51
|
Cinar H, Cinar S, Chan HS, Winter R. Pressure-Induced Dissolution and Reentrant Formation of Condensed, Liquid-Liquid Phase-Separated Elastomeric α-Elastin. Chemistry 2018; 24:8286-8291. [PMID: 29738068 DOI: 10.1002/chem.201801643] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/07/2018] [Indexed: 02/05/2023]
Abstract
We investigated the combined effects of temperature and pressure on liquid-liquid phase separation (LLPS) phenomena of α-elastin up to the multi-kbar regime. FT-IR spectroscopy, CD, UV/Vis absorption, phase-contrast light and fluorescence microscopy techniques were employed to reveal structural changes and mesoscopic phase states of the system. A novel pressure-induced reentrant LLPS was observed in the intermediate temperature range. A molecular-level picture, in particular on the role of hydrophobic interactions, hydration, and void volume in controlling LLPS phenomena is presented. The potential role of the LLPS phenomena in the development of early cellular compartmentalization is discussed, which might have started in the deep sea, where pressures up to the kbar level are encountered.
Collapse
Affiliation(s)
- Hasan Cinar
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Süleyman Cinar
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Hue Sun Chan
- Departments of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
52
|
Su Z, Pramounmat N, Watson ST, Renner JN. Engineered interaction between short elastin-like peptides and perfluorinated sulfonic-acid ionomer. SOFT MATTER 2018; 14:3528-3535. [PMID: 29675538 DOI: 10.1039/c8sm00351c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Control of ionomer thin films on metal surfaces is important for a range of electrodes used in electrochemical applications. Engineered peptides have emerged as powerful tools in electrode assembly because binding sites and peptide structures can be modulated by changing the amino acid sequence. However, no studies have been conducted showing peptides can be engineered to interact with ionomers and metals simultaneously. In this study, we design a single-repeat elastin-like peptide to bind to gold using a cysteine residue, and bind to a perfluorinated sulfonic-acid ionomer called Nafion® using a lysine guest residue. Quartz crystal microbalance with dissipation monitoring and atomic force microscopy are used to show that an elastin-like peptide monolayer attached to gold facilitates the formation of a thin, phase-separated ionomer layer. Dynamic light scattering confirms that the interaction between the peptide with the lysine residue and the ionomer also happens in solution, and circular dichroism shows that the peptides maintain their secondary structures in the presence of ionomer. These results demonstrate that elastin-like peptides are promising tools for ionomer control in electrode engineering.
Collapse
Affiliation(s)
- Zihang Su
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
53
|
Dzuricky M, Roberts S, Chilkoti A. Convergence of Artificial Protein Polymers and Intrinsically Disordered Proteins. Biochemistry 2018; 57:2405-2414. [PMID: 29683665 DOI: 10.1021/acs.biochem.8b00056] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A flurry of research in recent years has revealed the molecular origins of many membraneless organelles to be the liquid phase separation of intrinsically disordered proteins (IDPs). Consequently, protein disorder has emerged as an important driver of intracellular compartmentalization by providing specialized microenvironments chemically distinct from the surrounding medium. Though the importance of protein disorder and its relationship to intracellular phase behavior are clear, a detailed understanding of how such phase behavior can be predicted and controlled remains elusive. While research in IDPs has largely focused on the implications of structural disorder on cellular function and disease, another field, that of artificial protein polymers, has focused on the de novo design of protein polymers with controllable material properties. A subset of these polymers, specifically those derived from structural proteins such as elastin and resilin, are also disordered sequences that undergo liquid-liquid phase separation. This phase separation has been used in a variety of biomedical applications, and researchers studying these polymers have developed methods to precisely characterize and tune their phase behavior. Despite their disparate origins, both fields are complementary as they study the phase behavior of intrinsically disordered polypeptides. This Perspective hopes to stimulate collaborative efforts by highlighting the similarities between these two fields and by providing examples of how such collaboration could be mutually beneficial.
Collapse
Affiliation(s)
- Michael Dzuricky
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708-0281 , United States
| | - Stefan Roberts
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708-0281 , United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708-0281 , United States
| |
Collapse
|
54
|
Bahniuk MS, Alshememry AK, Elgersma SV, Unsworth LD. Self-assembly/disassembly hysteresis of nanoparticles composed of marginally soluble, short elastin-like polypeptides. J Nanobiotechnology 2018; 16:15. [PMID: 29454362 PMCID: PMC5816514 DOI: 10.1186/s12951-018-0342-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/09/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Elastin-like polypeptides (ELPs) are a fascinating biomaterial that has undergone copious development for a variety of therapeutic applications including as a nanoscale drug delivery vehicle. A comprehensive understanding of ELP self-assembly is lacking and this knowledge gap impedes the advancement of ELP-based biomaterials into the clinical realm. The systematic examination of leucine-containing ELPs endeavors to expand existing knowledge about fundamental assembly-disassembly behaviours. RESULTS It was observed that these marginally soluble, short ELPs tend to behave consistently with previous observations related to assembly-related ELP phase transitions but deviated in their disassembly. It was found that chain length, concentration and overall sequence hydrophobicity may influence the irreversible formation of sub-micron particles as well as the formation of multi-micron scale, colloidally unstable aggregates. Amino acid composition affected surface charge and packing density of the particles. Particle stability upon dilution was found to vary depending upon chain length and hydrophobicity, with particles composed of longer and/or more hydrophobic ELPs being more resistant to disassembly upon isothermal dilution. CONCLUSIONS Taken together, these results suggest marginally soluble ELPs may self-assemble but not disassemble as expected and that parameters including particle size, zeta potential and dilution resistance would benefit from widespread systematic evaluations. This information has the potential to reveal novel preparation methods capable of expanding the utility of all existing ELP-based biomaterials.
Collapse
Affiliation(s)
- Markian S. Bahniuk
- Department of Biomedical Engineering, 1098 Research Transition Facility, University of Alberta, 8308-114 Street, Edmonton, AB T6G 2V2 Canada
| | - Abdullah K. Alshememry
- Faculty of Pharmacy and Pharmaceutical Sciences, 2-35B Medical Sciences Building, University of Alberta, Edmonton, AB T6G 2H1 Canada
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Scott V. Elgersma
- Department of Chemical and Materials Engineering, University of Alberta, 12th Floor-Donadeo Innovation Centre for Engineering, 9211-116 Street, Edmonton, AB T6G 1H9 Canada
| | - Larry D. Unsworth
- Department of Biomedical Engineering, 1098 Research Transition Facility, University of Alberta, 8308-114 Street, Edmonton, AB T6G 2V2 Canada
- Department of Chemical and Materials Engineering, University of Alberta, 12th Floor-Donadeo Innovation Centre for Engineering, 9211-116 Street, Edmonton, AB T6G 1H9 Canada
| |
Collapse
|
55
|
Araújo A, Olsen BD, Machado AV. Engineering Elastin-Like Polypeptide-Poly(ethylene glycol) Multiblock Physical Networks. Biomacromolecules 2018; 19:329-339. [PMID: 29253332 DOI: 10.1021/acs.biomac.7b01424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hybrids of protein biopolymers and synthetic polymers are a promising new class of soft materials, as the advantages of each component can be complementary. A recombinant elastin-like polypeptide (ELP) was conjugated to poly(ethylene glycol) (PEG) by macromolecular coupling in solution to form multiblock ELP-PEG copolymers. The hydrated copolymer preserved the thermoresponsive properties from the ELP block and formed hydrogels with different transition temperatures depending on salt concentration. Small angle scattering indicates that the copolymer hydrogels form sphere-like aggregates with a "fuzzy" interface, while the films form a fractal network of nanoscale aggregates. The use of solutions with different salt concentrations to prepare the hydrogels was found to influence the transition temperature, the mechanical properties, and the size of the nanoscale structure of the hydrogel without changing the secondary structure of the ELP. The salt variation and the addition of a plasticizer also affected the nanoscale structure and the mechanical characteristics of the films.
