51
|
Yang W, Shah P, Toghi Eshghi S, Yang S, Sun S, Ao M, Rubin A, Jackson JB, Zhang H. Glycoform analysis of recombinant and human immunodeficiency virus envelope protein gp120 via higher energy collisional dissociation and spectral-aligning strategy. Anal Chem 2014; 86:6959-67. [PMID: 24941220 PMCID: PMC4215848 DOI: 10.1021/ac500876p] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
![]()
Envelope
protein gp120 of human immunodeficiency virus (HIV) is
armored with a dense glycan shield, which plays critical roles in
envelope folding, immune-evasion, infectivity, and immunogenicity.
Site-specific glycosylation profiling of recombinant gp120 is very
challenging. Therefore, glycoproteomic analysis of native viral gp120
is still formidable to date. This challenge promoted us to employ
a Q-Exactive mass spectrometer to identify low abundant glycopeptides
from virion-associated gp120. To search the HCD-MS data for glycopeptides,
a novel spectral-aligning strategy was developed. This strategy depends
on the observation that glycopeptides and the corresponding deglycosylated
peptides share very similar MS/MS pattern in terms of b- and y-ions
that do not contain the site of glycosylation. Moreover, glycopeptides
with an identical peptide backbone show nearly resembling spectra
regardless of the attached glycan structures. For the recombinant
gp120, this “copy–paste” spectral pattern of
glycopeptides facilitated identification of 2224 spectra using only
18 spectral templates, and after precursor mass correction, 1268 (57%)
spectra were assigned to 460 unique glycopeptides accommodating 19
N-linked and one O-linked glycosylation sites (glycosites). Strikingly,
we were able to observe five N- and one O-linked glycosites in native
gp120. We further revealed that except for Asn276 in the C2 region,
glycans were processed to contain both high mannose and hybrid/complex
glycans; an additional four N-linked glycosites were decorated with
high mannose type. Core 1 O-linked glycan Gal1GalNAc1 was seen for the O-linked glycosite at Thr499. This direct
observation of site-specific glycosylation of virion-derived gp120
has implications in HIV glycobiology and vaccine design.
Collapse
Affiliation(s)
- Weiming Yang
- Department of Pathology, School of Medicine, Johns Hopkins University , 1550 Orleans Street , Baltimore, Maryland 21205, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Thaysen-Andersen M, Packer NH. Advances in LC-MS/MS-based glycoproteomics: getting closer to system-wide site-specific mapping of the N- and O-glycoproteome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1437-52. [PMID: 24830338 DOI: 10.1016/j.bbapap.2014.05.002] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/23/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Site-specific structural characterization of glycoproteins is important for understanding the exact functional relevance of protein glycosylation. Resulting partly from the multiple layers of structural complexity of the attached glycans, the system-wide site-specific characterization of protein glycosylation, defined as glycoproteomics, is still far from trivial leaving the N- and O-linked glycoproteomes significantly under-defined. However, recent years have seen significant advances in glycoproteomics driven, in part, by the developments of dedicated workflows and efficient sample preparation, including glycopeptide enrichment and prefractionation. In addition, glycoproteomics has benefitted from the continuous performance enhancement and more intelligent use of liquid chromatography and tandem mass spectrometry (LC-MS/MS) instrumentation and a wider selection of specialized software tackling the unique challenges of glycoproteomics data. Together these advances promise more streamlined N- and O-linked glycoproteome analysis. Tangible examples include system-wide glycoproteomics studies detecting thousands of intact glycopeptides from hundreds of glycoproteins from diverse biological samples. With a strict focus on the system-wide site-specific analysis of protein N- and O-linked glycosylation, we review the recent advances in LC-MS/MS based glycoproteomics. The review opens with a more general discussion of experimental designs in glycoproteomics and sample preparation prior to LC-MS/MS based data acquisition. Although many challenges still remain, it becomes clear that glycoproteomics, one of the last frontiers in proteomics, is gradually maturing enabling a wider spectrum of researchers to access this new emerging research discipline. The next milestone in analytical glycobiology is being reached allowing the glycoscientist to address the functional importance of protein glycosylation in a system-wide yet protein-specific manner.
