Stenotrophomonas sp. and constitutive expression of related genes. Biotechnol Lett 2016; 38:877-84. [DOI: 10.1007/s10529-016-2057-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/26/2016] [Indexed: 10/22/2022]
|
71
|
Parveen S, Khattar JIS, Singh DP. The cyanobacterium Synechocystis sp. PUPCCC 62: a potential candidate for biotransformation of Cr(VI) to Cr(III) in the presence of sulphate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:10661-10668. [PMID: 25752632 DOI: 10.1007/s11356-015-4260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 02/18/2015] [Indexed: 06/04/2023]
Abstract
The cyanobacterium Synechocystis sp., an isolate from polluted water of Satluj river, India, was found resistant to chromium(VI) up to 200 nmol mL(-1). In this study, it has been demonstrated that this organism takes up Cr(VI) through a phosphate transporter. The organism removed 250 nmol Cr(VI), 210 nmol phosphate and 180 nmol sulphate mg(-1) protein from a buffer solution in 8 h. Cr(VI) uptake by the organism decreased to 135 nmol Cr(VI) removed per milligram protein in the presence of 200 nmol phosphate mL(-1), but the same concentration of sulphate did not affect the Cr(VI) uptake. Similarly, the presence of Cr(VI) in the solution affected the phosphate uptake but not sulphate uptake by the test organism. The kinetic studies on Cr(VI) uptake in the presence of phosphate revealed that phosphate and Cr(VI) acted as competitive inhibitors for one another. Phosphate-starved cells of the organism removed more amount of Cr(VI) than the basal medium-grown cells. The uptake of Cr(VI) as well as phosphate by the organism was observed to be a light-dependent process. Cinnamic acid, a phosphate transporter inhibitor, inhibited Cr(VI) uptake by the organism. Results clearly demonstrated that the test organism takes up chromate ions by phosphate transporter and not by the sulphate transporter. This organism is thus a potential candidate for the bioremediation of Cr(VI) from Cr(VI) and sulphate-laden water.
Collapse
Affiliation(s)
- Shahnaz Parveen
- Department of Botany, Punjabi University, Patiala, 147 002, Punjab, India
| | | | | |
Collapse
|
72
|
Ahemad M. Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria. J Genet Eng Biotechnol 2015; 13:51-58. [PMID: 30647566 PMCID: PMC6299803 DOI: 10.1016/j.jgeb.2015.02.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/24/2014] [Accepted: 02/14/2015] [Indexed: 12/01/2022]
Abstract
Chromium, specifically hexavalent chromium is one of the most toxic pollutants that are released into soils by various anthropogenic activities. It has numerous adverse effects not only on plant system but also on beneficial soil microorganisms which are the indicators of soil fertility and health. Recent emergence of phytoremediation as an environmental friendly and economical approach to decontaminate the chromium stressed soils has received wider attention. But major drawback of this process is that it takes long time. Application of multifunctional plant-growth-promoting bacteria (PGPB) exhibiting chromium resistance and reducing traits when used as bioinoculants with phytoremediating plants, has resulted in a better plant growth and chromium remediating efficiency in a short time span. PGPB improve chromium uptake by modifying root architecture, secreting metal sequestering molecules in rhizosphere and alleviating chromium induced phytotoxicity. The purpose of this review is to highlight the plant-beneficial traits of PGPB to accelerate plant-growth and concurrently ameliorate phytoremediation of chromium contaminated soils.
