51
|
Senila M, Coldea TE, Senila L, Mudura E, Cadar O. Activated natural zeolites for beer filtration: A pilot scale approach. Heliyon 2023; 9:e20031. [PMID: 37809938 PMCID: PMC10559772 DOI: 10.1016/j.heliyon.2023.e20031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
A clinoptilolite-rich natural zeolite was tested as a substitute for kieselguhr as a filtering material to eliminate ingredients that cause beer haze formation. Two-grain sizes of micronized natural zeolite were thermally activated to 400 °C, to enhance its adsorption performance and remove the impurities adsorbed in the microporous system of zeolites, followed by their physicochemical characterization. The activated zeolites mixed with four commercial filter aids in different ratios were used for beer filtration at the pilot scale. Most of the physicochemical and sensory characteristics of beers filtered with commercial filter aids and with zeolites were similar. Using zeolite in filtering mixtures significantly reduces the number of microorganisms present in the filtered beer, which can eliminate the necessity of beer sterilization after filtration. The results evidenced that activated natural zeolites, which are cheap materials, are promising candidates as filter aids and can replace kieselguhr without producing any degradation of the beer filtration process.
Collapse
Affiliation(s)
- Marin Senila
- Research Institute for Analytical Instrumentation, INCDO-INOE 2000, 67 Donath Street, 400293, Cluj-Napoca, Romania
| | - Teodora Emilia Coldea
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, 400372, Cluj-Napoca, Romania
| | - Lacrimioara Senila
- Research Institute for Analytical Instrumentation, INCDO-INOE 2000, 67 Donath Street, 400293, Cluj-Napoca, Romania
| | - Elena Mudura
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, 400372, Cluj-Napoca, Romania
| | - Oana Cadar
- Research Institute for Analytical Instrumentation, INCDO-INOE 2000, 67 Donath Street, 400293, Cluj-Napoca, Romania
| |
Collapse
|
52
|
Feng J, Yanshao B, Wang H, Zhang X, Wang F. Recent advancements on use of essential oils as preservatives against fungi and mycotoxins spoiling food grains. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1242-1263. [PMID: 37549249 DOI: 10.1080/19440049.2023.2240894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023]
Abstract
Spoilage of grains by mycotoxigenic fungi poses a great threat to food security and human health. Conventionally used chemical agents to prevent grain fungi contamination cause increasingly significant problems such as microbial resistance, residual toxicity and environmental unfriendliness. In recent years, plant essential oils (EOs) have become a hot spot in the research of control of grain fungi and mycotoxins, due to their extensive sources, non-toxicity, environmental friendliness and good antifungal efficiency. The current review aims to provide an overview of the prevention of fungi and mycotoxins in grain through EOs. The antifungal and toxin inhibition efficiency of different EOs and their effective components are investigated. The inhibition mechanism of EOs on fungi and mycotoxins in grains is introduced. The influence of EOs treatment on the change of grain quality is also discussed. In addition, the formulations and techniques used to overcome the disadvantages of EOs application are introduced. The results of recent studies have confirmed that EOs provide great potential for controlling common fungi and mycotoxins in grains, and enhancing quantity and quality safety of grains.
Collapse
Affiliation(s)
- Jiachang Feng
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Bowen Yanshao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - He Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xiaowei Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Fenghe Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| |
Collapse
|
53
|
Hernández-Martínez SP, Delgado-Cedeño A, Ramos-Zayas Y, Franco-Molina MA, Méndez-Zamora G, Marroquín-Cardona AG, Kawas JR. Aluminosilicates as a Double-Edged Sword: Adsorption of Aflatoxin B 1 and Sequestration of Essential Trace Minerals in an In Vitro Gastrointestinal Poultry Model. Toxins (Basel) 2023; 15:519. [PMID: 37755945 PMCID: PMC10534799 DOI: 10.3390/toxins15090519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 09/28/2023] Open
Abstract
Aflatoxins can cause intoxication and poisoning in animals and humans. Among these molecules, aflatoxin B1 (AFB1) is the most dangerous because of its carcinogenic and mutagenic properties. To mitigate these effects, clay adsorbents are commonly included in the diet of animals to adsorb the carcinogens and prevent their absorption in the gastrointestinal tract. In this study, four clays, three smectites (C-1, C-2, and C-3), and one zeolite (C-4), were compared as adsorbents of AFB1 and trace inorganic nutrients using an in vitro gastrointestinal model for poultry. Characterization of the clays using Fourier transform infrared spectroscopy revealed characteristic bands of smectites in C-1, C-2, and C-3 (stretching vibrations of Si-O, Al-O-Si, and Si-O-Si). The C-4 presented bands related to the bending vibration of structural units (Si-O-Si and Al-O-Si). X-ray diffraction analysis showed that C-1 is a montmorillonite, C-2 is a beidellite, C-3 is a beidellite-Ca-montmorillonite, and C-4 is a clinoptilolite. The elemental compositions of the clays showed alumina, silica, iron, calcium, and sodium contents. The cation exchange capacity was higher in C-3 clay (60.2 cmol(+)/kg) in contrast with the other clays. The AFB1 adsorption of C-1 was the highest (98%; p ˂ 0.001), followed by C-2 (94%). However, all the clays also sequestered trace inorganic nutrients (Fe, Mn, Zn, and Se). Both smectites, montmorillonite and beidellite, were the most suitable for use as adsorbents of AFB1.
Collapse
Affiliation(s)
- Sara Paola Hernández-Martínez
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Escobedo 66050, Nuevo León, Mexico; (S.P.H.-M.); (G.M.-Z.)
- MNA de México, Juárez 67250, Nuevo León, Mexico; (A.D.-C.); (Y.R.-Z.)
| | | | - Yareellys Ramos-Zayas
- MNA de México, Juárez 67250, Nuevo León, Mexico; (A.D.-C.); (Y.R.-Z.)
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Escobedo 66050, Nuevo León, Mexico
| | | | - Gerardo Méndez-Zamora
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Escobedo 66050, Nuevo León, Mexico; (S.P.H.-M.); (G.M.-Z.)
| | | | - Jorge R. Kawas
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Escobedo 66050, Nuevo León, Mexico; (S.P.H.-M.); (G.M.-Z.)
- MNA de México, Juárez 67250, Nuevo León, Mexico; (A.D.-C.); (Y.R.-Z.)
| |
Collapse
|
54
|
Wei L, Chen Y, Shao D, Li J. Determination of Aflatoxins in Milk by PS-MWCNT/OH Composite Nanofibers Solid-Phase Extraction Coupled with HPLC-FLD. Molecules 2023; 28:6103. [PMID: 37630355 PMCID: PMC10458747 DOI: 10.3390/molecules28166103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
In this work, a sensitive analytical method based on packed-nanofiber solid-phase extraction (PFSPE), after derivatization with trichloroacetic acid and high-performance liquid chromatography with a fluorescence detector (HPLC-FLD), has been established for the determination of aflatoxins (AFs) in milk. Polystyrene polymeric multi-walled carbon nanotube (PS-MWCNT/OH) composite nanofibers were fabricated by electrospinning and used to prepare homemade extraction columns. The extraction efficiency of the HPLC-FLD analysis method was sufficiently investigated and validated. After the implementation of optimal conditions, all of the analytes were separated efficiently and the components of the milk matrix did not disturb the determination. The obtained linear ranges of the calibration curves were 0.2-20 ng/mL for AFTB1 and AFTG2, 0.1-10 ng/mL for AFTB2, and 0.4-40 ng/mL for AFTG1. The recoveries ranged between 80.22% and 96.21%. The relative standard deviations (RSDs) for the intra-day and inter-day results ranged from 2.81-6.43% to 3.42-7.75%, respectively. Generally, 11 mg of sorbent and 200 μL of elution solvent were used to directly extract all of the AFs from the milk matrix. Reported herein is the first utilization of PS-MWCNT/OH-PFSPE HPLC-FLD to simultaneously analyze the occurrence of aflatoxins in milk.
Collapse
Affiliation(s)
- Lanlan Wei
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China; (L.W.); (Y.C.)
- Anhui Guoke Testing Technology Co., Ltd., Hefei 230000, China;
| | - Yanan Chen
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China; (L.W.); (Y.C.)
- Anhui Guoke Testing Technology Co., Ltd., Hefei 230000, China;
| | - Dongliang Shao
- Anhui Guoke Testing Technology Co., Ltd., Hefei 230000, China;
| | - Jingjun Li
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China; (L.W.); (Y.C.)
| |
Collapse
|
55
|
Yu J, Pedroso IR. Mycotoxins in Cereal-Based Products and Their Impacts on the Health of Humans, Livestock Animals and Pets. Toxins (Basel) 2023; 15:480. [PMID: 37624237 PMCID: PMC10467131 DOI: 10.3390/toxins15080480] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 07/18/2023] [Indexed: 08/26/2023] Open
Abstract
Cereal grains are the most important food staples for human beings and livestock animals. They can be processed into various types of food and feed products such as bread, pasta, breakfast cereals, cake, snacks, beer, complete feed, and pet foods. However, cereal grains are vulnerable to the contamination of soil microorganisms, particularly molds. The toxigenic fungi/molds not only cause quality deterioration and grain loss, but also produce toxic secondary metabolites, mycotoxins, which can cause acute toxicity, death, and chronic diseases such as cancer, immunity suppression, growth impairment, and neural tube defects in humans, livestock animals and pets. To protect human beings and animals from these health risks, many countries have established/adopted regulations to limit exposure to mycotoxins. The purpose of this review is to update the evidence regarding the occurrence and co-occurrence of mycotoxins in cereal grains and cereal-derived food and feed products and their health impacts on human beings, livestock animals and pets. The effort for safe food and feed supplies including prevention technologies, detoxification technologies/methods and up-to-date regulation limits of frequently detected mycotoxins in cereal grains for food and feed in major cereal-producing countries are also provided. Some important areas worthy of further investigation are proposed.
Collapse
Affiliation(s)
- Jianmei Yu
- Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA
| | | |
Collapse
|
56
|
Mukhtar K, Nabi BG, Ansar S, Bhat ZF, Aadil RM, Khaneghah AM. Mycotoxins and consumers' awareness: Recent progress and future challenges. Toxicon 2023:107227. [PMID: 37454753 DOI: 10.1016/j.toxicon.2023.107227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
While food shortages have become an important challenge, providing safe food resources is a point of interest on a global scale. Mycotoxins are secondary metabolites that are formed through various fungi species. They are mainly spread through diets such as food or beverages. About one quarter of the world's food is spoiled with mycotoxins. As this problem is not resolved, it represents a significant threat to global food security. Besides the current concerns regarding the contamination of food items by these metabolites, the lack of knowledge by consumers and their possible growth and toxin production attracted considerable attention. While globalization provides a favorite condition for some countries, food security still is challenging for most countries. There are various approaches to reducing the mycotoxigenic fungi growth and formation of mycotoxins in food, include as physical, chemical, and biological processes. The current article will focus on collecting data regarding consumers' awareness of mycotoxins. Furthermore, a critical overview and comparison among different preventative approaches to reduce risk by consumers will be discussed. Finally, the current effect of mycotoxins on global trade, besides future challenges faced by mycotoxin contamination on food security, will be discussed briefly.