Collapse
Affiliation(s)
- Morten Thaysen-Andersen
- Biomolecular Frontiers Research Centre, Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia.
| | - Nicolle H Packer
- Biomolecular Frontiers Research Centre, Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
53
|
Wang B, Tsybovsky Y, Palczewski K, Chance MR. Reliable determination of site-specific in vivo protein N-glycosylation based on collision-induced MS/MS and chromatographic retention time. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:729-41. [PMID: 24549892 PMCID: PMC3988243 DOI: 10.1007/s13361-013-0823-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 12/23/2013] [Accepted: 12/23/2013] [Indexed: 05/12/2023]
Abstract
Site-specific glycopeptide mapping for simultaneous glycan and peptide characterization by MS is difficult because of the heterogeneity and diversity of glycosylation in proteins and the lack of complete fragmentation information for either peptides or glycans with current fragmentation technologies. Indeed, multiple peptide and glycan combinations can readily match the same mass of glycopeptides even with mass errors less than 5 ppm providing considerably ambiguity and analysis of complex mixtures of glycopeptides becomes quite challenging in the case of large proteins. Here we report a novel strategy to reliably determine site-specific N-glycosylation mapping by combining collision-induced dissociation (CID)-only fragmentation with chromatographic retention times of glycopeptides. This approach leverages an experimental pipeline with parallel analysis of glyco- and deglycopeptides. As the test case we chose ABCA4, a large integral membrane protein with 16 predicted sites for N-glycosylation. Taking advantage of CID features such as high scan speed and high intensity of fragment ions together combined with the retention times of glycopeptides to conclusively identify the non-glycolytic peptide from which the glycopeptide was derived, we obtained virtually complete information about glycan compositions and peptide sequences, as well as the N-glycosylation site occupancy and relative abundances of each glycoform at specific sites for ABCA4. The challenges provided by this example provide guidance in analyzing complex relatively pure glycoproteins and potentially even more complex glycoprotein mixtures.
Collapse
Affiliation(s)
- Benlian Wang
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Yaroslav Tsybovsky
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Krzysztof Palczewski
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Mark R. Chance
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
- To whom correspondence may be addressed: Mark R. Chance, Case Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106-4965. Tel.: 216-368-4406; Fax: 216-368-3812;
| |
Collapse
|
54
|
Hart-Smith G, Chia SZ, Low JKK, McKay MJ, Molloy MP, Wilkins MR. Stoichiometry of Saccharomyces cerevisiae Lysine Methylation: Insights into Non-histone Protein Lysine Methyltransferase Activity. J Proteome Res 2014; 13:1744-56. [DOI: 10.1021/pr401251k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Gene Hart-Smith
- NSW
Systems Biology Initiative, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Samantha Z. Chia
- NSW
Systems Biology Initiative, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jason K. K. Low
- NSW
Systems Biology Initiative, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Matthew J. McKay
- Australian
Proteome Analysis Facility, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Mark P. Molloy
- Australian
Proteome Analysis Facility, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Marc R. Wilkins
- NSW
Systems Biology Initiative, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
55
|
Qiao X, Wang R, Yan H, Wang T, Zhao Q, Zhang L, Zhang Y. Development of a novel imidazolium-based aromatic quaternary ammonium tag: synthesis and application to the efficient analysis of cysteinyl-peptides by mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:256-264. [PMID: 24375876 DOI: 10.1002/rcm.6785] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 10/30/2013] [Accepted: 11/12/2013] [Indexed: 06/03/2023]
Abstract
RATIONALE Chemical derivatization is a very promising technique for improving analysis of peptides by mass spectrometry (MS). In this study, a novel kind of imidazolium-based aromatic quaternary ammonium tag, 1-[3-[(2-iodo-1-oxoethyl)amino]propyl]-3-butylimidazolium bromide (IPBI), designed with strong gas-phase basicity and a permanent positive charge, was firstly synthesized and further used for derivatization of cysteinyl-peptides with improved ionization efficiency and higher charge states. METHODS Both the model peptides and tryptic digests of proteins were used to evaluate the effect of IPBI derivatization on the MS performance of the derivatized peptides, and the results were further compared with the commonly used iodoacetamide (IAA) tag. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF)-MS and electrospray ionization (ESI)-MS were used to evaluate the ionization efficiency and charge states of the derivatized peptides. RESULTS With model peptides as samples, a nearly 100% derivatization efficiency and superior stability were achieved via IPBI derivatization. By further analysis of both standard peptides and tryptic protein digests, the ionization efficiency and charge states of IPBI-derivatized peptides could be remarkably improved. For example, for protein bovine serum albumin, compared with the commercial available IAA tag, the identification efficiency of cysteinyl-peptides was increased about 67% by combining with IPBI derivatization. CONCLUSIONS The results indicated that the novel tag is an effective derivatization reagent for cysteinyl-peptide identification. We hope it could be further used for high-efficiency cysteinyl-peptide identification in proteome research, especially those with low abundance and poor ionization efficiency.