Collapse
|
73
|
Singh R, Dong H, Liu D, Zhao L, Marts AR, Farquhar E, Tierney DL, Almquist CB, Briggs BR. Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus. GEOCHIMICA ET COSMOCHIMICA ACTA 2015; 148:442-456. [PMID: 26120143 PMCID: PMC4477973 DOI: 10.1016/j.gca.2014.10.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Despite the significant progress on iron reduction by thermophilic microorganisms, studies on their ability to reduce toxic metals are still limited, despite their common co-existence in high temperature environments (up to 70°C). In this study, Methanothermobacter thermautotrophicus, an obligate thermophilic methanogen, was used to reduce hexavalent chromium. Experiments were conducted in a growth medium with H2/CO2 as substrate with various Cr6+ concentrations (0.2, 0.4, 1, 3, and 5 mM) in the form of potassium dichromate (K2Cr2O7). Time-course measurements of aqueous Cr6+ concentrations with the 1, 5-diphenylcarbazide colorimetric method showed complete reduction of the 0.2 and 0.4 mM Cr6+ solutions by this methanogen. However, much lower reduction extents of 43.6%, 13.0%, and 3.7% were observed at higher Cr6+ concentrations of 1, 3 and 5 mM, respectively. These lower extents of bioreduction suggest a toxic effect of aqueous Cr6+ to cells at this concentration range. At these higher Cr6+ concentrations, methanogenesis was inhibited and cell growth was impaired as evidenced by decreased total cellular protein production and live/dead cell ratio. Likewise, Cr6+ bioreduction rates decreased with increased initial concentrations of Cr6+ from 13.3 to1.9 µM h-1. X-ray absorption near-edge structure (XANES) spectroscopy revealed a progressive reduction of soluble Cr6+ to insoluble Cr3+ precipitates, which was confirmed as amorphous chromium hydroxide by X-ray diffraction and selected area electron diffraction pattern. However, a small fraction of reduced Cr occurred as aqueous Cr3+. Scanning and transmission electron microscope observations of M. thermautotrophicus cells after Cr6+ exposure suggest both extra- and intracellular chromium reduction mechanisms. Results of this study demonstrate the ability of M. thermautotrophicus cells to reduce toxic Cr6+ to less toxic Cr3+ and its potential application in metal bioremediation, especially at high temperature subsurface radioactive waste disposal sites, where the temperature may reach ∼70°C.
Collapse
Affiliation(s)
- Rajesh Singh
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH-45056
| | - Hailiang Dong
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH-45056
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Deng Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Linduo Zhao
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH-45056
| | - Amy R. Marts
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH-45056
| | - Erik Farquhar
- Case Western Reserve University Center for Synchrotron Biosciences, National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973
| | - David L. Tierney
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH-45056
| | | | - Brandon R. Briggs
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH-45056
| |
Collapse
|
74
|
Kim DH, Park S, Kim MG, Hur HG. Accumulation of amorphous Cr(III)-Te(IV) nanoparticles on the surface of Shewanella oneidensis MR-1 through reduction of Cr(VI). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:14599-14606. [PMID: 25393562 DOI: 10.1021/es504587s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Industrial effluents constitute a major source of metal pollution of aquatic bodies. Moreover, due to their environmental persistence, toxic metal pollution is of special concern. Microbial reduction is considered a promising strategy for toxic metal removal among the several methods available for metal remediation. Here, we describe the coremediation of toxic Cr(VI) and Te(IV) by the dissimilatory metal reducing bacterium-Shewanella oneidensis MR-1. In the presence of both Cr(VI) and Te(IV), S. oneidensis MR-1 reduced Cr(VI) to the less toxic Cr(III) form, but not Te(IV) to Te(0). The reduced Cr(III) ions complexed rapidly with Te(IV) ions and were precipitated from the cell cultures. Electron microscopic analyses revealed that the Cr-Te complexed nanoparticles localized on the bacterial outer membranes. K-edge X-ray absorption spectrometric analyses demonstrated that Cr(III) produced by S. oneidensis MR-1 was rapidly complexed with Te(IV) ions, followed by formation of amorphous Cr(III)-Te(IV) nanoparticles on the cell surface. Our results could be applied for the simultaneous sequestration and detoxification of both Cr(VI) and Te(IV) as well as for the preparation of nanomaterials through environmental friendly processes.
Collapse
Affiliation(s)
- Dong-Hun Kim
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology , Gwangju 500-712, Republic of Korea
| | | | | | | |
Collapse
|