Collapse
Affiliation(s)
- Kinza Mukhtar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Brera Ghulam Nabi
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sadia Ansar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | | | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland; Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan.
| |
Collapse
|
57
|
Xu D, Huang M, Lei J, Song H, Hu L, Mo H. Auricularia auricular Adsorbs Aflatoxin B1 and Ameliorates Aflatoxin B1-Induced Liver Damage in Sprague Dawley Rats. Foods 2023; 12:2644. [PMID: 37509736 PMCID: PMC10378415 DOI: 10.3390/foods12142644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Aflatoxin B1 (AFB1), as a class I carcinogen, poses a substantial health risk to individuals. Contamination of food sources, particularly grains and nuts, with Aspergillus flavus (A. flavus) contributes to the prevalence of AFB1. The impact of global warming has spurred research into the development of AFB1 prevention technologies. While edible fungi have shown potential in detoxifying AFB1, there is a scarcity of literature on the application of Auricularia auricular (A. auricular) in this context. This study aimed to investigate the ability and underlying mechanism of A. auricular mycelia to adsorb aflatoxin B1, as well as evaluate its protective effects on the AFB1-induced liver damage in SD rats. Additionally, the effects of temperature, time, pH, and reaction ratio on the adsorption rate were examined. Combining thermodynamic and kinetic data, the adsorption process was characterized as a complex mechanism primarily driven by chemical adsorption. In SD rats, the A. auricular mycelia exhibited alleviation of AFB1-induced liver damage. The protective effects on the liver attributed to A. auricular mycelia may involve a reduction in AFB1 adsorption in the intestine, mitigation of oxidative stress, and augmentation of second-phase detoxification enzyme activity. The adsorption method for AFB1 not only ensures safety and non-toxicity, but also represents a dietary regulation strategy for achieving effective defense against AFB1.
Collapse
Affiliation(s)
- Dan Xu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Minmin Huang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiao Lei
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hongxin Song
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Liangbin Hu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Haizhen Mo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
58
|
Banahene JCM, Ofosu IW, Odai BT. Surveillance of ochratoxin A in cocoa beans from cocoa-growing regions of Ghana. Heliyon 2023; 9:e18206. [PMID: 37501961 PMCID: PMC10368851 DOI: 10.1016/j.heliyon.2023.e18206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Cocoa is one of the agricultural commodities which is highly susceptible to mycotoxin contamination. During two crop/harvest seasons, the occurrence and distribution of ochratoxin A (OTA) in viable commercial cocoa beans were investigated. The cocoa bean samples were collected randomly from farmers across cocoa-growing regions of Ghana. OTA concentrations in the samples were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods following purification on immunoaffinity solid phase column. The result showed that 21.7% of all samples analyzed were contaminated with OTA at concentrations ranging from 0.01 μg/kg to 12.36 μg/kg. The Western South region had the highest occurrence of OTA-positive samples at 32.5%, followed by the Western North region at 28.75%, the Eastern and Volta regions at 25% each, Brong Ahafo (16.25%), Central (15%) and the Ashanti region at 11.25%. However, 0.9% and 3.5% of the total OTA-positive samples exceeded the OTA maximum limits of 10 μg/kg for cocoa beans and 3 μg/kg for cocoa powder, set by the Brazilian National Health Surveillance Agency and the European Commission, respectively. During the Main and Light crop seasons, the highest concentrations of OTA were detected in the Western North region, reaching up to 12.36 μg/kg and 3.45 μg/kg, respectively. OTA concentrations between the cocoa-growing regions in the Main crop season were not significantly different (p > 0.05), however, the Light crop season indicated a significant difference (p < 0.05). There was a significant difference (p < 0.05) between the two crop seasons. The need for regular monitoring and careful adherence to agronomic strategies such as good agricultural practices (GAPs), recommended code of practices (COPs) and good manufacturing practices (GMPs) for the prevention and reduction of OTA throughout the cocoa value chain cannot be overemphasized.
Collapse
Affiliation(s)
- Joel Cox Menka Banahene
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti, Ghana
- Research Department, Quality Control Company Limited – Ghana Cocoa Board, Tema, Greater Accra, Ghana
| | - Isaac Williams Ofosu
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti, Ghana
| | - Bernard Tawiah Odai
- Radiation Technology Centre - BNARI, Ghana Atomic Energy Commission, Kwabenya, Accra, Ghana
| |
Collapse
|
59
|
Fan K, Qian S, Zhang Z, Huang Q, Hu Z, Nie D, Meng J, Guo W, Zhao Z, Han Z. Recent advances in the combinations of plant-sourced natural products for the prevention of mycotoxin contamination in food. Crit Rev Food Sci Nutr 2023; 64:10626-10642. [PMID: 37357923 DOI: 10.1080/10408398.2023.2227260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Mycotoxins, secondary metabolites produced by mycotoxigenic fungi, are a major problem affecting food safety and security, because of their adverse health effects, their socio-economic impact and the difficulty of degradation or removal by conventional food processing methods. Plant-sourced natural products are a novel and effective control method for fungal infestation and mycotoxin production, with the advantages of biodegradability and acceptability for food use. However, development of resistance, low and inconsistent efficacy, and a limited range of antifungal activities hinder the effective application of single plant natural products for controlling mycotoxin contamination. To overcome these limitations, combinations of plant natural products have been tested extensively and found to increase efficacy, often synergistically. However, this extensive and promising research area has seen little development of practical applications. This review aims to provide up-to-date information on the antifungal, anti-mycotoxigenic and synergistic effects of combinations of plant natural products, as well as their mechanisms of action, to provide a reference source for future research and encourage application development.
Collapse
Affiliation(s)
- Kai Fan
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shenan Qian
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhiqi Zhang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qingwen Huang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zheng Hu
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dongxia Nie
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Jiajia Meng
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wenbo Guo
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhihui Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zheng Han
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
60
|
Pfleger F, Schwake-Anduschus C. Relevance of Zearalenone and its modified forms in bakery products. Mycotoxin Res 2023:10.1007/s12550-023-00493-3. [PMID: 37322296 PMCID: PMC10393900 DOI: 10.1007/s12550-023-00493-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Zearalenone is a frequently occurring and well-known mycotoxin developed in cereals before and during the harvest period by Fusarium spp. mainly in maize and wheat. In addition to the main form, various modified forms (phase I and II metabolites) were detected, in some cases in high amounts. These modified forms can be harmful for human health due to their different toxicity, which can be much higher compared to the parent toxin. In addition, the parent toxin can be cleaved from the phase I and II metabolites during digestion. A risk of correlated and additive adverse effects of the metabolites of ZEN phase I and II in humans and animals is evident. ZEN is considered in many studies on its occurrence in grain-based foods and some studies are dedicated to the behavior of ZEN during food processing. This is not the case for the ZEN phase I and II metabolites, which are only included in a few occurrence reports. Their effects during food processing is also only sporadically addressed in studies to date. In addition to the massive lack of data on the occurrence and behavior of ZEN modified forms, there is also a lack of comprehensive clarification of the toxicity of the numerous different ZEN metabolites detected to date. Finally, studies on the fate during digestion of the relevant ZEN metabolites will be important in the future to further clarify their relevance in processed foods such as bakery products.
Collapse
Affiliation(s)
- Franz Pfleger
- Association for Cereal Research e.V., Detmold, Germany
| | - Christine Schwake-Anduschus
- Department of Safety and Quality of Cereals, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Detmold, Germany.
| |
Collapse
|
61
|
Li Q, Wang X, Wang X, Zheng L, Chen P, Zhang B. Novel insights into versatile nanomaterials integrated bioreceptors toward zearalenone ultrasensitive discrimination. Food Chem 2023; 410:135435. [PMID: 36641913 DOI: 10.1016/j.foodchem.2023.135435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Detrimental contamination of zearalenone (ZEN) in crops and foodstuffs has drawn intensive public attention since it poses an ongoing threat to global food security and human health. Highly sensitive and rapid response ZEN trace analysis suitable for complex matrices at different processing stages is an indispensable part of food production. Conventional detection methods for ZEN encounter many deficiencies and demerits such as sophisticated equipment and heavy labor intensity. Alternatively, the nanomaterial-based biosensors featured with high sensitivity, portability, and miniaturization are springing up and emerging as superb substitutes to monitor ZEN in recent years. Herein, we predominantly devoted to overview the progress in the fabrication strategies and applications of various nanomaterial-based biosensors, highlighting rationales on sensing mechanisms, response types, and practical analytical performance. Synchronously, the versatile nanomaterials integrating with diverse recognition elements for augmenting sensing capabilities are emphasized. Finally, critical challenges and perspectives to expedite ZEN detection are outlooked.
Collapse
Affiliation(s)
- Quanliang Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Xiyu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Xiaomeng Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Lin Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Ping Chen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | - Biying Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
| |
Collapse
|
62
|
Yang L, Yang L, Cai Y, Luo Y, Wang H, Wang L, Chen J, Liu X, Wu Y, Qin Y, Wu Z, Liu N. Natural mycotoxin contamination in dog food: A review on toxicity and detoxification methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114948. [PMID: 37105098 DOI: 10.1016/j.ecoenv.2023.114948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Nowadays, the companion animals (dogs or other pets) are considered as members of the family and have established strong emotional relationships with their owners. Dogs are long lived compared to food animals, so safety, adequacy, and efficacy of dog food is of great importance for their health. Cereals, cereal by-products as well as feedstuffs of plant origin are commonly employed food resources in dry food, yet are potential ingredients for mycotoxins contamination, so dogs are theoretically more vulnerable to exposure when consumed daily. Aflatoxins (AF), deoxynivalenol (DON), fumonisins (FUM), ochratoxin A (OTA), and zearalenone (ZEA) are the most frequent mycotoxins that might present in dog food and cause toxicity on the growth and metabolism of dogs. An understanding of toxicological effects and detoxification methods (physical, chemical, or biological approaches) of mycotoxins will help to improve commercial ped food quality, reduce harm and minimize exposure to dogs. Herein, we outline a description of mycotoxins detected in dog food, toxicity and clinical findings in dogs, as well as methods applied in mycotoxins detoxification. This review aims to provide a reference for future studies involved in the evaluation of the risk, preventative strategies, and clear criteria of mycotoxins for minimizing exposure, reducing harm, and preventing mycotoxicosis in dog.