Collapse
Affiliation(s)
- Xiaoqiang Qiao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province & College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | | | | | | | | | | | | |
Collapse
|
56
|
Pang CNI, Tay AP, Aya C, Twine NA, Harkness L, Hart-Smith G, Chia SZ, Chen Z, Deshpande NP, Kaakoush NO, Mitchell HM, Kassem M, Wilkins MR. Tools to covisualize and coanalyze proteomic data with genomes and transcriptomes: validation of genes and alternative mRNA splicing. J Proteome Res 2013; 13:84-98. [PMID: 24152167 DOI: 10.1021/pr400820p] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Direct links between proteomic and genomic/transcriptomic data are not frequently made, partly because of lack of appropriate bioinformatics tools. To help address this, we have developed the PG Nexus pipeline. The PG Nexus allows users to covisualize peptides in the context of genomes or genomic contigs, along with RNA-seq reads. This is done in the Integrated Genome Viewer (IGV). A Results Analyzer reports the precise base position where LC-MS/MS-derived peptides cover genes or gene isoforms, on the chromosomes or contigs where this occurs. In prokaryotes, the PG Nexus pipeline facilitates the validation of genes, where annotation or gene prediction is available, or the discovery of genes using a "virtual protein"-based unbiased approach. We illustrate this with a comprehensive proteogenomics analysis of two strains of Campylobacter concisus . For higher eukaryotes, the PG Nexus facilitates gene validation and supports the identification of mRNA splice junction boundaries and splice variants that are protein-coding. This is illustrated with an analysis of splice junctions covered by human phosphopeptides, and other examples of relevance to the Chromosome-Centric Human Proteome Project. The PG Nexus is open-source and available from https://github.com/IntersectAustralia/ap11_Samifier. It has been integrated into Galaxy and made available in the Galaxy tool shed.
Collapse
Affiliation(s)
- Chi Nam Ignatius Pang
- Systems Biology Initiative, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Zhu Z, Su X, Clark DF, Go EP, Desaire H. Characterizing O-linked glycopeptides by electron transfer dissociation: fragmentation rules and applications in data analysis. Anal Chem 2013; 85:8403-11. [PMID: 23909558 DOI: 10.1021/ac401814h] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Studying protein O-glycosylation remains an analytical challenge. Different from N-linked glycans, the O-glycosylation site is not within a known consensus sequence. Additionally, O-glycans are heterogeneous with numerous potential modification sites. Electron transfer dissociation (ETD) is the method of choice in analyzing these glycopeptides since the glycan side chain remains intact in ETD, and the glycosylation site can be localized on the basis of the c and z fragment ions. Nonetheless, new software is necessary for interpreting O-glycopeptide ETD spectra in order to expedite the analysis workflow. To address the urgent need, we studied the fragmentation of O-glycopeptides in ETD and found useful rules that facilitate their identification. By implementing the rules into an algorithm to score potential assignments against ETD-MS/MS data, we applied the method to glycopeptides generated from various O-glycosylated proteins including mucin, erythropoietin, fetuin, and an HIV envelope protein, 1086.C gp120. The site-specific O-glycopeptide composition was correctly assigned in every case, proving the merits of our method in analyzing glycopeptide ETD data. The algorithm described herein can be easily incorporated into other automated glycomics tools.