Collapse
Affiliation(s)
- Andreia Araújo
- Institute for Polymers and Composites/I3N, University of Minho , Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Ana Vera Machado
- Institute for Polymers and Composites/I3N, University of Minho , Campus de Azurém, 4800-058 Guimarães, Portugal
| |
Collapse
|
56
|
Logue OC, Mahdi F, Chapman H, George EM, Bidwell GL. A Maternally Sequestered, Biopolymer-Stabilized Vascular Endothelial Growth Factor (VEGF) Chimera for Treatment of Preeclampsia. J Am Heart Assoc 2017; 6:e007216. [PMID: 29629873 PMCID: PMC5779036 DOI: 10.1161/jaha.117.007216] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/30/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Preeclampsia is a hypertensive syndrome that complicates 3% to 5% of pregnancies in the United States. Preeclampsia originates from an improperly vascularized and ischemic placenta that releases factors that drive systemic pathophysiology. One of these factors, soluble fms-like tyrosine kinase-1, is believed to sequester vascular endothelial growth factor (VEGF), leading to systemic endothelial dysfunction and hypertension. With the goal of targeting soluble fms-like tyrosine kinase-1 while simultaneously preventing fetal exposure to VEGF, we fused VEGF to elastin-like polypeptide, a biopolymer carrier that does not cross the placental barrier (ELP-VEGF). METHODS AND RESULTS ELP-VEGF restored in vitro endothelial cell tube formation in the presence of plasma from placental ischemic rats. Long-term administered ELP-VEGF in pregnant rats accumulated in maternal kidneys, aorta, liver, and placenta, but the protein was undetectable in the pups when administered at therapeutic doses in dams. Long-term administration of ELP-VEGF in a placental ischemia rat model achieved dose-dependent attenuation of hypertension, with blood pressure equal to sham controls at a dose of 5 mg/kg per day. ELP-VEGF infusion increased total plasma soluble fms-like tyrosine kinase-1 levels but dramatically reduced free plasma soluble fms-like tyrosine kinase-1 and induced urinary excretion of nitrate/nitrite, indicating enhanced renal nitric oxide signaling. ELP-VEGF at up to 5 mg/kg per day had no deleterious effect on maternal or fetal body weight. However, dose-dependent adverse events were observed, including ascites production and neovascular tissue encapsulation around the minipump. CONCLUSIONS ELP-VEGF has the potential to treat the preeclampsia maternal syndrome, but careful dosing and optimization of the delivery route are necessary.
Collapse
Affiliation(s)
- Omar C Logue
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS
| | - Fakhri Mahdi
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS
| | - Heather Chapman
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Eric M George
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS
| | - Gene L Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
57
|
Abstract
The protein elastin imparts extensibility, elastic recoil, and resilience to tissues including arterial walls, skin, lung alveoli, and the uterus. Elastin and elastin-like peptides are hydrophobic, disordered, and undergo liquid-liquid phase separation upon self-assembly. Despite extensive study, the structure of elastin remains controversial. We use molecular dynamics simulations on a massive scale to elucidate the structural ensemble of aggregated elastin-like peptides. Consistent with the entropic nature of elastic recoil, the aggregated state is stabilized by the hydrophobic effect. However, self-assembly does not entail formation of a hydrophobic core. The polypeptide backbone forms transient, sparse hydrogen-bonded turns and remains significantly hydrated even as self-assembly triples the extent of non-polar side chain contacts. Individual chains in the assembly approach a maximally-disordered, melt-like state which may be called the liquid state of proteins. These findings resolve long-standing controversies regarding elastin structure and function and afford insight into the phase separation of disordered proteins.
Collapse
Affiliation(s)
- Sarah Rauscher
- Molecular MedicineThe Hospital for Sick ChildrenTorontoCanada
- Department of BiochemistryUniversity of TorontoTorontoCanada
| | - Régis Pomès
- Molecular MedicineThe Hospital for Sick ChildrenTorontoCanada
- Department of BiochemistryUniversity of TorontoTorontoCanada
| |
Collapse
|
58
|
Cai H, Gabryelczyk B, Manimekalai MSS, Grüber G, Salentinig S, Miserez A. Self-coacervation of modular squid beak proteins - a comparative study. SOFT MATTER 2017; 13:7740-7752. [PMID: 29043368 DOI: 10.1039/c7sm01352c] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The beak of the Humboldt squid is a biocomposite material made solely of organic components - chitin and proteins - which exhibits 200-fold stiffness and hardness gradients from the soft base to the exceptionally hard tip (rostrum). The outstanding mechanical properties of the squid beak are achieved via controlled hydration and impregnation of the chitin-based scaffold by protein coacervates. Molecular-based understanding of these proteins is essential to mimic the natural beak material. Here, we present detailed studies of two histidine-rich beak proteins (HBP-1 and -2) that play central roles during beak bio-fabrication. We show that both proteins have the ability to self-coacervate, which is governed intrinsically by the sequence modularity of their C-terminus and extrinsically by pH and ionic strength. We demonstrate that HBPs possess dynamic structures in solution and achieve maximum folding in the coacervate state, and propose that their self-coacervation is driven by hydrophobic interactions following charge neutralization through salt-screening. Finally, we show that subtle differences in the modular repeats of HBPs result in significant changes in the rheological response of the coacervates. This knowledge may be exploited to design self-coacervating polypeptides for a wide range of engineering and biomedical applications, for example bio-inspired composite materials, smart hydrogels and adhesives, and biomedical implants.
Collapse
Affiliation(s)
- Hao Cai
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore 637553.
| | | | | | | | | | | |
Collapse
|
59
|
Yin L, Yuvienco C, Montclare JK. Protein based therapeutic delivery agents: Contemporary developments and challenges. Biomaterials 2017; 134:91-116. [PMID: 28458031 DOI: 10.1016/j.biomaterials.2017.04.036] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022]
Abstract
As unique biopolymers, proteins can be employed for therapeutic delivery. They bear important features such as bioavailability, biocompatibility, and biodegradability with low toxicity serving as a platform for delivery of various small molecule therapeutics, gene therapies, protein biologics and cells. Depending on size and characteristic of the therapeutic, a variety of natural and engineered proteins or peptides have been developed. This, coupled to recent advances in synthetic and chemical biology, has led to the creation of tailor-made protein materials for delivery. This review highlights strategies employing proteins to facilitate the delivery of therapeutic matter, addressing the challenges for small molecule, gene, protein and cell transport.
Collapse
Affiliation(s)
- Liming Yin
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Carlo Yuvienco
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, United States; Department of Chemistry, New York University, New York, NY 10003, United States; Department of Biomaterials, NYU College of Dentistry, New York, NY 10010, United States; Department of Biochemistry, SUNY Downstate Medical Center, Brooklyn, NY 11203, United States.