Collapse
Affiliation(s)
- Ling Yang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Lihan Yang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuqing Cai
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yifei Luo
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hui Wang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Li Wang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Jingqing Chen
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiaoming Liu
- College of Animal Science and Technology, Shandong Agricultural University, China
| | - Yingjie Wu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yinghe Qin
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Ning Liu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
63
|
Lan X, Liu Y, Wang L, Wang H, Hu Z, Dong H, Yu Z, Yuan Y. A review of curcumin in food preservation: Delivery system and photosensitization. Food Chem 2023; 424:136464. [PMID: 37247602 DOI: 10.1016/j.foodchem.2023.136464] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/01/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
As a natural polyphenol, curcumin has been used as an alternative to synthetic preservatives in food preservation. Different from previous reviews that mainly focus on the pH-responsive discoloration of curcumin to detect changes in food quality in real time, this paper focuses on the perspective of the delivery system and photosensitization of curcumin for food preservation. The delivery system is an effective means to overcome the challenges of curcumin like instability, hydrophobicity, and low bioavailability. Curcumin as a photosensitizer can effectively sterilize to preserve food. The practical fresh-keeping effects of the delivery system and photosensitization of curcumin on foods (fruits/vegetables, animal-derived food, and grain) were summarized comprehensively, including shelf-life extension, maintenance of physicochemical properties, nutritional quality, and sensory. Future research should focus on the development of novel curcumin-loaded materials used for food preservation, and most importantly, the biosafety and accumulation toxicity associated with these materials should be explored.
Collapse
Affiliation(s)
- Xiang Lan
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Yueyue Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lei Wang
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Haiyan Wang
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Zhe Hu
- Hisense Ronshen (Guangdong) Refrigerator Co., Ltd., Foshan 528303, China
| | - Hao Dong
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Zhiwen Yu
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Yongkai Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
64
|
Bisconsin-Junior A, Feitosa BF, Silva FL, Barros Mariutti LR. Mycotoxins on edible insects: Should we be worried? Food Chem Toxicol 2023; 177:113845. [PMID: 37209938 DOI: 10.1016/j.fct.2023.113845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Edible insects are a solid alternative to meet the growing demand for animal protein. However, there are doubts regarding the safety of insect consumption. Mycotoxins are substances of concern for food safety, as they may cause harmful effects on the human organism and accumulate in the tissues of some animals. This study focuses on the characteristics of the main mycotoxins, the mitigation of human consumption of contaminated insects, and the effects of mycotoxins on insect metabolism. To date, studies reported the interaction of the mycotoxins aflatoxin B1, ochratoxin A, zearalenone, deoxynivalenol, fumonisin B1, and T-2, isolated or combined, in three insect species from Coleoptera and one from Diptera order. The use of rearing substrates with low mycotoxin contamination did not reduce the survival and development of insects. Fasting practices and replacing contaminated substrate with a decontaminated one decreased the concentration of mycotoxins in insects. There is no evidence that mycotoxins accumulate in the tissues of the insects' larvae. Coleoptera species showed high excretion capacity, while Hermetia illucens had a lower excretion capacity of ochratoxin A, zearalenone, and deoxynivalenol. Thus, a substrate with low mycotoxin contamination could be used for raising edible insects, particularly from the Coleoptera order.
Collapse
Affiliation(s)
- Antonio Bisconsin-Junior
- School of Food Engineering, University of Campinas, Campinas, SP, Brazil; Federal Institute of Rondônia, Ariquemes, RO, Brazil.
| | | | | | | |
Collapse
|
65
|
Purchase J, Donato R, Sacco C, Pettini L, Rookmin AD, Melani S, Artese A, Purchase D, Marvasi M. The association of food ingredients in breakfast cereal products and fumonisins production: risks identification and predictions. Mycotoxin Res 2023:10.1007/s12550-023-00483-5. [PMID: 37165150 PMCID: PMC10393861 DOI: 10.1007/s12550-023-00483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
Breakfast processed products are remarkably at risk of fungal contamination. This research surveyed the fumonisins concentration in different breakfast products and carried out in vitro experiments measuring fumonisins content in different substrates inoculated with Fusarium verticillioides. The pipeline started with the identification of combinations of ingredients for 58 breakfast products. Twenty-three core ingredients, seven nutritional components and production types were analyzed using a Pearson correlation, k-means clustering, and principal component analysis to show that no single factor is responsible for high fumonisins detection in processed cereals products. Consequently, decision tree regression was used as a means of determining and visualizing complex logical interactions between the same factors. We clustered the association of ingredients in low, medium, and high risk of fumonisin detection. The analysis showed that high fumonisins concentration is associated with those products that have high maize concentrations coupled especially with high sodium or rice. In an in vitro experiment, different media were prepared by mixing the ingredients in the proportion found in the first survey and by measuring fumonisins production by Fusarium verticillioides. Results showed that (1) fumonisins production by F. verticillioides is boosted by the synergistic effect of maize and highly ready carbohydrate content such as white flour; (2) a combination of maize > 26% (w/w), rice > 2.5% (w/w), and NaCl > 2.2% (w/w) led to high fumonisins production, while mono-ingredient products were more protective against fumonisins production. The observations in the in vitro experiments appeared to align with the decision tree model that an increase in ingredient complexity can lead to fumonisins production by Fusarium. However, more research is urgently needed to develop the area of predictive mycology based on the association of processing, ingredients, fungal development, and mycotoxins production.
Collapse
Affiliation(s)
| | - Rosa Donato
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Cristiana Sacco
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Lilia Pettini
- Department of Health Sciences, University of Florence, Florence, Italy
| | | | - Simone Melani
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Alice Artese
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Diane Purchase
- Department of Natural Sciences, Middlesex University London, London, UK
| | - Massimiliano Marvasi
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
66
|
Malir F, Pickova D, Toman J, Grosse Y, Ostry V. Hazard characterisation for significant mycotoxins in food. Mycotoxin Res 2023; 39:81-93. [PMID: 36930431 DOI: 10.1007/s12550-023-00478-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/18/2023]
Abstract
This review updates the current status of activities related to hazard characterisation for mycotoxins, with special reference to regulatory work accomplished within the European Union. Because the relevant information on these topics is widely scattered in the scientific literature, this review intends to provide a condensed overview on the most pertinent aspects. Human health risk assessment is a procedure to estimate the nature and potential for harmful effects of mycotoxins on human health due to exposure to them via contaminated food. This assessment involves hazard identification, hazard characterisation, exposure assessment, and risk characterisation. Mycotoxins covered in this review are aflatoxins, ochratoxin A, cyclopiazonic acid, citrinin, trichothecenes (deoxynivalenol, nivalenol, T-2, and HT-2 toxins), fumonisins, zearalenone, patulin, and ergot alkaloids. For mycotoxins with clear genotoxic/carcinogenic properties, the focus is on the margin of exposure approach. One of its goals is to document predictive characterisation of the human hazard, based on studies in animals using conditions of low exposure. For the other, non-genotoxic toxins, individual 'no adverse effect levels' have been established, but structural analogues or modified forms may still complicate assessment. During the process of hazard characterisation, each identified effect is assessed for human relevance. The estimation of a 'safe dose' is the hazard characterisation endpoint. The final aim of all of these activities is to establish a system, which is able to minimise and control the risk for the consumer from mycotoxins in food. Ongoing research on mycotoxins constantly comes up with new findings, which may have to be implemented into this system.
Collapse
Affiliation(s)
- Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003, Hradec Kralove, Czech Republic.
| | - Darina Pickova
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003, Hradec Kralove, Czech Republic
| | - Jakub Toman
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003, Hradec Kralove, Czech Republic
| | - Yann Grosse
- The IARC Monographs Programme, International Agency for Research On Cancer (retired), Lyon, France
| | - Vladimir Ostry
- Center for Health, Nutrition and Food in Brno, National Institute of Public Health, Palackeho 3a, 61242, Brno, Czech Republic
| |
Collapse
|
67
|
Medalcho TH, Abegaz K, Dessalegn E, Mate J. Aflatoxin B1 Detoxification Potentials of Garlic, Ginger, Cardamom, Black Cumin, and Sautéing in Ground Spice Mix Red Pepper Products. Toxins (Basel) 2023; 15:307. [PMID: 37235342 PMCID: PMC10220635 DOI: 10.3390/toxins15050307] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
The uses of natural plant origin bioactive compounds are emerging as a promising strategy to detoxify aflatoxin B1 (AFB1). This study aimed to explore the potential of cooking, phytochemicals content, and antioxidant activities derived from garlic, ginger, cardamom, and black cumin to detoxify AFB1 on spice mix red pepper powder (berbere) and sauté. The effectiveness of the samples was analyzed for AFB1 detoxification potential through standard methods for the examination of food and food additives. These major spices showed an AFB1 level below the detection limit. After cooking in hot water for 7 min at 85 ℃, the experimental and commercial spice mix red pepper showed the maximum AFB1 detoxification (62.13% and 65.95%, respectively). Thus, mixing major spices to produce a spice mix red pepper powder had a positive effect on AFB1 detoxification in raw and cooked spice mix red pepper samples. Total phenolic content, total flavonoid content, 2,2-diphenyl-1-picrylhydrazyl, ferric ion reducing antioxidant power, and ferrous ion chelating activity revealed good positive correlation with AFB1 detoxification at p < 0.05. The findings of this study could contribute to mitigation plans of AFB1 in spice-processing enterprises. Further study is required on the mechanism of AFB1 detoxification and safety of the detoxified products.