Collapse
Affiliation(s)
- Zhikai Zhu
- The Ralph N. Adams Institute for Bioanalytical Chemistry and Department of Chemistry, University of Kansas, Lawrence, Kansas 66047, USA
| | | | | | | | | |
Collapse
|
58
|
Erce MA, Abeygunawardena D, Low JKK, Hart-Smith G, Wilkins MR. Interactions affected by arginine methylation in the yeast protein-protein interaction network. Mol Cell Proteomics 2013; 12:3184-98. [PMID: 23918811 DOI: 10.1074/mcp.m113.031500] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Protein-protein interactions can be modulated by the methylation of arginine residues. As a means of testing this, we recently described a conditional two-hybrid system, based on the bacterial adenylate cyclase (BACTH) system. Here, we have used this conditional two-hybrid system to explore the effect of arginine methylation in modulating protein-protein interactions in a subset of the Saccharomyces cerevisiae arginine methylproteome network. Interactions between the yeast hub protein Npl3 and yeast proteins Air2, Ded1, Gbp2, Snp1, and Yra1 were first validated in the absence of methylation. The major yeast arginine methyltransferase Hmt1 was subsequently included in the conditional two-hybrid assay, initially to determine the degree of methylation that occurs. Proteins Snp1 and Yra1 were confirmed as Hmt1 substrates, with five and two novel arginine methylation sites mapped by ETD LC-MS/MS on these proteins, respectively. Proteins Ded1 and Gbp2, previously predicted but not confirmed as substrates of Hmt1, were also found to be methylated with five and seven sites mapped respectively. Air2 was found to be a novel substrate of Hmt1 with two sites mapped. Finally, we investigated the interactions of Npl3 with the five interaction partners in the presence of active Hmt1 and in the presence of Hmt1 with a G68R inactivation mutation. We found that the interaction between Npl3 and Air2, and Npl3 and Ded1, were significantly increased in the presence of active Hmt1; the interaction of Npl3 and Snp1 showed a similar degree of increase in interaction but this was not statistically significant. The interactions of Npl3 and Gbp2, along with Npl3 and Yra1, were not significantly increased or decreased by methylation. We conclude that methylarginine may be a widespread means by which the interactions of proteins are modulated.
Collapse
Affiliation(s)
- Melissa A Erce
- Systems Biology Laboratory, School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia
| | | | | | | | | |
Collapse
|
59
|
Alley WR, Mann BF, Novotny MV. High-sensitivity analytical approaches for the structural characterization of glycoproteins. Chem Rev 2013; 113:2668-732. [PMID: 23531120 PMCID: PMC3992972 DOI: 10.1021/cr3003714] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- William R. Alley
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
- National Center for Glycomics and Glycoproteomics, Indiana University, Bloomington, Indiana, United States
| | - Benjamin F. Mann
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
- National Center for Glycomics and Glycoproteomics, Indiana University, Bloomington, Indiana, United States
| | - Milos V. Novotny
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
- National Center for Glycomics and Glycoproteomics, Indiana University, Bloomington, Indiana, United States
- Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, United States
| |
Collapse
|
60
|
Froehlich JW, Dodds ED, Wilhelm M, Serang O, Steen JA, Lee RS. A classifier based on accurate mass measurements to aid large scale, unbiased glycoproteomics. Mol Cell Proteomics 2013; 12:1017-25. [PMID: 23438733 DOI: 10.1074/mcp.m112.025494] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Determining which glycan moieties occupy specific N-glycosylation sites is a highly challenging analytical task. Arguably, the most common approach involves LC-MS and LC-MS/MS analysis of glycopeptides generated by proteases with high cleavage site specificity; however, the depth achieved by this approach is modest. Nonglycosylated peptides are a major challenge to glycoproteomics, as they are preferentially selected for data-dependent MS/MS due to higher ionization efficiencies and higher stoichiometric levels in moderately complex samples. With the goal of improving glycopeptide coverage, a mass defect classifier was developed that discriminates between peptides and glycopeptides in complex mixtures based on accurate mass measurements of precursor peaks. By using the classifier, glycopeptides that were not fragmented in an initial data-dependent acquisition run may be targeted in a subsequent analysis without any prior knowledge of the glycan or protein species present in the mixture. Additionally, from probable glycopeptides that were poorly fragmented, tandem mass spectra may be reacquired using optimal glycopeptide settings. We demonstrate high sensitivity (0.892) and specificity (0.947) based on an in silico dataset spanning >100,000 tryptic entries. Comparable results were obtained using chymotryptic species. Further validation using published data and a fractionated tryptic digest of human urinary proteins was performed, yielding a sensitivity of 0.90 and a specificity of 0.93. Lists of glycopeptides may be generated from an initial proteomics experiment, and we show they may be efficiently targeted using the classifier. Considering the growing availability of high accuracy mass analyzers, this approach represents a simple and broadly applicable means of increasing the depth of MS/MS-based glycoproteomic analyses.