| |
Collapse
|
60
|
Petitdemange R, Garanger E, Bataille L, Bathany K, Garbay B, Deming TJ, Lecommandoux S. Tuning Thermoresponsive Properties of Cationic Elastin-like Polypeptides by Varying Counterions and Side-Chains. Bioconjug Chem 2017; 28:1403-1412. [DOI: 10.1021/acs.bioconjchem.7b00082] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rosine Petitdemange
- Université de Bordeaux/Bordeaux-INP, ENSCBP, CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), 16 avenue Pey-Berland, Pessac 33607, France
| | - Elisabeth Garanger
- Université de Bordeaux/Bordeaux-INP, ENSCBP, CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), 16 avenue Pey-Berland, Pessac 33607, France
| | - Laure Bataille
- Université de Bordeaux/Bordeaux-INP, ENSCBP, CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), 16 avenue Pey-Berland, Pessac 33607, France
| | - Katell Bathany
- Université de Bordeaux/Bordeaux-INP, CNRS, Chimie et Biologie des Membranes et des Nano-objets (UMR5248), Allée Geoffroy Saint Hilaire, Pessac 33600, France
| | - Bertrand Garbay
- Université de Bordeaux/Bordeaux-INP, ENSCBP, CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), 16 avenue Pey-Berland, Pessac 33607, France
| | - Timothy J. Deming
- Department
of Chemistry and Biochemistry, and Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Sébastien Lecommandoux
- Université de Bordeaux/Bordeaux-INP, ENSCBP, CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), 16 avenue Pey-Berland, Pessac 33607, France
| |
Collapse
|
61
|
Eirin A. Hitching a ride to renal repair. Am J Physiol Renal Physiol 2017; 312:F276-F277. [DOI: 10.1152/ajprenal.00589.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 11/22/2022] Open
Affiliation(s)
- Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
62
|
Petitdemange R, Garanger E, Bataille L, Dieryck W, Bathany K, Garbay B, Deming TJ, Lecommandoux S. Selective Tuning of Elastin-like Polypeptide Properties via Methionine Oxidation. Biomacromolecules 2017; 18:544-550. [DOI: 10.1021/acs.biomac.6b01696] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Rosine Petitdemange
- Université de Bordeaux/Bordeaux INP, ENSCBP, and CNRS, Laboratoire de Chimie des Polymères
Organiques (UMR5629), 16 avenue Pey-Berland, Pessac 33607, France
| | - Elisabeth Garanger
- Université de Bordeaux/Bordeaux INP, ENSCBP, and CNRS, Laboratoire de Chimie des Polymères
Organiques (UMR5629), 16 avenue Pey-Berland, Pessac 33607, France
| | - Laure Bataille
- Université de Bordeaux/Bordeaux INP, ENSCBP, and CNRS, Laboratoire de Chimie des Polymères
Organiques (UMR5629), 16 avenue Pey-Berland, Pessac 33607, France
| | - Wilfrid Dieryck
- Université de Bordeaux/Bordeaux INP and CNRS, Chimie et Biologie des Membranes et des Nano-objets (UMR5248), Allée Geoffroy Saint Hilaire, Pessac 33600, France
| | - Katell Bathany
- Université de Bordeaux/Bordeaux INP and CNRS, Chimie et Biologie des Membranes et des Nano-objets (UMR5248), Allée Geoffroy Saint Hilaire, Pessac 33600, France
| | - Bertrand Garbay
- Université de Bordeaux/Bordeaux INP, ENSCBP, and CNRS, Laboratoire de Chimie des Polymères
Organiques (UMR5629), 16 avenue Pey-Berland, Pessac 33607, France
| | - Timothy J. Deming
- Department
of Chemistry and Biochemistry, and Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Sébastien Lecommandoux
- Université de Bordeaux/Bordeaux INP, ENSCBP, and CNRS, Laboratoire de Chimie des Polymères
Organiques (UMR5629), 16 avenue Pey-Berland, Pessac 33607, France
| |
Collapse
|
63
|
Suyama K, Taniguchi S, Tatsubo D, Maeda I, Nose T. Dimerization effects on coacervation property of an elastin-derived synthetic peptide (FPGVG)5. J Pept Sci 2016; 22:236-43. [PMID: 27028208 DOI: 10.1002/psc.2876] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/11/2016] [Accepted: 02/23/2016] [Indexed: 11/08/2022]
Abstract
Elastin, a core protein of the elastic fibers, exhibits the coacervation (temperature-dependent reversible association/dissociation) under physiological conditions. Because of this characteristic, elastin and elastin-derived peptides have been considered to be useful as base materials for developing various biomedical products, skin substitutes, synthetic vascular grafts, and drug delivery systems. Although elastin-derived polypeptide (Val-Pro-Gly-Val-Gly)n also has been known to demonstrate coacervation property, a sufficiently high (VPGVG)n repetition number (n>40) is required for coacervation. In the present study, a series of elastin-derived peptide (Phe-Pro-Gly-Val-Gly)5 dimers possessing high coacervation potential were newly developed. These novel dimeric peptides exhibited coacervation at significantly lower concentrations and temperatures than the commonly used elastin-derived peptide analogs; this result suggests that the coacervation ability of the peptides is enhanced by dimerization. Circular dichroism (CD) measurements indicate that the dimers undergo similar temperature-dependent and reversible conformational changes when coacervation occurs. The molecular dynamics calculation results reveal that the sheet-turn-sheet motif involving a type II β-turn-like structure commonly observed among the dimers and caused formation of globular conformation of them. These synthesized peptide dimers may be useful not only as model peptides for structural analysis of elastin and elastin-derived peptides, but also as base materials for developing various temperature-sensitive biomedical and industrial products.
Collapse
Affiliation(s)
- Keitaro Suyama
- Faculty of Arts and Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Suguru Taniguchi
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan
| | - Daiki Tatsubo
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Iori Maeda
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan
| | - Takeru Nose
- Faculty of Arts and Science, Kyushu University, Fukuoka, 819-0395, Japan.,Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
64
|
Bidwell GL, Mahdi F, Shao Q, Logue OC, Waller JP, Reese C, Chade AR. A kidney-selective biopolymer for targeted drug delivery. Am J Physiol Renal Physiol 2016; 312:F54-F64. [PMID: 27784692 DOI: 10.1152/ajprenal.00143.2016] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 10/04/2016] [Accepted: 10/18/2016] [Indexed: 11/22/2022] Open
Abstract
Improving drug delivery to the kidney using renal-targeted therapeutics is a promising but underdeveloped area. We aimed to develop a kidney-targeting construct for renal-specific drug delivery. Elastin-like polypeptides (ELPs) are nonimmunogenic protein-based carriers that can stabilize attached small-molecule and peptide therapeutics. We modified ELP at its NH2-terminus with a cyclic, seven-amino acid kidney-targeting peptide (KTP) and at its COOH-terminus with a cysteine residue for tracer conjugation. Comparative in vivo pharmacokinetics and biodistribution in rat and swine models and in vitro cell binding studies using human renal cells were performed. KTP-ELP had a longer plasma half-life than ELP in both animal models and was similarly accumulated in kidneys at levels fivefold higher than untargeted ELP, showing renal levels 15- to over 150-fold higher than in other major organs. Renal fluorescence histology demonstrated high accumulation of KTP-ELP in proximal tubules and vascular endothelium. Furthermore, a 14-day infusion of a high dose of ELP or KTP-ELP did not affect body weight, glomerular filtration rate, or albuminuria, or induce renal tissue damage compared with saline-treated controls. In vitro experiments showed higher binding of KTP-ELP to human podocytes, proximal tubule epithelial, and glomerular microvascular endothelial cells than untargeted ELP. These results show the high renal selectivity of KTP-ELP, support the notion that the construct is not species specific, and demonstrate that it does not induce acute renal toxicity. The plasticity of ELP for attachment of any class of therapeutics unlocks the possibility of applying ELP technology for targeted treatment of renal disease in future studies.
Collapse
Affiliation(s)
- Gene L Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi; .,Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi
| | - Fakhri Mahdi
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Qingmei Shao
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Omar C Logue
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jamarius P Waller
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Caleb Reese
- Belhaven University, Jackson, Mississippi; and
| | - Alejandro R Chade
- Departments of Physiology and Biophysics, Medicine, and Radiology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
65
|
Muiznieks LD, Keeley FW. Biomechanical Design of Elastic Protein Biomaterials: A Balance of Protein Structure and Conformational Disorder. ACS Biomater Sci Eng 2016; 3:661-679. [DOI: 10.1021/acsbiomaterials.6b00469] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lisa D. Muiznieks
- Molecular
Structure and Function Program, Research Institute, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, Canada M5G 0A4
| | - Fred W. Keeley
- Molecular
Structure and Function Program, Research Institute, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, Canada M5G 0A4
- Department
of Biochemistry and Department of Laboratory Medicine and Pathobiology, 1 King’s College Circle, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
66
|
Miranda-Nieves D, Chaikof EL. Collagen and Elastin Biomaterials for the Fabrication of Engineered Living Tissues. ACS Biomater Sci Eng 2016; 3:694-711. [PMID: 33440491 DOI: 10.1021/acsbiomaterials.6b00250] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Collagen and elastin represent the two most predominant proteins in the body and are responsible for modulating important biological and mechanical properties. Thus, the focus of this review is the use of collagen and elastin as biomaterials for the fabrication of living tissues. Considering the importance of both biomaterials, we first propose the notion that many tissues in the human body represent a reinforced composite of collagen and elastin. In the rest of the review, collagen and elastin biosynthesis and biophysics, as well as molecular sources and biomaterial fabrication methodologies, including casting, fiber spinning, and bioprinting, are discussed. Finally, we summarize the current attempts to fabricate a subset of living tissues and, based on biochemical and biomechanical considerations, suggest that future tissue-engineering efforts consider direct incorporation of collagen and elastin biomaterials.