Collapse
Affiliation(s)
- Tadewos Hadero Medalcho
- School of Nutrition, Food Science and Technology, College of Agriculture, Hawassa University, Hawassa P.O. Box 05, Ethiopia
| | - Kebede Abegaz
- School of Nutrition, Food Science and Technology, College of Agriculture, Hawassa University, Hawassa P.O. Box 05, Ethiopia
| | | | - Juan Mate
- Public University of Navarra (UPNA), 31006 Navarra, Spain
| |
Collapse
|
68
|
Mesfin A, Lachat C, Gebreyesus SH, Roro M, Tesfamariam K, Belachew T, De Boevre M, De Saeger S. Mycotoxins Exposure of Lactating Women and Its Relationship with Dietary and Pre/Post-Harvest Practices in Rural Ethiopia. Toxins (Basel) 2023; 15:toxins15040285. [PMID: 37104223 PMCID: PMC10143280 DOI: 10.3390/toxins15040285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Mycotoxins can be transferred to breast milk during lactation. Hence, the presence of multiple mycotoxins (aflatoxins B1, B2, G1, G2, and M1, alpha and beta zearalanol, deoxynivalenol, fumonisins B1, B2, B3, and hydrolyzed B1, nivalenol, ochratoxin A, ochratoxin alpha, and zearalenone) in breast milk samples was assessed in our study. Furthermore, the relationship between total fumonisins and pre/post-harvest and the women's dietary practices was examined. Liquid chromatography coupled with tandem mass spectrometry was used to analyze the 16 mycotoxins. An adjusted censored regression model was fitted to identify predictors of mycotoxins, i.e., total fumonisins. We detected only fumonisin B2 (15% of the samples) and fumonisin B3 (9% of the samples) while fumonisin B1 and nivalenol were detected only in a single breast milk sample. No association between total fumonisins and pre/post-harvest and dietary practices was found (p < 0.05). The overall exposure to mycotoxins was low in the studied women, although fumonisins contamination was not negligible. Moreover, the recorded total fumonisins was not associated with any of the pre/post-harvest and dietary practices. Therefore, to better identify predictors of fumonisin contamination in breast milk, longitudinal studies with food samples in addition to breast milk samples and with larger sample sizes are needed for the future.
Collapse
Affiliation(s)
- Addisalem Mesfin
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
- Department of Nutrition and Dietetics, Faculty of Public Health, Jimma University, Jimma 1000, Ethiopia
- Department of Human Nutrition, College of Agriculture, Hawassa University, Hawassa 1000, Ethiopia
| | - Carl Lachat
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
- MYTOX-SOUTH® International Thematic Network, Ghent University, 9000 Ghent, Belgium
| | - Seifu Hagos Gebreyesus
- Department of Nutrition and Dietetics, School of Public Health, College of Health Sciences, Addis Ababa University, Addis Ababa 1000, Ethiopia
| | - Meselech Roro
- Department of Reproductive Health and Health Service Management, School of Public Health, Addis Ababa University, Addis Ababa 1000, Ethiopia
| | - Kokeb Tesfamariam
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
- Department of Public Health, College of Medicine and Health Sciences, Ambo University, Ambo 1000, Ethiopia
| | - Tefera Belachew
- Department of Nutrition and Dietetics, Faculty of Public Health, Jimma University, Jimma 1000, Ethiopia
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
- MYTOX-SOUTH® International Thematic Network, Ghent University, 9000 Ghent, Belgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
- MYTOX-SOUTH® International Thematic Network, Ghent University, 9000 Ghent, Belgium
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Gauteng 2028, South Africa
| |
Collapse
|
69
|
Wang Y, Zhang L, Yu X, Zhou C, Yagoub AEA, Li D. A Catalytic Infrared System as a Hot Water Replacement Strategy: A Future Approach for Blanching Fruits and Vegetables to Save Energy and Water. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2187060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Yuqing Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Long Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiaojie Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Abu ElGasim Ahmed Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Dajing Li
- Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
70
|
Kortei NK, Oman Ayiku P, Nsor-Atindana J, Owusu Ansah L, Wiafe-Kwagyan M, Kyei-Baffour V, Kottoh ID, Odamtten GT. Toxicogenic fungal profile, Ochratoxin A exposure and cancer risk characterization through maize (Zea mays) consumed by different age populations in the Volta region of Ghana. Toxicon 2023; 226:107085. [PMID: 36921906 DOI: 10.1016/j.toxicon.2023.107085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
Maize (Zea mays) is an important staple food crop for the majority of Ghanaians. Maize is mostly contaminated by fungal species and particularly mycotoxins. This work aimed to identify and quantify the incidence of fungal infection and exposure to Ochratoxin A (OTA) as well as the health risk characterization in different age populations due to maize consumption in the Volta region. Maize samples were plated on Dichloran Rose Bengal Chloramphenicol (DRBC) agar, and Oxytetracycline Glucose Yeast Extract (OGYE) agar. All media were prepared in accordance with the manufacturers' instructions. The plates were incubated at 28 ± 2 °C for 5-7 days. High-Performance Liquid Chromatography connected to a fluorescence detector (HPLC-FLD) was used to analyze the ochratoxin A (OTA) levels in maize. Cancer risk assessments were also conducted using models prescribed by the Joint FAO/WHO Expert Committee on Additives (JECFA). The maize samples collected from the Volta region contained fungal population between the range of 3.08-4.58 log10 CFU/g. Eight (8) genera were recorded belonging to Aspergillus, Trichoderma, Penicillium, Fusarium, Saccharomyces, Mucor, Rhodotorula and Rhizopus. The species diversity includes A. flavus, A. niger, T. harzianum, P. verrucosum, F. oxysporum, Yeast, F. verticillioides, Rhodotorulla sp, A. fumigatus, R. stolonifer, M. racemosus species. Additionally, the ochratoxins level contained in the samples were very noteworthy and ranged from 1.22 to 28.17 μg/kg. Cancer risk assessments of OTA produced outcomes also ranged between 2.15 and 524.54 ng/kg bw/day, 0.03-8.31, 0.0323, and 0.07-16.94 for cases/100,000 person/yr for Estimated Daily Intake (EDI), Margin of Exposure (MOE), Average Potency, and Cancer Risks respectively for all age categories investigated. There was very high mycoflora load on the maize sampled from the Volta region, likewise the range of mycotoxins present in the maize grains, suggesting the potential to pose some adverse health effects with the populace of the Volta region.
Collapse
Affiliation(s)
- Nii Korley Kortei
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana.
| | - Peter Oman Ayiku
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - John Nsor-Atindana
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Leslie Owusu Ansah
- Department of Food Laboratory, Food and Drugs Authority, P.O. Box CT 2783, Cantonments, Accra, Ghana
| | - Michael Wiafe-Kwagyan
- Department of Plant and Environmental Biology, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 55, Legon, Ghana
| | - Vincent Kyei-Baffour
- Food Chemistry and Nutrition Research Division, Council for Scientific and Industrial Research- Food Research Institute, P. O. Box M20, Accra, Ghana
| | - Isaac Delali Kottoh
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), Ghana Atomic Energy Commission, P. O. Box LG 80, Legon, Accra, Ghana
| | - George Tawia Odamtten
- Department of Plant and Environmental Biology, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 55, Legon, Ghana
| |
Collapse
|
71
|
Chiappim W, de Paula Bernardes V, Almeida NA, Pereira VL, Bragotto APA, Cerqueira MBR, Furlong EB, Pessoa R, Rocha LO. Effect of Gliding Arc Plasma Jet on the Mycobiota and Deoxynivalenol Levels in Naturally Contaminated Barley Grains. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5072. [PMID: 36981981 PMCID: PMC10049212 DOI: 10.3390/ijerph20065072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/22/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Fusarium graminearum and Fusarium meridionale are primary contaminants of barley, capable of producing several mycotoxins, mainly type B trichothecenes and zearalenone. Cold plasma decontamination has been gaining prominence, seeking to control the fungal and mycotoxin contamination of food and feed and to improve product quality. To reach this objective, the present study was divided into two parts. In the first part, F. meridionale and F. graminearum strains were exposed to gliding arc plasma jet (GAPJ). Cell viability tests showed the inactivation of F. meridionale after 15-min treatment, whereas F. graminearum showed to be resistant. In the second part, barley grains were treated by GAPJ for 10, 20, and 30 min, demonstrating a reduction of about 2 log CFU/g of the barley's mycobiota, composed of yeasts, strains belonging to the F. graminearum species complex, Alternaria, and Aspergillus. A decrease in DON levels (up to 89%) was observed after exposure for 20 min. However, an increase in the toxin Deoxynivalenol-3-glucoside (D3G) was observed in barley grains, indicating a conversion of DON to D3G.
Collapse
Affiliation(s)
- William Chiappim
- Laboratory of Plasmas and Applications, Department of Physics, Faculty of Engineering and Sciences, São Paulo State University (UNESP), Guaratinguetá 12516-410, Brazil
| | - Vanessa de Paula Bernardes
- Laboratório de Microbiologia de Alimentos I, Departmento de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas-UNICAMP, Campinas 13083-862, Brazil
| | - Naara Aparecida Almeida
- Laboratório de Microbiologia de Alimentos I, Departmento de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas-UNICAMP, Campinas 13083-862, Brazil
| | - Viviane Lopes Pereira
- Laboratório de Microbiologia de Alimentos I, Departmento de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas-UNICAMP, Campinas 13083-862, Brazil
| | - Adriana Pavesi Arisseto Bragotto
- Laboratório de Microbiologia de Alimentos I, Departmento de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas-UNICAMP, Campinas 13083-862, Brazil
| | | | - Eliana Badiale Furlong
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Rio Grande 96203-900, Brazil
| | - Rodrigo Pessoa
- Laboratório de Plasmas e Processos, Departamento de Física, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, Brazil
| | - Liliana Oliveira Rocha
- Laboratório de Microbiologia de Alimentos I, Departmento de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas-UNICAMP, Campinas 13083-862, Brazil
| |
Collapse
|
72
|
Efremenko E, Senko O, Maslova O, Lyagin I, Aslanli A, Stepanov N. Destruction of Mycotoxins in Poultry Waste under Anaerobic Conditions within Methanogenesis Catalyzed by Artificial Microbial Consortia. Toxins (Basel) 2023; 15:205. [PMID: 36977096 PMCID: PMC10058804 DOI: 10.3390/toxins15030205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
To reduce the toxicity of modern feeds polluted by mycotoxins, various sorbents are added to them when feeding animals. A part of the mycotoxins is excreted from the body of animals with these sorbents and remains in the manure. As a result, bulk animal wastes containing mixtures of mycotoxins are formed. It is known that it is partially possible to decrease the initial concentration of mycotoxins in the process of anaerobic digestion (AD) of contaminated methanogenic substrates. The aim of this review was to analyze the recent results in destruction of mycotoxins under the action of enzymes present in cells of anaerobic consortia catalyzing methanogenesis of wastes. The possible improvement of the functioning of the anaerobic artificial consortia during detoxification of mycotoxins in the bird droppings is discussed. Particular attention was paid to the possibility of effective functioning of microbial enzymes that catalyze the detoxification of mycotoxins, both at the stage of preparation of poultry manure for methanogenesis and directly in the anaerobic process itself. The sorbents with mycotoxins which appeared in the poultry wastes composed one of the topics of interest in this review. The preliminary alkaline treatment of poultry excreta before processing in AD was considered from the standpoint of effectively reducing the concentrations of mycotoxins in the waste.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
73
|
Stranska M, Prusova N, Behner A, Dzuman Z, Lazarek M, Tobolkova A, Chrpova J, Hajslova J. Influence of pulsed electric field treatment on the fate of Fusarium and Alternaria mycotoxins present in malting barley. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
74
|
Yadavalli R, Valluru P, Raj R, Reddy CN, Mishra B. Biological detoxification of mycotoxins: Emphasizing the role of algae. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
75
|
Feizollahi E, Jeganathan B, Reiz B, Vasanthan T, Roopesh M. Reduction of deoxynivalenol during barley steeping in malting using plasma activated water and the determination of major degradation products. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
76
|
da Silva AAR, da Silva Júnior JJ, Cavalcanti MIDS, Machado DC, Medeiros PL, Rodrigues CG. Alphatoxin Nanopore Detection of Aflatoxin, Ochratoxin and Fumonisin in Aqueous Solution. Toxins (Basel) 2023; 15:toxins15030183. [PMID: 36977074 PMCID: PMC10058818 DOI: 10.3390/toxins15030183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023] Open
Abstract
Mycotoxins are toxic and carcinogenic metabolites produced by groups of filamentous fungi that colonize food crops. Aflatoxin B1 (AFB1), ochratoxin A (OTA) and fumonisin B1 (FB1) are among the most relevant agricultural mycotoxins, as they can induce various toxic processes in humans and animals. To detect AFB1, OTA and FB1 in the most varied matrices, chromatographic and immunological methods are primarily used; however, these techniques are time-consuming and expensive. In this study, we demonstrate that unitary alphatoxin nanopore can be used to detect and differentiate these mycotoxins in aqueous solution. The presence of AFB1, OTA or FB1 inside the nanopore induces reversible blockage of the ionic current flowing through the nanopore, with distinct characteristics of blockage that are unique to each of the three toxins. The process of discrimination is based on the residual current ratio calculation and analysis of the residence time of each mycotoxin inside the unitary nanopore. Using a single alphatoxin nanopore, the mycotoxins could be detected at the nanomolar level, indicating that alphatoxin nanopore is a promising molecular tool for discriminatory analysis of mycotoxins in aqueous solution.