Collapse
Affiliation(s)
- John W Froehlich
- Department of Urology and Urological Diseases Research Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
61
|
Abstract
Glycopeptide-based analysis is used to inform researchers about the glycans on one or more proteins. The method's key attractive feature is its ability to link glycosylation information to exact locations (glycosylation sites) on proteins. Numerous applications for glycopeptide analysis are known, and several examples are described herein. The techniques used to characterize glycopeptides are still emerging, and recently, research focused on facilitating aspects of glycopeptide analysis has advanced significantly in the areas of sample preparation, MS fragmentation, and automation of data analysis. These recent developments, described herein, provide the foundation for the growth of glycopeptide analysis as a blossoming field.
Collapse
Affiliation(s)
- Heather Desaire
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA.
| |
Collapse
|
62
|
Przybylski C, Bonnet V. Discrimination of cyclic and linear oligosaccharides by tandem mass spectrometry using collision-induced dissociation (CID), pulsed-Q-dissociation (PQD) and the higher-energy C-trap dissociation modes. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:75-87. [PMID: 23239319 DOI: 10.1002/rcm.6422] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/02/2012] [Accepted: 09/28/2012] [Indexed: 06/01/2023]
Abstract
RATIONALE Carbohydrates have essential functions in living organisms and cells, but, due to the presence of numerous linkage combinations, substituent sites and possible conformations, they are the class of biomolecules which exhibits the huge structural diversity found in nature. Thereby, due to such diversity and poor ionization, their structural deciphering by mass spectrometry is still a very challenging task. METHODS Here, we studied a series of linear and cyclic neutral oligosaccharides using electrospray with collision-induced dissociation (CID), pulsed-Q-dissociation (PQD) and the higher-energy C-trap dissociation (HCD) feature of a linear ion trap Orbitrap hybrid mass spectrometer (LTQ-Orbitrap). The collision energy necessary to obtain 50% fragmentation (CE(50) values) in CID, PQD and HCD was used to correlate both size and structures. RESULTS The default settings for activation time and/or activation Q are the most appropriate, except for HCD, where 100 ms instead of 30 ms gave more intense fragment ions. PQD exhibits a 2-8-fold lower sensitivity than CID. HCD provides signals closer or slightly superior by 1.5-fold than PQD, and offers a more balanced ion distribution through the spectrum. Furthermore, HCD offers the possibility to make fine adjustments of the energy via the eV scale to further increase the yield of low-mass fragments. CONCLUSIONS The complementarity of CID, PQD and HCD was clearly demonstrated by obtaining structural information on hexa-, hepta- and octasaccharides. Together, these results clearly indicate the usefulness of the CID/HCD pair for further structural deciphering, and analysis of more complex structures such as multi-antennary carbohydrates or glycoconjuguates alone or in mixture.