Collapse
Affiliation(s)
- David Miranda-Nieves
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Elliot L Chaikof
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
| |
Collapse
|
67
|
Bandiera A. Elastin-like polypeptides: the power of design for smart cell encapsulation. Expert Opin Drug Deliv 2016; 14:37-48. [PMID: 27414195 DOI: 10.1080/17425247.2016.1206072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Cell encapsulation technology is still a challenging issue. Innovative methodologies such as additive manufacturing, and alternative bioprocesses, such as cell therapeutic delivery, where cell encapsulation is a key tool are rapidly gaining importance for their potential in regenerative medicine. Responsive materials such as elastin-based recombinant expression products have features that are particularly attractive for cell encapsulation. They can be designed and tailored to meet desired requirements. Thus, they represent promising candidates for the development of new concept-based materials that can be employed in this field. Areas covered: An overview of the design and employment of elastin-like polypeptides for cell encapsulation is given to outline the state of the art. Special attention is paid to the design of the macromolecule employed as well as to the method of matrix formation and the biological system involved. Expert opinion: As a result of recent progress in regenerative medicine there is a compelling need for materials that provide specific properties and demonstrate defined functional features. Rationally designed materials that may adapt according to applied external stimuli and that are responsive to biological systems, such as elastin-like polypeptides, belong to this class of smart material. A run through the components described to date represents a good starting point for further advancement in this area. Employment of these components in cell encapsulation application will promote its advance toward 'smart cell encapsulation technology'.
Collapse
|
68
|
Ilekis JV, Tsilou E, Fisher S, Abrahams VM, Soares MJ, Cross JC, Zamudio S, Illsley NP, Myatt L, Colvis C, Costantine MM, Haas DM, Sadovsky Y, Weiner C, Rytting E, Bidwell G. Placental origins of adverse pregnancy outcomes: potential molecular targets: an Executive Workshop Summary of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. Am J Obstet Gynecol 2016; 215:S1-S46. [PMID: 26972897 DOI: 10.1016/j.ajog.2016.03.001] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 02/11/2016] [Accepted: 03/01/2016] [Indexed: 12/26/2022]
Abstract
Although much progress is being made in understanding the molecular pathways in the placenta that are involved in the pathophysiology of pregnancy-related disorders, a significant gap exists in the utilization of this information for the development of new drug therapies to improve pregnancy outcome. On March 5-6, 2015, the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health sponsored a 2-day workshop titled Placental Origins of Adverse Pregnancy Outcomes: Potential Molecular Targets to begin to address this gap. Particular emphasis was given to the identification of important molecular pathways that could serve as drug targets and the advantages and disadvantages of targeting these particular pathways. This article is a summary of the proceedings of that workshop. A broad number of topics were covered that ranged from basic placental biology to clinical trials. This included research in the basic biology of placentation, such as trophoblast migration and spiral artery remodeling, and trophoblast sensing and response to infectious and noninfectious agents. Research findings in these areas will be critical for the formulation of the development of future treatments and the development of therapies for the prevention of a number of pregnancy disorders of placental origin that include preeclampsia, fetal growth restriction, and uterine inflammation. Research was also presented that summarized ongoing clinical efforts in the United States and in Europe that has tested novel interventions for preeclampsia and fetal growth restriction, including agents such as oral arginine supplementation, sildenafil, pravastatin, gene therapy with virally delivered vascular endothelial growth factor, and oxygen supplementation therapy. Strategies were also proposed to improve fetal growth by the enhancement of nutrient transport to the fetus by modulation of their placental transporters and the targeting of placental mitochondrial dysfunction and oxidative stress to improve placental health. The roles of microRNAs and placental-derived exosomes, as well as messenger RNAs, were also discussed in the context of their use for diagnostics and as drug targets. The workshop discussed the aspect of safety and pharmacokinetic profiles of potential existing and new therapeutics that will need to be determined, especially in the context of the unique pharmacokinetic properties of pregnancy and the hurdles and pitfalls of the translation of research findings into practice. The workshop also discussed novel methods of drug delivery and targeting during pregnancy with the use of macromolecular carriers, such as nanoparticles and biopolymers, to minimize placental drug transfer and hence fetal drug exposure. In closing, a major theme that developed from the workshop was that the scientific community must change their thinking of the pregnant woman and her fetus as a vulnerable patient population for which drug development should be avoided, but rather be thought of as a deprived population in need of more effective therapeutic interventions.
Collapse
Affiliation(s)
- John V Ilekis
- Pregnancy and Perinatology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Department of Health and Human Services, Bethesda, MD.
| | - Ekaterini Tsilou
- Obstetric and Pediatric Pharmacology and Therapeutics Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Department of Health and Human Services, Bethesda, MD.
| | - Susan Fisher
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA
| | - Vikki M Abrahams
- Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine; New Haven, CT
| | - Michael J Soares
- Institute of Reproductive Health and Regenerative Medicine and Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - James C Cross
- Comparative Biology and Experimental Medicine, University of Calgary Health Sciences Centre, Calgary, Alberta, Canada
| | - Stacy Zamudio
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack, NJ
| | - Nicholas P Illsley
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack, NJ
| | - Leslie Myatt
- Center for Pregnancy and Newborn Research, University of Texas Health Science Center, San Antonio, TX
| | - Christine Colvis
- Therapeutics Discovery Program, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD
| | - Maged M Costantine
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX
| | - David M Haas
- Department of Obstetrics and Gynecology Indiana University, Indianapolis, IN
| | | | - Carl Weiner
- University of Kansas Medical Center, Kansas City, KS
| | - Erik Rytting
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX
| | - Gene Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
69
|
Taniguchi S, Watanabe N, Nose T, Maeda I. Development of short and highly potent self-assembling elastin-derived pentapeptide repeats containing aromatic amino acid residues. J Pept Sci 2015; 22:36-42. [PMID: 26662843 DOI: 10.1002/psc.2837] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/11/2015] [Accepted: 10/21/2015] [Indexed: 11/07/2022]
Abstract
Tropoelastin is the primary component of elastin, which forms the elastic fibers that make up connective tissues. The hydrophobic domains of tropoelastin are thought to mediate the self-assembly of elastin into fibers, and the temperature-mediated self-assembly (coacervation) of one such repetitive peptide sequence (VPGVG) has been utilized in various bio-applications. To elucidate a mechanism for coacervation activity enhancement and to develop more potent coacervatable elastin-derived peptides, we synthesized two series of peptide analogs containing an aromatic amino acid, Trp or Tyr, in addition to Phe-containing analogs and tested their functional characteristics. Thus, position 1 of the hydrophobic pentapeptide repeat of elastin (X(1)P(2)G(3)V(4)G(5)) was substituted by Trp or Tyr. Eventually, we acquired a novel, short Trp-containing elastin-derived peptide analog (WPGVG)3 with potent coacervation ability. From the results obtained during this process, we determined the importance of aromaticity and hydrophobicity for the coacervation potency of elastin-derived peptide analogs. Generally, however, the production of long-chain synthetic polypeptides in quantities sufficient for commercial use remain cost-prohibitive. Therefore, the identification of (WPGVG)3, which is a 15-mer short peptide consisting simply of five natural amino acids and shows temperature-dependent self-assembly activity, might serve as a foundation for the development of various kinds of biomaterials.