Collapse
Affiliation(s)
- Artur Alves Rodrigues da Silva
- Education and Health Center, Federal University of Campina Grande, Rua Aprígio Veloso, 882, Universitário, Campina Grande 58429-900, Brazil
- Postgraduate Program in Therapeutic Innovation, Federal University of Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, Recife 50670-901, Brazil
| | - Janilson José da Silva Júnior
- Department of Biophysics and Radiobiology, Federal University of Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, Recife 50670-901, Brazil
| | - Maria Isabel dos Santos Cavalcanti
- Department of Biophysics and Radiobiology, Federal University of Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, Recife 50670-901, Brazil
| | - Dijanah Cota Machado
- Department of Biophysics and Radiobiology, Federal University of Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, Recife 50670-901, Brazil
| | - Paloma Lys Medeiros
- Department of Biophysics and Radiobiology, Federal University of Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, Recife 50670-901, Brazil
| | - Claudio Gabriel Rodrigues
- Postgraduate Program in Therapeutic Innovation, Federal University of Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, Recife 50670-901, Brazil
- Department of Biophysics and Radiobiology, Federal University of Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, Recife 50670-901, Brazil
- Correspondence: ; Tel.: +55-81-2126-8535
| |
Collapse
|
77
|
Orozco-Cortés PC, Flores-Ortíz CM, Hernández-Portilla LB, Vázquez Medrano J, Rodríguez-Peña ON. Molecular Docking and In Vitro Studies of Ochratoxin A (OTA) Biodetoxification Testing Three Endopeptidases. Molecules 2023; 28:molecules28052019. [PMID: 36903263 PMCID: PMC10003963 DOI: 10.3390/molecules28052019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023] Open
Abstract
Ochratoxin A (OTA) is considered one of the main mycotoxins responsible for health problems and considerable economic losses in the feed industry. The aim was to study OTA's detoxifying potential of commercial protease enzymes: (i) Ananas comosus bromelain cysteine-protease, (ii) bovine trypsin serine-protease and (iii) Bacillus subtilis neutral metalloendopeptidase. In silico studies were performed with reference ligands and T-2 toxin as control, and in vitro experiments. In silico study results showed that tested toxins interacted near the catalytic triad, similar to how the reference ligands behave in all tested proteases. Likewise, based on the proximity of the amino acids in the most stable poses, the chemical reaction mechanisms for the transformation of OTA were proposed. In vitro experiments showed that while bromelain reduced OTA's concentration in 7.64% at pH 4.6; trypsin at 10.69% and the neutral metalloendopeptidase in 8.2%, 14.44%, 45.26% at pH 4.6, 5 and 7, respectively (p < 0.05). The less harmful α-ochratoxin was confirmed with trypsin and the metalloendopeptidase. This study is the first attempt to demonstrate that: (i) bromelain and trypsin can hydrolyse OTA in acidic pH conditions with low efficiency and (ii) the metalloendopeptidase was an effective OTA bio-detoxifier. This study confirmed α-ochratoxin as a final product of the enzymatic reactions in real-time practical information on OTA degradation rate, since in vitro experiments simulated the time that food spends in poultry intestines, as well as their natural pH and temperature conditions.
Collapse
Affiliation(s)
- Pablo César Orozco-Cortés
- Laboratorio de Fisiología Vegetal, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico
| | - Cesar Mateo Flores-Ortíz
- Laboratorio de Fisiología Vegetal, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico
- Correspondence: (C.M.F.-O.); (O.N.R.-P.); Tel.: +52-555-623-1131 (O.N.R.P.)
| | - Luis Barbo Hernández-Portilla
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico
| | - Josefina Vázquez Medrano
- Laboratorio de Fisiología Vegetal, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico
| | - Olga Nelly Rodríguez-Peña
- Laboratorio de Fisiología Vegetal, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico
- Correspondence: (C.M.F.-O.); (O.N.R.-P.); Tel.: +52-555-623-1131 (O.N.R.P.)
| |
Collapse
|
78
|
Urugo MM, Teka TA, Berihune RA, Teferi SL, Garbaba CA, Adebo JA, Woldemariam HW, Astatkie T. Novel non-thermal food processing techniques and their mechanism of action in mycotoxins decontamination of foods. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
79
|
Gavrilova OP, Gagkaeva TY, Orina AS, Gogina NN. Diversity of Fusarium Species and Their Mycotoxins in Cereal Crops from the Asian Territory of Russia. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2023; 508:9-19. [PMID: 37186044 DOI: 10.1134/s0012496622700156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 05/17/2023]
Abstract
Up-to-date information on the occurrence of Fusarium fungi and their mycotoxins in the grain of wheat, barley and oats grown in the Urals and West Siberia in 2018‒2019 is presented. Mycological analysis of grain revealed at least 16 species of Fusarium fungi. The F. sporotrichioides, F. avenaceum, F. poae, and F. anguioides were predominant, and the proportions of these species among all Fusarium fungi found in the grain were 31, 20, 19, and 13%, respectively. Fusarium graminearum and its mycotoxin deoxynivalenol (DON) are often occurred in grain mycobiota of cereal crops on the territory of both the Urals and West Siberia. New records of fungal species that are rare in the Asian territory of Russia were detected: F. langsethiae and F. sibiricum, which are mainly producers of type A trichothecene mycotoxins, were found in the Kurgan and Kemerovo regions, respectively. In addition, F. globosum that is able to produce fumonisins was detected in Altai Krai and Omsk region. The diversity of Fusarium species was higher in wheat and barley grain samples than in oats. The HPLC-MS/MS method was used to analyse the content of 19 mycotoxins produced by Fusarium fungi. The highest diversity of mycotoxins was found in wheat grain (maximum 12), compared with oats (9) and barley (8). The T-2 and HT-2 toxins, DON, nivalenol, moniliformin (MON) and beauvericin (BEA) occurred more often in the grain samples, compared with other mycotoxins, but their amounts varied significantly, depending on the weather conditions in sampling year and the plant species. The average content of DON (maximum amount was 375 µg/kg) in wheat grain was 5 times higher than its average content in barley grain, and this mycotoxin was not detected in oat grain. The contamination with T-2 and HT-toxins (maximum amounts were 2652 μg/kg and 481 μg/kg, respectively), as well as with BEA (maximum amount was 49 μg/kg) was typical for barley and oat grain samples. The content of MON (maximum amount was 50 μg/kg) in the grain of three different small grain cereals was similar.
Collapse
Affiliation(s)
- O P Gavrilova
- All-Russian Institute of Plant Protection, St. Petersburg, Russia.
| | - T Yu Gagkaeva
- All-Russian Institute of Plant Protection, St. Petersburg, Russia.
| | - A S Orina
- All-Russian Institute of Plant Protection, St. Petersburg, Russia
| | - N N Gogina
- All-Russian Research and Technological Poultry Institute, Sergiev Posad, Moscow oblast, Russia
| |
Collapse
|
80
|
Jing G, Wang Y, Wu M, Liu W, Xiong S, Yu J, Li W, Liu W, Jiang Y. Photocatalytic Degradation and Pathway from Mycotoxins in Food: A Review. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2166062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Guoxing Jing
- School of Chemical Engineering, Xiangtan University, Xiangtan, PR China
| | - Yuanyuan Wang
- School of Chemical Engineering, Xiangtan University, Xiangtan, PR China
| | - Mengping Wu
- School of Chemical Engineering, Xiangtan University, Xiangtan, PR China
| | - Wenjie Liu
- School of Chemical Engineering, Xiangtan University, Xiangtan, PR China
| | - Shaofeng Xiong
- School of Chemical Engineering, Xiangtan University, Xiangtan, PR China
| | - Jianna Yu
- School of Chemical Engineering, Xiangtan University, Xiangtan, PR China
| | - Wenshan Li
- School of Chemical Engineering, Xiangtan University, Xiangtan, PR China
| | - Wen Liu
- School of Chemical Engineering, Xiangtan University, Xiangtan, PR China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
81
|
Redistribution of surplus bread particles into the food supply chain. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
82
|
Bacha SAS, Li Y, Nie J, Xu G, Han L, Farooq S. Comprehensive review on patulin and Alternaria toxins in fruit and derived products. FRONTIERS IN PLANT SCIENCE 2023; 14:1139757. [PMID: 37077634 PMCID: PMC10108681 DOI: 10.3389/fpls.2023.1139757] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Mycotoxins are toxic secondary metabolites produced by certain fungi, which can contaminate various food commodities, including fruits and their derived products. Patulin and Alternaria toxins are among the most commonly encountered mycotoxins in fruit and their derived products. In this review, the sources, toxicity, and regulations related to these mycotoxins, as well as their detection and mitigation strategies are widely discussed. Patulin is a mycotoxin produced mainly by the fungal genera Penicillium, Aspergillus, and Byssochlamys. Alternaria toxins, produced by fungi in the Alternaria genus, are another common group of mycotoxins found in fruits and fruit products. The most prevalent Alternaria toxins are alternariol (AOH) and alternariol monomethyl ether (AME). These mycotoxins are of concern due to their potential negative effects on human health. Ingesting fruits contaminated with these mycotoxins can cause acute and chronic health problems. Detection of patulin and Alternaria toxins in fruit and their derived products can be challenging due to their low concentrations and the complexity of the food matrices. Common analytical methods, good agricultural practices, and contamination monitoring of these mycotoxins are important for safe consumption of fruits and derived products. And Future research will continue to explore new methods for detecting and managing these mycotoxins, with the ultimate goal of ensuring the safety and quality of fruits and derived product supply.