Collapse
Affiliation(s)
- Cédric Przybylski
- Université d'Evry-Val-d'Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, CNRS UMR 8587, F-91025, Evry, France.
| | | |
Collapse
|
63
|
Palmisano G, Larsen MR, Packer NH, Thaysen-Andersen M. Structural analysis of glycoprotein sialylation – part II: LC-MS based detection. RSC Adv 2013. [DOI: 10.1039/c3ra42969e] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
64
|
Singh C, Zampronio CG, Creese AJ, Cooper HJ. Higher energy collision dissociation (HCD) product ion-triggered electron transfer dissociation (ETD) mass spectrometry for the analysis of N-linked glycoproteins. J Proteome Res 2012; 11:4517-25. [PMID: 22800195 DOI: 10.1021/pr300257c] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Large scale mass spectrometry analysis of N-linked glycopeptides is complicated by the inherent complexity of the glycan structures. Here, we evaluate a mass spectrometry approach for the targeted analysis of N-linked glycopeptides in complex mixtures that does not require prior knowledge of the glycan structures or pre-enrichment of the glycopeptides. Despite the complexity of N-glycans, the core of the glycan remains constant, comprising two N-acetylglucosamine and three mannose units. Collision-induced dissociation (CID) mass spectrometry of N-glycopeptides results in the formation of the N-acetylglucosamine (GlcNAc) oxonium ion and a [mannose+GlcNAc] fragment (in addition to other fragments resulting from cleavage within the glycan). In ion-trap CID, those ions are not detected due to the low m/z cutoff; however, they are detected following the beam-type CID known as higher energy collision dissociation (HCD) on the orbitrap mass spectrometer. The presence of these product ions following HCD can be used as triggers for subsequent electron transfer dissociation (ETD) mass spectrometry analysis of the precursor ion. The ETD mass spectrum provides peptide sequence information, which is unobtainable from HCD. A Lys-C digest of ribonuclease B and trypsin digest of immunoglobulin G were separated by ZIC-HILIC liquid chromatography and analyzed by HCD product ion-triggered ETD. The data were analyzed both manually and by search against protein databases by commonly used algorithms. The results show that the product ion-triggered approach shows promise for the field of glycoproteomics and highlight the requirement for more sophisticated data mining tools.
Collapse
Affiliation(s)
- Charandeep Singh
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
65
|
Hart-Smith G, Low JKK, Erce MA, Wilkins MR. Enhanced methylarginine characterization by post-translational modification-specific targeted data acquisition and electron-transfer dissociation mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1376-1389. [PMID: 22673836 DOI: 10.1007/s13361-012-0417-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 04/27/2012] [Accepted: 05/12/2012] [Indexed: 06/01/2023]
Abstract
When localizing protein post-translational modifications (PTMs) using liquid-chromatography (LC)-tandem mass spectrometry (MS/MS), existing implementations are limited by inefficient selection of PTM-carrying peptides for MS/MS, particularly when PTM site occupancy is sub-stoichiometric. The present contribution describes a method by which peptides carrying specific PTMs of interest-in this study, methylarginines-may be selectively targeted for MS/MS: peptide features are extracted from high mass accuracy single-stage MS data, searched against theoretical PTM-carrying peptide masses, and matching features are subjected to targeted data acquisition LC-MS/MS. Using trypsin digested Saccharomyces cerevisiae Npl3, in which evidence is presented for 18 methylarginine sites-17 of which fall within a glycine-arginine-rich (GAR) domain spanning <120 amino acids-it is shown that this approach outperforms conventional data dependent acquisition (DDA): when applied to a complex protein mixture featuring in vivo methylated Npl3, 95% more (P=0.030) methylarginine-carrying peptides are selected for MS/MS than DDA, leading to an 86% increase (P=0.044) in the number of methylated peptides producing Mascot ion scores ≥20 following electron-transfer dissociation (ETD). Notably, significantly more low abundance arginine methylated peptides (maximum ion intensities <6×10(4) cps) are selected for MS/MS using this approach relative to DDA (50% more in a digest of purified in vitro methylated Npl3). It is also demonstrated that relative to collision-induced dissociation (CID), ETD facilitates a 586% increase (P=0.016) in average Mascot ion scores of methylarginine-carrying peptides. The present PTM-specific targeted data acquisition approach, though described using methylarginine, is applicable to any ionizable PTM of known mass.
Collapse
Affiliation(s)
- Gene Hart-Smith
- NSW Systems Biology Initiative, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|