Collapse
Affiliation(s)
- Suguru Taniguchi
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan
| | - Noriko Watanabe
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan
| | - Takeru Nose
- Faculty of Arts and Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Iori Maeda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan
| |
Collapse
|
70
|
Yigit S, Dinjaski N, Kaplan DL. Fibrous proteins: At the crossroads of genetic engineering and biotechnological applications. Biotechnol Bioeng 2015; 113:913-29. [PMID: 26332660 DOI: 10.1002/bit.25820] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 07/27/2015] [Accepted: 08/25/2015] [Indexed: 12/30/2022]
Abstract
Fibrous proteins, such as silk, elastin and collagen are finding broad impact in biomaterial systems for a range of biomedical and industrial applications. Some of the key advantages of biosynthetic fibrous proteins compared to synthetic polymers include the tailorability of sequence, protein size, degradation pattern, and mechanical properties. Recombinant DNA production and precise control over genetic sequence of these proteins allows expansion and fine tuning of material properties to meet the needs for specific applications. We review current approaches in the design, cloning, and expression of fibrous proteins, with a focus on strategies utilized to meet the challenges of repetitive fibrous protein production. We discuss recent advances in understanding the fundamental basis of structure-function relationships and the designs that foster fibrous protein self-assembly towards predictable architectures and properties for a range of applications. We highlight the potential of functionalization through genetic engineering to design fibrous protein systems for biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Sezin Yigit
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155.,Department of Chemistry, Tufts University, Somerville, Massachusetts, 02145
| | - Nina Dinjaski
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155.
| |
Collapse
|
71
|
Abstract
Elastin is the dominant mammalian elastic protein found in soft tissue. Elastin-based biomaterials have the potential to repair elastic tissues by improving local elasticity and providing appropriate cellular interactions and signaling. Studies that combine these biomaterials with mesenchymal stem cells have demonstrated their capacity to also regenerate non-elastic tissue. Mesenchymal stem cell differentiation can be controlled by their immediate environment, and their sensitivity to elasticity makes them an ideal candidate for combining with elastin-based biomaterials. With the growing accessibility of the elastin precursor, tropoelastin, and elastin-derived materials, the amount of research interest in combining these two fields has increased and, subsequently, is leading to the realization of a potentially new strategy for regenerative medicine.
Collapse
Affiliation(s)
- Jazmin Ozsvar
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia ; Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
| | - Suzanne M Mithieux
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia ; Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
| | - Richard Wang
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia ; Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
| | - Anthony S Weiss
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia ; Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
72
|
George EM, Liu H, Robinson GG, Mahdi F, Perkins E, Bidwell GL. Growth factor purification and delivery systems (PADS) for therapeutic angiogenesis. Vasc Cell 2015; 7:1. [PMID: 25653833 PMCID: PMC4316602 DOI: 10.1186/s13221-014-0026-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/16/2014] [Indexed: 12/22/2022] Open
Abstract
Background Therapeutic angiogenesis with vascular endothelial growth factor (VEGF), delivered either via recombinant protein infusion or via gene therapy, has shown promise in preclinical models of various diseases including myocardial infarction, renovascular disease, preeclampsia, and neurodegenerative disorders. However, dosing, duration of expression, and tissue specificity are challenges to VEGF gene therapy, and recombinant VEGF delivery suffers from extremely rapid plasma clearance, necessitating continuous infusion and/or direct injection at the site of interest. Methods Here we describe a novel growth factor purification and delivery system (PADS) generated by fusion of VEGF121 to a protein polymer based on Elastin-like Polypeptide (ELP). ELP is a thermally responsive biopolymer derived from a five amino acid repeat sequence found in human tropoelastin. VEGFPADS were constructed by fusion of the ELP coding sequence in-frame with the VEGF121 coding sequence connected by a flexible di-glycine linker. In vitro activity of VEGFPADS was determined using cell proliferation, tube formation, and migration assays with vascular endothelial cells. Pharmacokinetics and biodistribution of VEGFPADS in vivo were compared to free VEGF in mice using quantitative fluorescence techniques. Results ELP fusion allowed for recombinant expression and simple, non-chromatographic purification of the ELP-VEGF121 chimera in yields as high as 90 mg/L of culture and at very high purity. ELP fusion had no effect on the VEGF activity, as the VEGFPADS were equally potent as free VEGF121 in stimulating HUVEC proliferation, tube formation, and migration. Additionally, the VEGFPADS had a molecular weight five-fold larger than free VEGF121, which lead to slower plasma clearance and an altered biodistribution after systemic delivery in vivo. Conclusion PADS represent a new method of both purification and in vivo stabilization of recombinant growth factors. The use of this system could permit recombinant growth factors to become viable options for therapeutic angiogenesis in a number of disease models. Electronic supplementary material The online version of this article (doi:10.1186/s13221-014-0026-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eric M George
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216 USA ; Department of Biochemistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216 USA
| | - Huiling Liu
- Department of Neurology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216 USA
| | - Grant G Robinson
- Department of Neurology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216 USA
| | - Fakhri Mahdi
- Department of Neurology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216 USA
| | - Eddie Perkins
- Department of Neurosurgery, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216 USA ; Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216 USA
| | - Gene L Bidwell
- Department of Biochemistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216 USA ; Department of Neurology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216 USA
| |
Collapse
|
73
|
Scelsi A, Bochicchio B, Smith A, Saiani A, Pepe A. Nanospheres from the self-assembly of an elastin-inspired triblock peptide. RSC Adv 2015. [DOI: 10.1039/c5ra21182d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The self-assembly of an elastin-inspired triblock peptide into nanospheres highlights the important role of conformational flexibility and π–π stacking.
Collapse
Affiliation(s)
- A. Scelsi
- Department of Science
- University of Basilicata
- 85100 Potenza
- Italy
- School of Materials and Manchester Institute of Biotechnology
| | - B. Bochicchio
- Department of Science
- University of Basilicata
- 85100 Potenza
- Italy
| | - A. Smith
- School of Materials and Manchester Institute of Biotechnology
- The University of Manchester
- Manchester
- UK
| | - A. Saiani
- School of Materials and Manchester Institute of Biotechnology
- The University of Manchester
- Manchester
- UK
| | - A. Pepe
- Department of Science
- University of Basilicata
- 85100 Potenza
- Italy
| |
Collapse
|
74
|
Smits FCM, Buddingh BC, van Eldijk MB, van Hest JCM. Elastin-like polypeptide based nanoparticles: design rationale toward nanomedicine. Macromol Biosci 2014; 15:36-51. [PMID: 25407963 DOI: 10.1002/mabi.201400419] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 10/17/2014] [Indexed: 11/06/2022]
Abstract
Elastin-like polypeptides (ELPs) are characterized by a high sequence control, temperature responsiveness and biocompatibility, which make them highly interesting as smart materials for application in nanomedicine. In particular the construction of ELP-based nanoparticles has recently become a focal point of attention in materials research. This review will give an overview of the ELP-based nanoparticles that have been developed until now and their underlying design principles. First a short introduction on ELPs and their stimulus-responsive behavior will be given. This characteristic has been applied for the development of ELP-based block copolymers that can self-assemble into nanoparticles. Both the fully ELP-based as well as several ELP hybrid materials that have been reported to form nanoparticles will be discussed, which is followed by a concise description of the promising biomedical applications reported for this class of materials.
Collapse
Affiliation(s)
- Ferdinanda C M Smits
- Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
75
|
Li NK, Quiroz FG, Hall CK, Chilkoti A, Yingling YG. Molecular Description of the LCST Behavior of an Elastin-Like Polypeptide. Biomacromolecules 2014; 15:3522-30. [DOI: 10.1021/bm500658w] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Felipe García Quiroz
- Department
of Biomedical Engineering, Duke University, P.O. Box 90281, Durham, North Carolina 27708, United States
| | | | - Ashutosh Chilkoti
- Department
of Biomedical Engineering, Duke University, P.O. Box 90281, Durham, North Carolina 27708, United States
| | | |
Collapse
|
76
|
George EM, Liu H, Robinson GG, Bidwell GL. A polypeptide drug carrier for maternal delivery and prevention of fetal exposure. J Drug Target 2014; 22:935-47. [PMID: 25148609 DOI: 10.3109/1061186x.2014.950666] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Pregnant females are largely overlooked in drug development due to concerns for fetal health. Additionally, pregnancy is often an exclusion criterion in clinical trials, so the safety of many drugs during pregnancy is unknown. PURPOSE The goal of this study was to evaluate Elastin-like Polypeptide (ELP), a synthetic protein derived from human elastin, for maternally sequestered drug delivery. ELP is a versatile drug carrier with a long plasma half-life, low immunogenicity, and the ability to be fused to nearly any small molecule or protein-based therapeutic. METHODS We determined the pharmacokinetics, biodistribution, and fetal exposure to the ELP drug carrier using quantitative fluorescence techniques in a rat pregnancy model. RESULTS After either bolus IV administration or continuous infusion over five days, ELPs accumulated strongly in the kidneys, liver, and placenta, but importantly, little to no ELPs were detectable in the fetus. Within the placenta, ELPs were localized to the chorionic plate and broadly distributed within the labyrinth, but were excluded from the fetal portion of the chorionic villi. CONCLUSION These data indicate that ELP does not cross the placenta, and they suggest that this adaptable drug delivery system is a promising platform for prevention of fetal drug exposure.