Collapse
Affiliation(s)
- Syed Asim Shah Bacha
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Yinping Li
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Guofeng Xu
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Lingxi Han
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Saqib Farooq
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| |
Collapse
|
83
|
Geicu OI, Bilteanu L, Stanca L, Ionescu Petcu A, Iordache F, Pisoschi AM, Serban AI. Composition-Based Risk Estimation of Mycotoxins in Dry Dog Foods. Foods 2022; 12:110. [PMID: 36613326 PMCID: PMC9818488 DOI: 10.3390/foods12010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The risk of mycotoxins co-occurrence in extrusion-produced dry foods increases due to their composition based on various grains and vegetables. This study aimed to validate a risk estimation for the association between ingredients and the ELISA-detected levels of DON, FUM, ZEA, AFs, T2, and OTA in 34 dry dog food products. The main ingredients were corn, beet, and oil of different origins (of equal frequency, 79.41%), rice (67.6%), and wheat (50%). DON and FUM had the strongest positive correlation (0.635, p = 0.001). The presence of corn in the sample composition increased the median DON and ZEA levels, respectively, by 99.45 μg/kg and 65.64 μg/kg, p = 0.011. In addition to DON and ZEA levels, integral corn presence increased the FUM median levels by 886.61 μg/kg, p = 0.005. For corn gluten flour-containing samples, DON, FUM, and ZEA median differences still existed, and OTA levels also differed by 1.99 μg/kg, p < 0.001. Corn gluten flour presence was strongly associated with DON levels > 403.06 μg/kg (OR = 38.4, RR = 9.90, p = 0.002), FUM levels > 1097.56 μg/kg (OR = 5.56, RR = 1.45, p = 0.048), ZEA levels > 136.88 μg/kg (OR = 23.00, RR = 3.09, p = 0.002), and OTA levels > 3.93 μg/kg (OR = 24.00, RR = 3.09, p = 0.002). Our results suggest that some ingredients or combinations should be avoided due to their risk of increasing mycotoxin levels.
Collapse
Affiliation(s)
- Ovidiu Ionut Geicu
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097 Bucharest, Romania
| | - Liviu Bilteanu
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097 Bucharest, Romania
- Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190 Bucharest, Romania
| | - Loredana Stanca
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097 Bucharest, Romania
| | - Adriana Ionescu Petcu
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097 Bucharest, Romania
| | - Florin Iordache
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097 Bucharest, Romania
| | - Aurelia Magdalena Pisoschi
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097 Bucharest, Romania
| | - Andreea Iren Serban
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097 Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Blvd. Splaiul Independentei, 050095 Bucharest, Romania
| |
Collapse
|
84
|
Wang W, Liang X, Li Y, Wang P, Keller NP. Genetic Regulation of Mycotoxin Biosynthesis. J Fungi (Basel) 2022; 9:jof9010021. [PMID: 36675842 PMCID: PMC9861139 DOI: 10.3390/jof9010021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Mycotoxin contamination in food poses health hazards to humans. Current methods of controlling mycotoxins still have limitations and more effective approaches are needed. During the past decades of years, variable environmental factors have been tested for their influence on mycotoxin production leading to elucidation of a complex regulatory network involved in mycotoxin biosynthesis. These regulators are putative targets for screening molecules that could inhibit mycotoxin synthesis. Here, we summarize the regulatory mechanisms of hierarchical regulators, including pathway-specific regulators, global regulators and epigenetic regulators, on the production of the most critical mycotoxins (aflatoxins, patulin, citrinin, trichothecenes and fumonisins). Future studies on regulation of mycotoxins will provide valuable knowledge for exploring novel methods to inhibit mycotoxin biosynthesis in a more efficient way.
Collapse
Affiliation(s)
- Wenjie Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Correspondence: (W.W.); (N.P.K.)
| | - Xinle Liang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yudong Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Pinmei Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Correspondence: (W.W.); (N.P.K.)
| |
Collapse
|
85
|
Asghar MA, Ahmed F, Kamal M, Khan S, Aghar MA. Effectiveness of citrus fruit peel as a biosorbent for the mitigation of aflatoxins in vitro. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1987-2001. [PMID: 36223515 DOI: 10.1080/19440049.2022.2132300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We assessed the effectiveness of novel and cost-effective citrus fruit peel (oranges, agro-waste material) for the removal of four aflatoxins B1, B2, G1, and G2 in vitro. The biosorbent was described using SEM, XRF, XRD, FITR spectroscopy, and point of zero charge. The adsorption performance was optimised in a batch experiment by altering the various parameters, such as biosorbent dose (1-15 mg/mL), the preliminary concentration of AFs (20-200 ng/mL), pH (1-9), the incubation period (10-60 min), and temperature (10-45 °C). Maximum removal (90%) was achieved when using biosorbent at 10 mg, each AF concentration 100 ng/mL, pH 3, and incubation time 45 min at 37 °C. The experimental data were well-described by the Langmuir isotherm model and the monolayer coverage (Qe) was calculated to be 78.5, 77.8, 79.2, and 75.6 ng/mg for aflatoxin B1, B2, G1, and G2, respectively. The thermodynamic and kinetic studies suggested that the adsorption performance was endothermic and obeyed the pseudo-second-order rate model. Studies at different pH also proved that the adsorption of toxins would be strong and sufficient under pH variation, as found in the gastrointestinal tract. Thus the biosorption of AFs by orange peel powder might be an efficient low price detoxification method in humans and animals.
Collapse
Affiliation(s)
- Muhammad Asif Asghar
- Food and Feed Safety Laboratory, Food and Marine Resources Research Centre, PCSIR Laboratories Complex, Karachi, Pakistan
| | - Farman Ahmed
- Food and Feed Safety Laboratory, Food and Marine Resources Research Centre, PCSIR Laboratories Complex, Karachi, Pakistan
| | - Mehwish Kamal
- Department of Applied Chemistry, University of Karachi, Karachi, Pakistan
| | - Sadia Khan
- Department of Applied Chemistry, University of Karachi, Karachi, Pakistan
| | - Muhammad Arif Aghar
- Department of Pharmaceutics, Faculty of Pharmacy, Jinnah Sindh Medical University, Karachi, Pakistan
| |
Collapse
|
86
|
Mateo EM, Tarazona A, Jiménez M, Mateo F. Lactic Acid Bacteria as Potential Agents for Biocontrol of Aflatoxigenic and Ochratoxigenic Fungi. Toxins (Basel) 2022; 14:807. [PMID: 36422981 PMCID: PMC9699002 DOI: 10.3390/toxins14110807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Aflatoxins (AF) and ochratoxin A (OTA) are fungal metabolites that have carcinogenic, teratogenic, embryotoxic, genotoxic, neurotoxic, and immunosuppressive effects in humans and animals. The increased consumption of plant-based foods and environmental conditions associated with climate change have intensified the risk of mycotoxin intoxication. This study aimed to investigate the abilities of eleven selected LAB strains to reduce/inhibit the growth of Aspergillus flavus, Aspergillus parasiticus, Aspergillus carbonarius, Aspergillus niger, Aspergillus welwitschiae, Aspergillus steynii, Aspergillus westerdijkiae, and Penicillium verrucosum and AF and OTA production under different temperature regiments. Data were treated by ANOVA, and machine learning (ML) models able to predict the growth inhibition percentage were built, and their performance was compared. All factors LAB strain, fungal species, and temperature significantly affected fungal growth and mycotoxin production. The fungal growth inhibition range was 0-100%. Overall, the most sensitive fungi to LAB treatments were P. verrucosum and A. steynii, while the least sensitive were A. niger and A. welwitschiae. The LAB strains with the highest antifungal activity were Pediococcus pentosaceus (strains S11sMM and M9MM5b). The reduction range for AF was 19.0% (aflatoxin B1)-60.8% (aflatoxin B2) and for OTA, 7.3-100%, depending on the bacterial and fungal strains and temperatures. The LAB strains with the highest anti-AF activity were the three strains of P. pentosaceus and Leuconostoc mesenteroides ssp. dextranicum (T2MM3), and those with the highest anti-OTA activity were Leuconostoc paracasei ssp. paracasei (3T3R1) and L. mesenteroides ssp. dextranicum (T2MM3). The best ML methods in predicting fungal growth inhibition were multilayer perceptron neural networks, followed by random forest. Due to anti-fungal and anti-mycotoxin capacity, the LABs strains used in this study could be good candidates as biocontrol agents against aflatoxigenic and ochratoxigenic fungi and AFL and OTA accumulation.
Collapse
Affiliation(s)
- Eva María Mateo
- Departamento de Microbiología y Ecología, Facultad de Medicina y Odontología, Universitat de Valencia, E-46100 Burjasot, Valencia, Spain
| | - Andrea Tarazona
- Departamento de Microbiología y Ecología, Facultad de Ciencias Biológicas, Universitat de Valencia, E-46100 Burjasot, Valencia, Spain
| | - Misericordia Jiménez
- Departamento de Microbiología y Ecología, Facultad de Ciencias Biológicas, Universitat de Valencia, E-46100 Burjasot, Valencia, Spain
| | - Fernando Mateo
- Departamento de Ingeniería Electrónica, ETSE, Universitat de Valencia, E-46100 Burjasot, Valencia, Spain
| |
Collapse
|
87
|
Pre-harvest strategy for reducing aflatoxin accumulation during storage of maize in Argentina. Int J Food Microbiol 2022; 380:109887. [DOI: 10.1016/j.ijfoodmicro.2022.109887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022]
|
88
|
Pascale M, Logrieco AF, Lippolis V, De Girolamo A, Cervellieri S, Lattanzio VMT, Ciasca B, Vega A, Reichel M, Graeber M, Slettengren K. Industrial-Scale Cleaning Solutions for the Reduction of Fusarium Toxins in Maize. Toxins (Basel) 2022; 14:toxins14110728. [PMID: 36355978 PMCID: PMC9695466 DOI: 10.3390/toxins14110728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 01/26/2023] Open
Abstract
Grain cleaning is the most effective non-destructive post-harvest mitigation strategy to reduce high levels of mycotoxins on account of the removal of mold-infected grains and grain fractions with high mycotoxin content. In this study, the reduction in the concentration of some co-occurring Fusarium toxins in maize, namely deoxynivalenol (DON), zearalenone (ZEA) and fumonisins B1 and B2 (FBs), was evaluated at an industrial-scale level by mechanical removal (sieving and density separation) of dust, coarse, small, broken, shriveled and low-density kernels and/or optical sorting of defected kernels. Samples were dynamically collected according to the Commission Regulation No. 401/2006 along the entire process line. Mycotoxin analyses of water-slurry aggregate samples were performed by validated LC methods. Depending on the contamination levels in raw incoming maize, the overall reduction rates ranged from 36 to 67% for DON, from 67 to 87% for ZEA and from 27 to 67% for FBs. High levels of DON, ZEA and FBs were found in all rejected fractions with values, respectively, up to 3030%, 1510% and 2680%, compared to their content in uncleaned maize. Results showed that grain cleaning equipment based on mechanical and or optical sorting technologies can provide a significant reduction in Fusarium toxin contamination in maize.