Collapse
|
77
|
Silva R, Fabry B, Boccaccini AR. Fibrous protein-based hydrogels for cell encapsulation. Biomaterials 2014; 35:6727-38. [DOI: 10.1016/j.biomaterials.2014.04.078] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/22/2014] [Indexed: 01/26/2023]
|
78
|
Whittaker J, Balu R, Choudhury NR, Dutta NK. Biomimetic protein-based elastomeric hydrogels for biomedical applications. POLYM INT 2014. [DOI: 10.1002/pi.4670] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jasmin Whittaker
- Ian Wark Research Institute, Mawson Lakes Campus; University of South Australia; Mawson Lakes Adelaide SA 5095 Australia
| | - Rajkamal Balu
- Ian Wark Research Institute, Mawson Lakes Campus; University of South Australia; Mawson Lakes Adelaide SA 5095 Australia
| | - Namita R. Choudhury
- Ian Wark Research Institute, Mawson Lakes Campus; University of South Australia; Mawson Lakes Adelaide SA 5095 Australia
| | - Naba K. Dutta
- Ian Wark Research Institute, Mawson Lakes Campus; University of South Australia; Mawson Lakes Adelaide SA 5095 Australia
| |
Collapse
|
79
|
TURNER PAULA, JOSHI GAURAVV, WEEKS CANDREW, WILLIAMSON RSCOTT, PUCKETT AAROND, JANORKAR AMOLV. NANO AND MICRO-STRUCTURES OF ELASTIN-LIKE POLYPEPTIDE-BASED MATERIALS AND THEIR APPLICATIONS: RECENT DEVELOPMENTS. ACTA ACUST UNITED AC 2014. [DOI: 10.1142/s1793984413430022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Elastin-like polypeptide (ELP) containing materials have spurred significant research interest for biomedical applications exploiting their biocompatible, biodegradable and nonimmunogenic nature while maintaining precise control over their chemical structure and functionality through genetic engineering. Physical, mechanical and biological properties of ELPs could be further manipulated using genetic engineering or through conjugation with a variety of chemical moieties. These chemical and physical modifications also achieve interesting micro- and nanostructured ELP-based materials. Here, we review the recent developments during the past decade in the methods to engineer elastin-like materials, available genetic and chemical modification methods and applications of ELP micro and nanostructures in tissue engineering and drug delivery.
Collapse
Affiliation(s)
- PAUL A. TURNER
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - GAURAV V. JOSHI
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - C. ANDREW WEEKS
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - R. SCOTT WILLIAMSON
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - AARON D. PUCKETT
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - AMOL V. JANORKAR
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| |
Collapse
|
80
|
Annabi N, Mithieux SM, Camci-Unal G, Dokmeci MR, Weiss AS, Khademhosseini A. Elastomeric Recombinant Protein-based Biomaterials. Biochem Eng J 2013; 77:110-118. [PMID: 23935392 DOI: 10.1016/j.bej.2013.05.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Elastomeric protein-based biomaterials, produced from elastin derivatives, are widely investigated as promising tissue engineering scaffolds due to their remarkable properties including substantial extensibility, long-term stability, self-assembly, high resilience upon stretching, low energy loss, and excellent biological activity. These elastomers are processed from different sources of soluble elastin such as animal-derived soluble elastin, recombinant human tropoelastin, and elastin-like polypeptides into various forms including three dimensional (3D) porous hydrogels, elastomeric films, and fibrous electrospun scaffolds. Elastin-based biomaterials have shown great potential for the engineering of elastic tissues such as skin, lung and vasculature. In this review, the synthesis and properties of various elastin-based elastomers with their applications in tissue engineering are described.
Collapse
Affiliation(s)
- Nasim Annabi
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02139, USA ; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA ; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, 02139, USA
| | | | | | | | | | | |
Collapse
|
81
|
Yamanaka M, Ishizaki Y, Nakagawa T, Taoka A, Fukumori Y. Purification and Characterization of Coacervate-Forming Cuticular Proteins from Papilio xuthus Pupae. Zoolog Sci 2013; 30:534-42. [DOI: 10.2108/zsj.30.534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Masahiro Yamanaka
- Division of Life Sciences, Graduate school of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yumi Ishizaki
- School of Natural System, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Taro Nakagawa
- School of Natural System, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Azuma Taoka
- School of Natural System, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshihiro Fukumori
- School of Natural System, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
82
|
Ciofani G, Genchi GG, Liakos I, Athanassiou A, Mattoli V, Bandiera A. Human recombinant elastin-like protein coatings for muscle cell proliferation and differentiation. Acta Biomater 2013; 9:5111-21. [PMID: 23085563 DOI: 10.1016/j.actbio.2012.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/12/2012] [Accepted: 10/11/2012] [Indexed: 12/31/2022]
Abstract
Recombinant proteins represent a new and promising class of polymeric materials in the field of biomaterials research. An important model for biomaterial design is elastin, the protein accounting for the elasticity of several tissues. Human elastin-like polypeptides (HELPs) have been developed as recombinant versions of elastin with the purpose of enhancing some peculiar characteristics of the native protein, like self-assembling. In this paper, we report on a comparative study of rat myoblasts response to coatings based on two different HELP macromolecules, with respect to control cultures on bare cell culture polystyrene and on a standard collagen coating. Cell behavior was analyzed in terms of adhesion, proliferation and differentiation. The collected data strongly suggest the use of HELPs as excellent biomaterials for tissue engineering and regenerative medicine applications.
Collapse
|
83
|
Çelebi B, Cloutier M, Rabelo RB, Balloni R, Mantovani D, Bandiera A. Human elastin-based recombinant biopolymers improve mesenchymal stem cell differentiation. Macromol Biosci 2012; 12:1546-54. [PMID: 23042756 DOI: 10.1002/mabi.201200170] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/25/2012] [Indexed: 12/26/2022]
Abstract
Elastin-based polypeptides are a class of smart biopolymers representing an important model in the design of biomaterials. The combination of biomimetic materials with cells that have great plasticity provides a promising strategy for the realization of highly engineered cell-based constructs for regenerative medicine and tissue repair applications. Two recombinant biopolymers inspired by human elastin are assessed as coating agents to prepare biomimetic surfaces for cell culture. These substrates are assayed for hBM MSC culture. The coated surfaces are also characterized with AFM to evaluate the topographical features of the deposited biopolymers. The results suggest that the elastin-derived biomimetic surfaces play a stimulatory role on osteogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Betül Çelebi
- Laboratory for Biomaterials and Bioengineering, Laval University, Quebec City, G1V 0A6, PQ, Canada
| | | | | | | | | | | |
Collapse
|
84
|
Yuvienco C, More HT, Haghpanah JS, Tu RS, Montclare JK. Modulating Supramolecular Assemblies and Mechanical Properties of Engineered Protein Materials by Fluorinated Amino Acids. Biomacromolecules 2012; 13:2273-8. [DOI: 10.1021/bm3005116] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Carlo Yuvienco
- Department of Chemical
and Biological Sciences, Polytechnic Institute of NYU, Brooklyn, New York 11201, United States
| | - Haresh T. More
- Department of Chemical
and Biological Sciences, Polytechnic Institute of NYU, Brooklyn, New York 11201, United States
| | - Jennifer S. Haghpanah
- Department of Chemical
and Biological Sciences, Polytechnic Institute of NYU, Brooklyn, New York 11201, United States
| | - Raymond S. Tu
- Department of Chemical
Engineering, City College of New York, New York, New York 10031, United States
| | - Jin Kim Montclare
- Department of Chemical
and Biological Sciences, Polytechnic Institute of NYU, Brooklyn, New York 11201, United States
- Department of Biochemistry, SUNY Downstate Medical Center, Brooklyn,
New York 11203, United States
| |
Collapse
|
85
|
Abstract
Elastomeric polypeptides are very interesting biopolymers and are characterized by rubber-like elasticity, large extensibility before rupture, reversible deformation without loss of energy, and high resilience upon stretching. Their useful properties have motivated their use in a wide variety of materials and biological applications. This chapter focuses on elastin and resilin - two elastomeric biopolymers - and the recombinant polypeptides derived from them (elastin-like polypeptides and resilin-like polypeptides). This chapter also discusses the applications of these recombinant polypeptides in the fields of purification, drug delivery, and tissue engineering.
Collapse
Affiliation(s)
- Mark B. van Eldijk
- Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Christopher L. McGann
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jan C.M. van Hest
- Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
86
|
Schipperus R, Eggink G, de Wolf FA. Secretion of elastin-like polypeptides with different transition temperatures by Pichia pastoris. Biotechnol Prog 2011; 28:242-7. [DOI: 10.1002/btpr.717] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/11/2011] [Indexed: 11/06/2022]
|
87
|
Maeda I, Fukumoto Y, Nose T, Shimohigashi Y, Nezu T, Terada Y, Kodama H, Kaibara K, Okamoto K. Structural requirements essential for elastin coacervation: favorable spatial arrangements of valine ridges on the three-dimensional structure of elastin-derived polypeptide (VPGVG)n. J Pept Sci 2011; 17:735-43. [DOI: 10.1002/psc.1394] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 05/30/2011] [Accepted: 06/15/2011] [Indexed: 11/11/2022]
|
88
|
Yeo GC, Keeley FW, Weiss AS. Coacervation of tropoelastin. Adv Colloid Interface Sci 2011; 167:94-103. [PMID: 21081222 DOI: 10.1016/j.cis.2010.10.003] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/13/2010] [Accepted: 10/15/2010] [Indexed: 12/14/2022]
Abstract
The coacervation of tropoelastin represents the first major stage of elastic fiber assembly. The process has been modeled in vitro by numerous studies, initially with mixtures of solubilized elastin, and subsequently with synthetic elastin peptides that represent hydrophobic repeat units, isolated hydrophobic domains, segments of alternating hydrophobic and cross-linking domains, or the full-length monomer. Tropoelastin coacervation in vitro is characterized by two stages: an initial phase separation, which involves a reversible inverse temperature transition of monomer to n-mer; and maturation, which is defined by the irreversible coalescence of coacervates into large species with fibrillar structures. Coacervation is an intrinsic ability of tropoelastin. It is primarily influenced by the number, sequence, and contextual arrangement of hydrophobic domains, although hydrophilic sequences can also affect the behavior of the hydrophobic domains and thus affect coacervation. External conditions including ionic strength, pH, and temperature also directly influence the propensity of tropoelastin to self-associate. Coacervation is an endothermic, entropically-driven process driven by the cooperative interactions of hydrophobic domains following destabilization of the clathrate-like water shielding these regions. The formation of such assemblies is believed to follow a helical nucleation model of polymerization. Coacervation is closely associated with conformational transitions of the monomer, such as increased β-structures in hydrophobic domains and α-helices in cross-linking domains. Tropoelastin coacervation in vivo is thought to mainly involve the central hydrophobic domains. In addition, cell-surface glycosaminoglycans and microfibrillar proteins may regulate the process. Coacervation is essential for progression to downstream elastogenic stages, and impairment of the process can result in elastin haploinsufficiency disorders such as supravalvular aortic stenosis.
Collapse
|
89
|
Bandiera A, Urbani R, Sist P. Spontaneous patterning obtained by evaporation of Human Elastin-like Polypeptide solutions. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2010:819-22. [PMID: 21096309 DOI: 10.1109/iembs.2010.5626761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The potential of producing patterned, bioactive coatings with Human Elastin-Like Polypeptides (HELPs) has been investigated. The physicochemical features of these compounds have evidenced some differences between the two recombinantly expressed products. By a device-free, simple route and avoiding the use of chemically unfriendly compounds, micropatterned surfaces with the ability to control cell behavior could be obtained. Thus, HELPs represent a very promising class of macromolecule for future applications in surface engineering.
Collapse
|
90
|
Bandiera A, Sist P, Urbani R. Comparison of Thermal Behavior of Two Recombinantly Expressed Human Elastin-Like Polypeptides for Cell Culture Applications. Biomacromolecules 2010; 11:3256-65. [DOI: 10.1021/bm100644m] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antonella Bandiera
- Department of Life Sciences, University of Trieste, via L. Giorgieri, 1, 34127 Trieste, Italy
| | - Paola Sist
- Department of Life Sciences, University of Trieste, via L. Giorgieri, 1, 34127 Trieste, Italy
| | - Ranieri Urbani
- Department of Life Sciences, University of Trieste, via L. Giorgieri, 1, 34127 Trieste, Italy
| |
Collapse
|
91
|
Tu Y, Weiss AS. Transient tropoelastin nanoparticles are early-stage intermediates in the coacervation of human tropoelastin whose aggregation is facilitated by heparan sulfate and heparin decasaccharides. Matrix Biol 2009; 29:152-9. [PMID: 19895887 DOI: 10.1016/j.matbio.2009.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 10/26/2009] [Accepted: 10/27/2009] [Indexed: 10/20/2022]
Abstract
Tropoelastin assembly is a key step in the formation of elastin. We consider how nanoscale intracellular assemblies of tropoelastin can congregate in an extracellular environment to give microscale aggregates. We describe novel 200-300 nm spherical particles that serve as intermediates in the formation of the coacervate. Their aggregation gives 800 nm to 1 microm species. This process is facilitated by heparan sulfate and dermatan sulfate interactions which effectively lower the critical concentration to facilitate this transition. This coacervation process was examined using a panel of heparin chains of various lengths and showed greatest efficacy for the decasaccharide, followed by the octasaccharide, while the hexasaccharide displayed the shortest efficacious length. We propose that these oligosaccharide interactions enable the charge-mediated aggregation of positively charged tropoelastin. This biochemistry models glycosaminoglycan interactions on the cell surface during elastogenesis which is characterized by the clustering of nascent tropoelastin aggregates to form micron-sized spherules.
Collapse
Affiliation(s)
- Yidong Tu
- School of Molecular and Microbial Biosciences G08, University of Sydney, NSW 2006, Australia
| | | |
Collapse
|
92
|
Secreted production of an elastin-like polypeptide by Pichia pastoris. Appl Microbiol Biotechnol 2009; 85:293-301. [PMID: 19565236 PMCID: PMC2773366 DOI: 10.1007/s00253-009-2082-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 06/05/2009] [Accepted: 06/07/2009] [Indexed: 12/03/2022]
Abstract
Elastin-like polypeptides (ELPs) are biocompatible designer polypeptides with inverse temperature transition behavior in solution. They have a wide variety of possible applications and a potential medical importance. Currently, production of ELPs is done at lab scale in Escherichia coli shake flask cultures. With a view to future large scale production, we demonstrate secreted production of ELPs in methanol-induced fed-batch cultures of Pichia pastoris and purification directly from the culture medium. The production of ELPs by P. pastoris proved to be pH dependent within the experimental pH range of pH 3 to 7, as an increasing yield was found in cultures grown at higher pH. Because ELP produced at pH 7 was partly degraded, a pH optimum for production of ELP was found at pH 6 with a yield of 255 mg of purified intact ELP per liter of cell-free medium.