Collapse
Affiliation(s)
- Michelangelo Pascale
- Institute of Food Sciences (ISA), National Research Council of Italy (CNR), 83100 Avellino, Italy
- Correspondence: (M.P.); (K.S.)
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), 70126 Bari, Italy
| | - Vincenzo Lippolis
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), 70126 Bari, Italy
| | - Annalisa De Girolamo
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), 70126 Bari, Italy
| | - Salvatore Cervellieri
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), 70126 Bari, Italy
| | - Veronica M. T. Lattanzio
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), 70126 Bari, Italy
| | - Biancamaria Ciasca
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), 70126 Bari, Italy
| | | | | | | | | |
Collapse
|
89
|
Abou Dib A, Assaf JC, El Khoury A, El Khatib S, Koubaa M, Louka N. Single, Subsequent, or Simultaneous Treatments to Mitigate Mycotoxins in Solid Foods and Feeds: A Critical Review. Foods 2022; 11:3304. [PMCID: PMC9601460 DOI: 10.3390/foods11203304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mycotoxins in solid foods and feeds jeopardize the public health of humans and animals and cause food security issues. The inefficacy of most preventive measures to control the production of fungi in foods and feeds during the pre-harvest and post-harvest stages incited interest in the mitigation of these mycotoxins that can be conducted by the application of various chemical, physical, and/or biological treatments. These treatments are implemented separately or through a combination of two or more treatments simultaneously or subsequently. The reduction rates of the methods differ greatly, as do their effect on the organoleptic attributes, nutritional quality, and the environment. This critical review aims at summarizing the latest studies related to the mitigation of mycotoxins in solid foods and feeds. It discusses and evaluates the single and combined mycotoxin reduction treatments, compares their efficiency, elaborates on their advantages and disadvantages, and sheds light on the treated foods or feeds, as well as on their environmental impact.
Collapse
Affiliation(s)
- Alaa Abou Dib
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Campus des Sciences et Technologies, Université Saint-Joseph de Beyrouth, Mar Roukos, Matn 1104-2020, Lebanon
- Department of Food Sciences and Technology, Facuty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, Bekaa 1108, Lebanon
| | - Jean Claude Assaf
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Campus des Sciences et Technologies, Université Saint-Joseph de Beyrouth, Mar Roukos, Matn 1104-2020, Lebanon
| | - André El Khoury
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Campus des Sciences et Technologies, Université Saint-Joseph de Beyrouth, Mar Roukos, Matn 1104-2020, Lebanon
- Correspondence: ; Tel.: +9611421389
| | - Sami El Khatib
- Department of Food Sciences and Technology, Facuty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, Bekaa 1108, Lebanon
| | - Mohamed Koubaa
- TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, Université de Technologie de Compiègne, ESCOM—CS 60319, CEDEX, 60203 Compiègne, France
| | - Nicolas Louka
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Campus des Sciences et Technologies, Université Saint-Joseph de Beyrouth, Mar Roukos, Matn 1104-2020, Lebanon
| |
Collapse
|
90
|
Identification of Candidate Ice Nucleation Activity (INA) Genes in Fusarium avenaceum by Combining Phenotypic Characterization with Comparative Genomics and Transcriptomics. J Fungi (Basel) 2022; 8:jof8090958. [PMID: 36135683 PMCID: PMC9501429 DOI: 10.3390/jof8090958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022] Open
Abstract
Ice nucleation activity (INA) is the capacity of certain particles to catalyze ice formation at temperatures higher than the temperature at which pure water freezes. INA impacts the ratio of liquid to frozen cloud droplets and, therefore, the formation of precipitation and Earth’s radiative balance. Some Fusarium strains secrete ice-nucleating particles (INPs); they travel through the atmosphere and may thus contribute to these atmospheric processes. Fusarium INPs were previously found to consist of proteinaceous aggregates. Here, we determined that in F. avenaceum, the proteins forming these aggregates are smaller than 5 nm and INA is higher after growth at low temperatures and varies among strains. Leveraging these findings, we used comparative genomics and transcriptomics to identify candidate INA genes. Ten candidate INA genes that were predicted to encode secreted proteins were present only in the strains that produced the highest number of INPs. In total, 203 candidate INA genes coding for secreted proteins were induced at low temperatures. Among them, two genes predicted to encode hydrophobins stood out because hydrophobins are small, secreted proteins that form aggregates with amphipathic properties. We discuss the potential of the candidate genes to encode INA proteins and the next steps necessary to identify the molecular basis of INA in F. avenaceum.
Collapse
|
91
|
Ben Hassouna K, Ben Salah-Abbès J, Chaieb K, Abbès S. Mycotoxins occurrence in milk and cereals in North African countries - a review. Crit Rev Toxicol 2022; 52:619-635. [PMID: 36723615 DOI: 10.1080/10408444.2022.2157703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
North African countries; Algeria, Egypt, Libya, Morocco and Tunisia suffer from mycotoxin contamination. Various studies have indicated the presence of mycotoxins in raw milk and cereals (i.e. wheat, barley, maize and cereal-based products). Aflatoxins (AFs), Aflatoxin M1 (AFM1), Ochratoxin A (OTA), Fumonisin (FB1) and Zearalenone (ZEN)-mycotoxin are the most detected due to climatic change in the region. In this review, we will present the kind of foods and feeds cereals and milk based products contaminated and the level of their contaminated mycotoxin. On the other hand, researchers try to find biologic methods to remove/mitigate mycotoxins in food and feed using bio-products. But the research works concerning legislations and mycotoxin risk assessment still rare. Therefore, it appears necessary to make review on the current status of mycotoxins in North African countries in order to explore data related to contamination of basic food in this region and to highlight the problem to the policy-makers to establish a serious legislation on this matter. On the other hand, to give more information to the worldwide readers about the impact of climate change on the food and feed pollution on mycotoxins in the Mediterranean Sea region.
Collapse
Affiliation(s)
- Khouloud Ben Hassouna
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia.,Laboratory of Analysis, Treatment and Valorization of Environmental Pollutants and Products, Faculty of Pharmacy, Monastir University, Monastir, Tunisia
| | - Jalila Ben Salah-Abbès
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Kamel Chaieb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samir Abbès
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia.,High Institute of Biotechnology of Béja, University of Jendouba, Jendouba, Tunisia
| |
Collapse
|
92
|
Occurrence and exposure assessment of aflatoxin B1 in Iranian breads and wheat-based products considering effects of traditional processing. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
93
|
Kumar P, Mahato DK, Gupta A, Pandey S, Paul V, Saurabh V, Pandey AK, Selvakumar R, Barua S, Kapri M, Kumar M, Kaur C, Tripathi AD, Gamlath S, Kamle M, Varzakas T, Agriopoulou S. Nivalenol Mycotoxin Concerns in Foods: An Overview on Occurrence, Impact on Human and Animal Health and Its Detection and Management Strategies. Toxins (Basel) 2022; 14:toxins14080527. [PMID: 36006189 PMCID: PMC9413460 DOI: 10.3390/toxins14080527] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/27/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungi that infect a wide range of foods worldwide. Nivalenol (NIV), a type B trichothecene produced by numerous Fusarium species, has the ability to infect a variety of foods both in the field and during post-harvest handling and management. NIV is frequently found in cereal and cereal-based goods, and its strong cytotoxicity poses major concerns for both human and animal health. To address these issues, this review briefly overviews the sources, occurrence, chemistry and biosynthesis of NIV. Additionally, a brief overview of several sophisticated detection and management techniques is included, along with the implications of processing and environmental factors on the formation of NIV. This review’s main goal is to offer trustworthy and current information on NIV as a mycotoxin concern in foods, with potential mitigation measures to assure food safety and security.
Collapse
Affiliation(s)
- Pradeep Kumar
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India;
- Department of Botany, University of Lucknow, Lucknow 226007, India
- Correspondence: (P.K.); (S.A.)
| | - Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia; (D.K.M.); (S.G.)
| | - Akansha Gupta
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (A.G.); (S.P.); (V.P.); (A.D.T.)
| | - Surabhi Pandey
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (A.G.); (S.P.); (V.P.); (A.D.T.)
| | - Veena Paul
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (A.G.); (S.P.); (V.P.); (A.D.T.)
| | - Vivek Saurabh
- Division of Food Science and Postharvest Technology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (V.S.); (C.K.)
| | - Arun Kumar Pandey
- Food Science and Technology, MMICT & BM(HM) Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Raman Selvakumar
- Centre for Protected Cultivation Technology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India;
| | - Sreejani Barua
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur 721302, India;
| | - Mandira Kapri
- Centre for Rural Development and Technology (CRDT), Indian Institute of Technology Delhi (IITD), New Delhi 110016, India;
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India;
| | - Charanjit Kaur
- Division of Food Science and Postharvest Technology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (V.S.); (C.K.)
| | - Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (A.G.); (S.P.); (V.P.); (A.D.T.)
| | - Shirani Gamlath
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia; (D.K.M.); (S.G.)
| | - Madhu Kamle
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece;
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece;
- Correspondence: (P.K.); (S.A.)