Collapse
|
93
|
|
94
|
Urry DW, Onishi T, Long MM, Mitchell LW. Studies on the conformation and interactions of elastin: nuclear magnetic resonance of the polyhexapeptide. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 2009; 7:367-78. [PMID: 1184287 DOI: 10.1111/j.1399-3011.1975.tb02455.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Synthesis, proton magnetic resonance and carbon-13 magnetic resonance characterizations, including complete assignments, are reported for the polyhexapeptide of elastin, HCO-Val(Ala1-Pro2-Gly3-Val4-Gly5-Val6)18-OMe. Temperature dependence of peptide NH chemical shifts and solvent dependence of peptide C-O chemical shifts have been determined in several solvents and have been interpreted in terms of four hydrogen bonded rings for each repeat of the polyhexapeptide. The more stable hydrogen bonded ring is a beta-turn involving Ala1C-O--HN-Val4. More dynamic hydrogen bonds are an 11-atom hydrogen bonded ring Gly3NH--O-C Gly5, a 7-atom hydrogen bonded ring (a gamma-turn) Gly3 C-O--NH-Gly5, and a 23-atom hydrogen bonded ring Val6inH--O-C Val6(i+1). This set of hydrogen bonds results in a right-handed beta-spiral structure with slightly more than two repeats (approximately 2.2) per turn of spiral. The beta-spiral structure is briefly discussed relative to data on the elastic fiber.
Collapse
|
95
|
Nuhn H, Klok HA. Secondary Structure Formation and LCST Behavior of Short Elastin-Like Peptides. Biomacromolecules 2008; 9:2755-63. [DOI: 10.1021/bm800784y] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Harald Nuhn
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
96
|
|
97
|
Ostuni A, Bochicchio B, Armentano MF, Bisaccia F, Tamburro AM. Molecular and supramolecular structural studies on human tropoelastin sequences. Biophys J 2007; 93:3640-51. [PMID: 17693470 PMCID: PMC2072060 DOI: 10.1529/biophysj.107.110809] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the unusual properties of elastin is its ability to coacervate, which has been proposed to play an important role in the alignment of monomeric elastin for cross-linking into the polymeric elastin matrix. The temperature at which this transition takes place depends on several factors including protein concentration, ionic strength, and pH. Previously, polypeptide sequences encoded by different exons of the human tropoelastin gene have been analyzed for their ability to coacervate and to self-assemble. Few of them were indeed able to coacervate and only one, that encoded by exon 30 (EX30), gave amyloid fibers. In this article, we report on two chemically synthesized peptides-a decapeptide and an octadecapeptide-whose sequences are contained in the longer EX30 peptide and on a polypeptide (EX1-7) of 125 amino-acid residues corresponding to the sequence coded by the exons 1-7 and on a polypeptide (EX2-7) of 99 amino-acid residues encoded by exons 2-7 of human tropoelastin obtained by recombinant DNA techniques. Molecular and supramolecular structural characterization of these peptides showed that a minimum sequence of approximately 20 amino acids is needed to form amyloid fibers in the exon 30-derived peptides. The N-terminal region of mature tropoelastin (EX2-7) gives rise to a coacervate and forms elastinlike fibers, whereas the polypeptide sequence containing the signal peptide (EX1-7) forms mainly amyloid fibers. Circular dichroism spectra show that beta-structure is ubiquitous in all the sequences studied, suggesting that the presence of a beta-structure is a necessary, although not sufficient, requirement for the appearance of amyloid fibers.
Collapse
Affiliation(s)
- Angela Ostuni
- Department of Chemistry, University of Basilicata, Potenza, Italy
| | | | | | | | | |
Collapse
|
98
|
Jordan SW, Haller CA, Sallach RE, Apkarian RP, Hanson SR, Chaikof EL. The effect of a recombinant elastin-mimetic coating of an ePTFE prosthesis on acute thrombogenicity in a baboon arteriovenous shunt. Biomaterials 2007; 28:1191-7. [PMID: 17087991 DOI: 10.1016/j.biomaterials.2006.09.048] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 09/27/2006] [Indexed: 11/25/2022]
Abstract
A recombinant elastin-mimetic triblock protein polymer with an inverse transition temperature (approximately 20 degrees C) was used to impregnate small-diameter (4 mm i.d.) expanded polytetrafluoroethylene (ePTFE) vascular grafts. Scanning electron microscopy confirmed that initial elastin impregnation of the graft followed by further multilayer coating with elastin films filled in the fibril and node structure of the luminal surface of the ePTFE graft and was macroscopically smooth. Elastin protein polymer impregnation reduced the advancing contact angle of the luminal surface to 43 degrees, which was comparable to the advancing contact angle of 47 degrees for a cast elastin film. Attenuated total reflection infrared spectroscopy and Coomassie blue staining revealed little discernable change in the protein surface film after 24 h of shear at 500 s(-1) and 37 degrees C. Excellent short-term blood-contacting properties as determined by minimal fibrin and platelet deposition were demonstrated using a baboon extracorporeal femoral arteriovenous shunt model. The results of this study demonstrate the applicability of an elastin-mimetic triblock protein polymer as a non-thrombogenic coating or as a component of a tissue-engineered composite.
Collapse
|
99
|
Bellingham CM, Lillie MA, Gosline JM, Wright GM, Starcher BC, Bailey AJ, Woodhouse KA, Keeley FW. Recombinant human elastin polypeptides self-assemble into biomaterials with elastin-like properties. Biopolymers 2004; 70:445-55. [PMID: 14648756 DOI: 10.1002/bip.10512] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Processes involving self-assembly of monomeric units into organized polymeric arrays are currently the subject of much attention, particularly in the areas of nanotechnology and biomaterials. One biological example of a protein polymer with potential for self-organization is elastin. Elastin is the extracellular matrix protein that imparts the properties of extensibility and elastic recoil to large arteries, lung parenchyma, and other tissues. Tropoelastin, the approximately 70 kDa soluble monomeric form of elastin, is highly nonpolar in character, consisting essentially of 34 alternating hydrophobic and crosslinking domains. Crosslinking domains contain the lysine residues destined to form the covalent intermolecular crosslinks that stabilize the polymer. We and others have suggested that the hydrophobic domains are sites of interactions that contribute to juxtaposition of lysine residues in preparation for crosslink formation. Here, using recombinant polypeptides based on sequences in human elastin, we demonstrate that as few as three hydrophobic domains flanking two crosslinking domains are sufficient to support a self-assembly process that aligns lysines for zero-length crosslinking, resulting in formation of the crosslinks of native elastin. This process allows fabrication of a polymeric matrix with solubility and mechanical properties similar to those of native elastin.
Collapse
Affiliation(s)
- Catherine M Bellingham
- Cardiovascular Research Program, Hospital for Sick Children, 555 University Ave., Toronto, Ontario, Canada M5E 1X8
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Miao M, Bellingham CM, Stahl RJ, Sitarz EE, Lane CJ, Keeley FW. Sequence and structure determinants for the self-aggregation of recombinant polypeptides modeled after human elastin. J Biol Chem 2003; 278:48553-62. [PMID: 14500713 DOI: 10.1074/jbc.m308465200] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elastin is a polymeric structural protein that imparts the physical properties of extensibility and elastic recoil to tissues. The mechanism of assembly of the tropoelastin monomer into the elastin polymer probably involves extrinsic protein factors but is also related to an intrinsic capacity of elastin for ordered assembly through a process of hydrophobic self-aggregation or coacervation. Using a series of simple recombinant polypeptides based on elastin sequences and mimicking the unusual alternating domain structure of native elastin, we have investigated the influence of sequence motifs and domain structures on the propensity of these polypeptides for coacervation. The number of hydrophobic domains, their context in the alternating domain structure of elastin, and the specific nature of the hydrophobic domains included in the polypeptides all had major effects on self-aggregation. Surprisingly, in polypeptides with the same number of domains, propensity for coacervation was inversely related to the mean Kyte-Doolittle hydropathy of the polypeptide. Point mutations designed to increase the conformational flexibility of hydrophobic domains had the unexpected effect of suppressing coacervation and promoting formation of amyloid-like fibers. Such simple polypeptides provide a useful model system for understanding the relationship between sequence, structure, and mechanism of assembly of polymeric elastin.
Collapse
Affiliation(s)
- Ming Miao
- Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | |
Collapse
|