| |
Collapse
|
94
|
Gillani SWUHS, Sadef Y, Imran M, Raza HMF, Ghani A, Anwar S, Ashraf MY, Hussain S. Determination and detoxification of aflatoxin and ochratoxin in maize from different regions of Pakistan. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:613. [PMID: 35882690 DOI: 10.1007/s10661-022-10197-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
The contamination of food commodities with mycotoxins could be a serious health threat to humans and animals. Therefore, identification, quantification and reduction of mycotoxins in food commodities, particularly of aflatoxins (AFs) and ochratoxin A (OTA) in grain foods, is essentially required to guarantee safe food. This study determined the levels of AFs and OTA in 135 maize grains samples belonging to eight salient maize varieties cultivated in Pakistan, and evaluated the usefulness of radiations and adsorbents to reduce their levels. High performance liquid chromatography (HPLC)-based method was validated for the determination of AFs and OTA in maize grains. The results showed that 69 and 61% samples were positive for AFs and OTA, respectively and 54 and 22% of the respective samples had AFs and OTA above the permissible limits set by Pakistan Standards and Quality Control Authority. The concentration of AFs, AFB1and OTA in grains ranged from 14.5 to 92.4, 1.02 to 2.46 and 1.41 to 53.9 μg kg-1, respectively. Among the varieties, Pearl had the highest level of total AFs and OTA, whereas YH-5427 had the highest AFB1 level. The lowest concentration of AFs and OTA was found in Malaka and 30Y87, respectively. The use of 15 kGy gamma irradiation for 24 h, sunlight-drying for 20 h and UV irradiation for 12 h almost completely degraded the mycotoxins. The microwave heating for 120 s resulted in 9-33% degradation of mycotoxins. Moreover, the treatment of grains' extract with activated charcoal (5% w/w) removed > 96% of total AFs and AFB1, and up to 43% of OTA. The use of bentonite at the same rate removed OTA, total AFs and AFB1 by 93, 73 and 92%, respectively. Thus, it is concluded that contamination of maize grains with mycotoxins was fairly high in the collected maize grain samples in Pakistan, and treatment with radiations and adsorbents can effectively reduce mycotoxins contamination level in maize grains.
Collapse
Affiliation(s)
- Syed Wajih Ul Hassan Shah Gillani
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, 38000, Pakistan.
- College of Earth and Environmental Sciences (CEES), University of the Punjab, Lahore, 54590, Pakistan.
| | - Yumna Sadef
- College of Earth and Environmental Sciences (CEES), University of the Punjab, Lahore, 54590, Pakistan
| | - Muhammad Imran
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, 38000, Pakistan
| | | | - Aamir Ghani
- Maize and Millet Research Institute (MMRI), Ayub Agricultural Research Institute, Sahiwal, 57000, Pakistan
| | - Sumera Anwar
- Institute of Molecular Biology and Biochemistry, The University of Lahore, Lahore, 54000, Pakistan
| | - Muhammad Yasin Ashraf
- Institute of Molecular Biology and Biochemistry, The University of Lahore, Lahore, 54000, Pakistan
| | - Shabbir Hussain
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, 38000, Pakistan
- Central Analytical Facility Division, PINSTECH, Islamabad, 45650, Nilore, Pakistan
| |
Collapse
|
95
|
Farawahida AH, Palmer J, Flint S. Monascus spp. and citrinin: Identification, selection of Monascus spp. isolates, occurrence, detection and reduction of citrinin during the fermentation of red fermented rice. Int J Food Microbiol 2022; 379:109829. [PMID: 35863149 DOI: 10.1016/j.ijfoodmicro.2022.109829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/18/2022] [Accepted: 07/02/2022] [Indexed: 10/17/2022]
Abstract
Red fermented rice (RFR) is rice fermented using Monascus spp. This product contains monacolin K, providing health benefits including mitigation of diarrhoea and improving blood circulation. RFR can produce pigments that can act as natural colour and flavouring agents. However, Monascus spp. (a fungal starter to ferment RFR) can also produce the mycotoxin, citrinin (CIT) which is believed to have adverse effects on human health. CIT in RFR has been reported worldwide by using different methods of detection. This review focuses on the production of RFR by solid-state fermentation (SSF) and submerged fermentation (SmF), the occurrence of CIT in RFR, CIT quantification, the factors affecting the growth of Monascus spp., pigments and CIT production in RFR, and possible methods to reduce CIT in RFR. This review will help the food industries, researchers, and consumers understand the risk of consuming RFR, and the possibility of controlling CIT in RFR.
Collapse
Affiliation(s)
- Abdul Halim Farawahida
- School of Food and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | - Jon Palmer
- School of Food and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Steve Flint
- School of Food and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
96
|
Durham AE. Association between forage mycotoxins and liver disease in horses. J Vet Intern Med 2022; 36:1502-1507. [PMID: 35792718 PMCID: PMC9308415 DOI: 10.1111/jvim.16486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022] Open
Abstract
Background Outbreaks of liver disease in horses are common but the etiology of most remains unknown. Forage mycotoxins have been suspected to be a cause. Objectives To examine the association between outbreaks of liver disease and the presence of mycotoxins in forage stored on the same premises. Animals Premises were identified where ≥4 horses were contemporaneously affected by liver disease, and a control group was formed from premises where ≥4 horses had been examined and found to have no evidence of liver disease. Methods Forage was collected from 29 case and 12 control premises. The forage was analyzed for mycotoxin content using a liquid chromatography/mass spectrometry method, targeting 54 mycotoxins. The presence and distribution of mycotoxins between case and control samples was compared. Results Mycotoxins were found in 23/29 (79%) case samples and 10/12 (83%) control samples (P > .99; relative risk, 0.93; 95% confidence interval [CI], 0.64‐1.75). Median (interquartile range [IQR]) total mycotoxin concentration was similar in case and control samples (85.8 μg/kg [1.6‐268] vs. 315 μg/kg [6.3‐860]; P = .16). Ten mycotoxins were found exclusively in case premises comprising fumonisin B1, 15‐acetyldeoxynivalenol, deoxynivalenol, zearalenone, aflatoxins B1 and G1, methylergonovine, nivalenol, verruculogen, and wortmannin. The median (IQR) concentration of fumonisin B1 was significantly higher in case versus control samples (0 μg/kg [0‐81.7] vs. 0 μg/kg [0‐0]; P = .04). Conclusions and Clinical Importance Several mycotoxins with known hepatotoxic potential were found, alone or in combination, exclusively at case premises, consistent with the hypothesis that forage‐associated mycotoxicosis may be a cause of outbreaks of liver disease in horses in the United Kingdom.
Collapse
|
97
|
Emadi A, Eslami M, Yousefi B, Abdolshahi A. In vitro strain specific reducing of aflatoxin B1 by probiotic bacteria: a systematic review and meta-analysis. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.1929323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Alireza Emadi
- Semnan University of Medical Sciences and Health Services, Semnan, Iran
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Anna Abdolshahi
- Semnan University of Medical Sciences and Health Services, Semnan, Iran
| |
Collapse
|
98
|
A new methodology for the analysis of total deoxynivalenol, dissolved and adsorbed on cell walls, in microbiological culture assays. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
99
|
Chilaka CA, Obidiegwu JE, Chilaka AC, Atanda OO, Mally A. Mycotoxin Regulatory Status in Africa: A Decade of Weak Institutional Efforts. Toxins (Basel) 2022; 14:442. [PMID: 35878180 PMCID: PMC9321388 DOI: 10.3390/toxins14070442] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/16/2023] Open
Abstract
Food safety problems are a major hindrance to achieving food security, trade, and healthy living in Africa. Fungi and their secondary metabolites, known as mycotoxins, represent an important concern in this regard. Attempts such as agricultural, storage, and processing practices, and creation of awareness to tackle the menace of fungi and mycotoxins have yielded measurable outcomes especially in developed countries, where there are comprehensive mycotoxin legislations and enforcement schemes. Conversely, most African countries do not have mycotoxin regulatory limits and even when available, are only applied for international trade. Factors such as food insecurity, public ignorance, climate change, poor infrastructure, poor research funding, incorrect prioritization of resources, and nonchalant attitudes that exist among governmental organisations and other stakeholders further complicate the situation. In the present review, we discuss the status of mycotoxin regulation in Africa, with emphasis on the impact of weak mycotoxin legislations and enforcement on African trade, agriculture, and health. Furthermore, we discuss the factors limiting the establishment and control of mycotoxins in the region.
Collapse
Affiliation(s)
- Cynthia Adaku Chilaka
- Institute of Pharmacology and Toxicology, Julius Maximilian University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany;
| | - Jude Ejikeme Obidiegwu
- National Root Crops Research Institute, Umudike, Km 8 Umuahia-Ikot Ekpene Road, Umuahia P.M.B. 7006, Abia State, Nigeria;
| | - Augusta Chinenye Chilaka
- Department of Nutrition and Forage Science, Michael Okpara University of Agriculture, Umuahia P.M.B. 7267, Abia State, Nigeria;
| | | | - Angela Mally
- Institute of Pharmacology and Toxicology, Julius Maximilian University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany;
| |
Collapse
|
100
|
Chupia V, Tangtrongsup S, Saedan A, Ounnunkad J, Pikulkaew S, Suriyasathaporn W, Chaisri W. Impact of Storage Conditions and Mold Types on Aflatoxin B 1 Concentration in Corn Residue used as Dairy Feed in Small Holder Dairy Farms, Thailand. Biocontrol Sci 2022; 27:99-105. [PMID: 35753798 DOI: 10.4265/bio.27.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The aims of this study were to determine the impact of storage practice and mold types on mold growth and aflatoxin B1 (AFB1) concentration in corn residue from local seed corn plants, the main roughage source of dairy farms in the northern region in Thailand. A total of 223 samples from 2 types of corn residue - dried and wet - were collected. Mold contamination was determined by spread plate technique, and aflatoxin B1 (AFB1) quantification was performed by a commercial enzyme-linked immunosorbent assay. Multivariate linear models were created to determine factors associated with fungal quantity and AFB1 concentration. Results showed that the presence of Cladosporium spp. in the samples was associated with a lower risk of AFB1 contamination (P<0.05). In addition, appropriate storage practices, e.g. keeping feeds under a roof and using floor canvas under feed piles, gave lower risk of mold contamination and decreasing AFB1 contamination.
Collapse
Affiliation(s)
- Veena Chupia
- Research center of Producing and Development of Products and Innovations for Animal Health and Production, Faculty of Veterinary Medicine, Chiang Mai University
| | | | - Arpussara Saedan
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University
| | - Jaturaporn Ounnunkad
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University
| | - Surachai Pikulkaew
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University
| | - Witaya Suriyasathaporn
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University.,Research center of Producing and Development of Products and Innovations for Animal Health and Production, Faculty of Veterinary Medicine, Chiang Mai University
| | - Wasana Chaisri
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University.,Research center of Producing and Development of Products and Innovations for Animal Health and Production, Faculty of Veterinary Medicine, Chiang Mai University
| |
Collapse
|